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Local Learning for Covariate Selection in

Nonparametric Causal Effect Estimation with Latent

Variables
Zheng Li, Feng Xie, Yan Zeng, and Zhi Geng

Abstract—Estimating causal effects from nonexperimental data
is a fundamental problem in many fields of science. A key
component of this task is selecting an appropriate set of co-
variates for confounding adjustment to avoid bias. Most existing
methods for covariate selection often assume the absence of
latent variables and rely on learning the global network structure
among variables. However, identifying the global structure can
be unnecessary and inefficient, especially when our primary
interest lies in estimating the effect of a treatment variable on an
outcome variable. To address this limitation, we propose a novel
local learning approach for covariate selection in nonparametric
causal effect estimation, which accounts for the presence of latent
variables. Our approach leverages testable independence and
dependence relationships among observed variables to identify
a valid adjustment set for a target causal relationship, ensuring
both soundness and completeness under standard assumptions.
We validate the effectiveness of our algorithm through extensive
experiments on both synthetic and real-world data.

Index Terms—Causal Effect, Covariates Selection, Latent Vari-
ables, Local Learning.

I. INTRODUCTION

ESTIMATING causal effects is crucial in various fields

such as epidemiology [15], social sciences [39], eco-

nomics [19], and artificial intelligence [31, 8]. In these do-

mains, understanding and accurately estimating causal rela-

tionships are vital for policy making, clinical decisions, and

scientific research. Within the framework of causal graphical

models, covariate adjustment, such as the use of the back-

door criterion [25], emerges as a powerful and primary tool

for estimating causal effects from observational data, since

implementing idealized experiments in practice is difficult

[26]. Formally speaking, let do(x) stand for an idealized

experiment or intervention, where the values of X are set to x,

and f(y|do(x)) denote the causal effect of X on Y . A valid

covariate is a set of variables Z such that f(y | do(x)) =
∫

z
f(y | x, z)f(z)dz [26, 37]. Consider the graph (a) in Fig.

1, Z = {V5} is a valid covariate set w.r.t. (with respect to) the

causal relationship X → Y .

Zheng Li is with the Department of Applied Statistics at Beijing Technology
and Business University, Beijing, China. E-mail: zhengli@st.btbu.edu.cn.

Feng Xie is with the Department of Applied Statistics at Beijing Technology
and Business University, Beijing, China. E-mail: fengxie@btbu.edu.cn,
corresponding author.

Yan Zeng is with the Department of Applied Statistics at
Beijing Technology and Business University, Beijing, China. E-mail:
yanazeng013@btbu.edu.cn.

Zhi Geng is with the Department of Applied Statistics at Beijing
Technology and Business University as well as the School of Mathematical
Sciences at Peking University, Beijing, China. E-mail: zhigeng@pku.edu.cn.

Given a causal graph, one can determine whether a set

is a valid adjustment set using adjustment criteria such as

the back-door criterion [25, 26]. The main challenge in co-

variate adjustment estimation is to find a valid covariate set

that satisfies the back-door criterion using only observational

data, without the prior knowledge of the causal graph. To

tackle this challenge, Maathuis et al. [22] proposed the IDA

(Intervention do-calculus when the DAG (Directed Acyclic

Graph) is Absent) algorithm. This algorithm first learns a

CPDAG (Complete Partial Directed Acyclic Graph) using

the PC (Peter-Clark) algorithm [38], enumerates all Markov

equivalent DAGs, and estimates all possible causal effects

of a treatment on an outcome. Additionally, with domain

knowledge about specific causal directions, one can further

identify more precise causal effects [30, 11]. For instance,

Perkovic et al. [30] proposed the semi-local IDA algorithm,

which provides a bound estimation of a causal effect when

some directed edge orientation information is available. To

efficiently find covariates, a local method CovSel utilizes

criteria from [9] for covariate selection [13]. Though these

methods have been used in a range of fields, they may fail to

produce convincing results in cases with latent confounders,

as they do not properly take into account the influences from

latent variables [21].

There exists work in the literature that attempts to select

covariates and estimate the causal effect in the presence of

latent variables. Malinsky and Spirtes [24] introduced the LV-

IDA (Latent Variable IDA) algorithm based on the generalized

back-door criterion [21]. This algorithm initially learns a Par-

tial Ancestral Graph (PAG) using the FCI (Fast Causal Infer-

ence) algorithm [39], then enumerates all Markov equivalent

Maximal Ancestral Graphs (MAGs), and estimates all possible

causal effects of a treatment on an outcome. Subsequently,

Hyttinen et al. [18] proposed the CE-SAT (Causal Effect

Estimation based on SATisfiability solver) method, which

avoids enumerating all MAGs in the PAG. Although these

algorithms are effective, learning the global causal graph is

often unnecessary and wasteful when we are only interested

in estimating the causal effects of specific relationships.

Several contributions have been developed to select covari-

ates for estimating causal effects of interest without learning

global causal structure. For instance, Entner et al. [10] de-

signed two inference rules and proposed the EHS algorithm

(named after the authors’ names) to determine whether a

treatment has a causal effect on an outcome. If a causal effect

is present, these rules help identify an appropriate adjustment

http://arxiv.org/abs/2411.16315v1
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Fig. 1: Example MAGs with treatment X and outcome Y . Nodes shaded in blue represent a valid adjustment set. (a) Both

global search EHS and local search CEELS methods identify the adjustment set. (b) Adapted from [5], CEELS fails to select

the adjustment set despite the presence of a COSO variable V1 (See Fig. 4 in Cheng et al. [5]). (c) An example without a

COSO variable, where the adjustment set can still be found locally.

set for estimating the causal effect of interest, based on

the conditional independencies and dependencies among the

observed variables. The EHS method has been demonstrated

to be both sound and complete for this task. However, it is

computationally inefficient, with time complexity of O(t×2t),
where t is the number of the observed covariates. It requires

an exhaustive search over all combinations of variables for the

inference rules. More recently, by leveraging a special variable,

the Cause Or Spouse of the treatment Only (COSO) variable,

combined with a pattern mining strategy [1], Cheng et al.

[5] proposed a local algorithm, called CEELS (Causal Effect

Estimation by Local Search), to select the adjustment set.

Although the CEELS method is faster than the EHS method,

it may fail to identify an adjustment set during the local

search that could be found using a global search. For instance,

considering the causal graphs (b) and (c) illustrated in Fig. 1,

where {V2, V3, V4} and {V2, V3} are the valid adjustment sets

w.r.t. (X,Y ) respectively. The CEELS algorithm fails to select

these corresponding adjustment sets w.r.t. (X,Y ) , while the

EHS method is capable of identifying them.

Contributions. It is desirable to develop a sound and

complete local method to select an adjustment set for a causal

relationship of interest. Specially, we make the following

contributions:

1. We propose a novel, fully local algorithm for selecting co-

variates in nonparametric causal effect estimation, utilizing

testable independence and dependence relationships among

the observed variables, and allowing for the presence of

latent variables.

2. We theoretically demonstrate that the proposed algorithm

is sound and complete, and can identify a valid adjustment

set for a target causal relationship (if such a set exists) un-

der standard assumptions, comparable to global methods.

3. We demonstrate the efficacy of our algorithm through

experiments on both synthetic and real-world datasets.

II. RELATED WORK

This paper focuses on covariate selection in causal effect

estimation within causal graphical models [26, 39]. Broadly

speaking, the literature on covariate selection can be catego-

rized into two main lines of research: methods that assume

a known causal graph and methods that do not assume the

availability of a causal graph. Below, we here provide a brief

review of these two lines. For a comprehensive review of data-

driven causal effect estimation, see [26, 29, 7].

Methods with Known Causal Graph. Ideally, when a

causal graph is available, one can directly select an adjustment

set for a causal relationship using the (generalized) back-door

criterion [26, 21] or the (generalized) adjustment criterion

[37, 29]. Research in this area often focuses on identifying

special adjustment sets, such as minimal adjustment sets or

’optimal’ valid adjustment sets that have the smallest asymp-

totic variance compared to other adjustment sets. For selecting

minimal adjustment sets, see [9, 40]. For ’optimal’ valid

adjustment sets, one may refer to [14] for semi-parametric

estimators or [34, 45, 36] for non-parametric estimators. In

contrast to the aforementioned methods, this paper focuses

on the identification of valid adjustment sets under unknown

causal graphs.

Methods without Known Causal Graph. A classical

framework for inferring causal effect is IDA (Intervention

do-calculus when the DAG is Absent) [22]. IDA first learns

a CPDAG and enumerates all Markov equivalent DAGs in

the learned CPDAGs, then estimates all causal effects using

the back-door criterion. Other notable developments along

this line include combining prior knowledge [30, 11] or em-

ploying strategies through local learning [9]. However, these

methods often assume causal sufficiency, meaning no latent

confounders exist in the system, and thus do not adequately

account for the influences of latent variables. To address

this limation, a version of IDA suitable for systems with

latent variables, known as LV-IDA (Latent Variable IDA), was

proposed [24], based on the generalized back-door criterion

[21]. Subsequently, more efficient methods were proposed by

Hyttinen et al. [18], Wang et al. [44], and Cheng et al. [6].

Although these algorithms are effective, learning the global

causal graph and estimating the causal effects for the entire

system can be unnecessary and inefficient when the interest is

solely on the causal effects of a single variable on an outcome

variable. To address this issue, Entner et al. [10] proposed

the EHS algorithm under the pretreatment assumption, demon-

strating that the EHS method is both sound and complete for

this task. However, the EHS approach is highly inefficient as it

involves an exhaustive search over all possible combinations of
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variables for the inference rules. To overcome this inefficiency,

Cheng et al. [5] introduced a local algorithm called CEELS

for selecting the adjustment set. While CEELS is faster than

the EHS proposed by [10], it may miss some adjustment sets

during the local search that could be identified through a global

search. In this paper, our work focuses on the same setting

as EHS and introduces a fully local method for selecting the

adjustment set. Compared to CEELS, our local method is both

sound and complete, similar to the global learning method

such as the EHS algorithm [10].

III. PRELIMINARIES

A. Definitions

Graphs. A graph G = (V,E) consists of a set of nodes

V = {V1, . . . , Vp} and a set of edges E. A graph G is directed

mixed if the edges in the graph are directed (→), or bi-directed

(↔). A graph is a Directed Acyclic Graph (DAG) if it contains

only directed edges and has no directed cycles. Given a graph

G, two nodes are said to be adjacent in G if there is an edge

(of any kind) between them. A path π in G is a sequence

of distinct nodes 〈V0, . . . , Vs〉 such that for 0 ≤ i ≤ s − 1,

Vi and Vi+1 are adjacent in G. A causal path (directed path)

from Vi to Vj is a path composed of directed edges pointing

towards Vj , i.e. , Vi → . . . → Vj . A possibly causal path

(possibly directed path) from Vi to Vj is a path where every

edge without an arrowhead at the mark near Vi. A path from

Vi to Vj that is not possibly causal is called a non-causal

path from Vi to Vj , e.g. , Vi ← Vi+1 ← . . . → Vj−1 → Vj .

A path π from Vi to Vj is a collider path if Vi and Vj are

adjacent or all the passing nodes are colliders on π, e.g. ,

Vi → Vi+1 ↔ . . . ↔ Vj−1 ← Vj . A node Vi is a parent,

child, or spouse of a node Vj if there is Vi → Vj , Vi ← Vj ,

or Vi ↔ Vj . Vi is called an ancestor, or possible ancestor of

Vj and Vj is a descendant, or possible descendant of Vi if

there is a causal path, or possibly causal path from Vi to Vj

or Vi = Vj . A path π between Vi and Vj is an inducing path

if every non-endpoint vertex on π is a collider and meanwhile

an ancestor of either Vi or Vj .

Definition 1 (m-separation). In a directed mixed graph G,

a path π between nodes X and Y is active (m-connecting)

relative to a (possibly empty) set of nodes Z (X,Y /∈ Z) if 1)

every non-collider on π is not a member of Z, and 2) every

collider on π has a descendant in Z.

A set Z m-separates X and Y in G, denoted by (X ⊥⊥
Y|Z)G , if there is no active path between any nodes in X

and any nodes in Y given Z. The criterion of m-separation

is a generalization of Pearl’s d-separation criterion in DAG to

ancestral graphs.

Definition 2 (Ancestral Graph and Maximal Ancestral

Graph (MAG)). A directed mixed graph is called an ancestral

graph if the graph does not contain any directed or almost

directed cycles (ancestral) 1. In addition, an ancestral graph

1An almost directed cycle happens when Vi is both a spouse and an ancestor
of Vj .

is a MAG if there is no inducing path between any two non-

adjacent nodes (maximal) 2.

Ancestral graphs can be used to represent data-generating

processes that may involve unobserved confounders, without

explicitly modeling the unobserved variables [33]. Obviously,

DAGs are special cases of ancestral graphs.

Definition 3 (Markov Equivalence). Two MAGs M1, M2

are Markov equivalence if they share the same m-separations.

Basically a Partial Ancestral Graph represents an equiva-

lence class of MAGs.

Definition 4 (Partial Ancestral Graph (PAG) [49]). A Partial

Ancestral Graph (PAG, denoted by P) represents a [M],
where a tail ‘−’ or arrowhead ‘>’ occurs if the corresponding

mark is tail or arrowhead in all the Markov equivalent MAGs,

and a circle ‘◦’ occurs otherwise.

In other words, PAG contains all invariant arrowheads and

tails in all the Markov equivalent MAGs. For convenience,

we use an asterisk (*) to denote any possible mark of a PAG

(◦, >,−) or a MAG (>,−).

Definition 5 (Visible Edges [48]). Given a MAG M / PAG

P , a directed edge X → Y in M / P is visible if there is a

node S not adjacent to Y , such that there is an edge between

S and X that is into X , or there is a collider path between S
and X that is into X and every non-endpoint node on the path

is a parent of Y . Otherwise, X → Y is said to be invisible.

A visible edge X → Y means that there are no latent

confounders between X and Y .

X Y

S

(a)

X

Y
S

V2 V1V3

(b)

Fig. 2: Two configurations where the edge X → Y is visible.

Nodes S and Y must be nonadjacent in (a) and (b).

Definition 6 (GX [21]). For a MAG M, let MX denote the

graph obtained fromM by removing all visible directed edges

out of X in M. For a PAG P , let M be any MAG consistent

with P that has the same number of edges into X as P , and

let PX denote the graph obtained from M by removing all

directed edges out of X that are visible in M.

Definition 7 (Markov Blanket (MB)). The Markov blanket

of a variable Y , denoted as MB(Y ), is the smallest set

conditioned on which all other variables are probabilistically

independent of Y 3, formally, ∀V ∈ V\{MB(Y )∪V } : Y ⊥⊥

2In other words, an ancestral graph is a MAG if for any two non-adjacent
nodes, there is a set of nodes that m-separates them.

3Some authors use the term “Markov blanket” without the notion of
minimality, and use “Markov boundary” to denote the smallest Markov
blanket. For clarity, we adopt the convention that the Markov blanket refers
to the minimal Markov blanket.
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V | MB(Y ).

Graphically, in a DAG, the Markov blanket of a node Y
includes the set of parents, children, and the parents of the

children of Y . The Markov blanket of one node in a MAG is

then defined as shown in Definition 8.

Definition 8 (MAG Markov Blanket [32, 27, 50]). In a MAG

M, the Markov blanket of a node Y , noted as MMB(Y ),
comprises 1) the set of parents, children, and children’s

parents of Y ; 2) the district of Y and of the children of

Y ; and 3) the parents of each node of these districts. Where

the district of a node V is the set of all nodes reachable from

V using only bidirected edges.

Fig. 3 specifically illustrates the MAG Markov blanket of

the node Y in the MAG. The nodes shaded in blue belong to

MMB(Y ).

V1

V3 V13

Y

V5 V6

V12

V4

V9

V7

V10

V11

V8

V2

Fig. 3: The illustrative example for MMB in a MAG, where

Y is the target of interest and the blue nodes belong to

MMB(Y ).

Standard Assumption. The causal Markov condition says

the m-separation relations among the nodes in a graph G imply

conditional independence in probability relations among the

variables. The causal Faithfulness condition states that m-

connection in a graph G implies conditional dependence in

the probability distribution [48]. Under the above two condi-

tions, conditional independence relations among the observed

variables correspond exactly to m-separation in the MAG or

PAG G, i.e., (X ⊥⊥ Y|Z)P ⇔ (X ⊥⊥ Y|Z)G .

B. Notations

The main symbols used in this paper are summarized in

Table I. Sets of variables (nodes) are represented in bold, and

individual variables (nodes) and symbols for graphs are in

italics.

C. Adjustment Set

The covariate adjustment method is often used to estimate

causal effects from observational data [26]. Throughout, we

focus on the causal effect of a single treatment variable X on

the single outcome variable Y . One may refer to [29, 21, 41]

for the details about the effect of a set of treatment variables X

on a set of outcome variables Y. We next introduce a more

general graphical language to describe the covariate adjust-

ment criterion, namely the generalized adjustment criterion

[29]. Before providing its definition, we first introduce two

important concepts in the graph, as they will be used in the

description of this definition.

Definition 9 (Amenability [41, 29]). Let (X,Y ) be a pair

of nodes in a DAG, CPDAG, MAG, or PAG G. The graph G
is said to be adjustment amenable w.r.t. (X,Y ) if all proper

possibly causal paths from X to Y start with a visible directed

edge out of X .

Definition 10 (Forbidden set; Forb(X ,Y ), [29]). Let

(X,Y ) be a pair of nodes in a DAG, CPDAG, MAG, or PAG

G. Then the forbidden set relative to (X,Y ) is defined as

Forb(X ,Y ) = {W
′

∈ V | W
′

∈ PossDe(W ), W lies on a

proper possibly causal path from X to Y in G}.

Definition 11 (Generalized adjustment criterion [29]). Let

(X,Y ) be a pair of nodes in a DAG, CPDAG, MAG, or PAG

G. If a set of nodes Z ⊆ V \ {X,Y } satisfies the generalized

adjustment criterion relative to (X,Y ) in G, i.e.,

(i) G is adjustment amenable relative to (X,Y ) , and

(ii) Z ∩ Forb(X ,Y ) = ∅, and

(iii) all proper definite status non-causal paths from X to Y
are blocked by Z in G.

then the causal effect of X on Y is identifiable and is given

by 4

f(y | do(x)) =

{

f(y | x) if Z = ∅,
∫

z
f(y | x, z)f(z)dz otherwise.

(1)

Note that the generalized adjustment criterion is equiva-

lent to the generalized back-door criterion of Maathuis and

Colombo [21] when the treatment X is a singleton. Thus,

condition 3 can be represented by the requirement that all

definite status back-door paths from X to Y are blocked by

Z in G.

Example 1 (Generalized adjustment criterion). Consider the

causal diagram shown in Fig. 4 (b). According to Definition

10, the MAG satisfies the amenability condition relative to

(X,Y ) , and Forb(X ,Y ) = {Y } holds true in the graph.

Then, the set {V1, V2} is a valid adjustment set since, they

can all block non-causal paths from X to Y .

X

U1 U2

V1

Y

V2

V5

V4

V7

V6

V3

(a) DAG

X

V1

Y

V2

V5

V4

V7

V6

V3

(b) MAG

Fig. 4: (a) An underlying causal DAG, adapted from

Häggström [12], where U1, and U2 are unobserved variables.

(b) The corresponding MAG of the DAG in (a).

4We present the notation for continuous random variables, with the corre-
sponding discrete cases being straightforward.
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Symbol Description

AMMB (X ,Y ) A valid adjustment set in MMB(Y ) \ {X} w.r.t. (X,Y )
R1 The rules in Theorem 2
R2 The rules in Theorem 3
V The set of all variables, i.e., V = (X,Y ) ∪O ∪U

X The treatment or exposure variable
Y The outcome or response variable
O The set of observed covariates
U The set of latent variables
G A mix graph
M A Maximal Ancestral Graph (MAG)
P A Partial Ancestral Graph (PAG)
t The number of the observed covariates, i.e., t = |O|
n The number of the observed covariates plus the pair of nodes (X,Y ), i.e., n = |(X,Y ) ∪O|
Adj (Vi) The set of adjacent nodes of Vi

MMB(Vi) The Markov blanket of a node Vi in a MAG
PossDe(Vi ) The set of all possible descendants of Vi

(X ⊥⊥ Y|Z)G A set Z m-separates X and Y in G
(X ⊥⊥ Y|Z)P X is statistically independent of Y given Z. Without ambiguity, we often abbreviate (X ⊥⊥ Y|Z)P

as X ⊥⊥ Y|Z.
(X 6⊥⊥ Y|Z)P X is not statistically independent of Y given Z

GX The graph obtained from G by removing all visible directed edges out of X in G

TABLE I: The list of main symbols used in this paper

D. Problem Definition

We consider a Structural Causal Model (SCM) as described

by Pearl [26]. The set of variables is denoted as V = (X,Y )∪
O ∪ U, with a joint distribution P (V). Here, O represents

the set of observed covariates, and U denotes the set of latent

covariates. We assume there is no selection bias in the system5.

Therefore, the SCM is associated with a Directed Acyclic

Graph (DAG), where each node corresponds to a variable

in V, and each edge represents a function f . Specifically,

each variable Vi ∈ V is generated as Vi = fi(Pa(Vi), εi),
where Pa(Vi) denotes the parents of Vi in the DAG, and εi
represents errors (or “disturbances”) due to omitted factors.

In addition, all errors are assumed to be independent of each

other. Analogous to Entner et al. [10], Cheng et al. [5], we

assume that Y is not a causal ancestor of X , and that O is a

set of pretreatment variables w.r.t. (X,Y ) , i.e. , X and Y are

not causal ancestors of any variables in O. It is noteworthy

that existing methods commonly employ the pretreatment

assumption [5, 10, 9, 42, 46]. This assumption is realistic

as it reflects how samples are obtained in many application

areas, such as economics and epidemiology [16, 19, 43]. For

instance, every variable within the set O is measured prior to

the implementation of the treatment and before the outcome

is observed.

Task. Given an observational dataset D that consists of a

pair of variables (X,Y ) , along with a set of covariates O,

we focus on a local learning approach to tackle the challenge

of determining whether a specific variable X has a causal

effect on another variable Y , allowing for latent variables in

the system. If such a causal effect is present, we aim to locally

identify an appropriate adjustment set of covariates that can

provide a consistent and unbiased estimator of this effect. Our

method relies on analyzing the testable (conditional) inde-

5Selection bias often rules out causal effect identification using just covari-
ate adjustment [29, 21].

pendence and dependence relationships among the observed

variables.

IV. LOCAL SEARCH ADJUSTMENT SETS

In this section, we first present our theorems related to local

search. Based on these theoretical results in Section IV-A, we

then provide a local search algorithm to identify the valid

adjustment set and show that it is both sound and complete in

Section IV-B.

A. Local Search Theoretical Results

In this section, we provide the theoretical results for esti-

mating the unbiased causal effect X on Y (if such an effect

exists) solely from observational dataset D. To this end, we

need to locally identify the following three possible scenarios

when the full causal structure is not known.

S1. X has a causal effect on Y , and the causal effect is

estimated by adjusting with a valid adjustment set.

S2. X has no causal effect on Y .

S3. It is unknown whether there is a causal effect from X
on Y .

It should be emphasized that scenario S3 arises because, un-

der standard assumptions, based on the (testable) independence

and dependence relationships among the observed variables,

one may not identify a unique causal relationship between

X and Y . Typically, what we obtain is a Markov equiv-

alence class encoding the same conditional independencies

[39, 49, 10]. Thus, some of the causal relationships cannot

be uniquely identified.6

We now address scenario S1. Before that, we define the

adjustment set relative to (X,Y ) within the Markov blanket

of Y in a MAG (or PAG), denoted as AMMB(X ,Y ). This

definition will help us locally identify a valid adjustment set

6See Fig. 6 for an example.
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using testable independencies and dependencies, even in the

presence of latent variables.

Definition 12 (Adjustment set in Markov blanket). Let X and

Y be a pair of treatment and outcome nodes in a MAG or PAG

G, where G is adjustment amenable w.r.t. (X,Y ) . A set Z is

AMMB(X ,Y ) if and only if (1) Z ⊆ MMB(Y ) \ {X}, (2)

Z∩Forb(X ,Y ) = ∅, and (3) all non-causal paths from X to

Y blocked by Z.

The intuition behind the concept of AMMB (X ,Y ) is as

follows: In a graph without hidden variables, the causal effect

of X on Y can be estimated using a subset of Pa(Y ) \ {X}
[26]. However, in practice, some nodes in Pa(Y ) \ {X} may

be unobserved. For instance, consider the MAG shown in Fig.

1 (b), where the edge V4 ↔ Y indicates the presence of latent

confounders. Consequently, the observed nodes do not include

Pa(Y ). However, MMB(Y ) = {X,V2, V3, V4} contains the

valid adjustment set {V2, V3, V4}. According to Definition 12,

we know {V2, V3, V4} is an AMMB(X ,Y ).

Remark 1. Under our problem definition, since O is a set of

pretreatment variables w.r.t. (X,Y ) , we have Forb(X ,Y ) =
{Y } and Y not in MMB(Y ). Therefore, it is crucial to

observe that the three conditions in Definition 12 can be

simplified to two: (1) Z ⊆ MMB(Y ) \ X , and (2) all non-

causal paths from X to Y are blocked by Z.

One may raise the following question: if there does not

exist a subset of MMB(Y ) \ {X } is an adjustment set

w.r.t. (X,Y ) , then does an adjustment set w.r.t. (X,Y ) also

not exist in the covariates O? Interestingly, we find that the

answer is yes, as formally stated in the following theorem.

Theorem 1 (Existence of AMMB(X ,Y )). Given an observa-

tional dataset D that consists of a pair of variables (X,Y ) ,

along with a set of covariates O. There exists a subset of O

is an adjustment set w.r.t. (X,Y ) if and only if there exists a

subset of MMB(Y ) \ {X } is an adjustment set w.r.t. (X,Y ) ,

i.e. , AMMB(X ,Y ).

Proof. We begin by invoking Theorem 1 from Xie et al. [47],

as it serves as a fundamental result necessary for proving

Theorem 1.

Lemma 1. [Theorem 1 of Xie et al. [47]] Let Y be any node

in O, and X be a node in MMB(Y ). Then Y and X are

m-separated by a subset of O \ {Y,X} if and only if they are

m-separated by a subset of MMB(Y ) \ {X}.

The intuitive implications of Lemma 1 are as follows: Given

a node Y and another node X , where X ∈ MMB(Y ), if there

is a subset of O\{Y,X} that m-separates Y and X , then there

must exist a subset of MMB(Y )\{X} that m-separates Y and

X . Conversely, if no subset of MMB(Y ) \ {X} m-separates

Y and X , then no subset of O \ {Y,X} can m-separate Y
and X .

We now proceed to establish the proof of Theorem 1.

According to Definition 11, a set Z is a valid adjustment set

with respect to (X,Y ) in P if it satisfies all the conditions

therein. When the treatment X is a singleton, the generalized

adjustment criterion becomes equivalent to the generalized

back-door criterion proposed by Maathuis and Colombo [21].

Under our problem definition, the above conditions can be

simplified: a set Z ⊆ O is a valid adjustment set with respect

to (X,Y ) if P is adjustment amenable relative to (X,Y ) (i.e.,

X and Y are connected by a visible edge, as a visible X → Y )

and Z m-separates X and Y in the PX .

Equivalently, this is to show that a subset of O is an m-

separating set with respect to (X,Y ) in PX if and only if

a subset of MMB ′(Y ) is an m-separating set with respect

to (X,Y ) in PX , where MMB ′(Y ) denotes the MMB of Y
in PX . Note that MMB ′(Y ) ⊆ MMB(Y ), and X may not

belong to MMB ′(Y ) in PX . We now analyze two cases:

Case 1: Suppose P is adjustment amenable relative to

(X,Y ), with X ∈ MMB ′(Y ) in PX , it follows that X /∈
Adj (Y ). According to Lemma 1 and the fact that X ∈
MMB ′(Y ) in PX , X and Y are m-separated by a subset of

O if they are m-separated by a subset of MMB ′(Y )\ {X} in

PX . If no subset of MMB ′(Y ) \ {X} m-separates X and Y ,

then no subset of O\{X,Y } can m-separate X and Y , which

implies X ∈ Adj (Y ) in PX . This contradicts the assumption,

thus proving that P is not adjustment amenable relative to

(X,Y ) .

Case 2: Suppose P is adjustment amenable relative to

(X,Y ), with X /∈ MMB ′(Y ) in PX , it follows that X /∈
Adj (Y ). Thus, X and Y are m-separated by MMB ′(Y ), i.e. ,

(X ⊥⊥ Y | MMB ′(Y ))PX
. If (X 6⊥⊥ Y | MMB ′(Y ))PX

,

this contradicts the assumption, showing P is not adjustment

amenable relative to (X,Y ) . Consequently, no subset of

O \ {X} is a valid adjustment set with respect to (X,Y ) in

P .

Theorem 1 states that if there exists a subset of O that is an

adjustment set relative to (X,Y ) , then there exists a subset

of MMB(Y ) \ {X} that is an adjustment set. Conversely, if

no subset of MMB(Y ) \ {X} is an adjustment set, then no

subset of O is an adjustment set relative to (X,Y ) .

Example 2. Consider the MAG shown in Fig. 4 (b). We

can identify MMB(Y ) from the MAG, i.e. , MMB(Y ) =
{X,V1, V2, V3, V4, V6}. According to Definition 12 and the

structure of the MAG, we can infer that any subset of

MMB(Y ) \ {X} that includes {V1, V2} but excluding {V3}
constitutes an AMMB(X ,Y ).

Based on the Theorem 1, we next show that we can locally

search for adjustment sets w.r.t. (X,Y ) in MMB(Y ) \ {X}
by checking certain conditional independence and dependence

relationships (Rule R1), as stated in the following theorem.

Meanwhile, we can locally find that X has a causal effect on

Y , i.e. , S1.

Theorem 2 (R1 for Locally Searching Adjustment Sets).

Given an observational dataset D that consists of a pair of

variables (X,Y ) , along with a set of covariates O. Then, a

set Z ⊆ MMB(Y ) \ {X} is AMMB (X ,Y ) if

(i) S 6⊥⊥ Y | Z, and

(ii) S ⊥⊥ Y | Z ∪ {X}

where S ∈ MMB(X) \ {Y }.
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Proof. Given S 6⊥⊥ Y | Z, it follows that there exist active

paths from S to Y conditional on Z. Furthermore, S ⊥⊥ Y |
Z∪X implies that all such active paths must necessarily pass

through X , as the inclusion of X in the conditioning set blocks

all these paths.

Under the pretreatment assumption, X is not a causal

ancestor of any node in O, and X is excluded from the

conditioning set for condition (i). Therefore, all active paths

from S to Y given Z must include a directed edge from X to

Y . If X were a collider, it would need to be included in the

conditioning set for the paths to remain active. Consequently,

these two conditions establish that X exerts a causal effect on

Y .

Suppose, for the sake of contradiction, that Z does not block

all non-causal paths from X to Y . Given S 6⊥⊥ Y | Z and

S ⊥⊥ Y | Z ∪ {X}, there must exist at least one active path

from S to X conditional on Z. This path, when combined

with unblocked back-door paths from X to Y , forms active

paths from S to Y given Z ∪ {X}. However, this contradicts

the condition S ⊥⊥ Y | Z∪{X}. Thus, Z must block all non-

causal paths from X to Y , which establishes that Z satisfies

the criteria of AMMB(X,Y ).

Intuitively speaking, condition (i) indicates that there exist

active paths from S to Y given Z. Condition (ii) implies that

there are no active paths from S to Y when given Z ∪ {X}.
These two rules indicate that all active paths from S to

Y , given Z, pass through X . Therefore, adding X to the

conditioning set blocks all active paths from S to Y , given

Z. Hence, all non-causal paths from X to Y are blocked by

Z, otherwise, condition (ii) will not hold. Then, according to

Definition 12, we know Z is an AMMB(X ,Y ).

Example 3. Consider the causal diagram depicted in Fig.

5 (b). Assume that an oracle performs conditional in-

dependence tests on the observational dataset D. Conse-

quently, we can determine the MMB(X ) and MMB(Y ),
i.e. , MMB(X ) = {V1, V2, V5, V6, V7, V8, V9, Y }, and

MMB(Y ) = {V1, V2, V5, V6, V8, V9, X}. According to The-

orem 2, we can infer the existence of a causal effect of

X on Y . The set {V5, V6, V8} serves as an adjustment set

AMMB(X ,Y ), as V7 6⊥⊥ Y | {V5, V6, V8} and V7 ⊥⊥ Y |
{V5, V6, V8, X}.

Next, we provide the rule R2 that allows us to locally

identify X has no causal effect on Y , i.e. , S2.

Theorem 3 (R2 for Locally Identifying No Causal effect).

Given an observational dataset D that consists of a pair of

variables (X,Y ) , along with a set of covariates O. Then, X
has no causal effect on Y that can be inferred from the D if

(i) X ⊥⊥ Y | Z, or

(ii) S 6⊥⊥ X | Z, and S ⊥⊥ Y | Z

where S ∈ MMB(X) \ {Y } and Z ⊆ MMB(Y ) \ {X}.

Proof. Under the faithfulness assumption, condition (i) im-

plies that there is no edge between X and Y , and X is not a

causal ancestor of any nodes in O. This implies that no causal

U1
U2

(a) DAG

X

V5

Y

V6

V3

V2

V9

V8

V1

(b) MAG

V7

U3

U4

X

V5

Y

V6

V3

V2

V9

V8

V1

V7

V4 V4

Fig. 5: (a) An causal DAG, where Ui, i = 1, ..., 4 are latent

variables. (b) The corresponding MAG of the DAG in (a).

path from X to Y exists unless there is a direct edge from X
to Y . Consequently, X has no causal effect on Y .

Condition (ii) infers that X and Y are connected through

a latent confounder. The condition S 6⊥⊥ X | Z ensures that

there are active paths from S to X given Z, and since X is

not a causal ancestor of any nodes in O, these active paths

must point to X . Furthermore, since Y /∈ Z and Y is neither

a causal ancestor of any nodes in O nor of X , these active

paths do not traverse Y . If there were a direct edge from X
to Y , it would create active paths from S to Y , contradicting

the condition S ⊥⊥ Y | Z. Therefore, there is no causal effect

of X on Y .

According to the faithfulness assumption, condition (i)

implies that X and Y are m-separated by a subset of

MMB(Y ) \ {X}. Thus, X has a zero effect on Y . Condition

(ii) provides a strategy to identify a zero effect even when a

latent confounder exists between X and Y . Roughly speaking,

S 6⊥⊥ X | Z indicates that there are active paths from S to X
given Z. Therefore, if there were an edge from X to Y , it

would create an active path from S to Y by connecting to the

previous path, which would contradict condition S ⊥⊥ Y | Z.

Example 4. Consider the MAG shown in Fig. 4 (b). Assuming

that the edge from X to Y is removed, then, we can infer that

there is no causal effect of X on Y by condition (i), as X ⊥⊥
Y | {V1, V2}. Furthermore, suppose V2 is a latent variable.

Then, we can infer that there is no causal effect from X to Y
by condition (ii), as V6 6⊥⊥ X | {V1} and V6 ⊥⊥ Y | {V1}.

Lastly, we show that if neither R1 of Theorem 2 nor R2 of

Theorem 3 applies, then one cannot identify whether there is a

causal effect from X on Y , based on conditional independence

and dependence relationships among observational dataset D,

i.e. , we are in S3.

Theorem 4. Under the standard assumption, neither R1 of

Theorem 2 nor R2 of Theorem 3 apply, then it is impossible to

determine whether there is a causal effect from X on Y , based

on conditional independence and dependence relationships.

Proof. Assuming Oracle tests for conditional independence

tests. We first prove that R1 in Theorem 2 is a necessary
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condition for identifying the existence of a causal effect

of X on Y that based on the testable independencies and

dependencies among the observed variables D.

By the generalized adjustment criterion in Definition 11,

there is a visible edge X → Y in P . From the definition of

a visible edge, such an edge X → Y is visible if and only

if there exists a node V (treated as S in this proof) that is

not adjacent to Y and satisfies one of the following: (1) there

is an edge between V and X that is into X , or (2) there is

a collider path between V and X that is into X and every

non-endpoint node on the path is a parent of Y . Otherwise,

X → Y is invisible.

Case 1: If there exists a node S in P that satisfies the

above case 1, and by Theorem 1, there is at least a set Z ⊆
MMB(Y ) \ {X } block all non-causal paths from X to Y .

Thus, S 6⊥⊥ X | Z holds, adding X to the condition set will

block the path S∗→ X → Y , S 6⊥⊥ Y | Z ∪ {X} holds.

Case 2: If there exists an S in P that satisfies the above

case 2, i.e. , there is a collider path between S and X that is

into X and every non-endpoint node on the path is a parent of

Y , and S not adjacent to Y . In this case, these collider nodes

all belong to MMB(X ) and MMB(Y ). Assuming that there

is no active path from S to X , placing these collider nodes

into the condition set will activate this S to X collider path.

Thus, S 6⊥⊥ X | Z hold. In addition, these collider nodes must

be in the condition set Z for block non-causal paths that pass

these nodes. Thus, Z blocks all non-causal paths from X to

Y , but the newly activated path between S and X and the

path after the X → Y merger are not blocked by Z. Adding

X to the conditional set would then block this path, and thus

S ⊥⊥ Y | Z ∪ {X} holds.

Consequently, these two cases prove that R1 is a necessary

condition for identifying the existence of a causal effect of X
on Y based on the testable independencies and dependencies.

Next, we prove that R2 in Theorem 3 is a necessary condi-

tion for identifying the absence of a causal effect of X on

Y using testable independence and dependence relationships

among the observed variables. Under our problem definition,

the causal structures discovered through testable conditional

independence and dependencies between observable variables,

that can infer X has no causal effect on Y can be divided into

the following two cases: (1) there is no edge between X and

Y , (2) the edge between X and Y is X ↔ Y in P .

Case 1: If there is no edge between X and Y , then by

Lemma 1, if X ∈ MMB(Y ), there must exist a subset Z of

MMB(Y )\{X} that m-separates X and Y , i.e., X ⊥⊥ Y | Z,

where Z ⊆ MMB(Y ) \ {X}. If X /∈ MMB(Y ), then by

Definition 7, X ⊥⊥ Y | MMB(Y ).
Case 2: Since Y and X are not causal ancestors of any

nodes in O, and Y is not a causal ancestor of X , then

X is a collider. If X is an unshielded collider, then there

exists a node S in the P that is adjacent to X , but not Y .

Such S belong to MMB(X) \ {Y } and MMB(Y ) \ {X}. By

Lemma 1, S ⊥⊥ Y | Z, where Z ⊆ MMB(Y ) \ {X}. In

addition, S 6⊥⊥ X | Z due to S is adjacent to X . If X is a

shielded collider, which can be inferred by testable conditional

independence and dependencies between observable variables,

then there exists a discriminating path π for X in the P[49].

This path π includes at least three edges, X is a non-endpoint

node on π and is adjacent to Y on π. The path has a node S
that is not adjacent to Y , and every node between S and X
on π is a collider and a parent of Y . These colliders between

S and X belong to MMB(X) and MMB(Y ), so including

such nodes in the set Z implies S 6⊥⊥ X | Z and S ⊥⊥ Y | Z,

where Z may contain some nodes belonging to MMB(Y ) in

addition to those colliding nodes in order to m-separate S and

Y (Lemma 1).

In summary, if neither R1 nor R2 applies, then we cannot

infer whether there is a causal effect of X on Y from

the independence and dependence relationships among the

observed variables.

Theorem 4 says that there may exist causal structures with

and without an edge from X to Y , which entail the same

dependencies and independencies among the observational

dataset D. Consequently, it is not possible to uniquely infer

whether there is a causal effect or not.

Example 5. Consider the three graphs in Fig. 6. These graphs

entail the same independencies and dependencies among the

observed variables (X,Y, V ). Therefore, it is impossible to

determine, based solely on testable dependencies and inde-

pendence, whether X has a causal effect on Y and whether

V should be included in the adjustment set.

X Y

V

(a) (b)

X Y

V

U X Y

V

(c)

U1 U2

Fig. 6: Three DAGs that entail the same independencies and

dependencies among the observed variables (X,Y, V ), where

U1, U2, and U3 are latent variables.

B. The LSAS Algorithm

In this section, we leverage the above theoretical results and

propose the Local Search Adjustment Sets (LSAS) algorithm

to infer whether there is a causal effect of a variable X on

another variable Y , and if so, to estimate the unbiased causal

effect. Given a pair of variables (X,Y ) , the algorithm consists

of the following two key steps:

(i) Learning the MMBs of X and Y : This involves using

an MMB discovery algorithm to identify the Markov

Blanket Members (MMBs) of both X and Y .

(ii) Determining Adjustment Sets: For each variable S in

MMB(X ) \ {Y }, we check whether S and the subsets

Z of MMB(Y ) \ {X} satisfy rules R1 and R2 based

on Theorems 2 ∼ 4.

The algorithm uses Θ to store the estimated causal effect of

X on Y . If Θ = 0, it indicates that there is no causal effect of

X on Y . If Θ is null, it suggests that the lack of knowledge to
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obtain the unbiased causal effect. Otherwise, Θ provides the

estimated causal effect of X on Y . The complete procedure is

summarized in Algorithm 1, and the algorithm that we used

for the MMB learning is in Algorithm 2.

Algorithm 1 LSAS

Input: Observed dataset D, treatment X , outcome Y .

1: MMB(X ),MMB(Y )← MMB learning(X,Y,D)
2: Θ← ∅
3: for each Vi ∈ MMB(X ) \ {Y } do

4: S ← Vi

5: for each set Z ⊆ MMB(Y ) \ {X} do

6: if X ⊥⊥ Y | Z then

7: Θ← 0
8: Break

9: else if S 6⊥⊥ X | Z then

10: if S ⊥⊥ Y | Z then

11: Θ← 0
12: Break

13: else if S ⊥⊥ Y | Z ∪ {X} then

14: Calculate the causal effect θ w.r.t. (X,Y ) given

Z

15: Add θ to Θ
16: end if

17: end if

18: end for

19: end for

Output: The causal effect Θ.

The definition of the TC (Total Conditioning) [28] we used

to discover MMBs is as follows:

Definition 13 (Total conditioning [28]). In the context of a

faithful causal graph G, for any two distinct nodes X,Y ∈ V,

X ∈ MB(Y ) if and only if X 6⊥⊥ Y | V \ {X,Y }.

Algorithm 2 MMB learning

Input: X , Y , observed covariates O

1: Initialize : MMB(X) = ∅, MMB(Y ) = ∅.
2: CandSet = O ∪ {X,Y }
3: for each Vi ∈ CandSet \ {X} do

4: if X 6⊥⊥ Vi | CandSet \ {X,Vi} then

5: Add Vi to MMB(X)
6: end if

7: end for

8: for each Vi ∈ CandSet \ {X,Y } do

9: if Y 6⊥⊥ Vi | CandSet \ {Y, Vi} then

10: Add Vi to MMB(Y )
11: end if

12: end for

Output: MMB(X ), MMB(Y )

We next demonstrate that in the large sample limit, the

LSAS algorithm is both sound and complete.

Theorem 5 (The Soundness and Completeness of LSAS
Algorithm). Assume Oracle tests for conditional independence

tests. Under the assumptions stated in our problem definition

(Section III-D), the LSAS algorithm correctly outputs the

causal effect Θ whenever rule R1 or R2 applies. However, if

neither rule R1 nor R2 applies, the LSAS algorithm can not

determine whether there is a causal effect from X on Y , based

on the testable conditional independencies and dependencies

among the observed variables.

Proof. Assuming Oracle tests for conditional independence

tests, the MMB discovery algorithm finds all and only the

MMB nodes of a target variable.

Following Theorem 2 and Theorem 4, R1 is a sufficient and

necessary condition for identifying X has a causal effect on Y
that can be inferred by testable (conditional) independence and

dependence relationships among the observational variables,

and there is a set Z is AMMB(X ,Y ). Hence, if there is a

causal effect of X on Y that can be inferred by observational

data, then LSAS can accurately identify the causal effect of

X on Y .

Subsequently, relying on Theorem 3 and Theorem 4,R2 is a

sufficient and necessary condition for identifying the absence

of the causal effect of X on Y that can be inferred from

observational data. Thus, LSAS can correctly identify there

is no causal effect of X on Y that can be inferred from

observational data. Ultimately, if neither R1 nor R2 applies,

then LSAS cannot infer whether there is a causal effect of

X on Y from the independence and dependence relationships

between the observations.

Hence, the soundness and completeness of the LSAS
algorithm are proven.

Formally, soundness means that, given an independence

oracle and under the assumptions stated in our problem

definition (Section III-D), the inferences made using rule R1
or R2 are always correct whenever these rules apply. On the

other hand, completeness implies that if neither rule R1 nor

R2 applies, it is impossible to determine, based solely on

the conditional independencies and dependencies among the

observed variables, whether X has a causal effect on Y or

not.

Complexity of LSAS Algorithm. The complexity of the

LSAS algorithm can be divided into two main components:

the first component is the MMB discovery algorithm (Line

1), and the second involves locally identifying causal ef-

fects using R1 and R2 (Lines 3 ∼ 19). Let n represent

the size of the set O plus the pair of nodes (X,Y ) .

We utilized the TC (Total Conditioning) algorithm [28] to

identify the MMB. Consequently, the time complexity of

finding the MMB for two nodes is O(2n − 3). In the worst-

case scenario, the complexity of the second component is

O[(|MMB(X )| − 1) × 2|MMB(Y )|−1]. Therefore, the over-

all worst-case time complexity of the LSAS algorithm is

O[(|MMB(X )| − 1)× 2|MMB(Y )|−1 + 2n− 3]. Note that the

complexity of the EHS algorithm is O[(n−2)×2n−2], which

is significantly higher than the complexity of our algorithm,

particularly when n ≫ |MMB(Y )| in large causal networks.

The CEELS algorithm [5] employs the PC.select algorithm

[3] to search for Adj (X) and Adj (Y ). In the worst-case

scenario, the overall complexity of CEELS is O (n× 2q),
where q = max(|Adj (X) \ Y |, |Adj (Y ) \ X |). Although in
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TABLE II: Performance Comparisons on the Causal Graph in Fig. 4.

Size=2K Size=5K Size=7K Size=10K

Algorithm RE(%)↓ nTest↓ RE(%)↓ nTest↓ RE(%)↓ nTest↓ RE(%)↓ nTest↓
PA 66.18 ± 155.54 - 45.68 ± 38.13 - 41.91 ± 27.13 - 43.34 ± 14.36 -

LV-IDA 69.00 ± 40.49 174.75 ± 45.12 60.80 ± 44.56 208.43 ± 52.79 44.10 ± 44.97 222.60 ± 51.18 32.64 ± 42.78 237.32 ± 56.68
EHS 33.72 ± 43.29 946.00 ± 0.00 28.64 ± 43.90 946.00 ± 0.00 26.90 ± 39.22 946.00 ± 0.00 12.66 ± 30.82 946.00 ± 0.00

CEELS 24.68 ± 35.16 174.85 ± 57.18 24.62 ± 36.97 196.96 ± 55.31 15.00 ± 28.83 210.00 ± 60.84 7.37 ± 18.79 224.76 ± 60.07
LSAS 23.63 ± 33.72 55.01 ± 19.56 15.39 ± 29.53 55.63 ± 19.24 10.47 ± 24.03 66.45 ± 20.37 3.49 ± 5.50 66.57 ± 20.25

Note: ↓ means a lower value is better, and vice versa. The symbol ’-’ indicates that PA does not output this information.

TABLE III: Performance Comparisons on the Causal Graph in Fig. 5.

Size=2K Size=5K Size=7K Size=10K

Algorithm RE(%)↓ nTest↓ RE(%)↓ nTest↓ RE(%)↓ nTest↓ RE(%)↓ nTest↓
PA 49.81 ± 12.02 - 44.15 ± 14.74 - 43.60 ± 14.33 - 41.42 ± 15.20 -

LV-IDA 44.23 ± 21.48 345.11 ± 105.03 35.09 ± 21.95 429.36 ± 112.00 24.29 ± 15.48 429.98 ± 114.88 20.39 ± 5.88 480.09 ± 98.28
EHS 28.48 ± 22.04 1656.00 ± 0.00 26.39 ± 17.47 1656.00 ± 0.00 21.07 ± 11.66 1656.00 ± 0.00 19.31 ± 15.21 1656.00 ± 0.00

CEELS 46.25 ± 34.77 391.20 ± 174.69 38.79 ± 25.91 455.94 ± 154.56 35.91 ± 26.69 464.46 ± 168.28 37.59 ± 32.93 537.22 ± 158.38
LSAS 27.40 ± 22.73 203.97 ± 19.22 24.06 ± 19.18 204.99 ± 6.67 18.93 ± 11.40 204.76 ± 6.19 14.46 ± 11.40 206.04 ± 5.14

Note: ↓ means a lower value is better, and vice versa. The symbol ’-’ indicates that PA does not output this information.

practice, the complexity of CEELS may not differ significantly

from that of our proposed algorithm, it is crucial to note that

CEELS might miss an adjustment set during the local search

that could otherwise be identified through a global search. This

issue, as illustrated in Fig. 1(b), is not present in our proposed

algorithm.

V. EXPERIMENTAL RESULTS

In this section, to demonstrate the accuracy and efficiency

of our proposed method, we applied it to synthetic data with

specific structures and benchmark networks, as well as to the

real-world dataset 7. We here use the existing implementation

of the Total Conditioning (TC) discovery algorithm [28] to find

the MMB of a target variable. All experiments were conducted

on Intel CPUs running at 2.90 GHz and 2.89 GHz, with 128

GB of memory.

Comparison Methods. We conducted a comparative anal-

ysis with several established techniques that do not require

prior knowledge of the causal graph and account for latent

variables. Specifically, we evaluated our method against the

Latent Variable IDA (LV-IDA) with RFCI algorithm8, which

requires learning global graphs [23]; the EHS algorithm9,

which does not require learning graph [10]; the state-of-the-

art CEELS method [5], a local learning technique. Addi-

tionally, we included a comparison with a classical method,

the pretreatment adjustment (PA) [35], which adjusts for all

pretreatment variables to estimate the causal effect of X on

Y .

Evaluation Metrics. We evaluate the performance of the

algorithms using the following typical metrics:

• Relative Error (RE): the relative error of the estimated

causal effect (ĈE) compared to the true causal effect

7See Appendix B for experimental results on the sensitivity to violations of
the pretreatment assumption and the impact of the number of latent variables.

8For the LV-IDA algorithm, we used the R code available at
https://github.com/dmalinsk/lv-ida, and the RFCI algorithm from the R-
package pcalg [20].

9EHS algorithm is available at https://sites.google.com/site/dorisentner/publications/CovariateSelection

(CE), expressed as a percentage, i.e.,

RE =

∣

∣

∣

∣

∣

ĈE − CE

CE

∣

∣

∣

∣

∣

× 100%.

• nTest: the number of (conditional) independence tests

implemented by an algorithm.

A. Synthetic Data with Specific Structures

Experimental Setup. We generated synthetic data based on

the DAGs shown in Fig. 4(a) and Fig. 5(a). Graph (a) consists

of 11 nodes with 14 arcs, with 2 nodes representing latent

variables. Graph (b) consists of 15 nodes with 18 arcs, with 4

nodes representing latent variables. The corresponding MAGs,

depicted in Fig. 4(b) and 5(b), exclude the unobserved vari-

ables. Note that both DAGs exhibit M-structures 10; adjusting

for the collider V3 leads to over-adjustment and introduces

bias. We first generate the data based on underlying DAGs

parameterized using a linear Gaussian causal model, with

the causal strength of each edge drawn from the distribution

Uniform ([−1,−0.5]∪ [0.5, 1]). Then, we obtain the observed

data for each graph by excluding the unobserved variables.

For all methods, the significance level for the individual

conditional independence tests is set to 0.01, and the maximum

size of the conditioning sets considered in these tests is 3.

Additionally, with linear regression, the causal effect of X
on Y is calculated as the partial regression coefficient of X
[24]. Each experiment was repeated 100 times with randomly

generated data, and the results were averaged. The best results

are highlighted in boldface.

Results. These results are presented in Tables II and III.

From these tables, we observe that our proposed LSAS
algorithm outperforms other methods across all evaluation

metrics in both DAGs and at all sample sizes, demonstrating

the accuracy of our approach. As expected, the number of

conditional independence tests that required by our method

is significantly lower than that of LV-IDA and EHS, which

involve learning the global structure and globally searching

for adjustment sets, respectively. Additionally, CEELS requires

10The shape of the sub-graph looks like the capital letter M. See Appendix
A for more details.

https://github.com/dmalinsk/lv-ida
https://sites.google.com/site/dorisentner/publications/CovariateSelection
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TABLE IV: Performance Comparisons on INSURANCE.Net.

Size=2K Size=5K Size=7K Size=10K

Algorithm RE(%)↓ nTest↓ RE(%)↓ nTest↓ RE(%)↓ nTest↓ RE(%)↓ nTest↓
PA 48.19 ± 47.76 - 43.97 ± 37.38 - 42.27 ± 26.97 - 38.53 ± 20.33 -

LV-IDA 46.37 ± 45.54 7749.29 ± 2155.64 42.90 ± 45.46 12056.49 ± 3227.23 26.54 ± 31.25 13955.39 ± 4287.25 17.79 ± 29.45 14631.41 ± 3653.41
EHS 22.60 ± 41.10 1394996.00 ± 0.00 NaN NaN NaN NaN NaN NaN

CEELS 23.97 ± 37.07 911.83 ± 527.71 18.96 ± 31.44 1344.33 ± 626.19 18.03 ± 30.95 1545.46 ± 705.77 16.34 ± 29.05 1840.33 ± 899.52
LSAS 14.76 ± 30.31 172.22 ± 114.17 13.68 ± 28.64 201.35 ± 116.81 10.81 ± 21.36 237.51 ± 145.37 8.15 ± 14.62 289.90 ± 152.27

Note: ↓ means a lower value is better, and vice versa. The symbol ’-’ indicates that PA does not output this information.

TABLE V: Performance Comparisons on MILDEW.Net.

Size=2K Size=5K Size=7K Size=10K

Algorithm RE(%)↓ nTest↓ RE(%)↓ nTest↓ RE(%)↓ nTest↓ RE(%)↓ nTest↓
PA 43.96 ± 33.16 - 39.70 ± 9.14 - 40.18 ± 8.67 - 40.71 ± 14.24 -

LV-IDA 30.92 ± 39.94 3659.31 ± 1405.26 22.98 ± 35.97 5287.24 ± 2238.12 9.92 ± 17.76 6357.19 ± 2665.22 7.77 ± 14.55 6633.29 ± 4234.09
EHS 18.52 ± 36.42 5419350.00 ± 0.00 NaN NaN NaN NaN NaN NaN

CEELS 14.05 ± 29.24 682.07 ± 474.27 15.42 ± 32.90 959.76 ± 828.51 12.84 ± 29.43 1114.68 ± 615.06 8.31 ± 22.13 1376.18 ± 1726.14
LSAS 9.69 ± 26.03 58.02 ± 9.03 8.83 ± 30.32 58.09 ± 9.46 5.31 ± 14.73 60.11 ± 7.40 4.76 ± 14.81 60.87 ± 4.21

Note: ↓ means a lower value is better, and vice versa. The symbol ’-’ indicates that PA does not output this information.

TABLE VI: Performance Comparisons on WIN95PTS.Net.

Size=2K Size=5K Size=7K Size=10K

Algorithm RE(%)↓ nTest↓ RE(%)↓ nTest↓ RE(%)↓ nTest↓ RE(%)↓ nTest↓
PA 48.42 ± 69.98 - 40.55 ± 4.27 - 39.70 ± 4.56 - 40.13 ± 2.99 -

LV-IDA 37.43 ± 41.11 15105.49 ± 7365.33 33.83 ± 41.20 35966.33 ± 27850.07 30.60 ± 37.13 39207.66 ± 26094.20 25.32 ± 31.28 44319.89 ± 31074.75
EHS NaN NaN NaN NaN NaN NaN NaN NaN

CEELS 34.93 ± 86.56 569.71 ± 183.20 31.94 ± 42.23 950.02 ± 230.56 27.50 ± 35.47 1006.73 ± 213.74 23.22 ± 37.20 1075.59 ± 260.29
LSAS 31.41 ± 69.81 162.80 ± 120.94 21.29 ± 38.51 242.89 ± 248.58 15.81 ± 32.55 264.19 ± 272.52 13.97 ± 32.59 300.57 ± 371.67

Note: ↓ means a lower value is better, and vice versa. The symbol ’-’ indicates that PA does not output this information.

TABLE VII: Performance Comparisons on ANDES.Net.

Size=2K Size=5K Size=7K Size=10K

Algorithm RE(%)↓ nTest↓ RE(%)↓ nTest↓ RE(%)↓ nTest↓ RE(%)↓ nTest↓
PA 39.03 ± 12.42 - 42.54 ± 15.07 - 39.05 ± 9.64 - 40.46 ± 10.52 -

LV-IDA NaN NaN NaN NaN NaN NaN NaN NaN
EHS NaN NaN NaN NaN NaN NaN NaN NaN

CEELS 46.60 ± 23.39 1702.54 ± 708.63 24.86 ± 20.32 2405.33 ± 1167.19 23.96 ± 27.07 2888.47 ± 1946.67 22.55 ± 24.76 3057.81 ± 1574.52
LSAS 35.12 ± 34.84 473.73 ± 148.43 23.83 ± 37.73 575.16 ± 317.35 20.95 ± 26.78 597.87 ± 505.33 13.11 ± 25.36 681.49 ± 909.33

Note: ↓ means a lower value is better, and vice versa. The symbol ’-’ indicates that PA does not output this information.

more conditional independence tests than LSAS. The reason

is that CEELS involves learning adjacent nodes, while LSAS
focuses only on learning MMB sets. It is noteworthy that the

Relative Error of CEELS in Table III is higher than that of

EHS and LSAS. This is because there is no proper COSO

node in Fig. 5(b), indicating that CEELS is not complete.

B. Synthetic Data with Benchmark Networks

In this section, we use benchmark Bayesian networks to

verify the effectiveness and efficiency of our proposed method.

Experimental Setup. We here generated synthetic data

based on three benchmark Bayesian networks, INSURANCE,

MILDEW, WIN95PTS, and ANDES, which contain 27 nodes

with 52 arcs, 35 nodes with 46 arcs, 76 nodes with 112 arcs,

and 223 nodes with 338 arcs respectively. Table VIII provides

a detailed overview of these networks, with further details

available at https://www.bnlearn.com/bnrepository/. ’Max in-

degree’ refers to the maximum number of edges pointing to a

single node, while ’Avg degree’ denotes the average degree

of all nodes. For the INSURANCE network, we selected

the node Cushioning as the treatment variable and the

node MedCost as the outcome variable, with MakeModel,
V ehicleY ear, RuggedAuto, and Accident as latent vari-

ables. For the MILDEW network, we selected the node foto4
as the treatment variable and the node dm4 as the outcome

variable. We hid the nodes lai4 and dm3, which lie on the

back-door paths from foto4 to dm4, as well as udbytee
to retain only the pretreatment variables. Additionally, we

randomly selected four nodes with two or more children as

unobserved confounders. For the WIN95PTS, we selected

the node GrbbIPS as the treatment variable and the node

Problem6 as the outcome variable. We randomly selected

eight nodes with two or more children as unobserved con-

founders. For the ANDES, we selected node SNode73 as the

treatment variable and node SNode74 as the outcome variable.

We randomly selected 15 nodes with two or more children as

unobserved confounders. The maximum size of the condition

set considered in the conditional independence test for the

INSURANCE and MILDEW networks is 5, for WIN95PTS

and ANDES it is 7. The remaining settings are the same as in

Section V-A.

TABLE VIII: Statistics on the Networks.

Networks Num.nodes Number of arcs Max in-degree Avg degree

INSURANCE 27 52 3 3.85
MILDEW 35 46 3 2.63

WIN95PTS 76 112 7 2.95
ANDES 223 338 6 3.03

Results: As shown in Tables IV ∼ VII, the performance of

our algorithm outperforms other methods in both evaluation

https://www.bnlearn.com/bnrepository/
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metrics, with all sample sizes, verifying the efficiency and

accuracy of our algorithm. Notably, as the sample size in-

creases, the metric RE of the PA method does not significantly

decrease, indicating that one needs to select proper covariates

rather than adjusting for all covariates. It is worth noting that

the number of conditional independence tests of our algorithm

is much smaller than that of CEELS in Table V. This is

because the number of conditional independence required to

learn the adjacent nodes of foto4 and dm4 in MILDEW is

much higher than the number required to learn their MMB

sets. Because the EHS and LV-IDA algorithms did not return

results within 2 hours each time, we reported NaN values in

the tables.

C. Real-world Dataset

In this section, we apply our method to a real-world dataset,

the Cattaneo2 dataset, which contains birth weights of 4642

singleton births in Pennsylvania, USA [4, 2]. We here inves-

tigate the causal effect of a mother’s smoking status during

pregnancy (X) on a baby’s birth weight (Y ). The dataset we

used comprises 21 covariates, such as age, education, and

health indicators for the mother and father, among others.

Almond et al. [2] have concluded that there is a strong negative

effect of about 200–250 g of maternal smoking (X) on birth

weight (Y ) using both subclassifications on the propensity

score and regression-adjusted methods. Since there is no

ground-truth causal graph and causal effects, we here use the

negative effect of about 200–250 as the baseline interval given

in Almond et al. [2]. We follow Almond et al. [2] to estimate

the effect of maternal smoking on birth weight by regression-

adjusted (see Section IV.C). The dataset utilized in this study is

available at http://www.stata-press.com/data/r13/cattaneo2.dta.

Results. The results of all methods are shown in Fig. 7.

It should be noted the following two points: 1) the number

of conditional independence tests for the PA algorithm is

not shown as it does not require such tests; and 2) due to

the large number of nTest for EHS, the results for CEELS

and LSAS are not clearly visible in the figure. In fact, the

number of conditional independence tests for CEELS and

LSAS are 1284 and 158 respectively. From the figure, we

can see that the effects estimated by EHS and LSAS fall

within the baseline interval, while the effects estimated by

other methods do not. Although the effect estimated by the

EHS algorithm also falls within the baseline interval, LSAS

requires fewer conditional independence tests, which means

that LSAS is not only effective but more efficient.

VI. LIMITATIONS AND FUTURE WORK

The preceding section presented how to locally search

covariates solely from the observational data. Analogous to

the setting studied by Entner et al. [10] and Cheng et al. [5],

we assume that Y is not a causal ancestor of X and X and Y
are not causal ancestors of any variables in O (pretreatment

assumption). Regarding the first assumption, in practice, if one

has no this prior knowledge, one can first use the existing

local search structure algorithm allowing in the presence of

latent variables, such as the MMB-by-MMB algorithm [47],
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Fig. 7: The causal effects and the number of (conditional)

independence tests estimated by different methods, presented

with 95% confidence intervals on the Cattaneo2 dataset. The

two dotted lines represent the estimated interval provided in

Almond et al. [2].

to identify whether Y is not a causal ancestor of X . If it

is, one can still use our proposed method to search for the

adjustment set and estimate the causal effect. Regarding the

pretreatment assumption, though many application areas can

be obtained, such as economics and epidemiology [16, 19, 43],

it may not always hold in real-world scenarios. Thus, it

deserves to explore methodologies that relax this assumption

and address its violations. Note that some causal effects cannot

be identified only based on conditional independencies among

observed data. Hence, leveraging background knowledge, such

as data generation mechanisms [17] and expert insights [11], to

aid in identifying causal effects within local structures remains

a promising research direction.

VII. CONCLUSION

We introduce a novel local learning algorithm for covariate

selection in nonparametric causal effect estimation with latent

variables. Table IX summarizes the features of our method.

Compared to the existing methods, our method does not re-

quire learning the global graph, is more efficient, and remains

both sound and complete, even allowing for the presence of

latent variables.

TABLE IX: Summary of the compared algorithm features.

Algorithm Learning Graph Time-complexity Sound and Complete

LV-IDA
√ O[n× 2n−1] [5, 23] ⇔

EHS × O[(n− 2)× 2n−2] ⇔
CEELS × O (n× 2q) ⇒
LSAS × O[(|MMB(X )| − 1)× 2|MMB(Y )|−1 + 2n− 3] ⇔

Note: ⇒ denote sound, ⇔ denote sound and complete.
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APPENDIX A

MORE EXAMPLES

Example 6 (M-structure or M-bias). As shown in Fig. 8 (a), the DAG is called M-structure (M-bias), where U1 and U2 are

latent variables. This structure is very significant because it can lead to collider stratification bias, also known as collider

bias. The MAG corresponding to this DAG is shown in Fig. 8 (b). In this graph, according to the generalized adjustment

criterion, if we are interested in the causal effect between X and Y , we should not adjust for the variable M . Adjusting for

M would open the path (X ↔ [M ] ↔ Y ), which was originally blocked. As a result, adjusting for the collider M leads to

over-adjustment and introduces bias.

X Y

M

(a) (b)

X Y

M

U1 U2

Fig. 8: The illustrative example for M-structure. (a) A causal DAG, where U1 and U2 are latent variables. (b) The corresponding

MAG of the DAG in (a).

APPENDIX B

FURTHER RESULTS ON EXPERIMENTS

A. Sensitivity to Violations of the Pretreatment Assumption

In this section, we evaluate the performance of our approach on a benchmark network under conditions where the pretreatment

assumption is violated.

Experimental Setup. Using the data generation mechanism outlined in the paper, we tested our approach on the MILDEW

network, which comprises 35 nodes and 46 arcs. In this experiment, a pair of nodes connected by a visible edge were randomly

selected as the treatment and outcome variables. Furthermore, four nodes with two or more children were randomly designated

as latent variables.

Results: As shown in Table X, when the pretreatment assumption is violated, the RE metric of our method is higher

compared to the case where the assumption holds (see Table VI in the paper). Nonetheless, the RE value remains relatively

low, demonstrating the robustness of our algorithm even under violations of the pretreatment assumption.

TABLE X: Performance Under Violations of the Pretreatment Assumption.

Size=2K Size=5K Size=7K Size=10K

Algorithm RE(%)↓ nTest↓ RE(%)↓ nTest↓ RE(%)↓ nTest↓ RE(%)↓ nTest↓
LSAS 22.13 ± 34.67 123.36 ± 113.43 19.26 ± 38.32 178.70 ± 382.44 15.63 ± 34.58 180.64 ± 201.86 13.75 ± 27.37 234.50 ± 427.26

Note: ↓ means a lower value is better, and vice versa. The symbol ’-’ indicates that PA does not output this information.

B. Sensitivity to the Number of Latent Variables

In this section, we evaluate the performance of our method as the number of latent variables increases in a benchmark

network.

Experimental Setup. Using the data generation mechanism outlined in the paper, we tested our approach on the MILDEW

network, which consists of 35 nodes and 46 arcs. In this setup, the node foto4 was chosen as the treatment variable and the

node dm4 as the outcome variable, with the sample size set to 5K. We hid the nodes lai4 and dm3, which lie on the back-door

paths from foto4 to dm4. Additionally, we randomly selected two, four, or six nodes (Num = 2, 4, or 6) with two or more

children as latent variables. Note that the MILDEW network contains a total of nine nodes with two or more children.

Results: The results are summarized in Table XI. As expected, increasing the number of latent variables in the network has

minimal impact on the RE metric of our method, which remains consistently low. These results demonstrate the robustness of

our approach under varying levels of latent variable presence.
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TABLE XI: Performance with Different Numbers of Latent Variables.

Num=2 Num=4 Num=6

Algorithm RE(%)↓ nTest↓ RE(%)↓ nTest↓ RE(%)↓ nTest↓
LSAS 8.03 ± 10.42 62.13 ± 6.42 8.83 ± 30.32 58.09 ± 9.46 9.04 ± 8.71 56.86 ± 4.24

Note: ↓ means a lower value is better, and vice versa. The symbol ’-’ indicates that PA does not output this information.
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