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Abstract

This paper presents a novel method to improve the robustness of foundation models to group-based biases.

We propose a simple yet effective method, called DoubleCCA, that leverages random sentences and

Canonical Correlation Analysis (CCA) to enrich the text embeddings of the foundation model. First, we

generate various random sentences that augment the original prompts, which extends the original prompts

with random words or character sequences. Second, we use an additional sentence embedding model to

generate different text embeddings with respect to these random sentences. We then use CCA double

twice to align the representations and reconstruct them back to the original representation space. We

demonstrate the effectiveness of our method on a variety of tasks and datasets, showing that it outperforms

existing methods in terms of both performance and robustness. Our method is simple to implement and

can be easily integrated into existing models, making it a practical solution for improving the robustness of

foundation models to group-based biases.

1 Introduction

Contrastive language-image pretraining (CLIP) and its variants [1, 2, 3] are the widely used vision-

language models (VLMs). They usually train models on large-scale datasets with a large number of image-text

pairs, such as LIAON-400M [4]. Recent works have shown impressive zero-shot generalization on a wide

range of tasks, such as medical image classification [5], object detection [6] and semantic segmentation [7, 8].

Recent works [9, 10, 11] show that current VLMs lack systematic investigation of the prompts they used.

Therefore, they propose to modify the prompts to improve the model’s performance, especially the ability of

domain generalization. Despite their success of the remarkable zero-shot capability, the foundation models is

still sensitive to the group-based biases, which are the attributes that are correlated with the ground-truth

labels but are not directly related to the classification task.

A robust classifier should evade the influence of irrelevant features present in the image or text data.

Therefore, it is necessary to make the classifier invariant to the group attributes. For example, in the Waterbirds
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Figure 1: The pipeline of our proposed DoubleCCA. We leverage random words to augment semantic

descriptions and introduce an additional sentence embedding model to complement the semantic limitations

of the original VLM text encoder. We use classical CCA technique double twice to merge different semantic

information, which helps to improve the group robustness of the CLIP model.

dataset, the background of the image is a group attribute that is correlated with the ground-truth labels, but it

is not directly related to the classification. To improve group robustness, there are a lot of works that focus

on model debiasing [12, 13, 14, 15, 16, 17, 18, 19, 20]. Most of these works aim to add a simple adapter

architecture to the end of the CLIP model, and then update the parameters of the adapter on a dataset with

target labels and group attributes. Although these methods have shown some improvements in terms of group

robustness, they still have some limitations.

First, the performance of the model is highly dependent on the dataset used for training the newly added

adapter architecture. This will hinder the generalization ability of the model to other datasets efficiently,

which means that they cannot improve the zero-shot ability of the CLIP model. Second, some of the works

[15, 20] employ prompt tuning techniques to improve the performance and fairness of the model. Yang et al.

[20] utilize LLM to synthesize a balanced text dataset, and then use the prompt tuning to improve the model’s

performance. This method also relies on the prior knowledge of the dataset or large language model, and it is

difficult to quickly generalize to other dataset or requires additional API costs. Therefore, current debiasing

methods still have some limitations in terms of generalization ability and efficiency of the model.

Therefore, we ask the following question: How can we improve the group robustness of the foundation

model without relying on prior knowledge of the dataset? To answer this question, we propose a novel method,

called DoubleCCA, to improve the robustness of foundation models to group-based biases.

Inspired by [10], we use random words or character sequences to augment the original prompts, thus

enriching the representation space of text embeddings. We call these generated sentences as the random

sentences. Then, we use the CLIP text encoder and the extra sentence embedding model (such as the

Hierarchy Transformer Encoder [21]) to generate the different types of text embeddings with respect to these

random sentences. We use Canonical Correlation Analysis (CCA) to map the representations of different

two embedding features into a common feature space. We then utilize CCA again to merge the embedded

representations and reconstruct them back to the original representation space to align with CLIP’s visual
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features. The proposed DoubleCCA method can be integrated into most existing VLMs, which can improve

the group robustness of the foundation model without relying on the prior knowledge of the dataset. The

pipeline is shown in Figure 1, and our contribution can be summarized as follows.

• We propose a novel method, called DoubleCCA, to improve the group robustness of foundation models

to group-based biases.

• We leverage random words to augment text descriptions and introduce an additional sentence embedding

model to complement the semantic limitations of the original CLIP text encoder through the CCA

technique.

• We show the effectiveness of our method on a variety of datasets, showing that it outperforms existing

methods in terms of both group robustness and domain generalization.

2 Preliminaries

This section will introduce the necessary background knowledge for our method, including the CLIP

foundation model and Canonical Correlation Analysis (CCA).

CLIP model. CLIP model [1] is a vision-language foundation model that consists of two parts: a vision

encoder and a text encoder. The vision encoder Φv : Rdv → Rd and the text encoder vision encoder

Φt : Rdt → Rd are deep models that map the input image and text to a d-dimensional embedding space,

respectively. Given a batch of image-text pairs (I, T ), the model is trained to minimize symmetric contrastive

loss [1], which aligns the image-text embedding pairs in the representation space Rd.

Once the model is trained, we can directly use image and text encoder to align images with text

descriptions. Thus, a zero-shot image classifier can be built by comparing the similarity between the image

embedding Φv(I) and the text embedding Φt(T ). The typical method is to combine the name of the class k

with the predefined template to obtain the text description tk. For example, the class of zebra can be integrated

into the prompt template “a photo of a ⟨class name⟩” to yield the description “a photo of a zebra”. Thus,

we can compute the logits for each class by the cosine similarity between the image embedding and the text

embedding, and the class with the highest score is the predicted class.

Canonical Correlation Analysis (CCA). Canonical Correlation Analysis (CCA) is a statistical method that

finds the transformation that maximizes the correlation between two feature sets from different models. Let

XA ∈ Rn×dA and XB ∈ Rn×dB be the data matrices, where n is the number of samples, and dA and dB are

the dimensions of the feature vectors. CCA finds the transformation matrices WA and WB that maximize the

correlation between the transformed features ZA = XAWA and ZB = XBWB in a common feature space.

We further define SXX = XT
AXA and SY Y = XT

BXB as the covariance matrices of XA and XB , and
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SXY = XT
AXB as the cross-covariance matrix. Therefore, the formulation of CCA can be written as follows:

max
WA,WB

corr(ZA, ZB) = W T
ASXY WB

s.t. W T
ASXXWA = I, W T

BSY Y WB = I,

(1)

where corr(ZA, ZB) is the correlation between ZA and ZB , and I is the identity matrix.

This formulation can be solved by eigenvalue decomposition of the generalized eigenvalue problem:

U, S, V T = SV D
(
(SXX)−1/2 · SXY · (SY Y )−1/2

)
,

WA = (SXX)−1/2U, WB = (SY Y )−1/2V.

In practice, we center the data before applying CCA to ensure the data has zero mean. And we use regularized

CCA [22, 23] to make the computation of WA and WB more stable.

3 Method

In this section, we introduce our method, DoubleCCA, to improve the robustness of foundation models

to group-based biases. We first define and analyze the problem (see Sect. 3.1) and then present the details of

our method (see Sec. 3.2).

3.1 Problem Analysis

One interesting approach to improve CLIP’s zero-shot classification is to augment the prompts with

additional visual concepts from external knowledge sources. Menon and Vondrick [9] utilize large language

models (LLMs) like GPT-3 to generate class-specific descriptions for each class and incorporate them into

prompts, resulting in prompts like “a photo of a hen, which has two legs.” But this kind of method is limited

to prior knowledge of the class name and the GPT-3 generated descriptions have high degrees of ambiguity

and limited visual relevance.

Thus, Roth et al. [10] propose a method called WaffleCLIP, which substitutes GPT-3 generated descriptors

with random word or character sequences, resulting in prompts such as “a photo of a hen, which has jmhj,

!J#m.” Where “jmhj, !J#m” is the random character sequences. Based on WaffleCLIP, we simply study

the effect of this method on the group robustness of the CLIP model. We conduct four toy experiments on

the Waterbirds dataset [24] with four different backbone models, i.e., ResNet-50, ViT-B/32, ViT-B/16, and

ViT-L/14, We compare the results of vanilla CLIP with the original prompt, WaffleCLIP with random words,

and WaffleCLIP with the random characters. See Figure 2.

We observe that WaffleCLIP achieves better results in terms of average accuracy and worst group

robustness only when using the ViT-L/14 backbone. For the other three backbone models, its performance

is worse than vanilla CLIP with the original prompt. Moreover, when using ViT-B/16 or ResNet-50 as the

backbone, WaffleCLIP’s worst group robustness drops to near zero, which is substantially lower than that of
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Figure 2: We compare the performance of different prompts with different backbone models on the Waterbirds

dataset. “Ori” denotes the original prompt of CLIP, i.e., “a photo of a ⟨class name⟩”. “Waffle-1” denotes

the combination of the original prompt and the random words, i.e., “a photo of a ⟨class name⟩, which has

⟨random word⟩”. “Waffle-2” also denotes the combination of the original prompt and the random words, but

with different template, i.e., “a photo of a ⟨class name⟩, ⟨random characters⟩”.

the original prompt. Thus, WaffleCLIP is not stable and is highly dependent on the vision backbone model.

To analyze the reason behind this phenomenon, we visualize the representations of the image embeddings and

the text embeddings of the Waterbirds dataset using t-SNE [25]. See Figure 3.

First, for visual features, we observe that the ViT-L/14 model has a clear separation between the different

groups, while the ResNet50 model has a large overlap between the different groups. Second, for text features,

we find that: adding random words or characters to the prompt can pull the representations of different classes

closer together, which is not beneficial for the group robustness. However, the different phenomena are

observed in the ViT-L/14 model, where the text features will push away from each other. Science we add the

same random words or characters to the prompt, the different backbone models will generate different text

embeddings, which will lead to different results.

The fundamental limitation of WaffleCLIP lies in its use of meaningless semantic random words and

characters. The text encoder generates different text embeddings for the different random words or characters,

which fail to provide a stable and meaningful representation for the model to predict the class. To address

this issue, we propose to generate semantically meaningful text embeddings that can effectively enhance the

model’s performance and group robustness. We will detail our method in the following section.
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(a) RN50 (b) ViT-L/14

Figure 3: The visualization of the image embeddings of the Waterbirds dataset. We also visualize the text

embedding features extracted by the CLIP text encoder. The “Ori prompt” means the original prompt, i.e., “a

photo of a ⟨class name⟩”. The “Waffle prompt” denote the prompts with the random words and characters.

3.2 DoubleCCA

According to the analysis in Sect.3.1, we argue that random words or characters will introduce randomness

to text embeddings, leading to worse group robustness. Therefore, our target is to generate semantically

meaningful text embeddings that can effectively enhance the foundation model’s performance and group

robustness.

However, only using the CLIP text encoder model to generate text embeddings is not enough to achieve

this goal. In fact, this text encoder plays the same role as the sentence embedding model in natural language

processing (NLP) tasks [26, 21], which transforms sentences into fixed-dimensional vector representations.

Current sentence embedding models are trained on large-scale text data, and they can generate semantically

meaningful text embeddings. Therefore, our idea is to utilize these sentence embedding models to enrich the

text embeddings of the CLIP model.

There are two major challenges in this process. First, the dimensional of the text embeddings generated

by the sentence embedding model may not be the same as the text embeddings generated by the CLIP text

encoder. Second, it is difficult to merge these new generated sentence embeddings into the CLIP model.

To address these challenges, we propose a novel method, called DoubleCCA, which utilizes canonical

correlation analysis (CCA) technique twice. The first CCA is used to align the representations of different

embeddings into a common space. The second CCA is to merge the aligned representations and then recover

to the original embedding space.

3.2.1 Step 1: The First CCA.

We first generate sentence embeddings using the sentence embedding model Φse and the CLIP text

encoder Φt. Let X ∈ Rn×d and Xse ∈ Rn×dse be the data matrices, where n is the number of classes in the

dataset, d and dse are the dimensions of the text embeddings generated by the CLIP text encoder and the

sentence embedding model, respectively.
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We then apply CCA (w.r.t. Eq.1) to learn the transformation matrices Wx and Wse that embeds two

features into a common space:

Zx = XWx, Zse = XseWse, (2)

where Z ∈ Rn×dcca and Zse ∈ Rn×dcca are the aligned representations of the sentence embeddings and the

CLIP text embeddings, respectively.

However, the number of class labels is usually much smaller. For example, there are only two classes in

the Waterbirds dataset. This means that only two sentences are used for the CCA to learn the transformation

matrices Wx and Wse. We think this is not enough to learn a stable transformation matrices. (The next section

will show the experimental verifications.) To address this issue, we propose to use the random sentence

embeddings to generate more sentence embeddings. We first combine the original prompt and the random

character sequences, i.e., “a photo of a ⟨class name⟩, ⟨random character sequences⟩”. We call this as the

random sentence. We then generate K random sentences for each class and use the sentence embedding

model and the CLIP text encoder to extract the corresponding sentence embedding features, i.e., Frse and Fr

respectively. We replace Xse with Frse and X with Fr to apply CCA to learn the transformation matrices Wx

and Wse.

3.2.2 Step 2: The Second CCA.

Let us rethink the zero-shot classification process. The CLIP model serves as a score function, which

computes the similarity between the image embedding and the text embedding, i.e., S(I, y) = fT
t fv, where

fv = Φv(I) and ft = Φt(T ). The CLIP method predicts the class ŷ ∈ Y with the highest score, i.e.,

ŷ = argmaxy∈Y S(I, y).

After the first CCA, we can achieve two different score functions

Sx(I, y) = x(y)
T
WxW

T
x fv (3)

Sse(I, y) = x(y)se

T
WseW

T
x fv, (4)

where x(y) and x
(y)
se are the text embeddings of the class y w.r.t. the original prompts. In practice, we can

define Ŵx = XWxW
T
x and Ŵse = XseWseW

T
x . Eq.3 and Eq.4 can be rewritten as two fully connected

layers, i.e., Ŷ = FC(fv; Ŵx) and Ŷ = FC(fv; Ŵse), where Ŷ is the predicted logit feautre w.r.t. the input

image feature.

In fact, combining the predictions of these two models through ensemble learning is a good way to

improve accuracy. Referring to [23], we employ the CCA technique to merge these two fully-connected layers

into one fully-connected layer, i.e., ŷ = FC(fv;W ), where W can be seen as the merged text embeddings.

The merging with CCA can be formulated as follows:

W =
1

2
(Ŵx +M · Ŵse), M = (PB · P−1

A )T , (5)

where PA and PB are the transformation matrices learned by the second CCA.
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Algorithm 1 DoubleCCA
Require: Sentence embedding model fse, CLIP model (fv, ft), number of random sentences K

Ensure: Merged text embeddings W

1: Generate K random sentences for each class

2: Extract sentence embeddings Frse using Φse

3: Extract CLIP text embeddings Fr using Φt

4: Apply CCA to X and Y to obtain Wx and Wse

5: Compute Ŵx = XWxW
T
x , Ŵse = XseWseW

T
x

6: Generate random sentence embedding features Fr

7: Compute XA = ŴxFr, XB = ŴseFr

8: Apply CCA to XA and XB to obtain PA and PB

9: Compute M = (PB · P−1
A )T

10: Merge text embeddings: W = 1
2(Ŵx +M · Ŵse)

11: return W

Since we do not access to the image data, we further utilize the random sentence embedding features Fr

that simulate the image representations. Therefore, we can achieves two feature sets:

XA = ŴxFr, XB = ŴseFr. (6)

Then, we can apply CCA to learn the transformation matrices PA and PB via maximization of the

correlation between XA and XB as follows:

max
PA,PB

corr(XA, XB) = P T
ASABPB

s.t. P T
ASAAPA = I, P T

BSBBPB = I,

SAA = XT
AXA, SBB = XT

BXB, SAB = XT
AXB.

(7)

3.2.3 Inference

The overall process of DoubleCCA is summarized in Algorithm 1. After DoubleCCA, we can achieve

the merged text embedding matrix W ∈ Rn×d. We can directly use this merged text embeddings to predict

the class label of the input image, which can be formulated as follows:

ŷ = argmax
y∈Y

S(I, y), where S(I, y) = WyΦv(I), (8)

where Wy ∈ R1×d is the y-th row of the merged embedding matrix W , which is the embedding feature of the

class y.
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Table 1: Average accuracy and worst group robustness on the Waterbirds and CelebA dataset.

RN50 ViT-B/32 ViT-B/16 ViT-L/14
Avg↑ worst↑ gap↓ Avg↑ worst↑ gap↓ avg↑ worst↑ gap↓ avg↑ worst↑ gap↓

W
at

er
bi

rd
s CLIP 90.47 16.07 74.40 87.34 47.28 40.06 87.34 26.79 60.55 90.55 44.64 45.91

+ background 90.62 39.29 51.33 78.58 61.96 16.62 86.01 44.34 44.73 87.72 59.98 27.74
Ours 91.76 44.64 47.30 89.34 57.60 31.74 86.53 28.58 57.95 92.14 51.78 40.36
+ background 91.03 48.21 42.82 85.44 62.50 22.94 86.43 46.43 40.00 89.55 62.50 27.05

C
el

eb
A

CLIP 81.05 73.87 7.18 80.73 75.82 4.91 75.16 62.01 13.15 86.98 77.36 9.62
+gender 85.97 81.58 4.39 80.18 76.18 4.00 75.92 66.71 7.99 80.30 74.31 5.99
+gender,age 87.74 84.94 2.80 82.34 77.21 5.13 75.22 64.61 10.61 82.26 79.06 3.21
+gender,age,race 85.91 82.57 3.34 81.99 75.67 6.32 76.37 67.93 8.44 82.77 80.00 2.77

Ours 85.35 83.05 2.30 84.19 78.75 5.44 79.21 68.54 10.67 85.79 81.18 4.61
+gender 87.53 85.56 1.97 82.67 76.87 5.80 78.55 73.84 4.71 81.44 76.14 5.30
+gender,age 88.70 86.35 2.35 82.16 76.90 5.44 78.09 70.54 7.55 83.78 80.87 2.91
+gender,age,race 85.93 84.18 1.75 82.63 75.92 6.71 77.17 69.18 7.99 85.35 83.00 2.35

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate the group robustness of our method. We conduct experiments on two widely used

datasets: Waterbirds [24] and CelebA [27]. For these two datasets, each image has an associated group

attribute, such as the background of the image in the Waterbirds dataset and the gender/age of the person

in the CelebA dataset. All these attributes are correlated with the ground truth labels, but they are not

directly related to the classification task. Following previous work [12], we consider these attributes as group

attributes and report the average accuracy and the worst group robustness on these datasets. In addition, we

evaluate the zero-shot domain generalization ability of our method on six datasets: CUB-200-2011 (CUB)

[28], EuroSAT [29], Place365 [30], Flowers102 [31], Food101 [32], and Oxford Pets [33]. For this task, we

report the classification accuracy of the model in these datasets.

Implementation Details. We utilize CLIP [1] as the foundation model and evaluate the performance of our

method on a variety of tasks and datasets. All experiments use PyTorch [34] and are performed on a single

NVIDIA A100 GPU. We follow the same experimental settings as the previous work [11]. We use Resnet-50

[35], ViT-B/32, ViT-B/16, and ViT-L/14 [36] as the backbone models for evaluation of group robustness. For

the evaluation of domain generalization, we use ViT-B/16 as the backbone model.

For the sentence embedding model, we use the Hierarchy Transformer encoder (HiT) [21] as the default

sentence embedding model.1 Since the output of the HiT lies in the hyperbolic space, we use the logarithmic

map function to transform the output to the Euclidean space [37]. We set the dimension of the dimension of

1In our experiments, we use “HiT-MiniLM-L12-WordNetNoun” released on HuggingFace as the sentence embedding model.
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the common space in the first CCA to 64, and the dimension of the second CCA is set to the dimension of the

original image embeddings. Moreover, we set the number of random sentences K to 500, and the number of

random characters in each random sentence to the length of the class name (similar to that of [10, 11]).

4.2 Results on Group Robustness

We first evaluate the group robustness of our method on the Waterbirds and CelebA datasets. The results

are reported in Table 1. We mainly evaluate four different backbone models (RN50, ViT-B/32, ViT-B/16,

and ViT-L/14). The results are compared between the baseline CLIP model and our proposed method

(DoubleCCA).

First, we show the results when the text prompts only describe the class and ignore the contextual

attributes. First, we observe that our method achieves better average accuracy and worst group robustness

than the baseline CLIP model on both datasets. Although the average accuracy of our method is slightly

lower than that of the baseline CLIP model, when the backbone is ViT-B/16 on Waterbirds and the backbone

is ViT-L/14 on CelebA, the worst group robustness is significantly improved. We think this is a trade-off

between average accuracy and worst group robustness, which has also been observed in recent work [38]. For

example, when the backbone is ViT-L/14 on CelebA, the worst group robustness of our method is 81.18%,

which is higher than that of the baseline CLIP model (77.36%). However, the average accuracy has a slight

decrease (from 86.98% to 85.79%) compared to the baseline CLIP model.

Following PerceptionCLIP [11], we include contextual attributes such as conditional information, such

as background information in the Waterbirds dataset and gender information (i.e., female and male) in the

CelebA dataset. Here, we only substitute the original prompt embedding with the merged text embeddings W

in the CLIP model and then use the same inference process as in [11].

We report the results on Waterbirds by considering the background as the contextual attributes, such as

in forest, in sky, on street, on grass, on tree, with folowers, on beach, with human, on a branch, etc. First, the

same phenomena are observed in our reproduced results, where the group robustness can be improved by

incorporating these attributes, which also help reduce the accuracy gap and achieve a more fair zero-shot

classifier. Second, we observe that by using our method, the worst group robustness can be further improved,

and the accuracy gap can be further reduced in most cases. More interestingly, considering the backgroup

information, the worst group robustness has a consistent improvement across different backbone models,

but the average accuracy has a slight decrease. Thus, in this case, a trade-off between average accuracy and

worst group robustness is also observed. But we think this will be of benefit to achieve a more fair zero-shot

classifier.

Then, we also report the results on CelebA by considering contextual attributes, such as gender (female

and male), age (young and old), race (white skin, dark skin, Asian, and others), etc. We observe that our

method can achieve overall better average accuracy and worst group robustness than the baseline CLIP model

10
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Figure 4: Combination of Contrastive Adapter (CA) and our proposed DoubleCCA. We report the average

accuracy and worst group robustness on the Waterbirds dataset. The backbone model is ViT-L/14 and

ResNet-50.

on the CelebA dataset. For instance, when the backbone is ViT-B/16, the accuracy gap of our method is

4.71%, which is lower than that of the baseline CLIP model (7.99%), considering the contextual attribute of

gender. Furthermore, compared to the results shown in FairerCLIP, our method achieves better results when

the backbone is ResNet-50, where the best worst group robustness of our method is 86.35%, which is higher

than that of FairerCLIP (81.50%). For the backbone of ViT-L/14, our method also achieves a competitive

result compared to FairerCLIP, where the best worst group robustness of our method is 83. 00%, which is

slightly lower than that of FairerCLIP (85.20%). It is worth noting that FairerCLIP utilizes the target label

and attributes to learn a kernel map function in supervised way, which is more complex than our method.

Since our method can be easily integrated into existing models, we also combine our method with the

contrastive adapter (CA) [12] to further improve the group robustness of the CLIP model. In detail, we first

use DoubleCCA to generate the merged text embeddings, and then substitute the original text embeddings

with the merged text embeddings in the CLIP model. Finally, we use the CA algorithm to learn the adapter.

The results are shown in Figure 4. We observe that using the merged text embeddings helps improve the

worst group accuracy, but the average accuracy has a slight decrease. Thus, in this case, the trade-off between

the average accuracy and the worst group robustness is also observed.

Overall, the results demonstrate that DoubleCCA effectively enhances the group robustness of foundation

models, providing better performance and fairness across different datasets and backbone models. Moreover,

in different scenarios, trade-off phenomena are observed, which is consistent with previous work [38].

4.3 Results on Domain Generalization

We evaluate the domain generalization ability of our method on six widely used datasets, i.e., CUB-200-

2011 (CUB), EuroSAT, Place365, Flowers102, Food101, and Oxford Pets.

We report the classification accuracy of the ViT-B/16 backbone model in these data sets in Table 2. We

observe that our method achieves competitive results compared to the baseline CLIP model on these datasets.

For example, the classification accuracy of our method is 56. 30% in the CUB dataset, which is slightly

11



Table 2: Classification accuracy of ViT-B/16 on different data domains with foundation models.

CLIP Ours
CUB 56.67 56.30

EuroSAT 51.44 52.84
Place365 38.93 39.47

Flowers102 67.73 68.82
Food101 88.24 88.35

Oxford Pets 88.25 88.57

lower than that of the baseline CLIP model (56.67%). Furthermore, our method achieves better results on the

EuroSAT, Place365, Flowers102, Food101, and Oxford Pets datasets, where the classification accuracy of our

method is 52.84%, 39.47%, 68.82%, 88.35%, and 88.57%, respectively.

By comparing and analyzing Tables 1 and 2, we can summarize the following. Our method maintains the

generalizability of the foundation model while improving performance and group robustness across various

datasets and backbone architectures.

4.4 Effect of Sentence Embeddings

Since DoubleCCA leverages sentence embeddings to enhance the text embeddings of the CLIP model,

we conduct an ablation study to analyze the effect of sentence embeddings on the group robustness of the

CLIP model.

In previous experiments, we use the HiT model [21] to generate sentence embeddings. To further study

the effect of sentence embeddings, we replace the HiT model with other sentence embedding models. To

ensure a comprehensive comparison, we select popular models from HuggingFace Hub2 as alternatives to

the default HiT model, such as the classical Sentence-BERT model [26], gte-base-en-v1.5 model [39], and

bart-base model [40]. We directly use the pre-trained models released by HuggingFace Hub to generate

sentence embeddings for the Waterbirds dataset. The results are shown in Figure 5.

Compared with the original CLIP model, we observe that different sentence embedding methods in

DoubleCCA either improve the model’s performance or maintain it at a comparable level. Notably, HiT

demonstrate the most significant improvements in performance. Both Sentence-BERT and gte-base-en-v1.5

also have a positive impact on the model’s performance.

First, HiT is a state-of-the-art sentence embedding model that aims to learn the hierarchical semantic

structure in language models. HiT is trained on WordNet, which can provide unseen subsumptions and

hypernyms for the words in the sentence. Second, Sentence-BERT and gte-base models are also popular

sentence embedding models, which are verified to be effective in unsupervised text retrieval tasks. However,

2https://huggingface.co/
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Figure 5: Ablation study results on the Waterbirds dataset.
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Figure 6: Ablation study results on the Waterbirds dataset.

BART shows little improvement in model performance. We think this is because BART targets dialogue

understanding, question answering, and summarization tasks, which may face the same problems as mentioned

before, where it will introduce semantic ambiguity to text embeddings [9].

Overall, the results demonstrate that the choice of the sentence embedding model can significantly affect

the performance of the foundation model. We recommend using HiT as the default sentence embedding

model in DoubleCCA, as it achieves the best performance in our experiments. Moreover, it is more interesting

to explore the effect of different sentence embedding models on the group robustness of the foundation model,

which is left for future work.

4.5 Abalation Study

4.5.1 Effect of the Hyperparameters.

Number of Random Sentences. We conduct an ablation study to analyze the effect of the number of random

sentences on the group robustness. We employ the backbone model for ResNet-50 and fix the dimension of

the CCA as 64. Then, we vary the number of random sentences from 1 to 2000. The results are shown in

Figure 6 (a).

The results indicate that varying the number of random sentences has minimal impact on the average

accuracy but demonstrates a substantial influence on the worst group robustness. When the number of

random sentences is less than 500, the worst group robustness exhibits high variability. In particular, when

the number of sentences drops to 100, the performance deteriorates below that of the original CLIP model.
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We attribute this instability to the inherent randomness of random character sequences. However, as the

number of sentences increases, the model performance gradually stabilizes, suggesting that sufficient random

sentences enable the model to capture meaningful pragmatic information.

Dimension of CCA. We further study the effect of the dimension of the CCA on the group robustness of

the CLIP model. We employ the ResNet-50 backbone model and fix the number of random sentences to

500. Then, we vary the dimension of the CCA from 1 to 3843. The results are shown in Figure 6 (b). The

results indicate that the dimension of the common space significantly impacts performance. Both low and

high dimensions adversely affect the results; low dimensions lead to insufficient feature representation, while

high dimensions introduce feature vectors corresponding to small singular values. We recommend setting the

dimension of the CCA to 64, as it achieves the best performance in our experiments. Moreover, as discussed

in [41], the dimension of this subspace is a natural measure of the model complexity, thus some automatic

dimension selection methods can be used to determine the optimal dimension of the CCA. We leave this for

future work.

4.5.2 Effect of the First CCA.

Finally, we analyze the effect of the first CCA on the group robustness of the CLIP model. We employ

the backbone model to ResNet-50 and fix the number of random sentences to 500. Then, we remove the

second CCA from the DoubleCCA method and directly use Eq.3 as the score function for the zero-shot

classification. The results are shown in Figure 6 (c). The results indicate that only the first CCA also has a

positive impact on the group robustness of the CLIP model. But the second CCA step is essential for further

improving the group robustness of the CLIP model.

5 Related Work

This section will briefly review related work in group robustness. Group robustness is a critical issue in

machine learning, especially in the context of fairness and bias. There are many works that focus on improving

the group robustness of foundation models. Existing method can be divided into two categories: prompt

tuning, adapter-based methods, and fine-tuning methods. The first category includes methods that modify

the input prompts given to a pre-trained model to better align with the desired output. Representative works

include [15, 19, 20]. The second category includes methods that add additional modules to the pre-trained

model to adapt it to the target task. Representative works include [12, 18, 16]. The third category includes

methods that fine-tune the pre-trained model on the target task. The representative works include [13]. In

addition to these methods, An et al. [11] proposes a perception-aware method (called PerceptionCLIP) to

enhance the group robustness of the CLIP model, which provides CLIP with contextual attributes. This is

3The dimension of the HiT feature is 384.
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similar to our method, which also enriches the text embeddings of the CLIP model with additional semantic

information. Both of us aim to improve the group robustness of the zero-shot classifier. According to the

experiments, our method outperforms PerceptionCLIP in terms of both average accuracy and worst group

robustness. Since our method is simple and easy to implement, it can be easily integrated into existing models,

such as the contrastive adapter [12], providing a practical solution to improve the robustness of the foundation

models.

6 Conclusion

In this paper, we proposed DoubleCCA, a novel method to improve the robustness of foundation

models to group-based biases. By leveraging random sentence embeddings and employing Canonical

Correlation Analysis (CCA) twice, our method effectively aligns and merges different text representations.

We demonstrated the effectiveness of DoubleCCA on various datasets, showing that it outperforms existing

methods in terms of both group robustness and domain generalization. Our approach is simple to implement

and can be easily integrated into existing models, providing a practical solution to improve the robustness of

foundation models.
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