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EMBEDDINGS OF E(1, 6) IN E(5, 10) AND E(4, 4)

NICOLETTA CANTARINI, FABRIZIO CASELLI, AND VICTOR KAC

Abstract. We study the embeddings of the exceptional infinite-dimensional Lie su-
peralgebra E(1, 6) in the exceptional Lie superalgebras E(5, 10) and E(4, 4). These
questions arose in recent works on enhanced symmetries in some supersymmetric theo-
ries by N. Garner, S. Raghavendran, I. Saberi and B. Williams.

1. Introduction

The classification of simple linearly compact Lie superalgebras [9] includes five excep-
tional ones, denoted by E(1, 6), E(3, 6), E(3, 8), E(4, 4), and E(5, 10) (notation E(m,n)
means that this Lie superalgebra can be realized most economically by vector fields in a
formal neighborhood of a point in a (m|n)-dimensional supermanifold). A few papers ap-
peared recently, where these Lie superalgebras occurred as symmetries of some theories,
namely, E(5, 10) appeared in the 11-dimensional supergravity, E(3, 6) in the holographic
approach to 6-dimensional superconformal index, and E(1, 6) in the enhanced N = 8
supersymmetric Chern Simons theory, see references [12], [13], [7], respectively.

From this perspective and in view of representation theory of linearly compact Lie
superalgebras, it is therefore important to study how these Lie superalgebras "interact"
with each other.

An embedding of E(3, 6) in E(5, 10) and the decomposition of E(5, 10) with respect
to the adjoint representation of E(3, 6) on it was studied in [10], and this decomposition
was used in [13].

In the present paper we, first, present a new description of the Lie superalgebra E(1, 6)
(Section 2). Then we study the embedding of E(1, 6) in E(5, 10) and the decomposition
of E(5, 10) with respect to the adjoint representation of E(1, 6) on it (Theorem 3.3).

Next, we construct explicitly an embedding of E(1, 6) in E(4, 4) (Theorem 4.11). This
is achieved by exploiting new properties of the classical realization of E(1, 6) insideK(1, 6)
(Theorem 4.6). In this case, however, it seems a difficult problem to find the corresponding
decomposition.

Note that neither E(3, 8), nor E(4, 4) can be embedded in any of the other five excep-
tional linearly compact Lie superalgebras [6].

2. The exceptional Lie superalgebras E(5, 10), E(4, 4) and E(1, 6) and their

principal gradings.

Let us recall the definition of the simple linearly compact Lie superalgebras E(5, 10),
E(4, 4) and E(1, 6). For the description of these algebras and their Z-gradings we refer
to [6], [5] and [9].
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We use the following notation. The linearly compact Lie algebra Wn (resp. Sn) consists
of all vector fields

∑n
j=1 Pj(x)∂j , where Pj(x) ∈ C[[x1, . . . , xn]], ∂j =

∂
∂xj

(resp. of all zero-

divergence vector fields in Wn). The Lie algebra Wn acts on the linearly compact vector
space Ωk(n)λ of all differential k-forms with coefficients in C[[x1, . . . , xn]] by the formula

X(ω) = LXω + λ(divX)ω, X ∈ Wn, ω ∈ Ωk(n), λ ∈ C,

where LXω denotes the Lie derivative of the differential k-form ω along the vector field

X. Finally, Ωk(n) = Ωk(n)
0

(resp. Ωk(n)cl) denotes the space of all (resp. all closed)
differential k-forms in n variables. We will adopt the simple notation di1i2···ik to denote
the differential k-form dxi1 ∧ dxi2 ∧ · · ·dxik .

The Lie superalgebra g = E(5, 10) has even part g0̄ = S5, and odd part g1̄ = Ω2(5)cl.
The bracket between a vector field and a two-form is given by the Lie derivative, and on
g1̄ the bracket is

[fdij, gdhk] = εijklfg∂[ijkl], f, g ∈ C[[x1, . . . , x5]],

where, for i, j, k, l ∈ {1, 2, 3, 4, 5}, εijkl and [ijkl] are defined as follows: if |{i, j, k, l}| = 4
we let [ijkl] ∈ {1, 2, 3, 4, 5} be such that |{i, j, k, l, [ijkl]}| = 5 and let εijkl be the sign of
the permutation (i, j, k, l, [ijkl]); if |{i, j, k, l}| < 4 then εijkl = 0.

The Z-gradings of g = E(5, 10), up to automorphisms, are parametrized by quintuples
of integers (a1, a2, a3, a4, a5) with even sum, by letting

deg(xi) = − deg(∂i) = ai, and deg d = −1

4

5
∑

i=1

ai.

Such a grading is called a grading of type (a1, a2, a3, a4, a5). The grading of type (2, 2, 2, 2, 2)
is called the principal grading.

The Lie superalgebra L = E(4, 4) is defined as follows: its even part L0̄ is the Lie

algebra W4 and its odd part L1̄ is isomorphic, as an L0̄-module, to Ω1(4)−
1
2 . The bracket

of two odd elements ω1, ω2 ∈ L1̄ is

[ω1, ω2] = dω1 ∧ ω2 + ω1 ∧ dω2,

where the differential 3-forms are identified with vector fields via contraction with the
standard volume form.

The Lie superalgebra L = E(4, 4) has, up to automorphisms, only one irreducible
Z-grading L =

∏

j≥−1Lj , called the principal grading, defined by setting

deg xi = 1, deg d = −2,

where L0 is isomorphic to the unique non-trivial central extension p̂(4) of the finite-
dimensional Lie superalgebra p(4) (see, for example, [6], [14] or [4]).

Before recalling the construction of the Lie superalgebra E(1, 6) we make the following
observation. Let us denote by (Ωk(n))m the space of differential k-forms in n variables
x1, . . . , xn with coefficients in the space SmCn of homogeneous polynomials of degree m
in the variables x1, . . . , xn. Then we can identify (Ωk(n))m with Sm(Cn)⊗ ∧k(Cn) which
decomposes, as an sln-module, for 0 < k < n, m > 0, as follows (see, e.g. [11, Table 5,
line 4]):

Sm(Cn)⊗
∧k

(Cn) = V (mλ1)⊗ V (λk) = V (mλ1 + λk)⊕ V ((m− 1)λ1 + λk+1),

where λ1, . . . , λn are the fundamental weights of sln and V (λ) denotes the highest weight
module for sln of weight λ.
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For ω ∈ (Ωk(n))m we set
∫

ω =
1

k +m
iEω,

where E =
∑

j xj∂j is the Euler operator and iEω denotes the contraction of the form ω

along the vector field E. Note that
∫

defines a linear map (Ωk(n))m → (Ωk−1(n))m+1 for
k ≥ 1.

Proposition 2.1. Let 0 < k < n and m > 0. Then

a) The sln-submodule V (mλ1 + λk) of (Ωk(n))m is the image of the differntial map
d : (Ωk−1(n))m+1 → (Ωk(n))m.

b) The sln-submodule V ((m − 1)λ1 + λk+1) of (Ωk(n))m is the image of the map
∫

: (Ωk+1(n))m−1 → (Ωk(n))m.
c) The maps d and

∫

obey the following relations:

d2 = 0,
∫ 2

= 0, d
∫

+
∫

d = 1.

d) If dω = 0 (respectively
∫

ω = 0) then d
∫

ω = ω (respectively
∫

dω = ω).

Proof. We first prove c). Since iX iY = −iY iX for all vector fields X, Y we have i2E = 0 and

hence
∫ 2

= 0. Moreover, by Cartan’s formula, if ω ∈ (Ωk(n))m, we have (d
∫

+
∫

d)(ω) =
1

k+m
LE(ω) = 1.

Note that the closed form xm1 dx1∧· · ·∧dxk is a highest weight vector of weight mλ1+λk
and hence the component V (mλ1+λk) is given by the space of closed forms and a) follows.

By c) we have
∫

=
∫

d
∫

and d
∫

d = d so d and
∫

are inverses to each other between
the image of d in Ωk+1(n)m−1 and the image of

∫

in Ωk(n)m. In particular, by a), we have
that the image of

∫

is the other component V ((m − 1)λ1 + λk+1), with highest weight
vector

∫

(xm−1
1 dx1 ∧ · · · ∧ dxk+1), whence b). The statement in d) follows immediately

from c). �

The following diagram is an illustration of Proposition 2.1:

(Ωk+1(n))m−1 = V ((m− 1)λ1 + λk+1)
⊕

V ((m− 2)λ1 + λk+2)

(Ωk(n))m = V (mλ1 + λk)
⊕

V ((m− 1)λ1 + λk+1)

(Ωk−1(n))m+1 = V ((m+ 1)λ1 + λk−1)
⊕

V (mλ1 + λk).

∫

∫

d

d

Now we recall the construction of the Lie superalgebra E(1, 6). This is slightly different
but equivalent to that in [6]. The even part of E(1, 6) is

E(1, 6)0̄ = W1 ⊕ (sl4 ⊗ C[[t]]) (direct sum of Lie algebras),

where W1 = C[[t]]∂t, and its odd part is

E(1, 6)1̄ = (S2(C4)⊗ Ω1(1)
− 1

2 )⊕ (
∧2

(C4)⊗ Ω1(1)
− 3

2 ) (direct sum of vector spaces).

The action of E(1, 6)0̄ on S2(C4)⊗Ω1(1)
− 1

2 and the action of W1 on
∧2

(C4)⊗Ω1(1)
− 3

2 are
the obvious ones (thinking Ω1(1)λ as the W1-module of 1-forms in the variable t described
in Section 2), and the remaining brackets are described below.

In what follows, for reasons that will be apparent in the following sections, we iden-
tify C4 with

∑5
i=2Cxi, so that S2C4 is identified with the space of quadratic forms in

3



x2, . . . , x5,
∧2

(C4) is identified with the space of differential 2-forms
∑5

i,j=2 aijdxi ∧ dxj ,
where aij = −aji ∈ C, and sl4(C) is identified with the space of zero divergence vector

fields
∑5

i,j=2 bijxi∂j . Then the bracket between an element X ⊗ f ∈ sl4 ⊗ C[[t]] and an

element ω ⊗ gdt ∈
∧2

(C4)⊗ Ω1(1)
− 3

2 is

[X⊗f, ω⊗gdt] =
∫

(iXω)⊗f ′gdt+LXω⊗fgdt ∈ (S2(C4)⊗Ω1(1)
− 1

2 )⊕(
∧2

(C4)⊗Ω1(1)
− 3

2 ).

The bracket between two odd elements is, for p, q ∈ S2(C4), ω, σ ∈ ∧2
(C4) and f, g ∈

C[[t]],

[p⊗ fdt, q ⊗ gdt] = 0;

[p⊗ fdt, ω ⊗ gdt] = −(dp ∧ ω)⊗ fg ∈ sl4 ⊗ C[[t]];

[σ ⊗ fdt, ω ⊗ gdt] = fg(σ ∧ ω) + 1

2

(∫

σ ∧ ω − σ ∧
∫

ω
)

⊗ (f ′g − fg′) ∈ W1 ⊕ (sl4 ⊗ C[[t]]),

where we identified closed differential 3-forms in 4 variables x2, . . . , x5 (resp. differential
4-forms in 5 variables t, x2, . . . , x5) with zero-divergence vector fields in the same variables
(resp. with vector fields in one variable) through contraction with the standard volume
form dx2 ∧ dx3 ∧ dx4 ∧ dx5 (resp. dt ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx5).

If we set z = 2t∂t, then ad(z) defines on L an irreducible, consistent Z-grading of
depth 2 that is called the principal grading of E(1, 6) (i.e., x ∈ E(1, 6) has degree d if

ad(z)(x) = dx). In this grading E(1, 6)0 ∼= sl4⊕C and E(1, 6)−1
∼=

∧2
(C4), E(1, 6)−2

∼= C,

E(1, 6)1 ∼= S2(C4)⊕ (
∧2

(C4))∗, as E(1, 6)0-modules.

3. Embedding the Lie superalgebra E(1, 6) into E(5, 10)

Consider g = E(5, 10) with the Z-grading of type (0, 1, 1, 1, 1), i.e.,

deg x1 = deg ∂1 = 0, deg xi = − deg ∂i = 1 for i = 2, . . . , 5, deg d = −1.

Then g =
∏

i≥−1 gi is a Z-graded Lie superalgebra of depth 1 by closed subspaces gi,
and the subalgebra g0 is isomorphic to E(1, 6) (see [6]). In Theorem 3.1 below we give a
precise description of this isomorphism. We have

(g0)0̄ ={X ∈ 〈∂1, xi∂j | i, j = 2, 3, 4, 5〉 ⊗ C[[x1]] | div(X) = 0},
(g0)1̄ =〈xid1j + xjd1i | i, j = 2, . . . , 5〉 ⊗ C[[x1]]

+ 〈fdij +
1

2
f ′(xjdi1 − xidj1) | i, j = 2, . . . , 5, f ∈ C[[x1]]〉.

We recall the description of E(1, 6) from Section 2 as

E(1, 6) =W1 ⊕ (sl4 ⊗ C[[t]])⊕ (S2(C4)⊗ Ω1(1)
− 1

2 )⊕ (
∧2

(C4)⊗ Ω1(1)
− 3

2 )

and define a linear map ψ : E(1, 6) → g0 in the following way.

(1) For all f(t)∂t ∈ W1 we let

ψ(f(t)∂t) = f(x1)∂1 −
1

4
f ′(x1)

5
∑

k=2

xk∂k;

(2) for all X ⊗ f(t) ∈ sl4 ⊗ C[[t]] we let

ψ(X ⊗ f(t)) = f(x1)X ;

(3) for all xixj ⊗ f(t)dt ∈ S2(C4)⊗ Ω1(1)
− 1

2 we let

ψ(xixj ⊗ f(t)dt) = f(x1)(xid1j + xjd1i) = −d(f(x1)xixjd1);
4



(4) for all dij ⊗ f(t)dt ∈ ∧2
(C4)⊗ Ω1(1)−3/2 we let

ψ(dij ⊗ f(t)dt) = f(x1)dij +
1

2
f ′(x1) (xid1j − xjd1i) =

1

2
d
(

f(x1)(xidj − xjdi)
)

.

The following theorem holds.

Theorem 3.1. The map ψ : E(1, 6) → g0 defined above is a Lie superalgebra isomor-
phism.

Proof. First note that ψ is indeed an isomorphism of supervector spaces: this follows from
the observation thatX ∈ (g0)0̄ can be written as a 0-divergence vector fieldX =

∑5
i=1 fi∂i

with f1 ∈ C[[x1]]. Therefore X = (f1∂1− 1
4
f ′
1

∑5
k=2 xk∂k)+(1

4
f ′
1

∑5
k=2 xk∂k+

∑5
k=2 fk∂k) =

(f1∂1 − 1
4
f ′
1

∑5
k=2 xk∂k) + gY for some 0-divergence vector field Y ∈ sl4 and some g ∈

C[[x1]].
Next we verify that ψ is a homomorphism of Lie superalgebras, i.e.

(1) [ψ(α), ψ(β)] = ψ([α, β])

for all α, β ∈ E(1, 6). If α and β are both even Equation (1) can be easily verified.
Let us verify Equation (1) if α is even and β is odd.

• Let α = f(t)∂t ∈ W1 and β = xixj ⊗ g(t)dt ∈ S2(C4)⊗ Ω1(1)
− 1

2 . We have

[ψ(f(t)∂t), ψ(xixj ⊗ g(t)dt)] = [f(x1)∂1 −
1

4
f ′(x1)

5
∑

k=2

xk∂k, g(x1)(xid1j + xjd1i)]

= d(f(x1)g(x1)(xidj + xjdi)) +
1

2
d(f ′(x1)g(x1)xixjd1)

= ψ(xixj ⊗
(

∂t(f(t)g(t))−
1

2
f ′(t)g(t)

)

dt)

= ψ([f(t)∂t, xixj ⊗ g(t)dt]).

• Let α = f(t)∂t ∈ W1 and β = dij ⊗ g(t)dt ∈ ∧2
(C4)⊗ Ω1(1)−3/2. We have

[ψ(f(t)∂t), ψ(dij ⊗ g(t)dt)] = [f(x1)∂1 −
1

4
f ′(x1)

5
∑

k=2

xk∂k, g(x1)dij +
1

2
g′(x1)(xid1j − xjd1i)]

=
1

2
d(f(x1)g

′(x1)(xidj − xjdi))−
1

4
d(f ′(x1)g(x1)(xidj − xjdi))

= ψ(dij ⊗ (f(t)g′(t)− 1

2
f ′(t)g(t))dt)

= ψ([f(t)∂t, dij ⊗ g(t)dt]).

• Let α = xh∂k ⊗ f(t) ∈ sl4 ⊗C[[t]] and β = xixj ⊗ g(t)dt ∈ S2(C4)⊗Ω1(1)
− 1

2 . We
have

[ψ(xh∂k ⊗ f(t)), ψ(xixj ⊗ g(t)dt)] = [f(x1)xh∂k, g(x1)(xid1j + xjd1i)]

= δkj(−d(f(x1)g(x1)xhxid1) + δki(−d(f(x1)g(x1)xhxjd1)
= δkjψ(xhxi ⊗ f(t)g(t)dt) + δkiψ(xhxj ⊗ f(t)g(t)dt)

= ψ([xh∂k ⊗ f(t), xixj ⊗ g(t)dt]).

The case α = xh∂h − xk∂k is similar and hence is omitted.
5



• Let α = xh∂k ⊗ f(t) ∈ sl4 ⊗C[[t]] and β = dij ⊗ g(t)dt ∈ ∧2
(C4)⊗Ω1(1)−3/2. We

can assume without loss of generality that k 6= j. We have

[ψ(xh∂k ⊗ f(t)), ψ(dij ⊗ g(t)dt)] = [f(x1)xh∂k, g(x1)dij +
1

2
g′(x1)(xid1j − xjd1i)]

= δik(d(f(x1)g(x1)xhdj) +
1

2
d(f(x1)g

′(x1)xhxjd1))

= δik(f(x1)g(x1)dhj +
1

2
∂1(f(x1)g(x1))(xhd1j − xjd1h)

+
1

2
f ′(x1)g(x1)(xhd1j + xjd1h))

= δik(ψ(dhj ⊗ f(t)g(t)dt) +
1

2
ψ(xhxj ⊗ f ′(t)g(t)dt)).

On the other hand

[xh∂k ⊗ f(t), dij ⊗ g(t)dt] = δik(dhj ⊗ f(t)g(t)dt+
∫

xhdj ⊗ f ′(t)g(t)dt)

= δik(dhj ⊗ f(t)g(t)dt+
1

2
xhxj ⊗ f ′(t)g(t)dt).

The case α = xh∂h − xk∂k is similar and hence is omitted.

Finally, we can verify Equation (1) in the case where both α and β are odd.

• If α, β ∈ S2(C4)⊗ Ω1(1)
− 1

2 we can observe that [ψ(α), ψ(β)] = ψ([α, β]) = 0.

• Let α = xhxk ⊗ f(t)dt ∈ S2(C4) ⊗ Ω1(1)
− 1

2 and β = dij ⊗ g(t)dt ∈
∧2

(C4) ⊗
Ω1(1)−3/2. We first assume that i, j, h, k are distinct and that ε1ijhk = 1. We have

[ψ(xhxk ⊗ f(t)dt), ψ(dij ⊗ g(t)dt)] = [f(x1)(xhd1k + xkd1h), g(x1)dij +
1

2
g′(x1)(xid1j − xjd1i)]

= f(x1)g(x1)(−xh∂h + xk∂k)

= ψ((−xh∂h + xk∂k)⊗ f(t)g(t)).

On the other hand

[xhxk ⊗ f(t)dt, dij ⊗ g(t)dt] = (xkdh + xhdk) ∧ dij ⊗ f(t)g(t) = (−xk∂k + xh∂h)⊗ f(t)g(t)

If i, j, h, k are not distinct the computation is similar and simpler and is therefore
omitted.

• Let α = dij⊗f(t)dt, β = dhk⊗g(t)dt ∈
∧

(C4)⊗Ω1(1)−
3
2 . We assume ǫ(1ijhk) = 1.

We have

[ψ(dij⊗f(t)dt), ψ(dhk ⊗ g(t)dt)] =

= [f(x1)dij +
1

2
f ′(x1)(xid1j − xjd1i), g(x1)dhk +

1

2
g′(x1)(xhd1k − xkd1h)]

= f(x1)g(x1)∂1 −
1

2
f(x1)g

′(x1)(xh∂h + xk∂k)−
1

2
f ′(x1)g(x1)(xi∂i + xj∂j)

= f(x1)g(x1)∂1 −
1

4
∂1(f(x1)g(x1))

5
∑

r=2

xr∂r

+
1

4
(f(x1)g

′(x1)− f ′(x1)g(x1))(xi∂i + xj∂j − xh∂h − xk∂k)

= ψ(f(t)g(t)∂t) + ψ((xi∂i + xj∂j − xh∂h − xk∂k)⊗
1

4
(f(t)g′(t)− f ′(t)g(t))).

6



On the other hand

[dij ⊗ f(t)dt, dhk ⊗ g(t)dt] =

= f(t)g(t)∂t +
1

2

(∫

dij ∧ dhk − dij ∧
∫

dhk
)

⊗ (f ′(t)g(t)− f(t)g′(t))

= f(t)g(t)∂t +
1

4
(xi∂i + xj∂j − xh∂h − xk∂k)⊗ (f(t)g′(t)− f ′(t)g(t)).

�

In the embedding of L = E(1, 6) into g = E(5, 10) described in Theorem 3.1 the

grading element of L in its principal grading is z = 2x1∂1− 1
2

∑5
i=2 xi∂i: this corresponds

to letting

deg x1 = − deg ∂1 = 2, deg xi = − deg ∂i = 1 for i = 2, 3, 4, 5, and deg d = −3

2
;

(it is the Z-grading of type (2, 1, 1, 1, 1) of E(5, 10)). It follows that inside E(5, 10) the
non-positive part L≤0 of E(1, 6), with respect to its principal grading, is the following:

L<0 = 〈∂x1 , dij | i, j = 2, 3, 4, 5, i < j〉,
L0 = 〈z, xi∂j , xi∂i − xi+1∂i+1 | i, j = 2, 3, 4, i 6= j〉.

Since g0 is isomorphic to E(1, 6), each gj is an E(1, 6)-module. We have:

g−1 = 〈∂i | i = 2, . . . , 5〉 ⊗ C[[x1]] + 〈d1j | j = 2, . . . , 5〉 ⊗ C[[x1]],

and, for r ≥ 1,

(gr)0̄ = {X ∈ 〈p∂1, q∂i〉 ⊗ C[[x1]] | i = 2, . . . , 5, p, q ∈ C[x2, . . . , x5], deg(p) = r,

deg(q) = r + 1, div(X) = 0};

(gr)1̄ = {ω ∈ 〈pdij, qd1j〉 ⊗ C[[x1]] | i, j = 2, . . . , 5, p, q ∈ C[x2, . . . , x5], deg(p) = r,

deg(q) = r + 1, dω = 0}.
Proposition 3.2. The g0-module gr is generated by the vector vr = xr2∂1 if r ≥ 0 and by
the vector v−1 = ∂5 if r = −1.

Proof. Since g is a simple Z-graded Lie superalgebra of depth 1, the g0-module g−1 is
irreducible, hence is generated by v−1, and we may assume that r ≥ 0. We have

(gr)0̄ = 〈xa1∂2(q)∂1 − axa−1
1 q∂2; x

b
1Y | a, b ∈ Z+, deg(q) = r + 1, Y ∈ (S4)r〉,

where (S4)r denotes the subspace of zero-divergence vector fields in the variables x2, . . . , x5,
of principal degree r (i.e., deg xi = − deg ∂i = 1). The vector fields of the form xb1Y , such
that Y ∈ (S4)r, span the (g0)0̄-submodule (S4)r ⊗ C[[x1]] of (gr)0̄.

We have:

[xk1x3∂4, vr] = −kxk−1
1 xr2x3∂4,

hence (S4)r ⊗ C[[x1]] is contained in the g0̄-submodule generated by vr, since (S4)r is an
irreducible sl4-module.

The quotient of (gr)0̄ by the submodule (S4)r ⊗ C[[x1]] is isomorphic to Sr(4) ⊗W1:

two vector fields
∑5

i=1 fi∂i and
∑5

i=1 gi∂i lie in the same class if and only if f1 = g1.
We have

[xk1x3∂2, vr] = rxk1x
r−1
2 x3∂1 − kxk−1

1 xr2x3∂2,

hence, by the irreducibility of Sr(C4) as an sl4-module, (gr)0̄ is generated by vr.
7



The odd part of gr is given by:

(gr)1̄ = 〈xa1dσ − d(xa1) ∧ σ, xb1dx1 ∧ τ | a, b ∈ Z+, σ ∈ Ω1
r+1(4), τ ∈ Ω1

r+1(4)cl〉,
where Ω1

r(4) and Ω1
r+1(4)cl denote the space of differential 1-forms of degree r and closed

differential 1-forms of degree r+1, respectively, in the four variables x2, . . . , x5 (deg xi =
1 = deg dxi).

The subspace consisting of closed differential 2-forms xb1dx1∧τ , such that τ ∈ Ω1
r+1(4)cl,

is a (g0)0̄-submodule of (gr)1̄. We have:

[x1d23 + x2d13, vr] = −(r + 1)xr2d23.

By the irreducibility of Ω2
r(4)cl as an sl4-module, the form xr2d23 generates the whole

Ω2
r(4)cl as an sl4-module. Besides, for xa1Y ∈ C[x1]⊗ sl4 and ω ∈ Ω2

r(4)cl,

[xa1Y, ω] = d(xa1iY (ω)) = axa−1
1 dx1 ∧ iY (ω) + xa1d(iY (ω)),

hence we obtain all elements in (gr)1̄ since Ω1
r+1(4) is spanned by contractions of closed

2-forms of degree r along vector fields in sl4. Indeed, let σ = gdxj for some monomial g
of degree r + 1 in the variables x2, . . . , x5 and some j ∈ {2, . . . , 5}. Let k ∈ {2, . . . , 5}
be such that xk divides g and let h 6= k, j. Take f ∈ C[x2, . . . , x5], a monomial of degree
r + 1, such that xk∂hf = g and ω = d(fdxj) =

∑

i ∂xi
fdij. Then

ixk∂h(ω) = xk∂hfdxj = gdxj.

�

Each of the subspaces gj carries a Z-grading by finite-dimensional subspaces induced
by the principal grading of E(5, 10), i.e., the grading of type (2, 2, 2, 2, 2). Recall that in
this grading deg d = −5/2, therefore we have the induced Z-grading

gr =
∏

k≥2r−2

gr,k.

Each E(1, 6)-module gr is a linearly compact space, hence the dual modules are discrete
spaces, and we have

g∗r =
⊕

k≥2r−2

g∗r,k,

where all gr,k and g∗r,k are g0-modules. In fact, all E(1, 6)-modules g∗r are objects in the
category P(L, L≥0) of continuous Z-graded modules with discrete topology over a Z-
graded linearly compact Lie superalgebra L, finitely generated as U(L<0)-modules ([3]).

We denote byM(λ) theE(1, 6)-Verma module induced by an irreducible finite-dimensio-
nal L0-module of highest weight λ = (a, b, c; d) where a, b, c ∈ Z+ and d ∈ C denote the
eigenvalues of the elements x2∂2 − x3∂3, x3∂3 − x4∂4, x4∂4 − x5∂5 and z, respectively,
extended by zero to L>0. Besides, we denote by I(λ) the irreducible quotient of M(λ) by
its unique maximal submodule.

Theorem 3.3. The E(1, 6)-modules g∗j are irreducible for every j ≥ −1, and g∗−1
∼=

I(1, 0, 0;−1
2
), g∗r

∼= I(0, 0, r; r
2
+ 2), for r ≥ 0.

Proof. The vector v−1 = ∂5 in g−1 is a highest weight vector of weight (0, 0, 1; 1
2
), which is

annihilated by the negative part of E(1, 6). Therefore g∗−1, being irreducible, is isomorphic
to the unique irreducible quotient I(1, 0, 0;−1

2
) of the Verma module M(1, 0, 0;−1

2
).

Similarly, the vector v0 = ∂1 in g0 is a highest weight vector of weight (0, 0, 0;−2),
which is annihilated by the negative part of the simple linearly compact Lie superalgebra
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E(1, 6). Therefore g∗0 is isomorphic to the unique irreducible quotient I(0, 0, 0; 2) of the
Verma module M(0, 0, 0; 2). Hence we may assume r ≥ 1.

The vector vr = xr2∂1 in gr is a highest weight vector of weight (r, 0, 0;− r
2
−2), which is

annihilated by the negative part of E(1, 6) and generates gr as a g0-module by Proposition
3.2. It follows that g∗r is generated by a highest weight vector w of weight (0, 0, r; r

2
+ 2)

hence we can construct a morphism of g0-modules:

ψ :M(0, 0, r;
r

2
+ 2) → g∗r

sending the generating vector of M(0, 0, r; r
2
+ 2) to w. It follows that g∗r is isomorphic

to a quotient of the Verma module M(0, 0, r; r
2
+2). Notice that ψ is a graded morphism

sending M(0, 0, r; r
2
+ 2)k to (gr,2r−2+k)

∗.
Now let W be a proper submodule of g∗r . Then ψ−1(W ) is a proper submodule of

M(0, 0, r; r
2
+ 2), hence it contains the unique singular vector v of M(0, 0, r; r

2
+ 2) of

positive degree (see [2, Theorem 4.1] and [1, Section 3]). This vector has degree 1, hence
ψ(v) is a singular vector of degree 1 in (gr,2r−1)

∗. But this is impossible since gr,2r−1 does
not contain non-zero vectors annihilated by the negative part of E(1, 6). Indeed,

gr,2r−1 = {ω ∈ 〈pdij〉 | deg(p) = r, dω = 0},
hence if ψ(v) =

∑

2≤i<j≤5 Pijdij then dkt(ψ(v)) =
∑

2≤i<j≤5 ǫ[ktij]Pij∂[ktij], hence dkt(ψ(v)) =
0 for every k, t if and only if Pij = 0 for every i, j.

It follows that g∗r is irreducible and hence isomorphic to I(0, 0, r; r
2
+ 2).

�

4. Embedding the Lie superalgebra E(1, 6) into E(4, 4)

Consider the linearly compact Lie superalgebra K(1, 6) = C[[t]]⊗∧

(ξ1, ξ2, ξ3, η1, η2, η3)
with bracket given by

[f, g] = (2−E)f
∂g

∂t
− ∂f

∂t
(2− E)g + (−1)p(f)

3
∑

i=1

( ∂f

∂ξi

∂g

∂ηi
+
∂f

∂ηi

∂g

∂ξi

)

,

where E =
∑3

i=1(ξi
∂
∂ξi

+ ηi
∂
∂ηi

). We shall need also a slightly different description of

K(1, 6). Namely, letting for all j = 1, 2, 3,

ρj =
1√
2
(ξj + ηj), ρj+3 =

1√
−2

(ξj − ηj),

i.e.,

ξj =
1√
2
(ρj +

√
−1ρj+3), ηj =

1√
2
(ρj −

√
−1ρj+3),

we have K(1, 6) = C[[t]]⊗∧

(ρ1, . . . , ρ6) with bracket given by

[f, g] = (2−E)f
∂g

∂t
− ∂f

∂t
(2− E)g + (−1)p(f)

6
∑

i=1

∂f

∂ρi

∂g

∂ρi
,

and one can check that we also have E =
∑6

i=1 ρi
∂
∂ρi

. In our arguments we make use of

both descriptions of K(1, 6) since the bracket involves simpler computations if one uses
the ρi’s and, on the other hand, we have a simpler decomposition of K(1, 6) as a graded
Lie superalgebra if one uses the ξi’s and the ηi’s.

Remark 4.1. We have ρjρj+3 =
√
−1ξjηj for all j = 1, 2, 3.
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If I = (i1, . . . , ik) is a sequence with distinct entries in {1, 2, 3, 4, 5, 6} we let ρI =
ρi1 · · · ρik and ρ∗I be the unique monomial such that ρIρ

∗
I = ρ1ρ2 · · · ρ6. The ∗-operator is

extended to
∧

(ρ1, . . . , ρ6) by linearity.
We recall that a Z-grading of K(1, 6) can be defined by assigning an integer degree to

the variables t, ξi, ηi (i = 1, 2, 3), such that deg t = deg ξi + deg ηi for all i = 1, 2, 3. We
shall call (deg t| deg ξ1, deg ξ2, deg ξ3, deg η1, deg η2, deg η3) the type of the grading. Then
the degree of a monomial is equal to the sum of degrees of factors minus 1. We consider
on K(1, 6) the grading of type (1|0, 1, 1, 1, 0, 0). Although this is isomorphic to the more
standard grading (1|1, 1, 1, 0, 0, 0) it will induce a different grading on the subalgebra
E(1, 6) (see [5, Remark 6.1]) that we are going to discuss. It is sometimes convenient to
rename η1 = ξ4 and ξ1 = η4 so that

K(1, 6) = C[[t]]⊗
∧

(ξ2, ξ3, ξ4, η2, η3, η4)

and all the ξ′is (resp. the ηi’s) have the same degree (1 and 0 respectively). In particular,
if 2 ≤ i1 < · · · < ik ≤ 4 and 2 ≤ j1 < · · · < jh ≤ 4 we have deg(tnξi1 · · · ξikηj1 · · · ηjh) =
n+k−1. We observe that elements ρj are not homogeneous with respect to this grading.

For i ∈ {1, 2, 3, 4} it is also convenient to set ξī = ηi (the bar here is just a symbol).
If I = (i1, . . . , ik) is a sequence with distinct entries in either {1, 2, 3, 1̄, 2̄, 3̄} or in

{2, 3, 4, 2̄, 3̄, 4̄} we let |I| = k, ξI = ξi1 · · · ξik and Ī = (ī1, . . . , īk) (where ¯̄i = i). If

f ∈ K(1, 6) is a non-zero monomial f = atnξI we also let |f | = |I|. Moreover, we let ξ#I
be the unique monomial such that ξĪξ

#
I = ξ2ξ3ξ4η2η3η4 = −ξ1ξ2ξ3η1η2η3. For example,

if I = (2, 4̄) then Ī = (2̄, 4) and ξ#I = −ξ2ξ3η3η4. The #-operator is also extended to
∧

(ξ1, ξ2, ξ3, η1, η2, η3) by linearity.

Lemma 4.2. For all X ∈ ∧

(ξ1, ξ2, ξ3, η1, η2, η3) =
∧

(ρ1, ρ2, ρ3, ρ4, ρ5, ρ6) we have

X∗ =
√
−1X#.

Proof. It is enough to show the result for X = ρI for some sequence I with distinct entries
in {1, 2, 3, 4, 5, 6}. We observe that there esists a partition I1, I2, I3, I4 of {1, 2, 3} such
that (up to a sign)

ρI =
∏

j∈I1

ρjρj+3

∏

j∈I2

ρj
∏

j∈I3

ρj+3.

Then

ρ∗I = ǫ
∏

j∈I2

ρj+3

∏

j∈I3

ρj
∏

j∈I4

ρjρj+3,

where ǫ = ±1 is such that

ǫ
∏

j∈I1

ρjρj+3

∏

j∈I2

ρj
∏

j∈I3

ρj+3

∏

j∈I2

ρj+3

∏

j∈I3

ρj
∏

j∈I4

ρjρj+3 = ρ1ρ2ρ3ρ4ρ5ρ6.

Next we observe that if ξJηj 6= 0, ξJξj 6= 0 and (ξJηj)
# = ξKηj for some sequences

J,K in {1, 2, 3, 1̄, 2̄, 3̄} and some index j ∈ {1, 2, 3}, then (ξJξj)
# = −ξKξj. Moreover we

observe that
(

∏

j∈I1

ηjξj
∏

j∈I2

ηj
∏

j∈I3

ξj

)#

= ǫ′
∏

j∈I2

ηj
∏

j∈I3

ξj
∏

j∈I4

ξjηj ,

where the sign ǫ = ±1 is such that

ǫ′
∏

j∈I1

ξjηj
∏

j∈I2

ξj
∏

j∈I3

ηj
∏

j∈I2

ηj
∏

j∈I3

ξj
∏

j∈I4

ξjηj = ǫ′ξ2ξ3ξ4η2η3η4 = −ǫ′ξ1ξ2ξ3η1η2η3.
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In particular we can observe that ǫ′ = −ǫ. From these observations we can deduce that

ρ#I =
(

∏

j∈I1

√
−1ξjηj

∏

j∈I2

1√
2
(ξj + ηj)

∏

j∈I3

1√
−2

(ξj − ηj)
)#

= −ǫI(−
√
−1)|I1|

∏

j∈I2

1√
2
(ηj − ξj)

∏

j∈I3

1√
−2

(ξj + ηj)
∏

j∈I4

ξjηj

= −ǫI(−
√
−1)|I1|+|I2|+|I3|+|I4|

∏

j∈I2

ρj+3

∏

j∈I3

ρj
∏

j∈I4

ρjρj+3

= −
√
−1ρ∗I ,

since |I1|+ |I2|+ |I3|+ |I4| = 3.
�

We let A : K(1, 6) → K(1, 6) be the linear operator defined by

A(tnξI) = (−1)|I|(|I|+1)/2∂
3−|I|
t tnξ#I ,

where ∂−1
t =

∫ t

0
(homogeneous integration with respect to t), I is any sequence with

distinct coefficients in {2, 3, 4, 2̄, 3̄, 4̄} and n ≥ 0.
By Lemma 4.2, if I is a sequence with coefficients in {1, 2, 3, 4, 5, 6} we also have

A(tnρI) = −
√
−1(−1)|I|(|I|+1)/2∂

3−|I|
t tnρ∗I .

Moreover, since (ρ∗I)
∗ = (−1)|I|ρI it follows immediately that A(tnρI) 6= 0 thenA(A(tnρI)) =

tnρI . Finally, for all f ∈ K(1, 6) we let

ι(f) = f + A(f).

For all k ≥ 0 we let Lk = 〈tnρI : n + |I| = k〉. We clearly have K(1, 6) =
∏

k≥0Lk as
vector spaces and we observe that A is injective on Lk for k ≥ 3 and is identically zero
on L0, L1, L2.

Cheng and Kac [6, Remark 5.3.2] observed (without a proof) that elements of the form
ι(f) span a Lie subalgebra of K(1, 6) isomorphic to E(1, 6). This fact is a consequence
of the following results that will also be useful in the sequel.

Definition 4.3. Let I, J be sequences in {1, 2, 3, 4, 5, 6} and n,m ≥ 0. Let f = tnρI
and g = tmρJ be monomials in K(1, 6). We say that (f, g) is an exceptional pair if the
following conditions hold:

• n = m = 0;
• |I|+ |J | ≥ 4;
• |I| ≤ 1 or |J | ≤ 1;
• ρIρJ 6= 0 ∈ ∧

(ρ1, . . . , ρ6).

Lemma 4.4. Let f = tnρI and g = tmρJ be monomials in K(1, 6). If (f, g) is not an
exceptional pair then we have

A
(

[f, g] + [A(f), A(g)]
)

= [A(f), g] + [f, A(g)].

If (f, g) is an exceptional pair then A
(

[A(f), g] + [f, A(g)]
)

= [f, g] + [A(f), A(g)] = 0.

Proof. Let f = tnρI and g = tmρJ and for notational convenience let d = |I| and e = |J |.
We first prove the statement if the following two conditions are sarisfied:

a) d ≤ e ≤ 3;
b) if e = 3 then |I ∩ J | ≥ |I ∩ Jc|.
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Note that conditions a) and b) above imply that (f, g) is not an exceptional pair.
We also observe that conditions a) and b) imply that [A(f), A(g)] = 0 since we neces-

sarily have |Ic ∩ Jc| ≥ 2, where Ic denotes the complement of I in {1, 2, 3, 4, 5, 6}. We
will show that if a) and b) are satisfied then

(2)
√
−1A([f, g]) =

√
−1[A(f), g] +

√
−1[f, A(g)]

by a case by case analysis. We have
√
−1A([f, g]) =(−1)

(d+e)(d+e+1)
2

(

(2− d)∂3−d−e
t (tn∂tt

m)− (2− e)∂3−d−e
t (∂tt

ntm)
)

(ρIρJ )
∗

+ (−1)
(d+e−2)(d+e−1)

2 (−1)d∂5−d−e
t tn+m

∑

j

(∂ρjρI∂ρjρJ)
∗,

√
−1[A(f), g]) =(−1)

d(d+1)
2

(

(d− 4)∂3−d
t tn∂tt

m − (2− e)∂4−d
t tn tm

)

ρ∗IρJ

+ (−1)
d(d+1)

2 (−1)d∂3−d
t tn tm

∑

j

∂ρjρ
∗
I∂ρjρJ ,

and
√
−1[f, A(g)]) =(−1)

e(e+1)
2

(

(2− d)tn∂4−e
t tm − (e− 4)∂tt

n∂3−e
t tm

)

ρIρ
∗
J

+ (−1)
e(e+1)

2 (−1)dtn∂3−e
t tm

∑

j

∂ρjρI∂ρjρ
∗
J .

• I = J = ∅. Equation (2) becomes

(2∂3t (t
n∂tt

m)− 2∂3t (∂tt
ntm)) 1∗ = (−4∂3t t

n∂tt
m − 2∂4t t

ntm + 2tn∂4t t
m + 4∂tt

n∂3t t
m) 1∗

and (2) is satisfied recalling that ∂kt (fg) =
∑k

h=0

(

k
h

)

∂ht f∂
k−h
t g.

• I = ∅, J = (k). Equation (2) becomes

−(2∂2t (t
n∂tt

m)− ∂2t (∂tt
ntm))ρ∗k = ∂3t t

ntm∂ρk1
∗ + (−2tn∂3t t

m − 2∂tt
n∂2t t

m)ρ∗k

and it is satisfied with a similar argument observing that ∂ρk1
∗ = ρ∗k.

• I = (h) and J = (k) with h 6= k. Equation (2) becomes

−(∂t(t
n∂tt

m)− ∂t(∂tt
ntm))ρ∗(h,k) = ∂2t t

ntm∂ρkρ
∗
h + tn∂2t t

m∂ρhρ
∗
k

which is satisfied since ∂ρkρ
∗
h = −∂ρhρ∗k = ρ∗(h,k).

• I = J = (k). Equation (2) becomes

−∂3t tn+m 1∗ = −(−3∂2t t
n∂tt

m − ∂3t t
ntm)(−1∗)− (tn∂3t t

m + 3∂tt
n∂2t t

m)1∗.

• I = (k) and J = (k, h). Equation (2) becomes

∂2t t
n+mρ∗h = ∂2t t

ntm∂ρhρ
∗
k(−ρk)− (tn∂2t t

m + 2∂tt
n∂tt

m)ρkρ
∗
(k,h).

Observing that (∂ρhρ
∗
k)ρk = −ρ∗h and ρkρ

∗
(k,h) = −ρ∗h Equation (2) follows.

• I = (k, h), J = (k, l), with h 6= l. Equation (2) becomes

−∂ttn+mρ∗(h,l) = −∂ttntm∂ρlρ∗k,h(−ρk)− tn∂tt
m(−ρk)∂ρhρ∗k,l.

We observe here that ρk∂ρhρ
∗
(k,l) = ∂ρlρ

∗
(k,h)ρk = −ρ∗(h,l) to deduce that Equation

(2) holds.
• I = J with d = 2. Equation (2) becomes

0 = −(−2∂tt
n∂tt

m)ρ∗IρI − (2∂tt
n∂tt

m)ρIρ
∗
I ,

which is satisfied since ρ∗IρI = ρIρ
∗
I .

12



• I = J with d = 3

0 = (−tn∂ttm + ∂tt
ntm)ρ∗IρI + (−tn∂ttm + ∂tt

ntm)ρIρ
∗
I

which is satisfied since ρ∗IρI = −ρIρ∗I .
• I = (h, k), J = (h, k, l). Equation (2) becomes

0 = −∂ttntm∂ρlρ∗(h,k)ρ(h,k) + ∂tt
ntmρ(h,k)ρ

∗
(h,k,l)

which is satisfied since ∂ρlρ
∗
(h,k) = ρ∗(h,k,l).

• I = (h, k, j), J = (h, k, l) with l 6= j. Equation (2) becomes

0 = −tntm∂ρlρ∗(h,k,j)ρ(h,k) − tntmρ(h,k)∂ρjρ
∗
(h,k,l)

which is satisfied since ∂ρlρ
∗
(h,k,j) = −∂ρjρ∗(h,k,l).

• d = 0, e = 2. Equation (2) becomes

−2∂t(t
n∂tt

m)ρ∗J = 0− (2tn∂2t t
m + 2∂tt

n∂tt
m)ρ∗J .

• d = 0, e = 3. Equation (2) becomes

(2tn∂tt
m + ∂tt

ntm)ρ∗J = 0 + (2tn∂tt
m + ∂tt

ntm)ρ∗J .

• I = (h), J = (k, l) with h 6= k, l. Equation (2) becomes

tn∂tt
mρ∗(h,k,l) = 0 + tn∂tt

m∂ρhρ
∗
(k,l).

• I = (h), J = (h, k, l) with h 6= k, l, j. Equation (2) becomes

∂tt
n+mρ∗(k,l) = 0 + (tn∂tt

m + ∂tt
ntm)ρhρ

∗
(h,k,l).

• I = (h, k), J = (h, l, j) with k 6= l, j. Equation (2) becomes

tn+mρ∗(k,l,j) = 0 + tntm(−ρh)∂ρkρ∗(h,l,j).
• d = e = 2 with I ∩ J = ∅. In this case Equation (2) is trivial.

This completes the proof in the case where f and g satisfy conditions a) and b). Before
proceeding with the remaining cases we make some observations.

• A(f) ∈ Ln+3 and A(g) ∈ Lm+3;
• [f, g] ∈ L≥n+d+m+e−2;
• [A(f), A(g)] ∈ L≥n+m+4;
• [f, A(g)] ∈ L≥n+d+m+1:
• [A(f), g] ∈ L≥n+m+e+1.

Now we assume that (f, g) satisfies a) but not b), i.e. e = 3 and |I ∩ J | < |I ∩ Jc|. We
have that A(g) 6= 0 and (f, A(g)) satisfies a) and b), and in particular we have

(3) A([f, A(g)] + [A(f), g]) = [f, g] + [A(f), A(g)].

If n + d +m ≥ 2 we have [f, A(g)] + [A(f), g] ∈ L≥3 and the result follows by applying
A to (3), recalling that A2 = I on L≥3.

If n + d +m < 2 then necessarily d = 1 (otherwise (f, g) would satisfy condition b)),
n = m = 0 and I ∩J = ∅ and so (f, g) is an exceptional pair. Indeed in this case we have
[f, g] = [A(f), A(g)] = 0 and the result again follows. Therefore we can drop assumption
b) and deduce that the result holds for all d, e ≤ 3.

Now assume d ≥ 4 and e ≤ 3. Then (A(f), g) is not exceptional and the result
holds for the pair (A(f), g), i.e. we have that (3) holds. We have [f, A(g)] ∈ L≥3; if
n +m + e ≥ 2 we also have [A(f), g] ∈ L≥3 and the result follows. We are left with the
case n+m+ e < 2, i.e. (f, g) = (tρI , 1), (ρI , t), (ρI , ρk), (ρI , 1). If (f, g) is not exceptional
then [A(f), g] ∈ L3 and the result follows by applying A to (3). If (f, g) is exceptional
then either (f, g) = (ρI , ρk) with k /∈ I or (f, g) = (ρI , 1). In both cases A(g) = 0 and
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[f, g] = 0 and the result also follows. Finally, we are left with the case d, e ≥ 4. In this
case we have (A(f), g) is not exceptional and so (3) holds. Moreover both [f, A(g)] and
[f, A(f)] belong to L≥3 and the result follows by applying A to Equation (3) and the
proof is complete. �

Proposition 4.5. Let I and J be sequences with coefficients in {1, 2, 3, 4, 5, 6} and let
f = tnρI , g = tmρJ be monomials in K(1, 6). Then

[ι(f), ι(g)] =







ι
(

[f, g] + [A(f), A(g)]
)

if [f, g] + [A(f), A(g)] 6= 0,

ι
(

[A(f), g] + [f, A(g)]
)

if [f, g] + [A(f), A(g)] = 0.

Moreover, for all f, g ∈ K(1, 6) (not necessarily monomials) we have

[ι(f), ι(tg)] = ι
(

[f, tg] + [A(f), A(tg)]
)

.

Proof. The first part follows immediately from Lemma 4.4. The second part also follows
from Lemma 4.4 observing that if (f, g) is an exceptional pair then both f and g are not
divisible by t. �

Theorem 4.6. The image of ι is a Lie subalgebra of K(1, 6) isomorphic to E(1, 6).

Proof. By Proposition 4.5 the image of the map ι is a subalgebra of the Lie superal-
gebra K(1, 6). In order to show that it is isomorphic to E(1, 6) it is convenient to
use the principal grading, i.e., the grading of type (2|1, 1, 1, 1, 1, 1), and the variables
ρi which are homogeneous in this grading. We first notice that the map ι preserves
the principal grading of K(1, 6) and that its image has local part isomorphic to that of
E(1, 6), i.e., ι(K(1, 6))−1 ⊕ ι(K(1, 6))0 ⊕ ι(K(1, 6))1 ∼= E(1, 6)−1 ⊕ E(1, 6)0 ⊕ E(1, 6)1.
Since the principal grading of E(1, 6) is transitive, by [8, Proposition 5] it is there-
fore sufficient to check that the positive part of ι(K(1, 6)) is generated by elements of
degree one. To this aim we notice that for every element f = tnρI ∈ K(1, 6)k with
k > 1, there exist i ∈ {1, 2, 3, 4, 5, 6} and g ∈ K(1, 6)k−1 such that f = [g, tρi], so
that ι(f) = ι([g, tρi]) = [ι(g), ι(tρi)] by Proposition 4.5, since A(tρi) = 0. Indeed, we
have: tmρI = (−1)(|I|+1)[tm−1ρiρI , tρi] for some i /∈ I, and tmρI = − 1

m+3
[tmρ1 . . . ρ5, tρ6]

if I = {1, 2, 3, 4, 5, 6}. An inductive argument concludes the proof. �

Remark 4.7. Let I be a sequence with distinct entries in {2, 3, 4, 2̄, 3̄, 4̄} and
n ≥ 0;

i) if |I| ≥ 3 then A(tnξI) 6= 0;
ii) if A(tnξI) 6= 0 then A(A(tnξI)) = tnξI and in particular ι(tnξI) = ι(A(tnξI));
iii) the previous observations imply that E(1, 6) is spanned by the elements ι(tnξI)

with |I| ≤ 3;
iv) if I ∈ {(2, 3, 4), (3, 2̄, 4̄, ), (2, 3̄, 4̄), (4, 2̄, 3̄)} then A(tnξI) = −tnξI and hence ι(tnξI) =

0.

It follows from the previous remark that the set

{ι(tnξI) : |I| ≤ 3}}
is a spanning set for E(1, 6).

We observe that if |I| ≤ 2 then ι(ξI) = ξI . The computation of all ι(ξI) with |I| = 3 is
shown in Table 1.

We are going to define an explicit linear map Ψ : E(1, 6) → E(4, 4). The values
of the map Ψ on all elements ι(ξI) 6= 0, where I is any sequence with coefficients in
{2, 3, 4, 2̄, 3̄, 4̄} with |I| ≤ 3, are shown in Table 2.
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f ι(f)

ηiηjηk 2ηiηjηk
ξjηjηi ξjηjηi + ξkηkηi
ξiηjηk 0

ξjξiηi ξjξiηi − ξjξkηk
ξiξjηk 2 ξiξjηk
ξiξjξk 0

Table 1. Computation of ι on elements ξI with |I| = 3. Numbers i, j, k
represent any cyclic permutation of 2, 3, 4.

f ι(f) Ψ(ι(f))

1 1 ∂x1

ηiηj ηiηj ∂xk

ηi ηi
√
2
2
dxi

ηiηjηk 2ηiηjηk −
√
2dx1

ξiηj ξiηj xj∂xi

ξiηi ξiηi −xj∂xj
− xk∂xk

ξi ξi
√
2
2
(−xjdxk + xkdxj)

ξjηjηi ξjηjηi + ξkηkηi
√
2xidx1

ξiξj ξiξj xk(x2∂x2 + x3∂x3 + x4∂x4)

ξjξiηi ξjξiηi − ξjξkηk
√
2xixkdx1

ξiξjηk 2ξiξjηk −
√
2x2kdx1

Table 2. Definition of Ψ on elements ι(ξI) 6= 0, with |I| ≤ 3. Numbers
i, j, k represent any cyclic permutation of 2, 3, 4.

Definition 4.8. We define the map Ψ : E(1, 6) → E(4, 4) as the unique linear map such
that for all sequence I with coefficients in {2, 3, 4, 2̄, 3̄, 4̄} with |I| ≤ 3 we have Ψ(ι(ξI))
is defined as in Table 2 and, for all n ≥ 1,

Ψ(ι(tnξI)) = 2nxn1Ψ(ι(ξI)).

Next target is of course to prove that Ψ is indeed an embedding of Lie superalgebras
and for this we need the following preliminary results.

Lemma 4.9. For all I, J sequences with coefficients in {2, 3, 4, 2̄, 3̄, 4̄} with |I|, |J | ≤ 3
and all n ≥ 0 we have

[xn1Ψ(ι(ξI)),Ψ(ι(ξJ))] = (1− n)xn1 [Ψ(ι(ξI)),Ψ(ι(ξJ))] + nxn−1
1 [x1Ψ(ι(ξI)),Ψ(ι(ξJ))].

Proof. Recalling the definition of the bracket in E(4, 4), since the elements Ψ(ι(ξI)) and
Ψ(ι(ξJ)) have coefficients that do not involve the variable x1 (see Table 2) we deduce that

[xn1Ψ(ι(ξI)),Ψ(ι(ξJ))] = xn1α + nxn−1
1 β
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for suitable elements α, β ∈ E(4, 4) that do not depend on n and whose coefficients do
not involve the variable x1. One can obtain α = [Ψ(ι(ξI)),Ψ(ι(ξJ))] by letting n = 0 and
β = [x1Ψ(ι(ξI)),Ψ(ι(ξJ))]− [Ψ(ι(ξI)),Ψ(ι(ξJ))] by letting n = 1. �

Lemma 4.10. Let I, J be sequences with coefficients in {2, 3, 4, 2̄, 3̄, 4̄} with |I|, |J | ≤ 3
and n ≥ 1 such that [A(tnξI), A(ξJ)] = 0. Then

[ι(tnξI), ι(ξJ)] = ι
(

(1− n)tn[ξI , ξJ ] + ntn−1[tξI , ξJ ]
)

.

Proof. Since n ≥ 1, Proposition 4.5 provides

[ι(tnξI), ι(ξJ)] = ι([tnξI , ξJ ]) + ι([A(tnξI), A(ξJ)]) = ι([tnξI , ξJ ]).

The result now follows from the following identity

[tnξI , ξJ ] = (1− n)tn[ξI , ξJ ] + ntn−1[tξI , ξJ ],

which is an immediate consequence of the following formula for the bracket in K(1, 6)
which is valid for all n ≥ 0

[tnξI , ξJ ] = −ntn−1(2− |J |)ξIξJ + (−1)|I|tn
3

∑

i=1

(

∂ξiξI∂ηiξJ + ∂ηiξI∂ξiξJ
)

.

�

Theorem 4.11. The map Ψ : E(1, 6) → E(4, 4) given in Definition 4.8 is an embedding
of Lie superalgebras.

Proof. We have to show that

(4) [Ψ(ι(f)),Ψ(ι(g))] = Ψ([ι(f), ι(g)])

for all elements ι(f), ι(g) ∈ E(1, 6). By transitivity of the principal grading of E(4, 4) it
is enough to show (4) with deg g = −1, i.e., we can assume that

• f = tnξI for some n ≥ 0 and for some sequence I with coefficients in {2, 3, 4, 2̄, 3̄, 4̄}
such that |I| ≤ 3;

• g = ηJ for some sequence J with coefficients in {2, 3, 4}.
Now we observe that many such pairs satisfy the conditions in Lemma 4.10, namely,
[A(tnξI), A(ηJ)] = 0. Indeed, we first recall that if |J | ≤ 2 then A(ηJ) = 0, so the only
case left to consider is ηJ = η2η3η4 which satisfy A(ηJ) = ηJ . In this case we can check
that [A(tnξI), A(ηJ)] 6= 0 in the following two cases only: ξI = ξjξiηi or ξI = ξjξi for some
i, j ∈ {2, 3, 4}, i 6= j. We treat both cases explicitly. In the first case, for the sake of
simplicity, let us assume ξI = ξ2ξ3η3. We have

[Ψ(ι(tnξ2ξ3η3)),Ψ(ι(η2η3η4))] = 2n+1[xn1Ψ(ι(ξ2ξ3η3)),Ψ(η2η3η4)]

= 2n+1[xn1Ψ(ξ2ξ3η3 − ξ2ξ4η4),Ψ(η2η3η4)]

= −2n+2[xn1x3x4dx1, dx1] = 0.

On the other hand,

[ι(tnξ2ξ3η3), ι(η2η3η4)] = [tnξ2ξ3η3, η2η3η4] + [tnξ2ξ4η4, η2η3η4]

= −tnξ2η3η2η4 − tnξ2η4η2η3 = 0,

hence Ψ([ι(tnξ2ξ3η3), ι(η2η3η4)]) = 0.
In the latter case, we let assume ξI = ξ3ξ4. We have

[tnξ3ξ4, η2η3η4] = ntn−1ξ3ξ4η2η3η4 − tn(ξ4η2η4 + ξ3η2η3)
16



and
[A(tnξ3ξ4), η2η3η4] = [−ntn−1ξ2ξ3ξ4η2), η2η3η4] = −ntn−1ξ3ξ4η2η3η4

and therefore

[ι(tnξ3ξ4), ι(η2η3η4)] = −2tn(ξ4η2η4 + ξ3η2η3) = −2ι(tnξ4η2η4)

Finally

Ψ([ι(tnξ3ξ4), ι(η2η3η4)]) = −2Ψ(ι(tnξ4η2η4)) = −2n+1xn1Ψ(ι(ξ4η2η4)) = 2n+1
√
2xn1x2dx1.

On the other hand

[Ψ(ι(tnξ3ξ4)),Ψ(ι(η2η3η4))] = 2n[xn1Ψ(ι(ξ3ξ4)),−
√
2dx1]

= 2n[xn1x2(x2∂x2 + x3∂x3 + x4∂x4),−
√
2dx1]

= 2n+1
√
2xn1x2dx1.

Therefore we can assume that [A(tnξI), A(ηJ)] = 0 and next target of the proof is to show
that if (4) holds for n = 0, 1 then it holds for all n ≥ 0. Indeed the lefthand side of (4)
can be rewritten by Lemma 4.9 as

[Ψ(ι(tnξI)),Ψ(ι(ξJ))] = [2nxn1Ψ(ι(ξI)),Ψ(ι(ξJ))]

= 2n(1− n)xn1 [Ψ(ι(ξI)),Ψ(ι(ξJ))] + n2nxn−1
1 [x1Ψ(ι(ξI)),Ψ(ι(ξJ))]

= 2n(1− n)xn1 [Ψ(ι(ξI)),Ψ(ι(ξJ))] + n2n−1xn−1
1 [Ψ(ι(tξI)),Ψ(ι(ξJ))].

On the other hand, by Lemma 4.10, the righthand side can be rewritten as

Ψ([ι(tnξI), ι(ξJ)]) = Ψ(ι((1− n)tn[ξI , ξJ ] + ntn−1[tξI , ξJ ]))

= 2n(1− n)xn1Ψ(ι([ξI , ξJ ])) + n2n−1xn−1
1 Ψ(ι([tξI , ξJ ])).

It remains to verify that (4) is satisfied for f = ξI , tξI and g = ηJ and this has been done
with the help of a computer. �

This result allows us to locate a subalgebra of E(4, 4) isomorphic to E(1, 6). Let

V0 = 〈{∂1, ∂i, xi∂j , xi(x2∂2 + x3∂3 + x4∂4) : i, j = 2, 3, 4}〉 ⊆ E(4, 4)0̄

and
V1 = 〈{dx1, dxi, xidxj − xjdxi, xidx1, xixjdx1 : i, j = 2, 3, 4}〉 ⊆ E(4, 4)1̄

be subspaces of E(4, 4).

Corollary 4.12. The subspace
C[[x1]](V0 + V1)

of E(4, 4) is indeed a subalgebra of E(4, 4) isomorphic to E(1, 6).
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