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Abstract

The Transformer architecture has emerged as the dominant
choice for building large language models (LLMs). However,
with new LLMs emerging on a frequent basis, it is impor-
tant to consider the potential value of architecture-agnostic
approaches that can provide interpretability across a vari-
ety of architectures. Despite recent successes in the inter-
pretability of LLMs, many existing approaches rely on com-
plex methods that are often tied to a specific model design
and come with a significant computational cost. To address
these limitations, we propose a novel technique, called Nor-
mXLogit, for assessing the significance of individual input
tokens. This method operates based on the input and output
representations associated with each token. First, we demon-
strate that during the pre-training of LLMs, the norms of word
embeddings capture the importance of input tokens. Second,
we reveal a significant relationship between a token’s impor-
tance and the extent to which its representation can resem-
ble the model’s final prediction. Through extensive analysis,
we show that our approach consistently outperforms existing
gradient-based methods in terms of faithfulness. Addition-
ally, our method achieves better performance in layer-wise
explanations compared to the most prominent architecture-
specific methods.

1 Introduction
Transformer-based models have gained widespread adop-
tion across various natural language processing (NLP) tasks,
demonstrating their versatility. However, the underlying
mechanisms of these models are not quite understood. This
means when the model fails and generates inaccurate, toxic,
or harmful content, we are unable to diagnose the source and
improve the model’s behavior. Consequently, a multitude
of endeavors in recent years aimed at enhancing the inter-
pretability of these models (Kobayashi et al. 2021; Modar-
ressi et al. 2023; Mohebbi et al. 2023).

Architecture-agnostic methods like perturbation-based
and gradient-based techniques are commonly used to iden-
tify important input tokens influencing a model’s predic-
tions. In perturbation-based methods, one can simply erase
the input tokens one at a time to observe their impact on
the model’s output (Li, Monroe, and Jurafsky 2017). How-
ever, a common limitation of these methods is that they can
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Figure 1: (a) Importance scores of NormXLogit for the sen-
timent analysis task. NormXLogit generates attributions per-
label with signed scores denoting positive/negative impact.
(b) Applying the head-on-top (HoT) on each of the final rep-
resentations to obtain a prediction based on each token.

inadvertently create out-of-distribution and nonsensical in-
puts, which can lead to misleading results. In another di-
rection, the main idea behind the gradient-based methods is
to compute the derivative of the output with respect to in-
put tokens to find their importance (Li et al. 2016). While
gradient-based methods have been shown to be more faith-
ful than perturbation-based methods, Wang et al. (2020) has
demonstrated that they are easily manipulable and may not
provide reliable interpretations.

By leveraging the internal components of the target
model, a new class of architecture-specific approaches,
termed vector-based methods, has been developed to de-
compose each token into its constituent representations
(Kobayashi et al. 2021; Ferrando, Gállego, and Costa-jussà
2022). Most of these approaches offer per-layer explana-
tions, which are subsequently aggregated using the rollout
technique (Abnar and Zuidema 2020) to achieve a global in-
terpretation that integrates all layers of the model. However,
this method of aggregation can result in inaccurate outcomes
due to the vanishing attribution problem (Mehri et al. 2024).
Despite recent advancements in faithfulness, a key drawback
of vector-based methods is their architecture-specific design,
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which limits their adaptability to the rapidly evolving land-
scape of LLMs. Furthermore, almost all of these methods
ignore the head-on-top1 which is crucial to produce task-
dependent explanations.

While these methods have made significant strides, addi-
tional challenges have emerged. Improvements to these tech-
niques often come with considerable computational costs. In
perturbation-based methods, it is costly to search for appro-
priate combinations of tokens to intervene, as this requires
multiple forward passes and adjustments to the input. Sim-
ilarly, in advanced gradient-based methods like Integrated
Gradients (Sundararajan, Taly, and Yan 2017) and Smooth-
Grad (Smilkov et al. 2017), attributions are computed by it-
eratively applying backpropagation. This approach can incur
substantial computational overhead due to the repeated for-
ward and backward passes required.

In response to these limitations, this paper presents Nor-
mXLogit, a simple yet powerful, architecture-agnostic ap-
proach that outperforms many of the sophisticated tech-
niques. NormXLogit does not depend on any specific archi-
tecture and could be easily applied to any NLP task. This
method leverages the rich semantic and syntactic informa-
tion encoded in the final layer representations of the model,
in conjunction with the norm of input embeddings, resem-
bling an end-to-end interpretation that eliminates the need
for any aggregation method, such as rollout. Motivated by
DecompX (Modarressi et al. 2023), we incorporate the head-
on-top of pre-trained models into our analysis to obtain im-
portance scores with respect to the task. We posit that the
head-on-top of the pre-trained language models serves as a
task-specific interpreter of token attribution2, tailoring its at-
tention to the nuances of the task at hand. This helps Nor-
mXLogit to generate per-label attributions with positive and
negative impacts of each input token (Figure 1(a)). In ad-
dition, our method eliminates the need for any backward
passes, utilizing the pre-trained model only once to generate
the contextualized representation of each token, which sig-
nificantly reduces the computational cost compared to other
methods.

NormXLogit is characterized by combining the informa-
tiveness of input embeddings with the interpretation pro-
vided by the head-on-top. Based on comprehensive evalu-
ation across various tasks and models, we demonstrate that
in numerous instances, the faithfulness of this method sur-
passes that of widely recognized gradient-based approaches.
Moreover, in regression setups where a classification head
is absent, our method demonstrates superior performance
compared to architecture-specific methods. Additionally, to
evaluate layer-wise explanations, we conduct experiments
on various linguistic phenomena to assess the model’s abil-
ity to differentiate between grammatically correct and incor-
rect sentences. Our results indicate that, in most scenarios,
our proposed method performs better than or is competitive
with other approaches.

1By ‘head-on-top’, we are referring to the classification or re-
gression head used on top of the pre-trained models.

2We use ‘attribution’ and ‘importance’ interchangeably.

2 Related Work
In recent years, vector-based analysis of Transformers has
emerged as an architecture-specific approach. The motiva-
tion behind these methods stems from the observation that
attention weights can be misleading for interpretability pur-
poses (Jain and Wallace 2019; Serrano and Smith 2019).
Kobayashi et al. (2021) extended the Transformer’s compo-
nents for analysis by capturing the whole attention block,
rather than relying solely on attention weights. In order to
aggregate the per-layer attributions of previous methods to
obtain a global attribution, Abnar and Zuidema (2020) pro-
posed two different approaches to quantify the flow of infor-
mation through self-attention; attention rollout and attention
flow.

GlobEnc (Modarressi et al. 2022) and ALTI (Ferrando,
Gállego, and Costa-jussà 2022) tried to improve previ-
ous work by further decomposing other components in the
Transformer layers and aggregating them using attention
rollout. ALTI questioned the way Kobayashi et al. (2021)
interprets the contribution of each decomposed vector us-
ing its ℓ2 norm. They suggested that Manhattan distance can
yield better results due to the properties of the representa-
tion space. At the local level, GlobEnc expands the scope
of components beyond the attention block. They ignored the
impact of the feed-froward network on the contribution of
each token and tried to approximate it by adding the second
residual connection and layer normalization into the anal-
ysis. In order to capture the influence of the feed-forward
network, Modarressi et al. (2023) proposed DecompX. De-
compX solved the problems of using rollout by propagating
decomposed vectors through different layers of the Trans-
former. DecompX approximated and decomposed the acti-
vation function which led to a better attribution score accord-
ing to their experiments. They also incorporated the classifi-
cation head into the analysis which caused per-label expla-
nations.

Perturbation-based methods typically involve perturbing
or erasing parts of the input to investigate the causal rela-
tionship between input features and the model’s final pre-
diction. This category of interpretability methods includes
well-known approaches such as SHAP (Lundberg and Lee
2017) and LIME (Ribeiro, Singh, and Guestrin 2016). Re-
cently, Mohebbi et al. (2023) proposed Value Zeroing which
is based on the Explaining-by-Removing intuition (Covert,
Lundberg, and Lee 2022), in order to quantify the context
mixing. Their approach, in contrast to other perturbation-
based methods, does not remove the input token representa-
tions. Value Zeroing instead suggests zeroing the value vec-
tor of each token to measure its contribution.

Gradient-based methods involve analyzing the gradients
of the model’s output with respect to the input features to un-
derstand their impact on the model’s decision-making pro-
cess. Methods such as Gradient Norm (Simonyan, Vedaldi,
and Zisserman 2014), Gradient×Input (Kindermans et al.
2016), and Integrated Gradients (Sundararajan, Taly, and
Yan 2017) are the most prominent ones in this category.
However, the trustworthiness of gradient-based models has
indeed been a subject of scrutiny and questioning (Adebayo
et al. 2020).



3 Proposed Approach
3.1 Background: Transformer Architecture
Transformers are built upon an encoder-decoder structure,
where the encoder and decoder components consist of mul-
tiple identical layers stacked on top of each other. In this
section, we offer a concise overview of the operations car-
ried out within an encoder layer.

An encoder layer of the Transformer architecture incor-
porates two sub-layers. A multi-head self-attention block
(MHA) and a position-wise fully connected feed-forward
network (FFN), each followed by a residual connection
(RES) and layer normalization (LN). The output of each
sub-layer is:

LN(X l + Sublayer(X l)) (1)
where X l = (xl

1, x
l
2, ..., x

l
n), x

l
i ∈ Rdmodel is the i-th input

representation in layer l, and Sublayer(X l) shows the func-
tionality applied by each one of the sublayers to X l.

MHA. This component is responsible for creating contex-
tualized representations for the input elements. The output
representation of MHA for token xi and head h in l-th layer
is then calculated as the weighted sum of transformed input
representations:

x̃l h
i =

n∑
j=1

αl h
i,j vl

h
j (2)

where αl h
i,j represents the attention weight of token i with

respect to token j in the h-th head of the MHA of the l-th
layer. Then, in order to aggregate the outputs of all heads:

x̃l
i = Concat(x̃l 1

i , x̃l 2
i , ..., x̃l H

i )W l
O + blo (3)

where H is the number of attention heads, W l
O ∈

Rdmodel×dmodel is the weight matrix, and blO ∈ Rdmodel is
the bias vector of the final projection for the l-th layer.

RES and LN. The RES takes the input and output of the
MHA and adds them together which is followed by the LN:

x̃l
i ← LN(xl

i + x̃l
i) (4)

FFN. The output of the first LN is passed through the FFN,
which applies two linear transformations to it with a ReLU
activation function in between. The input and output dimen-
sion of FFN is equal to dmodel. Then similarly, the output of
the FFN passes through another LN and undergoes a RES:

z̃li = max(0, x̃l
iW

l
1 + bl1)W

l
2 + bl2 (5)

zli ← LN(zli + z̃li) (6)
The W l

{1,2} and bl{1,2} are the parameters corresponding to
the first and second linear transformations of the l-th layer.

Kobayashi et al. (2021) demonstrated that the output rep-
resentation of each token produced by the attention block
can be explained via two effects: (i) “preserving” its orig-
inal input using the RES and the contribution of the token
itself through context mixing of MHA, and (ii) “mixing” the
representations in the context (except the target token). They

showed that the preserving effect is predominant, primarily
due to the higher contribution of RES to the output represen-
tation.

3.2 Norm of Word Embedding
Oyama, Yokoi, and Shimodaira (2023) demonstrated that
the norm of input embeddings encodes information gain.
They showed that tokens with higher ℓ2 norm carry more
information, effectively capturing the least frequent words
in the text. Additionally, based on the Eq. 2, the MHA could
be interpreted as the weighted sum of transformed vectors.
In other words, the final representation of each token is
built by mixing the representations of all tokens in the in-
put sequence. Consequently, tokens with higher norms are
expected to contribute more to the final representation of
the target token. Higher contribution suggests greater impor-
tance, allowing us to utilize the ℓ2 norm of word embeddings
to identify crucial tokens influencing the model’s decision.

3.3 LogAt: Logit Attribution
The tasks in the domain of NLP can be broadly divided
into two main categories: classification tasks and regression
tasks. For both of these setups, we utilize a special token
(often known as [CLS]3), which is embedded in almost all
pre-trained models. This token serves as a single vector rep-
resenting the entire input sequence, which is then fed into
head-on-top, an FFN placed on top of the pre-trained model
to produce the output prediction.

The intuition behind the attention mechanism implies that
more important tokens have a greater contribution to build-
ing the final representation of the [CLS] token. In other
words, an identical [CLS] embedding is fed into the model
for all input sequences, and based on the fine-tuning objec-
tive, the attention block attempts to utilize the most relevant
(i.e., important) tokens to construct the new representation
of [CLS]. This suggests that the [CLS] token has a higher
degree of similarity to the most important input tokens in
the model’s decision-making process. To identify the tokens
that are most similar to [CLS], we use the head-on-top to
evaluate how each individual token in the input contributes
to predicting the target task. In the following, we describe
the approach for each setup.

Classification. In a classification setup, the output of the
head-on-top for each sample is a vector of length equal to
the number of labels (i.e., classes). The values in this output
vector are referred to as logits, which are further processed
using the softmax function to obtain probabilities over the
output labels. The model’s final prediction is the label asso-
ciated with the highest logit value. To determine the most
important input tokens for a model with L layers, we apply
the head-on-top to each one of the output representations at
layer L, as illustrated in Figure 1(b). Next, we extract the
logits corresponding to the predicted class, which is already
determined by applying the head-on-top to the [CLS] token.

3The name of this special token may vary depending on the
model. Also, in auto-regressive models, the last token in the input
is typically used for classification.



The logit value associated with each token represents its at-
tribution, and tokens with the highest logits are regarded as
the most important for the classification task. We call this
method Logit Attribution (LogAt). To calculate the attribu-
tion (AttLogAt) of the token i for a task with C classes and a
classification head HoTclas(·) ∈ RC , we have:

AttLogAt(xi) = HoTclas(x
L
i )[p̂] (7)

where xL
i is the final representation of the i-th token in a

model with L layers, and p̂ ∈ {0, 1, ..., C − 1} denotes the
index of the predicted class. By changing the index of p̂ to
other class labels in the task, we can identify the important
tokens relative to those classes as well, leading to a per-label
attribution technique.

Due to the dominance of the “preserving” effect in the at-
tention block, the contextualized representations in the last
layer still retain the identity of the original input tokens. As
a result, the logits can be seen as a direct reflection of each
token’s contribution. The use of the head-on-top provides
task-specific explanations, allowing us to semantically iden-
tify the tokens that are most critical for the target task. Fur-
thermore, the sign of the logits provides insight into the di-
rection of the contributions, indicating whether each label is
positively or negatively influenced, specifically with respect
to the model’s predicted label.

To interpret the choice of token in various language mod-
eling objectives, we categorize them as classification tasks,
where the number of labels corresponds to the vocabulary
size. In language modeling, the goal is to predict the cor-
rect word given the context, which yields a probability dis-
tribution over the vocabulary for generating each individual
word. In this setup, we utilize the masked language model-
ing head as the head-on-top to identify the tokens that con-
tribute most to predicting the [Mask] token.

Regression. For the regression setup, the approach typi-
cally involves generating a single value in the output rather
than a vector of probabilities. So, instead of taking the
largest logit corresponding to the prediction label, we take
the absolute distance of the output for each token from the
model’s prediction. For the attribution of i-th token in a re-
gression task, we have:

AttLogAt(xi) =
∣∣HoTreg(x

L
i )− HoTreg([CLS]

L)
∣∣ (8)

where HoTreg(·) ∈ R denotes the regression head, xL
i is the

final representation of the i-th token in a model with L lay-
ers, and [CLS]L is the final representation of the [CLS] to-
ken.

3.4 NormXLogit
Although LogAt provides valuable explanations of the
model’s decision-making process, our experiments show
that considering the informativeness of the norm of word
embeddings can yield more faithful results. Therefore, we
introduce NormXLogit, an architecture-agnostic interpreta-
tion method that can be applied to any task and domain. The
attribution of token i using NormXLogit is obtained as:

AttNormXLogit(xi) =
∥∥x0

i

∥∥
2
× AttLogAt(xi) (9)

where the
∥∥x0

i

∥∥
2

is the ℓ2 norm of the input word embedding
for the i-th token, and AttLogAt(·) is the LogAt attribution
according to the task setup.

4 Experiment 1: Faithfulness Analysis
4.1 Experimental Setup
To analyze the faithfulness of NormXLogit we conduct
our first experiment on classic classification and regression
tasks.

Data. In the classification setup, we will use SST-2
(Socher et al. 2013) for sentiment analysis and MultiNLI
(Williams, Nangia, and Bowman 2018) for recognizing tex-
tual entailment. SST-2 contains sentences with negative
and positive labels extracted from movie reviews, while
MultiNLI includes sentence pairs labeled as entailment, con-
tradiction, and neutral. Additionally, we employ STS-B (Cer
et al. 2017) to evaluate semantic textual similarity as a re-
gression task. This dataset provides a benchmark for mea-
suring the similarity between sentence pairs, with annota-
tions ranging from 0 (no similarity) to 5 (semantic equiva-
lence).

Models. Our target models in this section involve three
prominent models: LLAMA 2 (Touvron et al. 2023), De-
BERTa (He, Gao, and Chen 2023), and BERT (Devlin et al.
2019).4 We use the fine-tuned version of each model for the
corresponding task. To fine-tune LLAMA 2 and perform in-
ference, we employ the LoRA (Hu et al. 2021) technique
with a rank of 4 from the PEFT library5.

Input Attribution Methods. To analyze the performance
of our proposed method, we compare NormXLogit with
three well-known gradient-based input attribution methods:
Gradient Norm, Gradient×Input, and Integrated Gradients.
For all of these methods, we use the ℓ1 norm as the aggre-
gation approach. To account for vector-based approaches,
we adopt DecompX as the current state-of-the-art method
among them. However, this family of methods is primarily
developed for BERT-like architectures and may not be ap-
plicable to all models. In addition, we consider a random
baseline where tokens are ranked randomly from most im-
portant to least important.

Evaluation Metrics. To assess the faithfulness of the
aforementioned methods, we utilize two metrics: AOPC
(Samek et al. 2015) for classification tasks and Accuracy for
regression setups.

AOPC: This metric involves perturbing K% of the most
important tokens in the input sequence and observing the re-
sulting changes in the model’s predictions. For the masked
language modeling objectives, masking is used for token
perturbations, while for auto-regressive models, deletions
are employed due to the absence of a [MASK] token. For a

4Specifically, we employ the 7 billion parameter variant of
LLAMA 2, the uncased BERTbase model, and DeBERTaV3base, all
of which are obtained from HuggingFace’s Transformers library
(Wolf et al. 2020).

5https://github.com/huggingface/peft



SST-2 (AOPC↑) MNLI (AOPC↑) STS-B (ACC↓)

LLAMA 2 DeBERTa BERT LLAMA 2 DeBERTa BERT LLAMA 2 DeBERTa BERT

Random Baseline 0.256 0.266 0.245 0.421 0.445 0.361 0.283 0.430 0.457
Gradient Norm 0.216 0.320 0.331 0.419 0.535 0.460 0.351 0.338 0.374
Gradient×Input 0.236 0.345 0.339 0.442 0.565 0.456 0.255 0.214 0.358
Integrated Gradients 0.220 0.346 0.367 0.448 0.571 0.466 0.237 0.227 0.370
DecompX N/A N/A 0.574 N/A N/A 0.585 N/A N/A 0.336

ℓ2 norm 0.299 0.360 0.311 0.420 0.473 0.393 0.251 0.199 0.321
LogAt 0.341 0.377 0.364 0.518 0.548 0.566 0.167 0.423 0.313
NormXLogit 0.341 0.386 0.423 0.519 0.566 0.556 0.233 0.320 0.281

Table 1: Performance evaluation of NormXLogit against other methods across various model and dataset configurations. Each
value is computed by averaging across all perturbation ratios (higher AOPC and lower Accuracy are better).

Figure 2: AOPC of different attribution methods for LLAMA
2 fine-tuned on SST-2 (higher AOPC is better).

given input sequence Xi, the perturbed sequence Xi\K is
generated by applying the perturbation on K% of the most
important tokens. Then for all of the instances in the dataset,
the average AOPC is defined as:

AOPC(K%) =
1

m

m∑
i=1

[
fŷ(Xi)− fŷ(Xi\K)

]
(10)

where m is the number of instances, and fŷ(X) is the
model’s output probability for label ŷ. A higher AOPC in-
dicates that the model exhibits a larger drop in probability
for the predicted class, reflecting greater sensitivity to per-
turbated tokens.

Accuracy: This metric operates by observing the accuracy
drop when perturbing different proportions of the most im-
portant tokens in the input. For regression tasks, we utilized
the Pearson correlation coefficient as the accuracy metric.
For the Accuracy, lower values indicate better performance.

4.2 Results
Figure 2 illustrates the superior performance of NormXLogit
in LLAMA 2 fine-tuned on SST-2. NormXLogit achieves
higher AOPC scores across all thresholds, indicating its

Figure 3: Accuracy of different attribution methods for
BERT fine-tuned on STS-B (lower Accuracy is better).

effectiveness in identifying crucial tokens for the model’s
decision-making process. It should be noted that DecompX,
due to its architecture-specific nature, may not be applica-
ble to LLAMA 2. Additionally, even if it were, the computa-
tional cost of DecompX may not be easily manageable given
the size of LLAMA 2 on many accessible hardware configu-
rations.

In the regression setup of STS-B depicted in Figure 3,
dropping important tokens results in a decrease in Accu-
racy. To leverage DecompX for this setup, in the absence
of a classification head, we applied the ℓ2 norm to the de-
composed vectors obtained from the final layer. The results
for the initial K% ratios are very close, with DecompX and
Gradient×Input showing a slight lead at the outset. How-
ever, after dropping 40% of the most important tokens, the
performance of all these methods deteriorates, while Nor-
mXLogit continues to experience a drop in Accuracy.

Table 1 presents the average AOPC and Accuracy across
different ratios of perturbation, evaluated on various models
and datasets6. In SST-2, NormXLogit consistently outper-

6The corresponding diagrams are also provided in the Ap-
pendix.



Phenomenon UID Example (Target ✔/Foil ✘)

Anaphor Number Agreement ana This government alarms itself ✔/themselves ✘.

Determiner-Noun Agreement dna Russell explored this ✔/these ✘ mall.
dnaa Patients scan this ✔/these ✘ orange brochure.

Subject-Verb Agreement darn The sister of doctors writes ✔/write ✘.
rpsv The pedestrian has ✔/have ✘ forgotten Grace.

Table 2: Examples of various linguistic phenomena that
have been investigated in our experiments. Each paradigm
is represented by a unique identifier (UID) from the BLIMP
dataset. The target and foil words are denoted using check
and cross marks. In each instance, the relevant evidence is
underlined.

forms architecture-agnostic methods. However, DecompX,
which is specific to the BERT architecture, results in a higher
drop in AOPC. In the MultiNLI dataset, NormXLogit per-
forms better than gradient-based approaches in LLAMA 2
and BERT, though Integrated Gradients show a slight edge
in the DeBERTa model. In the BERT model, similar to SST-
2, DecompX performs better but the difference is notably
smaller compared to the SST-2 dataset.

In the regression setup, surprisingly, the ℓ2 norm outper-
forms other methods and also helps Gradient×Input achieve
better results. In the BERT model, the absence of a classi-
fication head diminishes DecompX’s effectiveness, result-
ing in performance worse than that of the input embed-
dings’ norms. In LLAMA 2, NormXLogit slightly surpasses
all gradient-based methods, largely due to the strong perfor-
mance of LogAt.

5 Experiment 2: Evidence Alignment
5.1 Experimental Setup
In this section, we focus on per-layer interpretations pro-
vided by different methods rather than their global attribu-
tions. Specifically, we concentrate on the masked language
modeling objective and look for tokens that have the highest
impact on the predicted token.

Data. To assess the target model’s sensitivity to linguistic
phenomena, we employ the BLIMP dataset (Warstadt et al.
2020) which contains sentence pairs with minimal contrasts
in syntax, morphology, or semantics. The dataset is con-
structed to provide samples where the true label is uniquely
determined by a single word in each sentence. This word,
which serves as the decisive factor in determining gram-
matical acceptability, is termed the evidence. Following Mo-
hebbi et al. (2023), we utilize a subset of the BLIMP dataset,
comprising 5 paradigms that represent 3 distinct linguistic
phenomena. An example of each phenomenon has been pro-
vided in Table 2.

Using spaCy (Honnibal and Montani 2017), we are able
to identify the evidence of each linguistic phenomenon. For
anaphor number agreement, we employ NeuralCoref7 to de-
tect the coreferent of the target word. To address determiner-
noun agreement, we generate the dependency tree for each

7https://github.com/huggingface/neuralcoref

sample and extract the determiners corresponding to the tar-
get noun. Lastly, for subject-verb agreement, the same de-
pendency tree can be used to identify the subjects associated
with the verb.

Model. In this section, we employ the RoBERTa (Liu et al.
2019) model for our evaluations. We use both pre-trained8

and fine-tuned versions of the model. For fine-tuning, the
target token is replaced with [MASK], and the model is op-
timized to select the correct target token (the grammatically
appropriate word) over the foil token (a similar but gram-
matically incorrect alternative). Next, for inference, we use
the head-on-top, also known as the unembedding matrix, to
generate probabilities over the vocabulary.

Attribution Methods. GlobEnc, ALTI, and Value Zero-
ing are the attribution methods we consider for compari-
son in this experiment. Unlike Value Zeroing, which focuses
on layer-wise attributions, the other two methods generate
global importance scores. To acquire per-layer explanations
for GlobEnc and ALTI, we bypass the rollout aggregation
method to directly derive per-layer scores and we denote
them as GlobEnc¬ and ALTI¬. Moreover, for NormXLogit,
to obtain the attributions of layer l we use the LogAt on the
output representations of l-th layer in combination with the
ℓ2 norm of the input embeddings where l ∈ {1, 2, ..., L}.
In this language modeling setup, applying the head-on-top
method to the final representations of tokens in the sequence
provides a probability distribution over the vocabulary for
each input token. Then, LogAt(target) is the probability
assigned to the target token for each input token, which is
considered its attribution score. Using the per-label explana-
tions that could be obtained via LogAt, we also demonstrate
the importance of evidence words in predicting both foil and
target tokens. These explanations can be generated for any
word in the vocabulary, as illustrated in the Appendix. We
also consider a random baseline in which tokens attributed
equal scores.

Alignment Metrics. Following Yin and Neubig (2022),
we define the known evidence as a binary vector E with a
length equal to the input sequence X . In this vector, a value
of 1 at a given index indicates the presence of known ev-
idence, while a value of 0 indicates its absence. Similarly,
the explanation S is also represented as a vector of the same
length, where the i-th element of it Si, shows the score pro-
duced by an attribution method for predicting the target to-
ken. To evaluate the alignment between evidence and expla-
nation vectors, we take advantage of Dot Product and Aver-
age Precision metrics.

Dot Product: The dot product E · S computes the total
score that the target attribution method assigns to the known
evidence.

Average Precision: To evaluate whether an attribution
method has found the most important tokens in the input se-
quence, we use Average Precision. This metric concentrates
on the ranking obtained via the attribution method rather

8The results of the pre-trained model are covered in the Ap-
pendix.



Figure 4: Per-layer alignment between evidence and expla-
nation vectors for the fine-tuned version of RoBERTa, cal-
culated using Dot Product metric (higher values are better).
The alignment for ℓ2 norm of word embeddings (layer 0) is
0.14.

than its scores. To calculate the Average Precision for a sin-
gle sample, we have:

AP =

n∑
k=1

(Rk −Rk−1)Pk (11)

where Rk and Pk indicate the recall and precision at thresh-
old k, and n is the length of input sequence.

5.2 Results
Figures 4 and 5 present the results of the alignment for dif-
ferent attribution methods and the known evidence enforc-
ing a linguistic paradigm. In Figure 4, it can be seen that
across almost all layers, NormXLogit consistently outper-
forms other methods in the experiment. The LogAt scores
corresponding to the foil token in both alignment metrics
are lower than those obtained from the target token. Specif-
ically, as we progress to higher Transformer layers, there is
a drop in alignment for the foil token and an increase for the
target token. This pattern can be explained by the fact that
token representations become more contextualized as they
pass through layers. Increased context mixing from evidence
words can lead to a correct prediction (LogAt(Target)),
while reduced context mixing can result in incorrect predic-
tions (LogAt(Foil)).

As noted earlier, the LogAt scores can be calculated
for other tokens in the vocabulary as well. Our anal-
ysis shows that the LogAt score for the word ’plural’
(LogAt(”plural”)) outperforms all other methods in our
experiments by a notable margin. This superior perfor-
mance, unlike that of other random words, might be at-
tributed to the number agreement phenomena underlying

Figure 5: Per-layer alignment between evidence and expla-
nation vectors for the fine-tuned version of RoBERTa, calcu-
lated using Average Precision metric (higher values are bet-
ter). The alignment for ℓ2 norm of word embeddings (layer
0) is 0.35.

this experiment. At layer 7, the results of LogAt(”plural”)
for Dot Product and Average Precision are 0.28 and 0.50,
respectively (refer to Appendix for complete results).

As mentioned in the caption of Figures 4 and 5, the high
alignment between the norm of input word embeddings and
the evidence confirms that indeed they are informative.

6 Conclusion and Future Work
In this paper, we introduced NormXLogit, an architecture-
agnostic interpretation method that can be applied to any
setup to reveal the opaque mechanism behind the decision-
making process of LLMs. This method is fast and scalable,
and it can be applied to models of any size. By utilizing the
head-on-top, we gain the advantage of producing per-label
explanations, which can be used to identify the most im-
portant tokens with respect to each label. Through extensive
experiments, we showed that the attributions produced by
NormXLogit are not only more faithful than those gener-
ated by gradient-based methods but also competitive with
architecture-specific approaches.

Future work could explore the applicability of our pro-
posed method to other domains and models, such as vision
and non-Transformer architectures. Another promising di-
rection is to investigate how aggregating attributions across
all labels in a classification setup could lead to improved ex-
planations.
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A Appendix
A.1 Computing Infrastructure
All experiments were conducted on a machine with an
Nvidia Quadro RTX 8000 GPU with 48GB of memory. The
operating system used is Ubuntu 22.04.3 LTS. The ‘require-
ments.txt’ file included in the code appendix lists all the nec-
essary software libraries and frameworks, along with their
respective versions.

A.2 Experiment 1: Complete Results
Figures 6 to 12 illustrate the AOPC and Accuracy across dif-
ferent models and datasets. In Figure 7, we demonstrate the
global performance of Value Zeroing on the SST-2 dataset.
The results show that this method is not faithful to the
model’s decision-making process. This issue may stem from
the inherent limitations of the rollout aggregation method, as
previously discussed. Additionally, since Value Zeroing is a
perturbation-based method, it may also inherit some of the
challenges associated with these approaches. For instance,
this method zeros out each token’s value vector one at a time,
which can lead to problems like ignoring dependencies be-
tween features. Consider the following example:

“The movie is mediocre, maybe even bad.”
In this case, erasing “mediocre” or “bad” independently

may not significantly impact the overall sentiment of the
sentence.

For our Integrated Gradients experiments, we generally
used 50 steps. However, for LLAMA2, we reduced the num-
ber of steps to 25 due to resource constraints.

Figure 6: AOPC of different attribution methods for De-
BERTa fine-tuned on SST-2 (higher AOPC is better).

Figure 7: AOPC of different attribution methods for BERT
fine-tuned on SST-2 (higher AOPC is better).

Figure 8: AOPC of different attribution methods for
LLAMA2 fine-tuned on MultiNLI (higher AOPC is better).

Figure 9: AOPC of different attribution methods for De-
BERTa fine-tuned on MultiNLI (higher AOPC is better).



Figure 10: AOPC of different attribution methods for BERT
fine-tuned on MultiNLI (higher AOPC is better).

Figure 11: Accuracy of different attribution methods for
LLAMA2 fine-tuned on STS-B (lower Accuracy is better).

Figure 12: Accuracy of different attribution methods for De-
BERTa fine-tuned on STS-B (lower Accuracy is better).

A.3 Experiment 2: RoBERTa Complete Results
The evidence alignment experiment is conducted on a
masked language modeling task to understand why a partic-
ular target token is chosen. The LogAt method provides per-
label attribution scores, enabling us to apply it to other labels
(i.e., tokens in the vocabulary) to identify the most impor-
tant tokens in the input sequence for predicting each specific
label. Figures 13 and 14 display the results of the Dot Prod-
uct and Average Precision alignment metrics for the pre-
trained RoBERTa model. An important observation is the
notable performance of LogAt(”plural”), which demon-
strates its effectiveness in identifying evidence words. This
level of performance is not seen with two other randomly
chosen words. Specifically, the results are more pronounced
in the top layers, indicating that increased context mixing
enhances the connection between the evidence and the word
“plural.” In other words, as we progress through the layers,
the contextualized representation of the evidence word be-
comes increasingly similar to the word “plural,” resulting in
a higher attribution for this word. We attribute the superior
performance for the word “plural” primarily to the nature
of the phenomena used from the BLIMP dataset, which fo-
cused on number agreement. Figures 15 and 16 demonstrate
the results for the fine-tuned RoBERTa model.



Figure 13: Per-layer alignment between evidence and expla-
nation vectors for the pre-trained version of RoBERTa, cal-
culated using Dot Product metric (higher values are better).
The alignment for ℓ2 norm of word embeddings (layer 0) is
0.14.

Figure 14: Per-layer alignment between evidence and ex-
planation vectors for the pre-trained version of RoBERTa,
calculated using Average Precision metric (higher values
are better). The alignment for ℓ2 norm of word embeddings
(layer 0) is 0.35.

Figure 15: Per-layer alignment between evidence and expla-
nation vectors for the fine-tuned version of RoBERTa, cal-
culated using Dot Product metric (higher values are better).
The alignment for ℓ2 norm of word embeddings (layer 0) is
0.14.

Figure 16: Per-layer alignment between evidence and expla-
nation vectors for the fine-tuned version of RoBERTa, calcu-
lated using Average Precision metric (higher values are bet-
ter). The alignment for ℓ2 norm of word embeddings (layer
0) is 0.35.
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