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Abstract

It has long been posited that there is a connection between the dynamical equations de-
scribing evolutionary processes in biology and sequential Bayesian learning methods. This
manuscript describes new research in which this precise connection is rigorously established
in the continuous time setting. Here we focus on a partial differential equation known as the
Kushner-Stratonovich equation describing the evolution of the posterior density in time. Of
particular importance is a piecewise smooth approximation of the observation path from which
the discrete time filtering equations, which are shown to converge to a Stratonovich interpreta-
tion of the Kushner-Stratonovich equation. This smooth formulation will then be used to draw
precise connections between nonlinear stochastic filtering and replicator-mutator dynamics. Ad-
ditionally, gradient flow formulations will be investigated as well as a form of replicator-mutator
dynamics which is shown to be beneficial for the misspecified model filtering problem. It is hoped
this work will spur further research into exchanges between sequential learning and evolutionary
biology and to inspire new algorithms in filtering and sampling.
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1 Introduction

It has been posited that there is a connection between sequential Bayesian inference and dynamical
models describing evolutionary biological processes. Understanding and studying this connection
has the potential to provide valuable insights on improved algorithms for complex Bayesian inference
and sampling tasks arising in a wide range of fields in the data science, engineering and machine
learning. Specifically, the key connection to sequential Bayesian estimation is via the so-called
replicator-mutator partial differential equations [Kim24; Hof85], describing the time evolution of a
large population of individuals with certain traits or attributes due to mutation and reproduction
(or selection). Broadly speaking, sequential Bayesian estimation procedures bear striking similar-
ity to the way species respond to evolutionary pressure moderated by a fitness landscape. The
correspondence is as follows:

• states or parameters ↔ traits

• prior distribution ↔ current population

• prediction (in the case of filtering or hidden markov models) ↔ mutation

• likelihood function ↔ fitness landscape governing selection or birth-death

This connection has been discussed most notably in [Mor97; Sha09; Har09b; Aky17; Czé+22],
primarily in the context of discrete time and discrete trait space problems. Some of the earliest
connections between discrete time particle based Bayesian updating and genetic mutation-selection
models seem to have been in e.g. [Mor97; Mor04; DG05]. [Sha09] raised awareness to the similarity
to replicator equations specifically; they show how Bayesian updating corresponds to one step of
a discrete-time and continuous-trait replicator equation without mutation. Around the same time,
a similar point was made in [Har09b]. This connection to replicator equations with mutation was
further extended to the setting of sequential in time inference with hidden Markov models (also
known as sequential filtering, discrete time data assimilation)) in [Aky17; Czé+22]. They showed
that discrete time replicator-mutator dynamics consists of a sequence of (discrete in time) alternat-
ing mutation and updating steps, as in sequential filtering. The PhD thesis [Zha17] draws some
interesting connections to optimisation and interacting particle approaches to sequential filtering,
e.g. the Feedback Particle Filter [Yan+12; Lau+14]. In this manuscript we focus on making this
connection precise in the continuous time and continuous trait space case, which has not yet been
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explored thoroughly in the literature. More recently, there has been interest in incorporating repli-
cator or “birth-death” dynamics into sampling algorithms for optimisation and inversion tasks, see
e.g. [LLN19; LSW23; Che+24a].

1.1 Replicator-mutator equations

The replicator-mutator equation is a broad class of dynamical systems modelling the response of
a distribution of traits to evolutionary adaptation to an external fitness landscape. Early research
on this class of models started with [Kim65; CK70] (sometimes also known as the Crow-Kimura
equation), followed up by influential work in [Aki79; SS83] and many others. In these early works,
the trait is often considered to be discrete (corresponding to discrete gene loci with a finite number
of alleles) in the form π̇t(i) = πt(i)

(∑
j wijπt(j)−

∑
rswrsπt(r)πt(s)

)
, where πt is a n dimensional

probability vector of the relative frequency of each discrete trait, the matrix entries wij record the
fitness benefit (or harm) of the presence of trait j for the proliferation of trait i, often assumed to
be symmetric. The second term in the brackets ensures that π ∈ Sn, an n-dimensional probability
simplex, i.e., π(i) ≥ 0 and

∑
i π(i) = 1 for all times. The dynamical properties of this system

have been studied extensively see, e.g., [Bom90; OR01] and its relation to Fisher information and
entropy has been studied in [BP16; Bae21]. This system also has a geometrical structure amenable to
optimisation, as it can be seen to be a gradient flow of the total fitness with respect to the Shashahani
metric, see [Har09a; Har09b; FA95; Cha+21]. There is also a rich connection to game theory, as
in [CT14] (with traits being interpreted as game strategies). The continuous trait space setting
has received comparatively less attention, but has been studied as early as [Kim65] or in [CHR06;
Gil+17; Vla20]. These models are popular in the mathematical evolution, biology, and ecology
literature, primarily in discrete time, as in [KM14; KNP18; MHK14]. Nevertheless, the continuous
time form of these models has been subject to attention from a mathematical analysis perspective
[CS09; Cha+20]. The unnormalised or normalised form of the continuous-time continuous-trait
replicator-mutator partial differential equations (PDEs) is given by

∂tµt(x) = µt(x)Ez∼µt [ft(x, z)] + L⋆µt(x) (1.1)
∂tρt(x) = ρt(x) (Ez∼ρt [ft(x, z)]− Eρt [ft]) + L⋆ρt(x), (1.2)

where ρt(x) ≥ 0 and µt(x) ≥ 0 denote the normalised and unnormalised density functions respec-
tively, describing the distribution of traits x ∈ Rn in the population. Here, L⋆qt(x) is an optional
mutation term, where L⋆ is the adjoint generator of a diffusion process, e.g., L⋆ = −∆ for mu-
tation according to standard Brownian motion. If L⋆ = 0, i.e., no mutation exists, we call this
the (pure) replicator equation. The (potentialy non-local & time-dependent) selection or fitness
function is denoted by ft(x, z) and the net birth-death rate for a given trait x at time t is given by
Ez∼ρt [ft(x, z)], where the subscript indicates that only the expectation is taken over the z variable
only. A simplified form of the replicator-mutator often appearing in the literature [TLK96; AC14;
AC17] is the local PDE

∂tρt(x) = ρt(x) (ft(x)− Eρt [ft]) + L⋆ρt(x), (1.3)

where the non-local fitness function in (1.2) has been replaced by a fitness function that no longer
depends on the current distribution of traits, only on the value of the trait itself. An ubiquitous
example is the quadratic fitness, ft(x) = −1

2∥Hx− yt∥2Ξ, which penalises traits x that have a large
misfit to the (potentially) time varying data yt, is connected to least-squares estimation. The general
idea here is that H maps traits x ∈ X to features Hx ∈ Y , and yt represents an optimal feature
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at time t, with fitness being quantified as a quadratic deviation, possibly preconditioned with a
covariance matrix Ξ. A non-local version of this fitness function has been presented in [CHR06], i.e.

ft(x, z) = −r

2
∥Hx− yt∥2Ξ − r

2
∥Hz − yt∥2Ξ + s⟨Hx− yt, Hz − yt⟩Ξ (1.4)

with r > 0, s < r (the case H = I, r = 1, yt = 0 was presented in [CHR06]). This fitness function
takes into account both a given trait’s fitness on its own, but also beneficial or adversary effects of
the group fitness through the s⟨Hx− yt, Hz − yt⟩Ξ term. This non-local fitness function is studied
further for the case of non-linear h(x) in Section 3 and in the linear setting in Section 4 of this
manuscript.

1.2 Sequential Bayesian inference & replicator-mutator equations

We will show in Section 3 that there exists a direct connection between the non-linear filtering and
replicator-mutator equations, which has not yet been made explicit in the literature, to the best
of our knowledge. Below we summarise the main findings of Section 3 of this manuscript, paying
special attention to the linear-Gaussian setting (although the results hold for the more general non-
linear setting, as detailed in Section 3). We first describe the standard non-linear filtering problem.
Consider Euclidean spaces X = Rm and Y = Rn, covariance matrices Σ ∈ Rm×m,Ξ ∈ Rn×n,
sufficiently regular mapping g : X → X and h : X → Y , and the following signal-observation pair,

dXt = g(Xt)dt+Σ1/2 dWt; (signal) (1.5)

dZt = h(Xt)dt+ Ξ1/2 dBt (observation). (1.6)

The goal of filtering is to reconstruct the signal Xt by means of the noisy observation path {Zs}s≤t.
Since Xt cannot be uniquely identified from this data, the correct object to study is the conditional
distribution of Xt from the data {Zs}s≤t, which is known to evolve in time according to the Kushner-
Stratonovich equation,

dpt(x) = L∗pt(x) + pt(x) (h(x)− Ept [h])
⊤ Ξ−1(dZt − Ept [h]dt)

where L∗ denotes the adjoint of the infinitesimal generator of (1.5) (i.e. the Kolmogorov forward
operator),

L∗pt(x) = −∇ · (pt(x) g(x)) +
1

2
∇ · (Σ ∇pt(x)) .

As we will detail in Section 3, this is equivalent to the replicator-mutator equation (specifically, the
Crow-Kimura equation),

∂tρt(x) = −∇ · (ρt(x)g(x)) +
1

2
∇ · (Σ∇ρt(x))︸ ︷︷ ︸

mutation

+ ρt(x)(ft(x)− Eρt [ft])︸ ︷︷ ︸
replication

(1.7)

with fitness function

ft(x) = −1

2
∥h(x)− yt∥2Ξ (1.8)

A formal interpretation y(t) = dZt
dt (which is not a valid object if Zt is indeed a sample path of (1.6))

allows to then see the structural equivalence to the Kushner-Stratonovich equation. We give more
detail in Section 3 on how this comparison can be made more rigorous. Additionally, in Section
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3 we will establish connections between a modified Kushner equation and the replicator-mutator
equation with a non-local fitness function, in the form of (1.4) (and with non-linear h). We will use
this equivalence to demonstrate how this a modified Kushner equation can be beneficial for filtering
with misspecified models (see Section 4).

The following simplified case is presented to further help motivate the proofs below. We set
g ≡ 0, and h(x) = Hx for some matrix H ∈ Rm×m, which means that the tracked distribution ρt
will remain Gaussian, if ρ0 is Gaussian and we use the notation ρt = N (mt, Ct). In this case the
(unnormalised) replicator-mutator equation with fitness function (1.4) can be re-written as

∂tµt(x) = µt(x) ·
[
−s

2
∥Hx−Hmt∥2Ξ − r − s

2
∥Hx− yt∥2Ξ − r − s

2
∥Hmt − yt∥2Ξ

]
+

1

2
∇ · (Σ∇µt(x)).

For the special case r = 1, s = 0, the above equation collapses to the familiar Kalman-Bucy
equations. This formulation allows us to see that the fitness function takes into account both
the considered trait’s fitness as a quadratic deviation from the “observation” yt in the form of
− r−s

2 ∥Hx−yt∥2Ξ, and also a “uniformity term” − s
2∥Hx−Hmt∥2Ξ as measured by quadratic deviation

from the distribution mean. In other words, the most adapted trait x is both close to the mean trait
mt (in a specific sense in observation space Y ), and also close to the observation yt when mapped
into observation space. The parameter s balances the relative strength of these contributions. The
following cases for how s relates to r have very different behaviour: The case s = 0 corresponds to
penalty by deviation from the data only (analogous to the function of the log-likelihood in Bayesian
inference or filtering), while s = r means that the most adapted trait is the mean trait, independent
of its actual “feature” Hx and how it relates to the data yt at time t. In fact, the consequence of
setting r = s is that the fitness function becomes equal to − r

2∥Hx−Hmt∥2Ξ, i.e., optimal traits x
have the same feature Hx as the mean of the population mt. For s ∈ (0, r), a compromise between
these two edge cases holds. In the domain s < 0 on the other hand we observe evolutionary fitness
attributed to non-uniformity, i.e., being further away from the population mean mt than strictly
necessary for pure adaptation to the data yt. In the mathematical theory of (biological) evolution,
this parameter s can easily be motivated by similarities to biological systems, where uniformity or
uniqueness (as opposing poles) can lead to improved fitness, but to the best of our knowledge this
has not been studied in depth in the filtering context. In section 4 we will explore this further in
the context of misspecified model filtering.

1.3 Research contributions

We have the following main contributions in this manuscript:

1. A rigorous connection between the crow-kimura replicator-mutator equations and non-linear
filtering is established in Theorem 3.1 (section 3). In particular, we clarify how a time varying
fitness functional coinciding with a discrete time measurement model can be reconciled with
the Kushner-Stratonovich partial differential equation arising in stochastic filtering.

2. Theorem 3.1 more broadly establishes a “generalised” stochastic filtering partial differential
equation as the continuous time limit of a non-local replicator-mutator equation. This pde is
the subject of further study in Section 4 where its utility in the context of misspecified model
filtering is established.

3. In section 4.1 we demonstrate that for a specific choice of parameters (r > 0, s = 0), this
“generalised” stochastic filtering partial differential equation coincides with covariance infla-
tion ensemble Kalman-Bucy filtering [And07; DSH20; MH00; BMP18; BD23] in the linear-
Gaussian setting. Section 4.2 then demonstrates the benefit of this “generalised” filtering pde
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(where s ̸= 0) for filtering in the presence of model errors. Specifically, this is established
rigorously through a series of lemmas for the linear-Gaussian setting and where the misspec-
ification arises through an unknown constant bias in the signal dynamics. We demonstrate
that by optimally choosing (r, s), one can minimise mean squared error and simultaneously
obtain realistic uncertainty quantification, which has traditionally been difficult with classical
covariance inflation.

1.4 Notation

We define some notation that will be used throughout the manuscript.

Set X = Rm the trait space, H : X → Y be a mapping, and Y = Rn.

m = dimension of state/trait space

n = dimension of observation/fitness space

∥x∥2Ξ = x⊤Ξ−1x

ṁt is used to denote dmt
dt for any vector mt ∈ Rd depending only on t.

∂tpt(x) is used to denote ∂pt(x)
∂t for ρt(x) : [0,∞)× Rm → R

Ept [f ] =
∫
f(x)ρt(x)dx and where necessary, we specify the variable in the subscript to indicate

the variable to which the integration operation applies, i.e. Ez∼ρt [ft(x, z)] =
∫
ft(x, z)ρt(z)dz.

ft(x, z) : Rm×Rm → R is the non-local fitness landscape at time t (omission of the t subscript
is used to indicate a time-independent fitness landscape). Frequency dependent fitness of trait
x ∈ Rm is indicated by the term Ez∼ρt [ft(x, z)] ≡

∫
ft(x, z)ρt(z)dz.

pt and qt is used to refer to the normalised and unnormalised filtering density satisfying the
Kushner-Stratonovich and Zakai equations respectively.

ρt and µt is used to refer to the normalised and unnormalised density function from Crow
Kimura replicator-mutator respectively.

2 The replicator equation & continuous time Bayesian inversion

Before presenting the rigorous connection between sequential filtering and replicator-mutator equa-
tions with time dependent fitness, we present the case of static fitness functions and continuous
time Bayesian inversion. Inversion [EHN96] is the problem of inferring an unknown parameter
x ∈ X = Rm from a noisy measurement y ∈ Y = Rn of form

y = h(x) + ε, (2.1)

where H : X → Y is the so-called forward operator and ε is measurement noise, commonly as-
sumed to be zero-mean Gaussian, ε ∼ N (0,Ξ). The operator H is analogous to the observation
operator h(x) in the filtering setting. Unfavorable properties of the operator and the noise makes a
naive inversion procedure ill-defined, so additional regularisation of the inversion procedure is nec-
essary. The Bayesian approach to inversion ([Stu10]) requires a prior distribution q0 of the unknown
parameter x and produces the Bayesian posterior measure νy via

dνy

dν0
(x) ∝ exp

(
−1

2
∥h(x)− y∥2Ξ

)
. (2.2)
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This inversion procedure constitutes a one-step method from the prior ν0 to the posterior νy. In
the following, we assume that all measures have a Lebesgue density, which we denote p0 and py. A
commonly adopted prior p0 is the multivariate Gaussian N (m0, C0).

When m,n are large and the prior and posterior are significantly “different” it can be advanta-
geous to gradually transform the prior to the posterior, either over a finite or infinite time horizon.
When this is done over a finite time interval, this procedure is known as tempering or annealing
in the sequential monte carlo literature [GM98; Nea01; CCK24] and also the homotopy approach
to Bayesian inversion (e.g. [Rei11; Blö+22; CST20]). More specifically, this approach modifies
the single step from prior µ0 to posterior µy into a smooth transition by introducing a pseudotime
t ∈ [0, 1], and intermediate measures with density pt via

pt(x) ∝ exp

(
− t

2
∥h(x)− y∥2Ξ

)
· p0(x)

such that p1 = py. As outlined in e.g. [PR23] it can be seen that a family of probability densities
defined via pt(x) ∝ exp(tf(x))p0(x) is the solution of the infinite-dimensional system of ODEs

dpt(x)

dt
=

d

dt

(
exp(tf(x))p0(x)

Ept [f ]

)
= (f(x)− Ept [f ])pt(x), (2.3)

This is identical to the pure replicator equation, i.e., the replicator-mutator equation without any
mutation, with the fitness function being the log-likelihood,

f(x) = −1

2
∥h(x)− y∥2Ξ.

In the simplest setting, y is a time-independent feature, which then means that the fitness function
is also static. From a sampling point of view, it is then possible to construct both deterministic
and stochastic schemes which have the replicator equation as their density evolution equation. To
do so, we switch to the so-called Eulerian perspective on this problem, as presented e.g. in [Rei11].
The goal is to construct a vector field (t, x) 7→ v(t, x) such that the family of diffeomorphisms
Tt : X → X with Tt(x0) := x(t) on trait space defined by solutions of the ODE

ẋ(t) = v(t, x(t)), x(0) = x0 (2.4)

smoothly pushes forward the initial population distribution to the distribution at a later time via

(Tt)#p0 = pt. (2.5)

The advantage of this perspective is that if we were able to find such a vector field v, then we can
approximate the solution of (2.3) by sampling J particles {x(i)0 }Ji=1 ∼ p0, evolve them according
to (2.4), and the resulting ensemble {x(i)(t)}Ji=1 then constitutes valid samples from pt. [Vil21,
Theorem 5.34] states that such a velocity field v satisfies the continuity equation

∂tpt(x) = −∇x · (v(t, x)pt(x)). (2.6)

On the other hand, comparing the right hand sides of (2.3) and (2.6) means that the vector field
needs to be a solution of the Poisson equation

−∇x · (v(t, x)pt(x)) = (f(x)− Ept [f ])pt(x). (2.7)

which leads us back to the familiar pure replicator dynamics. It is worthwhile noting that this
equation also arises in the construction of interacting particle filtering algorithms, where the fitness
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function is time-dependent due to the time-varying data term [CX10; Lau+14; PRS21]. Finally,
it is possible to include a mutation or “exploration term” to aid in generating samples when m is
large (i.e. the underlying trait space is high dimensional), and is even necessary for particle-based
implementations of the above (e.g. [Mor97; DDJ06; MD14; Che+24a; LLN19; LSW23]). In this
setting, one arrives at a connection to the Crow-Kimura replicator-mutator equation, albeit with a
static (time independent) fitness functional.

In the remainder of this section we discuss some geometric properties of the replicator equation,
showing that the continuous trait-space replicator equation follows a gradient flow of the mean
fitness energy functional with respect to the Fisher-Rao metric. This extends the well-known result
that the replicator equation is a gradient flow with respect to the Shahshahani metric (i.e. the
finite dimensional version of the Fisher-Rao metric), see for example Theorem 7.8.3 in [HS98],
[FA95] (for the entropy rather than fitness functional), [Har09a], [CS09] and [Cha+21] (in the case
of two traits/species) or [Bae21] and [BP16] (including some interesting remarks about speed and
acceleration in this metric). To the best of our knowledge, this result has not been established in the
continuous trait space setting, although a similar result for a specific fitness functional (the Kullback-
Leibler divergence) has appear recently in the sampling literature [Che+24b; MM24; WN24; LLN19;
LSW23]. More specifically, [LLN19] shows that a dynamical system similar to the Crow Kimura
replicator-mutator equation is a gradient flow of the Kullback-Leibler divergence with respect to
the Wasserstein-Fisher-Rao metric.

We start by reminding ourselves of the basics of information geometry. We define P as the
manifold of absolutely continuous probability measures on Rn. Every p ∈ P will be identified with
its (Lebesgue) density p(x). At a p ∈ P such that p(x) > 0 everywhere, the tangent space of P is
given by TpP = {σ ∈ C∞(Rn) :

∫
σ(x) dx = 0}. If p has support supp(p) ⊊ Rn, then the tangent

space is TpP = {σ ∈ C∞(Rn) : σ|supp(p)C = 0,
∫
σ(x) dx = 0}. The associated cotangent space

is given by T ⋆
p P = {ϕ ∈ C∞(Rn)}/ ∼, where the equivalence relation ∼ is defined as ϕ1 ∼ ϕ2 if

and only if (ϕ1 − ϕ2)|supp(p) ≡ const. The dual pairing between ϕ ∈ T ⋆
p P and σ ∈ TpP is then

canonically defined as ⟨σ, ϕ⟩ =
∫
σ(x)ϕ(x) dx. The Rao-Fisher metric on the tangent space is given

by gp(σ1, σ2) =
∫ σ1(x)

p(x)
σ2(x)
p(x) dp(x). This still makes sense on the boundary, i.e. if p(x) = 0 for

some x, because then σ(x) = 0 for σ ∈ TpP and we interpret the resulting expression 0
0 = 0. The

metric defines an invertible metric tensor G(p) : TpP → T ⋆
p P via gp(σ1, σ2) = ⟨σ1, G(p)[σ2]⟩ (or

equivalently, G(p)[σ] = gp(·, σ)), which in this case is given explicitly by

(G(p)[σ])(x) =

{
σ(x)
p(x) if p(x) > 0

0 else,

which is consistent since σ ∈ TpP is required to vanish on the set supp(p)C , anyway. In fact, any
map identical to G(p) up to a global constant on supp(p), and with arbitrary values on supp(p)C ,
would give a valid representative due to the quotient structure on T ⋆

p P.
The identity gp(σ1, σ2) = ⟨σ1, G(p)[σ2]⟩ then holds true since

⟨σ1, G(p)[σ2]⟩ =
∫

σ1(x)G(p)[σ2](x) dx =

∫
σ1(x)

σ2(x)

p(x)
dx =

∫
σ1(x)

p(x)

σ2(x)

p(x)
dp(x)

The metric tensor associated to the Rao-Fisher metric has inverse G(p)−1 : T ⋆
p P → TpP

(G(p)−1[ϕ])(x) =

(
ϕ(x)−

∫
ϕ(y) dp(y)

)
p(x)
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which is well-defined since G(p)
[
G(p)−1[ϕ]

]
= ϕ−

∫
ϕ(y) dp(y) ∼ ϕ. We now recall some facts

on gradient flows. Let P denote a linear space; then the time evolution of pt ∈ P is a gradient flow
if it can be written as

∂tpt = −K(pt)F ′(pt)

where F : P → R is an energy functional, F ′ : P → T ∗
pP is the Frechet derivative and K(p) :

T ∗
pP → TpP is a linear operator characterising the dissipation mechanism (loosely, giving meaning

to how quickly F increases/decreases). In this context we are most interested in the case where K
is related to the metric tensor: The dissipation mechanism K(p) is then taken to be G(p)−1. We are
now ready to state our main result for this section, the proof of which can be found in section 5.1.

Lemma 2.1. The replicator equation (1.2) with L⋆ and with frequency dependent fitness πpt(x)
performs a gradient flow with respect to the Fisher-Rao metric of the average fitness functional
F(p) : P(Rd) → R

F(p) = −1

2

∫∫
f(x, z)p(z)p(x)dzdx (2.8)

3 Time varying Crow-Kimura replicator-mutator and nonlinear fil-
tering

We begin with background on non-linear filtering. The classical continuous time filtering problem
is given by (1.5) and (1.6), restated here for convenience:

dXt = g(Xt)dt+Σ1/2 dWt;

dZt = h(Xt)dt+ Ξ1/2 dBt.

The goal in nonlinear filtering is to estimate the conditional density of the hidden state Xt at time t,
given the observation filtration Zt := σ(Zs : s ≤ t), which we denote by pt(x). It is well known that
under certain regularity conditions on g, h that pt(x) evolves according to the Kushner-Stratonovich
equation, a PDE driven by finite dimensional Ito noise,

dpt(x) = L∗pt(x) + pt(x) (h(x)− Ept [h])
⊤ Ξ−1(dZt(ω)− Ept [h]dt) (3.1)

where L∗ denotes the adjoint of the infinitesimal generator of (1.5) (i.e. the Kolmogorov forward
operator),

L∗pt(x) = −∇ · (pt(x) g(x)) +
1

2
∇ · (Σ ∇pt(x)) .

The notation (ω) is used to emphasise that observation enters as a fixed, known realisation, but we
will drop it for the remainder of this section. The unnormalised density qt evolves according to the
Zakai equation

dqt = L∗qt(x) + qth(x)
TΞ−1dZt (3.2)

which can be equivalently expressed in Stratonovich form as (see e.g. [HKX02], [PRS21])

dqt(x) = L∗qt(x)−
1

2
h(x)⊤Ξ−1h(x)qt(x) + qt(x)h(x)

⊤Ξ−1 ◦ dZt (3.3)
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In order to connect to discrete measurement processes more commonly encountered in practice,
as well as to the Crow-Kimura equation replicator-mutator equation, consider a piecewise smooth
observation process. The piecewise smooth approach to approximating rough signals has a long
history in robust filtering [Cri+13] and has been well-studied more generally by the so-called Wong-
Zakai style theorems and in the context of rough path theory [KM16; Pat24]. In this section,
we will consider a very specific form of piecewise smooth approximation using piecewise linear
interpolations of Brownian noise. More precisely, consider a partition of the time interval [0, T ],
0 < t1 < t2 · · · < td = T with time-step ti+1 − ti = δd for all i and such that δd → 0 as d → ∞ (i.e.
δd = T

d ). Define the piecewise linear approximation to a Brownian path as

Bd
t = Bti +

t− ti
δd

(Bti+1 −Bti), t ∈ [ti, ti+1),

which is piecewise differentiable with time derivative

dBd
t

dt
=

1

δd
(Bti+1 −Bti), t ∈ [ti, ti+1).

Then a piecewise smooth version of (1.6) can be constructed, for all i = 1, 2, . . . d at

dZd
t

dt
= h(x∗ti) + Ξ1/2dB

d
t

dt
, t ∈ [ti, ti+1) (3.4)

where the notation x∗t is used to denote the true hidden state trajectory or reference trajectory that
generates the observed measurement. This form allows us to connect more easily to observation
models more commonly encountered in practice, i.e.,

yt(x) :=
dZd

t

dt
= h(xt) + ϵt, ϵt ∼ N (0, R)

and as we will see in the remainder of the section, to also build a bridge between the replicator-
mutator equation and the Kushner-Stratonovich equation. It is worth noting that we consider a
piecewise smooth approximation of the observation noise term only, rather than a smooth approxi-
mation of the entire observation trajectory as is done more traditionally in the stochastic filtering
literature [HKX02; CX10]. Specifically, [HKX02] consider the following approximation

ZΠ
t = Zti =

Zti+1 − Zti

ti+1 − ti
(t− ti), t ∈ [ti, ti+1)

where Zt is a fixed realisation of (1.6) and ZΠ
t denotes the corresponding piecewise approximation.

This then yields (assuming ti+1 − ti = δd),

dZΠ
t

dt
=

Zti+1 − Zti

ti+1 − ti
=

1

δd

∫ ti+1

ti

dZs =

∫ ti+1

ti

h(x∗s)ds+
dBd

t

dt
, t ∈ [ti, ti+1)

so that the observation involves a time integrated version of the hidden state,
∫ ti+1

ti
h(x∗s)ds rather

than h(x∗ti) as in (3.4), which may be more practically relevant particularly when the time be-
tween observations is large. This distinction is primarily for comparison to measurement models
encountered in practice, both approximate forms can be shown to have valid limiting forms.

In regards to the Crow-Kimura replicator-mutator equation, for the remainder of this section,
we focus on the following time-varying quadratic fitness landscape with s < r, r > 0,

ft(x, z) = −r

2
∥h(x)− dZd

t

dt
∥2Ξ + s

〈
h(x)− dZd

t

dt
, h(z)− dZd

t

dt

〉
Ξ

(3.5)
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and time-varying optimal feature dZd
t

dt given by (3.4). Notice that with the definition of dZd
t

dt in (3.4),
ft(x, z) is a piecewise constant in time functional in x. In the remainder of this section, we will
establish equivalence (in a sense to be made precise), between the the C-K replicator-mutator with
(3.5) and a modified form of the Zakai equation. For the special case of r = 1, s = 0 in (3.5), we
will see that C-K replicator-mutator converges to the standard Zakai equation (3.2) as d → ∞. The
following reformulation of the Crow-Kimura replicator-mutator equation with (3.5) will be a useful
aid. Its proof can be found in section 5.2.

Lemma 3.1. Consider the Crow-Kimura replicator-mutator equation

∂tρt(x) = −∇ · (ρt(x)g(x)) +
1

2
∇ · (Σρt(x)) + ρt(x)(Ez∼ρt [ft(x, z)]− Eρt [ft]) (3.6)

with fitness landscape given by (3.5). This equation can be expressed in the form

∂tρt(x) = L∗ρt(x) + (r − s)

(
−1

2

(
h(x)⊤Ξ−1h(x)− Eρt [h

⊤Ξ−1h]
)
+ (h(x)− Eρt [h])

⊤ Ξ−1dZ
d
t

dt

)
ρt(x)

−s

2

(
∥h(x)− Eρt [h]∥2Ξ − Eρt

[
∥h(x)− Eρt [h]∥2Ξ

])
ρt(x). (3.7)

where L∗ denotes the adjoint of the generator of the diffusion process (1.5). Additionally, the
unnormalised form is given by

∂tµt(x) = L∗µt(x) +

(
−r

2
h(x)⊤Ξ−1h(x) + (r − s)h(x)⊤Ξ−1dZ

d
t

dt

)
µt(x) (3.8)

Before presenting the main theorem of this section, consider the following simple motivating
example to demonstrate why as d → ∞, the Crow-kimura replicator-mutator with fitness landscape
(3.5) converges to a pde driven by Stratonovich rather than Ito noise. It should be noted that
although the pde is driven by Stratonovich noise, it can be transformed to an Ito version from
which the familiar Kushner-Stratonovich equation can be recovered (for r = 1, s = 0).

Example 3.2. Simplified one dimensional replicator-mutator. Consider the 1d linear-
Gaussian filtering problem with trivial signal dynamics, i.e. g(x) = 0,Σ = 0, h(x) = Hx,Ξ = 1. In
this case, the unnormalised crow-kimura replicator-mutator equation (3.8) with r = 1, s = 0 takes
the form,

∂tµ
d
t (x) = −1

2
(Hx)2µd

t (x) + µd
t (x)Hx

dZd
t

dt
(3.9)

The Zakai equation (unnormalised filtering pde) (3.2) has the following (Stratonovich) representa-
tion,

∂tqt(x) = −1

2
(Hx)2qt(x) + qt(x)Hx ◦ dZt (3.10)

To help demonstrate why the limit of the smooth approximated noise in (3.9) must indeed be of
Stratonovich type, consider the following pde driven by finite dimensional Ito noise,

∂tρt(x) = −1

2
(Hx)2ρt(x) + ρt(x)HxdZt (3.11)
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The following numerical experiment demonstrates empirically the convergence of (3.9) to (3.10)
rather than (3.11). A sequence of smooth observations over [0, T ] with step size δd is generated as

Bd
t = Btn +

(
t− tn

tn+1 − tn

)
(Btn+1 −Btn), t ∈ [tn, tn+1) (3.12)

where Bt corresponds to a Brownian motion so that (Btn+1 − Btn) ∼ N (0, δd). The obs increment
dZd

t
dt is then defined as in (3.4). With the approximation (3.12), dZd

t
dt is constant in the time interval

[tn, tn+1) for every n = 0, 1, 2, . . . , and to emphasise the lack of dependence on t, we denote it by a
random variable ξn where

ξn ∼ N
(
Hx∗0,

1

δd

)
for some fixed x∗0 denoting the true hidden state at time 0. By interpreting (3.9) as a linear pde of
the form

∂tµ
d
t (x) = At(x)µ

d
t (x)

with piecewise smooth in time coefficient At(x) := −1
2(Hx)2 + Hxξn for t ∈ [tn, tn+1) , it can be

discretised via the usual euler scheme over [0, T ] with time step ∆ and ti+1 − ti = ∆t < δd for all
i = 0, 1, 2 . . . . Let µ̃i(x) denote the approximation to µd

t (x) at t = ti,

µ̃i+1(x) = µ̃i(x) + ∆tAi(x)µ̃i(x)

with Ai(x) = −1
2(Hx)2+Hxξni for ni such that ti ∈ [tni , tni+1). Similarly, (3.10) and (3.11) can be

simulated with Euler-Maruyama schemes with the same time step ∆t. There the observation path is
a solution of dZt = Hx∗0dt+ dBt, simulated at a fine time interval. Figure 3.1 shows the results for
a single time instant. Importantly, the crow-kimura replicator equation (3.7) (cyan line) coincides
closely with (3.10) (black line) (up to normalisation), while the Ito version (3.11) (pink line) is
significantly different.

The following theorem establishes the convergence of the replicator-mutator equation (in the
form (3.7), as identified in Lemma 3.1) to a “generalised” form of the kushner-stratonovich equation
from nonlinear filtering as d → ∞. Convergence is studied via the unnormalised equations as this
greatly simplifies the analysis but still yields the overall conclusion relating filtering and replicator-
mutator equations due to the one to one correspondence between the unnormalised and normalised
equations. Convergence to the standard filtering equations for the specific choice r = 1, s = 0; the
benefits of the generalised form (ie. when s ̸= 0, r ̸= 1) will be further explored in the context
of misspecified filtering in Section 4. The proof of Theorem 3.1 borrows many elements from
the proof of Theorem 3.1 in [HKX02] and makes use of the representation formulae developed in
[Kun82]. We extend their work to consider unbounded observation drifts h (where they had assumed
uniform boundedness) and to the case of multivariate rather than scalar valued observations Zt.
Due to the representation formula used here, we do not need to rely on strong convergence of
piecewise smooth approximations with unbounded diffusion coefficients as developed in e.g. [Pat24]
(this aspect is discussed more specifically in the proof below). The price paid is that we focus
on pointwise convergence of the density functions, rather than stronger Lp convergence, i.e. (i.e.
E[∥µd

t − qt(x)∥pp] → 0 as d → ∞ where ∥f∥pp :=
∫
Rd |f(x)|pdx. The weaker mode of convergence is

still useful, particularly given that it allows us to relax restrictive assumptions on h which previously
did not even cover the linear-Gaussian setting. The proof of the following theorem can be found in
section 5.3.
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Figure 3.1: Snapshot in time for the above filtering problem with H = 2,m0 = 0, P0 = 0.3, x∗0 =
5,Ξ = 1 and the smooth observations are constructed with δd = 500∆t. Clearly the Ito interpreta-
tion (pink line) is not the correct limit for the crow-kimura with smooth approximation. The correct
stratonovich interpretation (black line) aligns closely with the crow-kimura with smooth obs (cyan
line). Note that the stratonovich interpretation (3.10) coincides with the familar zakai equation
from filtering (3.2).

Theorem 3.1. Assume that g(x) : Rm → Rm and h(x) : Rm → Rn are C2, globally Lipschitz
continuous functions satisfying linear growth conditions, i.e. there exists a constant C > 0 such that

∥h(x)− h(y)∥+ ∥g(x)− g(y)∥ ≤ C∥x− y∥, x, y,∈ Rm

∥h(x)∥+ ∥g(x)∥ ≤ C(1 + ∥x∥), x ∈ Rm

Let Σ and Ξ be m×m and n×n positive definite matrices respectively. Denote by µd
t (x) the solution

to the unnormalised Crow Kimura replicator-mutator equation with time-varying fitness landscape
(3.5) with s < r, r > 0

∂tµ
d
t (x) = L∗µd

t (x) + µd
t (x)Ez∼µd

t
[ft(x, z)]

= L∗µd
t (x)−

r

2
∥h(x)− dZd

t

dt
∥2Ξµd

t (x) + s

〈
h(x)− dZd

t

dt
, h(z)− dZd

t

dt

〉
Ξ

µd
t (x) (3.13)

Let qt(x) denote the solution of the modified Zakai equation (presented here in Ito form),

dqt = L∗qt(x)−
s

2
h(x)⊤Ξ−1h(x)qt(x) + (r − s)qt(x)h(x)

⊤Ξ−1dZt. (3.14)

Suppose also that q0(x) = µd
0(x) = f(x) where f is a uniformly bounded C∞ probability density

function. Then for any T > 0,

lim
d→∞

E

[
sup

0≤t≤T
|µd

t (x)− qt(x)|p
]
= 0, ∀ x ∈ Rm (3.15)
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for p ≥ 1 and r, s additionally satisfying r − s < 2
tC(1+EQ[|x|2])pλ2

Ξr1r2
, where r1, r2 > 1 and 1/r1 +

1/r2 = 1 and C depends on the linear growth constant of h(x). Importantly, when r = 1, s = 0,
(3.13) converges to the standard Zakai equation (3.2).

4 Replicator-mutator equations & filtering with misspecified mod-
els: the Linear-Gaussian case

Throughout this section, we use the terminology local and non-local replicator-mutator equation to
refer to (3.7) with s = 0, r > 0 and s ̸= 0, r > 0, respectively. The terminology is motivated by the
fact that the case s ̸= 0 introduces a non-local term into the fitness function. Theorem 3.1 shows
that r = 1, s = 0 in the crow-kimura replicator-mutator equation (3.7) coincides with the non-linear
filtering equation when the system dynamics is known perfectly. In this section, we focus on the
linear-Gaussian setting to demonstrate both analytically and numerically the benefits of the non-
local replicator-mutator model for inference in the presence of model misspecification. Additionally,
we show in Section 4.1 that the local replicator-mutator equation with r ̸= 1 corresponds to the
familiar covariance inflated ensemble Kalman-Bucy filter.

Before detailing these main insights, we first present the fundamental equations in the Linear-
Gaussian setting and establish some useful findings on mean-field models corresponding to (3.7).
Firstly, consider the (normalised) linear-Gaussian crow-kimura replicator-mutator equation in the
limit δd → 0 as derived in Theorem 3.1. That is, consider the normalised form of (3.14) with
h(x) = Hx, g(x) = Gx, p0 = N (x;m0, C0),

dpt(x) = L∗pt(x)dt+(r − s)pt(x)
(
−(Hx−Hmt)

⊤Ξ−1Hmtdt+ (Hx−Hmt)
⊤Ξ−1dZt

)
− s

2
pt(x)

(
∥Hx−Hmt∥2Ξ − Ept [∥Hx−Hmt∥2Ξ]

)
dt (4.1)

noticing that this coincides with the standard Kushner equation when r = 1, s = 0. The form with
δd > 0 is given by

dpt(x) = L∗pt(x)dt+ (r − s)pt(x)

(
−1

2

(
x⊤H⊤Ξ−1Hx− Ept

[
x⊤H⊤Ξ−1Hx

])
+ (Hx−Hmt)

⊤ Ξ−1dZ
d
t

dt

)
−s

2
pt(x)

(
∥Hx−Hmt∥2Ξ − Ept [∥Hx−Hmt∥2Ξ]

)
dt (4.2)

where in the remainder of this section, we use the notation mt := Ept [x] and Ct = Ept [xx
⊤] −

Ept [x]Ept [x
⊤] for the mean and covariance respectively. It can be shown straightforwardly that the

evolution of the mean and covariance of the crow-kimura replicator-mutator equation (4.1) is given
by

dmt = Gmtdt+ (r − s)CtH
⊤Ξ−1 (dZt −Hmtdt) (4.3)

Ċt = GCt + CtG
⊤ +Σ− rCtH

⊤Ξ−1HCt (4.4)

and also that the mean equation for the case δd > 0 (with pde given by (4.2)) is given by

ṁt = Gmt + (r − s)CtH
⊤Ξ−1

(
Żd
t −Hmt

)
(4.5)

and the covariance equation coinciding with (4.4). Notice in particular that while both s and r affect
the evolution of the mean, only r affects the evolution of the covariance. This aspect will be discussed
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further in the context of misspecified filtering in section 4.2. In the below lemma, we consider
mean-field processes associated to the replicator-mutator equation. Such mean-field processes arise
in interacting particle implementations of Kalman Bucy filtering (the so-called ensemble Kalman-
Bucy methods, in both the stochastic form [Lee20; HM97] and deterministic forms [BR12; Tag+17]).
The mean-field process helps to demonstrate that the drift term involving s acts as a covariance
deflation for s < 0 and an additional inflation term for s ∈ (0, r). The proof of the lemma can
be found in section 5.4. We will utilise this characterisation to establish connections to covariance
inflated Kalman-Bucy filtering specifically in section 4.1.

Lemma 4.1. Consider the multivariate linear-Gaussian setting as described above and the following
mean-field SDEs with s < r, r > 0

dX̄t = GX̄t +Σ1/2dWt︸ ︷︷ ︸
mutation

− s

2
CtH

⊤Ξ−1(HX̄t −Hmt)dt

+ CtH
⊤
(

1

r − s
Ξ

)−1
(
dZt −HX̄tdt+

(
1

r − s
Ξ

)1/2

dW̄t

)
︸ ︷︷ ︸

Stochastic Kalman Innovation

(4.6)

dX̄t = GX̄t +Σ1/2dWt︸ ︷︷ ︸
mutation

−sHCtΞ
−1 (dZt −Hmtdt) + CtH

⊤
(

1

r − s
Ξ

)−1(
dZt −

1

2

(
HX̄t +Hmtdt

))
︸ ︷︷ ︸

Deterministic Kalman Innovation
(4.7)

where W̄ is a scalar Wiener process independent of W,B and X̄0 ∼ N (x;m0, C0). The time evolu-
tion of the conditional density of X̄t given Zt for both processes (4.6) and (4.7) is given by (4.1).
We may similarly define a mean-field process with smooth observations of the form

dX̄t = GX̄t +Σ1/2dWt︸ ︷︷ ︸
mutation

− s

2
CtH

⊤Ξ−1(HX̄t −Hmt)dt

+ CtH
⊤
(

1

r − s
Ξ

)−1(dZd
t

dt
−HX̄t

)
dt+ CtH

⊤
(

1

r − s
Ξ

)−1/2

dW̄t︸ ︷︷ ︸
Stochastic Kalman Innovation

(4.8)

and similarly for the deterministic update version (4.7). The conditional density of (4.8) (as well as
the deterministic update version) evolves according to the crow-kimura replicator-mutator equation
given by (4.2).

It is well known that the Kalman-Bucy filter is the minimum variance unbiased estimator of
Xt, t > 0. This property carries over to the crow-kimura replicator mutator equation for s = 0, r =
1 due to the pre-established equivalence to the Kalman Bucy filter. In the following result, we show
that the unbiasedness property holds more generally for the replicator mutator equation (4.2), i.e.
for any choice s < r, r > 0, when the system parameters are known perfectly. Obviously both from
inspection of (4.4) and also from Lemma 4.1, it is clear that the minimum variance property is
destroyed unless r = 1.

Lemma 4.2. Unbiasedness of the non-local replicator-mutator with perfect system. Con-
sider the signal-observation pair (1.5)-(1.6) with g(x) = Gx, h(x) = Hx and Gaussian initial con-
ditions. If m0 = E[X0] then the generalised Kalman-Bucy filter with s < r, r > 0 is unbiased, i.e.
E[mt] = E[Xt], t > 0.
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Proof. Begin with the mean equation from the generalised Kalman-Bucy filter

mt = m0 +

∫ t

0
Gmudu+ (r − s)

∫ t

0
KudZu − (r − s)

∫ t

0
KuHmudu

= m0 +

∫ t

0
Gmudu+ (r − s)

∫ t

0
KuH(X∗

u −mu)du+ (r − s)

∫ t

0
KuΞ

1/2dBu

where Kt := CtH
⊤Ξ−1 corresponds to the Kalman gain at time t and we have substituted in the

form of the observations in the second equality. Then

E[mt] = m0 +

∫ t

0
GE[mu]du+ (r − s)

∫ t

0
KuH(E[X∗

u]− E[mu])du

Also recall that

E[X∗
t ] = E[X∗

0 ] +

∫ t

0
GE[X∗

u]du

then

E[mt]− E[X∗
t ] = m0 − E[X∗

0 ] +

∫ t

0
(G− (r − s)KsH)(E[ms]− E[X∗

s ])ds

which corresponds to an ODE of the form ẏt = Atyt with yt := E[mt]− E[X∗
t ], which has solutions

yt = 0, t > 0 whenever y0 = 0.

4.1 Replicator-mutator with s = 0, r ̸= 1 & Inflated Kalman-Bucy filtering

The mean-field processes presented in Lemma 4.1, we see that in the linear-Gaussian setting, the
replicator-mutator equation with s ̸= 0 involves both an adjustment of the observation error co-
variance Ξ as well as the inclusion of the term s

2CtH
⊤Ξ−1(HX̄t − Hmt) which either acts as a

mean-reversion or mean-repulsion depending on the chosen value of s. A similar term also appears
in [WRS18] where the ensemble Kalman Bucy filter with so-called “deterministic noise” in place of
the stochastic signal noise Σ is analysed. The use of such terms has a long history in the field of
ensemble Kalman filtering, where it is more widely known as covariance inflation [And07; DSH20;
MH00; TMK16; BD23]. Covariance inflation is an important heuristic tool used to improve numer-
ical stability of the ensemble Kalman filter when the number of samples is low [BMP18; BD19] and
also to account for model errors.

The below lemma establishes the equivalence of the crow-kimura replicator mutator equation for
both δd > 0 and the limiting δd → 0 case, i.e. (4.2) and (4.1) respectively, to a form of covariance
inflation in the literature. The proof of the lemma can be found in section 5.5.

Lemma 4.3. Consider the following mean field description of covariance inflated “stochastic” en-
semble Kalman-Bucy filter see e.g. [BMP18; BD23],

dX̄t = GX̄t +Σ1/2dWt + (Ct + ϵT )H⊤Ξ−1
(
dZt −HX̄tdt+ Ξ1/2dW̄t

)
(4.9)

and the mean field description of covariance inflated “deterministic” ensemble Kalman-Bucy filter
[BD23] with piecewise smooth observations,

dX̄t

dt
= GX̄t +Σ1/2dWt + (Ct + ϵT )HTΞ−1

[
dZd

t

dt
−H

(
X̄t +mt

2

)]
(4.10)

where ϵ > 0 is a tuning parameter and T is a reference matrix guiding the inflation. The corre-
sponding evolution pde describing the conditional density p(Xt|Zt) for (4.9) and (4.10) is formally
equivalent to (4.1) and (4.2) respectively, for the choices T = Ct, r = 1 + ϵ and s = 0.
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4.2 Local vs non-local replicator-mutator for misspecified model filtering

We now turn out attention to analysing the performance of the replicator-mutator equation for
a filtering problem with misspecified signal dynamics. This section focuses on the δd → 0 form
of the replicator-mutator, (4.1), although the conclusions of this section are expected to similarly
hold for δd > 0. The misspecified model filtering problem is as follows. Consider the following
linear-gaussian problem where the hidden state Xt ∈ Rm evolves according to

dXt = GXtdt+ bdt+Σ1/2dWt (4.11)

with X0 ∼ N (m0, P0) and b a constant vector. The hidden dynamics is known imperfectly and that
the assumed model for the trait is instead

dXt = GXtdt+Σ1/2dWt (4.12)

(i.e. (4.11) with b = 0), and the observation process is as in (1.6). The replicator-mutator equation
(4.2) is no longer expected to produce unbiased estimates due to the presence of the b term.

Firstly, we introduce the following important variables. The tracking error at time t is denoted
by εt,

εt := mt − x∗t

where mt :=
∫
xpt(x)dx and pt(x) is the solution of (4.1) and X∗

t the solution of (4.11), also known
as the reference trajectory or true hidden state. Denote also by Pt the error covariance matrix,

Pt := E[(εt − E[εt])(εt − E[εt])T ]

Note well that Pt is distinct from Ct which we use to denote the covariance from the replicator-
mutator equation, also the covariance of the filtering equations. Recall that in the perfect knowledge
Kalman Bucy filtering setting, since E[εt] = 0, we have that Ct = P̃t = Pt. When b ̸= 0, even a
standard Kalman-Bucy filter no longer produces an unbiased estimates of the hidden state, so that
P̃t ̸= Pt and also, Ct ̸= Pt. Finally, let

νt := ∥E[εt]∥2, Et := E[∥εt∥2]

denote the squared expected error (or squared bias) and expected squared error (mean squared
error), respectively. Notice that νt = Tr(E[εt]E[ε⊤t ]). We also define

P̃t := E[εtε⊤t ] (4.13)

and notice that Tr(P̃t) = Et. Recall that when b = 0, we have that E[εt] = 0 for all t from lemma
4.2, so that Pt = P̃t. Since our focus is on the case b ̸= 0, it is necessary to further study P̃t in its
own right. Additionally, since P̃t = Pt +E[εt]E[ε⊤t ] the following bias-variance decomposition holds

Et︸︷︷︸
=m.s.e

= Tr(Pt)︸ ︷︷ ︸
=total error var.

+ νt︸︷︷︸
=squared bias

Finally, we use the shorthand notation

Kt := CtH
⊤Ξ−1

which for the case r = 1 coincides with the familiar Kalman Gain from the Kalman-Bucy filter.
The following lemma characterises the time evolution of bias, variance and mean squared error. As
expected, the error variance Pt evolves independently of the unknown term b. The proof of the
lemma can be found in section 5.6
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Lemma 4.4. Assume the system properties described by (4.11) for the true hidden state, (4.12) for
the assumed hidden state and (1.6) for the observation model. Given Ξ−1/2H an invertible matrix
and r, s such that r < s, r > 0, we have the following evolution equations for the error covariance
Pt and expected squared error P̃t,

dPt

dt
= (G− (r − s)KtH)Pt + Pt(G− (r − s)KtH)⊤ +Σdt+ (r − s)2KtΞK

⊤
t (4.14)

dP̃t

dt
= (G− (r − s)KtH)P̃t + P̃t(G− (r − s)KtH)⊤ +Σ+ (r − s)2KtΞK

⊤
t − E[εt]b⊤ − bE[ε⊤t ]

(4.15)

For the special case s = 0, r = 1, it holds that Pt = Ct, ∀ t > 0 if P0 = C0 where Ct is the
solution of the covariance equation of the replicator-mutator.

Furthermore,for any p.d. C0, the evolution of the mean squared error Et satisfies the following
inequality

dEt

dt
≤ 2∥(At(r, s)∥FEt − 2Tr(E[εt]b⊤) + Tr(Σ) + (r − s)2λmax(H

⊤Ξ−1H)∥Ct∥F (4.16)

where At(r, s) := G− (r − s)KtH.

To obtain further insights on optimal choices of r, s, we consider a simplified setting where
C0 = C∞ (i.e. where the covariance is initialised at the steady state covariance matrix in (4.4)).
This setting is still rich enough to provide insights on the role of r, s in the non-local replicator-
mutator, particularly as we are primarily interested in the time asymptotic behaviour of mean
squared error. Whilst the calculations in the previous section are applicable in the multivariate
setting, from now on we focus purely on the fully scalar case, and leave the multivariate setting to
future work. For the remainder of the section, we use P̃t to refer to the mean square error. The
following lemma gives explicit representations of the time asymptotic squared bias ν∞ and mean
squared error E∞ where Et = P̃t in the scalar case. The proof of the lemma can be found in section
5.7.

Lemma 4.5. Steady state Bias-Variance. Consider the scalar setting where m = n = 1.
Assume E[ε0 = 0] and C0 = C∞ where C∞ satisfies

0 = GC∞ + C∞G⊤ +Σ− rC∞H⊤Ξ−1HC∞ (4.17)

Suppose r, s are specified such that A∞ < 0. Then as t → ∞, νt → ν∞ and P̃t → P̃∞ where

ν∞ =

(
b

A∞(r, s)

)2

(4.18)

P̃∞ = −1

2

(
Σ+

(
G−A∞(s, r)

H

)2

Ξ

)
1

A∞(s, r)
+

(
b

A∞(s, r)

)2

(4.19)

and

A∞(s, r) =
s

r
G+

(r − s)

r
A∞(0, r) (4.20)

A∞(0, r) = −
√

G2 + rH2Ξ−1Σ (4.21)
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We are now ready to characterise the optimal r, s values that minimise mean square error. Recall
that the minimal conditions on s, r are that r > 0 and s < r. The below lemma establishes a range
of allowable values of s in terms of r which guarantee the existence of a stable mean squared error
value, P̃∞. Importantly, the lemma shows that there is not one unique pair (r, s) that minimises
the asymptotic mean square error for a given system, but rather infinitely many pairs satisfying
(4.26). These estimates hold true regardless of the stability characteristics of the hidden state and
observation dynamics. Additionally, we demonstrate that for s ∈ (sl, su) where sl, su are as defined
in the below lemma, there exists two possible r values for a given s that will yield the minimal
asymptotic mean square error. This is particularly beneficial in terms of allowing for a realistic C∞,
as will be explored further in Lemma 4.7. The proof of lemma 4.6 can be found in section 5.8.

Lemma 4.6. Optimal r, s minimising m.s.e. Adopt the same conditions as in Lemma 4.5.
Define,

p := −(H2Ξ−1Σ+G2), q := 4b2H2Ξ−1 (4.22)

τ :=
q2

4
+

p3

27
(4.23)

Suppose that G,H,Σ,Ξ, b are such that τ ̸= 0. Finally, define A⋆
∞ depending on whether τ < 0 or

τ >, as

A∗
∞ :=


(
− q

2 +
√
τ
)1/3

+
(
− q

2 −
√
τ
)1/3

, τ > 0

2
√

−p
3 cos

[
1
3 cos

−1
(
3q
2p

√
−3
p

)
− 4π

3

]
, τ < 0

(4.24)

Then the admissible values of s for any r > 0 satisfy

sl := −(G+A∗
∞)2

4H2Ξ−1Σ
< s < min

(
r,

√
G2 + rH2Ξ−1Σ

G+
√
G2 + rH2Ξ−1Σ

r

)
(4.25)

where the upper bound guarantees the existence of P̃∞. The optimal s for any given r > 0 is given
by

sopt =
r(A∗

∞ +
√
G2 + rH2Ξ−1Σ)

G+
√
G2 + rH2Ξ−1Σ

(4.26)

Alternatively, for any s ∈
(
sl, su

)
where su := G2+(A∗

∞−G)|G|−GA∗
∞

H , there are two possible values of
r optimising mse, given by

ropt =
1

4H2Ξ−1Σ

(
G−A∗

∞ ±
√
(G−A∗

∞)2 + 4(GA∗
∞ + sH2Ξ−1Σ)

)2
− G2

H2Ξ−1Σ
(4.27)

and for any su < s < min
(
r,

√
G2+rH2Ξ−1Σ

G+
√
G2+rH2Ξ−1Σ

r
)
, there is a unique optimal r, given by

ropt =
1

4H2Ξ−1Σ

(
G−A∗

∞ +
√
(G−A∗

∞)2 + 4(GA∗
∞ + sH2Ξ−1Σ)

)2
− G2

H2Ξ−1Σ
(4.28)

Importantly, the above lemma shows that there are infinitely many (s, r) satisfying (4.26),
r > 0, s < r and A∞ < 0, and these will all yield the minimum mean squared error P̃∞ as t → ∞,
as well as the same error variance P∞ and squared bias ν∞ (since each of these terms depend only
on A∞). However, C∞ will clearly be different, due to the dependence on the chosen r value (see
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(5.20)). As can be seen in the next lemma (and also in section 4.3), larger values of r lead to smaller
C∞. From an inference perspective, smaller C∞ indicates greater confidence in the estimator, which
can be problematic especially when C∞ is smaller than the minimum covariance achievable in the
perfect model setting. To analyse this phenomenon further, define

Ĉ∞ :=
G+

√
G2 +H2Ξ−1Σ

H2Ξ−1
(4.29)

which is the steady state covariance coinciding with the Kalman-Bucy filter (the optimal filter)
in the case of perfect knowledge, (i.e. when r = 1, s = 0, b = 0). Any choice of r for which
C∞ < Ĉ∞ should be avoided when there is model misspecification, as we cannot expect to be more
confident than when we have no misspecification. Recall that in the perfect knowledge setting,
we have that P̃∞ = Ĉ∞, in other words, the asymptotic covariance from the Kalman-Bucy filter
coincides with the mean squared error. The following lemma establishes a relationship between r, s
that ensures the specific pair satisfies C∞ = P̃∞ in the misspecified model setting where b ̸= 0.
This highlights that the non-local replicator-mutator equation, unlike the regular inflated ensemble
Kalman method, is capable of simultaneously minimise mean squared error and providing realistic
uncertainty estimates through C∞. In particular, (4.31) in the below lemma demonstrates that the
standard inflated ensemble Kalman method requires r > 1 to minimise mse. It will be demonstrated
numerically in section 4.3 that this often coincides with an under-representation of the uncertainty
(i.e. C∞(ropt

0 )

Ĉ∞
<< 1). The last claim of the below lemma takes a step towards this claim analytically,

by demonstrating that C∞(r)

Ĉ∞
→ 0 as r → ∞ whenever s = 0 (see (4.32)). The proof can be found

in section 5.9.

Lemma 4.7. Adopt the same conditions as in Lemma 4.5. Then the following holds,

1. The optimal (r, s) such that P̃∞ = C∞ satisfies (4.26) and

ropt − sopt =
(A∗

∞)2(G−A∗
∞)

−0.5A∗
∞ (H2Ξ−1Σ+ (G−A∗

∞)2) + b2H2Ξ−1
(4.30)

where A∗
∞ is given by (4.24).

2. For the case τ > 0, choosing s = 0 corresponds to

ropt
0 >

2(G2 +H2Ξ−1Σ)

H2Ξ−1Σ
> 1 (4.31)

independently of the unknown b and for any G,H ̸= 0 and Ξ,Σ > 0. Since ropt
0 > 1, this also

means that

C∞(ropt
0 )

Ĉ∞
<

1√
ropt
0

(
2|G|+

√
H2Ξ−1Σ

(G+
√
G2 +H2Ξ−1Σ)

)
(4.32)

4.3 Numerical experiments

The following experiment aims to provide further insights on the role of s, r in (3.13) with fitness
landscape ft(x, z) given by (3.5) for the misspecified model setting from the previous section (which
we repeat here for convenience). Although the analysis in the previous section has been done for
the limiting case δd → 0, here we focus on the practically relevant discrete case and show that much
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of the analysis holds for δd small enough. That is, consider a partition of the time interval [0, T ],
0 < t1 < t2 · · · < td = T with time-step ti+1 − ti = δd. Synthetic observations of the form

dZd
t

dt
= Hx∗ti(ω) + Ξ1/2dB

d
t

dt
, t ∈ [ti, ti+1) (4.33)

(as in (3.4)) are constructed, where x∗t (ω) is a solution for a realisation ω at time t of

dXt = GXtdt+ bdt+Σ1/2dWt (4.34)

with X0 ∼ N (m0, P0). The process in (4.11) describes the evolution of the actual optimal trait and
dZd

t
dt corresponds to noisy observations of it. Suppose the assumed model for the trait is instead

dXt = GXtdt+Σ1/2dWt (4.35)

(i.e. (4.11) with b = 0), so that the corresponding replicator-mutator equation takes the form

∂pt(x) = −G∇ · pt(x) +
1

2
∇ · (Σ∇pt(x)) + pt(x) (Ez∼pt [ft(x, z)]− Ex,z∼pt [ft(x, z)]) (4.36)

with ft(x, z) given by (3.5). The remainder of this section will focus on the following experimental
settings, which have been randomly generated.

Parameter System 1
(τ > 0)

System 2
(τ < 0)

G 0.5 2.5
H 8.5 2.9
Σ 0.8 18
Ξ 6.3 26
b 9.9 1.2

Note that throughout, we assume C0 = C∞ given by (5.20). The settings in System 1 and
2 correspond to the case where τ > 0 (i.e. (5.23) has one real root) and τ < 0 (i.e. (5.23) has
three real roots), respectively. Notice that in both systems, the hidden state evolves according
to unstable dynamics and the crow- Kimura replicator mutator is capable of tracking an unstable
signal as At < 0. We restrict the time domain to one where machine precision doesn’t become an
issue. We adopt δd = 10−3 and use a simulation time step of 10−4 to construct the true hidden
state as well as to discretise the mean and covariance equation (4.3) and (4.4) using forward euler.
We have the following main insights.

Verification of lemma 4.6. Figures 4.1 and 4.2 show the empirical estimate of the asymptotic
mean square error P̃∞ for different (r, s) pairs for system 1 and 2 respectively. The empirical mse
at time t, Et, was calculated as

Et =
1

Ns

Ns∑
j=1

(
mj

t − x∗t

)2
(4.37)

where x∗t is a single fixed realisation of (4.11) and mj
t is a solution of (4.5) with C0 = C∞ and the

index j referring to a single realisation of the smooth observation path Zd
t . We used a total of with

Ns = 5000. Figures 4.1 and 4.2 show that in both experiments, the analytic expressions in (4.26)
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and for the smallest optimal s value, sl as given in (4.25) matches quite closely. Notice also that in
system 1, Figure 4.1 we see that there are two optimal r values for every sl < s < 0, since 0 is the
approx value of su in this case, as also described in Lemma 4.6. Conversely, for system 2 this only
happens for 0 < r < 1.09 as sl = −0.047 is fairly close to zero, and is barely visible in the figure.
Nevertheless, for system 1 in particular it is apparent that choosing s < 0 allows to choose smaller
r values that can simultaneously reduce mean square error and provide a realistic representation of
uncertainty via C∞.

Figure 4.1: Plot of MSE for various s vs r values for System 1. The (optimal in terms of mse)
values are indicated by the red line, calculated using (4.26). Colourbar shows corresponding values
of the asymptotic MSE P̃∞. The dashed red line on the left plot shows the theoretical expression
for sl as in (4.25)

.

Figure 4.2: Plot of MSE for various s vs r values for System 2. The (optimal in terms of mse) values
are indicated by the red line, calculated using (4.26). Colourbar shows corresponding values of the
asymptotic MSE P̃∞.
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Uncertainty quantification with C∞. Recall that we may further constrain the optimal (r, s)
values by enforcing the requirement that C∞ = P̃∞. This allows us to construct a filter for which
the covariance of the estimate coincides with the actual mean squared error, as one obtains from
the regular Kalman-Bucy filter in the perfect model setting. Figure 4.4 shows the variation in
asymptotic covariance C∞ for different r values, obtained from (5.20). Notice here that in the
regular inflation case s = 0, the asymptotic covariance for the corresponding optimal ropt

0 is (C̃∞ =
0.05), which is considerably smaller than the covariance in the perfect model setting (C̃∞ = 0.31),
indicating overconfidence in the estimation. The non-local replicator mutator on the other hand
allows to obtain estimates that simultaneously minimise mse and provide a realistic representation
of uncertainty. More specifically, the choice r = 0.13 (which coincides with sopt = −1.18 gives a C∞
which coincides with the MSE, so that the covariance produced by the estimation algorithm provides
us with useful uncertainty quantification. In particular, it represents an increase in uncertainty over
the perfect knowledge case (pink line), which should be reflected given the unknown bias in the
system. Figure 4.3 also verifies the relation between r, s in (4.30) given in Lemma 4.7 (see cyan
line). This extra criterion can be used to identify a single optimal (r, s) pair (as the cyan line
intersects with the blue line at only one point, see Figure 4.3). In particular, for system 1, choosing
sopt = −1.18 can also yield a corresponding ropt = 27.9 (see left plot in Figure 4.3). This r value is
close to that of the s = 0 case (regular covariance inflation), where it was shown that one obtains
over-confident estimates. Similar conclusions can be drawn for System 2, but the optimal (r, s)
such that C∞ = P̃ opt

∞ is sopt = −0.012, ropt = 0.99, is not significantly different from the regular
inflation case where s = 0, ropt = 1.09. Similar to System 1, the other possible choice for r when
s = −0.012, r = 0.07, coincides with an overestimation of uncertainty (C∞ ≈ 210 vs P̃∞ = 18).
We leave a study of specific system characteristics that would benefit most from the non-local
replicator-mutator approach to future work.

Figure 4.3: Plot of optimal (r, s) values for System 1 (left plot) and System 2 (right plot). The
blue line indicates the (r, s) pairs minimising mse only, obtained from (4.26) and the cyan line
indicates the (r, s) pairs such that C∞ = P̃∞, obtained from (4.30). The point of intersection of
the two lines indicates the (r, s) pair that achieves both. The red square indicates the optimal r
value corresponding to the regular covariance inflation case (s = 0). The blue squares indicate the
possible r values corresponding to the optimal s in terms of both mse and C∞ = P̃∞. In System 1,
the standard inflation leads to overconfident estimates (C∞ too small), whereas in System 2, it is
not so far off from the optimal choice of s = −0.0135, r = 0.99.
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Figure 4.4: Demonstration of more realistic/representative covariances that can be obtained with
the non-local replicator mutator, i.e. with s ̸= 0. Left plot indicates system 1, right plot indicates
system 2. The red solid line indicates C∞ for r using (5.20). The blue horizontal dashed line
indicates the value of P̃ opt

∞ , the minimum mean squared error, the pink horizontal dashed line
indicates C∞ for r = 1 (i.e. Ĉ∞ as defined in (4.29) , the covariance in the perfect model case).
Finally, the black dashed line indicates C∞ for (s = 0, ropt), i.e. the regular inflation case.



5 Proofs

5.1 Proof of Lemma 2.1

Proof. We now restrict P to be the set of smooth probability density functions

P(Rd) :=
{
p ∈ C∞(Rd) :

∫
p(x)dx = 1, p ≥ 0

}
whose tangent space is given by1

TpP(Rd) =
{
σ ∈ C∞(Rd) :

∫
σ(x)dx = 0

}
We start by computing the Fréchet derivative of (2.8) at p: Set ε > 0 and q ∈ M.

F(q + εq̃)−F(q)

ε
= −

∫∫
f(x, z)

(q(x) + εq̃(x))(q(z) + εq̃(z))− q(x)q(z)

2ε
dz dx

= −1

2

∫∫
f(x, z) [q(x)q̃(z) + q(z)q̃(x) + εq̃(x)q̃(z)] dz dx.

This means that, because f is symmetric in its components,

DqF [q̃] = −
∫∫

f(x, z)q(z)q̃(x) dz dx = −
∫

πq(x)q̃(x) dx = −⟨πq, q̃⟩

which shows that

F ′(p) = −πp

(this is to be understood as a linear operator). For the dissipation mechanism, consider the Fisher-
Rao metric defined as

gFR
p (σ1, σ2) =

∫
σ1
p(x)

σ2
p(x)

dp(x) =

∫
σ1

σ2
p(x)

dx

≡
∫

σ1
σ2
p(x)

dx−
∫

σ1dx ·
∫

σ2 dx

since σ ∈ TpP satisfies
∫
σdx = 0. Its corresponding isomorphism/dual action GFR(p) : TpP → T ∗

pP
is given (by inspection) as

GFR(p)σ =
σ

p
−
∫

σdx (5.1)

The inverse mapping is given by

GFR(p)−1Φ =

(
Φ−

∫
Φ p(x)dx

)
p. (5.2)

Straightforwardly, we have

−GFR(p)−1F ′(p) =

(
πp(x)−

∫
πp(x)p(x)dx

)
p(x)

which yields the right-hand side of the replicator equation.

1Actually, if p has a non-trivial support (e.g., there is an interval on which p vanishes), then the tangent space
needs to be replaced by a tangent cone TpP(Rd) =

{
σ ∈ C∞

c (supp(p)) :
∫
σ(x)dx = 0

}
, see [MS18], but we forgo the

technical details here.
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5.2 Proof of Lemma 3.1

Proof. The result follows from a simple re-arrangement of (3.13). Throughout, we use the shorthand
notation yt :=

dZd
t

dt and recall that ∥v(x)∥2Ξ := v(x)⊤Ξ−1v(x) for vector valued functions v(x) : Rd →
Rd. Firstly,

Ez∼ρt [ft(x, z)]− Eρt [ft] =

∫ (
−r

2
∥h(x)− yt∥2Ξ + s⟨h(x)− yt, h(z)− yt⟩Ξ

)
ρt(z)dz

−
∫ ∫ (

−r

2
∥h(x)− yt∥2Ξ + s⟨h(x)− yt, h(z)− yt⟩Ξ

)
ρt(x)ρt(z)dxdz

= −r

2

(
∥h(x)− yt∥2Ξ − Eρt [∥h− yt∥2Ξ]

)
+ s⟨h(x)− yt,Eρt [h]− yt⟩Ξ − s∥Eρt [h]− yt∥2Ξ

=: I1(x) + sI2(x) + sI3(x)

For the first term, we have

I1(x) = −r

2

(
h(x)⊤Ξ−1h(x)− h(x)⊤Ξ−1yt − y⊤t Ξ

−1h(x)− Eρt [h
⊤Ξ−1h] + Eρt [h

⊤]Ξ−1yt + y⊤t Ξ
−1Eρt [h]

)
= −r

2

(
h(x)⊤Ξ−1h(x)− Eρt [h(x)

⊤Ξ−1h(x)]
)
+ r (h(x)− Eρt [h])

⊤ Ξ−1yt

For the remaining terms, we have that

I2(x) + I3(x) = ⟨h− Eρt [h],Eρt [h]− yt⟩Ξ

= −1

2
∥h− Eρt [h]∥2Ξ − 1

2
Eρt [h

⊤]Ξ−1Eρt [h] +
1

2
hTΞ−1h− 1

2
Eρt [h

TΞ−1h]

+
1

2
Eρt [h

TΞ−1h]− (h− Eρt [h])
TΞ−1yt

= −1

2
∥h− Eρt [h]∥2Ξ +

1

2

(
Eρt [h

TΞ−1h]− Eρt [h
⊤]Ξ−1Eρt [h]

)
+

1

2

(
hTΞ−1h− Eρt [h

TΞ−1h]
)
− (h− Eρt [h])

TΞ−1yt.

Combining yields

I1(x) + sI2(x) + sI3(x) = −1

2
(r − s)

(
h(x)⊤Ξ−1h(x)− Eρt [h(x)

⊤Ξ−1h(x)]
)
+ (r − s) (h(x)− Eρt [h])

⊤ Ξ−1yt

− s

2
∥h− Eρt [h]∥2Ξ +

s

2

(
Eρt [h

TΞ−1h]− Eρt [h
⊤]Ξ−1Eρt [h]

)
.

Substituting the above into (3.13) yields (3.7).

5.3 Proof of Theorem 3.1

Proof. Start with the reformulation of (3.13) as derived in Lemma 3.1, (repeating here for conve-
nience)

∂tµ
d
t (x) = L∗µd

t (x) +

(
−r

2
h(x)⊤Ξ−1h(x) + (r − s)h(x)⊤Ξ−1dZ

d
t

dt

)
µd
t (x) (5.3)

and the Stratonovich form of (3.14),

dqt = L∗qt(x)dt−
r

2
h(x)⊤Ξ−1h(x)qt(x)dt+ (r − s)qt(x)h(x)

⊤Ξ−1 ◦ dZt. (5.4)
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We proceed with the following steps. The proof below is inspired by the proof of Theorem 3.1
in [HKX02] except for the following important extensions: 1) we no longer assume h is uniformly
bounded; 2) h is no longer a scalar valued function but may be vector valued; 3) we make use of the
forward stochastic Feynman-Kac style representation formula in [Kun82] rather than the backward
formula. Existence and uniqueness of density valued solutions to the zakai equation in L2(Rm) with
g, h unbounded has been studied by a number of authors [BBH83; BKK95], building on extensive
works in the unbounded case (see e.g. the excellent summary in [BC09]).

Step 1. Use (stochastic) Feynman-Kac type formulae to obtain a probabilistic representation of
solutions to the Zakai equation and replicator-mutator equation, as given in Theorem A.1. Specifi-
cally, we make use of the formulae developed in [Kun82; Kun81] as was done in [HKX02] although
we rely on the forward rather than backward representation formulae. Recall that L∗ denotes the
adjoint operator of the generator of the diffusion process

dXt = g(Xt)dt+ σ(Xt)dWt

By expanding the adjoint operator, we may express it as

L∗µd
t (x) = −

m∑
i=1

∂

∂xi

(
gi(x)µd

t (x)
)
+

1

2

m∑
i=1

m∑
j=1

∂2

∂xi∂xj

(
(σσ⊤)ijµd

t (x)
)

= −
m∑
i=1

(
µd
t (x)

∂gi(x)

∂xi
+ gi(x)

∂µd
t (x)

∂xi

)
+

1

2

m∑
i=1

m∑
j=1

(
µd
t

∂2(σσ⊤)ij

∂xi∂xj
+ (σσ⊤)ij

∂2µd
t

∂xi∂xj

)

+
m∑
i=1

∂µd
t (x)

∂xi

m∑
j=1

∂(σσ⊤)ij

∂xj

= Gµd
t (x) +

−
m∑
i=1

∂gi(x)

∂xi
+

1

2

m∑
i=1

m∑
j=1

∂2(σσ⊤)ij

∂xi∂xj

 · µd
t (x)

where in the second line we have used that σσ⊤ is symmetric and G denotes the infinitesimal
generator of the diffusion process

dYt = (b(Yt)− g(Yt)) dt+ σ(Yt)dW
y
t (5.5)

where W y
t is a Wiener process independent of Wt, bi(x) = ∇ · (σ(x)σ(x)⊤)i and the superscript i

denotes the ith row of the matrix σσ⊤. That is,

Gµd
t (x) := −

m∑
i=1

gi(x)
∂µd

t (x)

∂xi
+

1

2

m∑
i=1

m∑
j=1

(σσ⊤)ij
∂2µd

t

∂xi∂xj
+

m∑
i=1

∂µd
t (x)

∂xi

m∑
j=1

∂(σσ⊤)ij

∂xj

This decomposition of L∗ will be used in both (5.3) and (5.4); starting with (5.4) and using (1.6)
yields,

dqt(x) = L∗qt(x)−
r

2
h(x)⊤Ξ−1h(x)qt(x) + (r − s)qt(x)h(x)

⊤Ξ−1 ◦ dZt

= Gqt(x) +

−
m∑
i=1

∂gi(x)

∂xi
+

1

2

m∑
i=1

m∑
j=1

∂2(σσ⊤)ij

∂xi∂xj
− r

2
h(x)⊤Ξ−1h(x) + (r − s)h(x)⊤Ξ−1h(x∗t )dt

 · qt(x)

+ (r − s)qt(x)h(x)
⊤Ξ−1/2 ◦ dBt
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This equation now takes the form of (1.1) in Theorem A.1 with

lik = 0

ck = (r − s)(h(x)⊤Ξ−1/2)k, k = 1, 2, . . . , n

c0 = −
m∑
i=1

∂gi(x)

∂xi
+

1

2

m∑
i=1

m∑
j=1

∂2(σσ⊤)ij

∂xi∂xj
− r

2
h(x)⊤Ξ−1h(x) + (r − s)h(x)⊤Ξ−1h(x∗t )

a = σ

bi = −gi(x) +
m∑
j=1

m∑
k=1

σik ∂σ
kj

∂xj
+

1

2
σkj ∂σ

ik

∂xj

recalling that x∗t is treated as a fixed realisation. Then by Theorem A.1, there exists another
probability space equipped with the measure Q (from here on we use the notation EQ denote the
expectation with respect to this measure) such that the solution can be represented as

qt(x) = EQ
[
f(ξt(x)) exp

(
(r − s)

∫ t

0
h(ξu(x))

⊤Ξ−1 ◦ dZu − r

2

∫ t

0
h(ξu(x))

⊤Ξ−1h(ξu(x))du+

∫ t

0
c̃(ξu(x))du

)]
where ξs(x) is a vector-valued function of x denoting the solution of an SDE in the form of (1.2) in
Theorem A.1 with b, a, l as defined above, i.e.

dξt(x) =

m∑
i=1

bi(ξt(x))dt+

m∑
j=1

m∑
i=1

σij(ξt(x)) ◦ dW j
t (5.6)

and f(x) = limt→0 qt(x) denotes the initial density and

c̃(x) := −
m∑
i=1

∂gi(x)

∂xi
+

1

2

m∑
i=1

m∑
j=1

∂2(σ(x)σ⊤(x))ij

∂xi∂xj
(5.7)

We can similarly apply Theorem A.1 to (5.3) with

ck = 0

c0 = −
m∑
i=1

∂gi(x)

∂xi
+

1

2

m∑
i=1

m∑
j=1

∂2(σσ⊤)ij

∂xi∂xj
− r

2
h(x)⊤Ξ−1h(x) + (r − s)h(x)⊤Ξ−1dZ

d
t

dt

and l, a, b as defined previously, to obtain the representation

µd
t (x) = EQ

[
f(ξt(x)) exp

(
(r − s)

∫ t

0
h(ξu(x))

⊤Ξ−1Żd
udu− r

2

∫ t

0
h(ξu(x))

⊤Ξ−1h(ξu(x))du+

∫ t

0
c̃(ξu(x))du

)]
where c̃(x) is given in (5.7) and ξs is as defined previously since lik = 0 in both cases and from
now onwards we use the shorthand notation Żd

t ≡ dZd
t

dt . Recall also that both (5.3) and (5.4) are
assumed to be initialised by the same density f(x).

Step 2. We are now ready to prove pointwise convergence using the above representation for-
mulae. Firstly, we have

µd
t (x)− qt(x) = EQ

[
f(ξt(x)) exp

(
−r

2

∫ t

0
h(ξu(x))

⊤Ξ−1h(ξu(x))du+ (r − s)

∫ t

0
h(ξu(x))

⊤Ξ−1Żd
udu+

∫ t

0
c̃(ξu(x))du

)]
− EQ

[
f(ξt(x)) exp

(
−r

2

∫ t

0
h(ξu(x))

⊤Ξ−1h(ξu(x))du+ (r − s)

∫ t

0
h(ξu(x))

⊤Ξ−1 ◦ dZu +

∫ t

0
c̃(ξu(x))du

)]
=: EQ [f(ξt(x))I2(x)I1(x;Z)]
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where

I2(x) = exp

(∫ t

0
c̃(ξs(x))−

r

2
h(ξs(x))

⊤Ξ−1h(ξs(x))ds

)
I1(x;Z) = exp

(
(r − s)

∫ t

0
h(ξs(x))

⊤Ξ−1Żd
s ds

)
− exp

(
(r − s)

∫ t

0
h(ξs(x))

⊤Ξ−1 ◦ dZs

)
=: exp(I3(x;Z))− exp(I4(x;Z))

and the Z notation is used to denote the dependence of I1 on the observation path. In the below,
let E refer to the expectation on the original space, i.e. wrt to the observation noise W . Then for
any fixed x ∈ Rm, in other words, a realisation of the initialisation which has probability density
f(x),

E
[
|µd

t (x)− qt(x)∥p
]
≤ E

[
EQ [|f(ξt(x))I2(x)I1(x;Z)|p]

]
= EQ [|f(ξt(x))I2(x)|pE [|I1(x;Z)|p]] (Fubini)

≤ C
(
EQ [|f(ξt(x))I2(x)|pr2 ]

)1/r2
·
(
EQ [(E [|I1(x;Z)|p])r1 ]

)1/r1
(Hoelder inequality)

=: CI
1/r2
5 · I1/r16

for a constant C > 0 independent of t and with 1/r1+1/r2 = 1 and r1, r2 > 1. Starting with I2, since
g(x) is assumed to be C2 and globally Lipschitz continuous and Σ is a constant, it holds that c̃(x)
as defined in (5.7) is uniformly bounded. Additionally, it holds that h(x)⊤Ξ−1h(x) > 0, ∀ x ∈ Rm

since Ξ is a positive definite matrix, so that there exists some C2 > 0 independent of t. Combining,
we have that

|I2(x)|pr2 = exp

(
pr2

∫ t

0
c̃(ξu(x))du

)
· exp

(
−pr2

r

2

∫ t

0
h(ξu(x))

⊤Ξ−1h(ξu(x))du

)
≤ exp(C1t) · C2

from which we obtain

I5 ≤ EQ [|f(ξt(x))|pr2 |I2(x)|pr2 ]
≤ C3(t)

using the fact that f is uniformly bounded. Now turning to I6, using the identity

| exp(x)− exp(y)|p ≤ (exp(x) + exp(y))p|x− y|p, x, y ∈ R
≤ C(exp(px) + exp(py))|x− y|p

along with Hoelder inequality yields

I6 ≤ CEQ [(E [(exp(pI3(x;Z)) + exp(pI4(x;Z))|I3(x;Z)− I4(x;Z)|p])r1 ]
≤ CEQ [(E [exp(pI3(x;Z))|I3(x;Z)− I4(x;Z)|p])r1 + (E [exp(pI4(x;Z)|I3(x;Z)− I4(x;Z)|p])r1 ]

≤ CEQ
[
(E [exp(r2pI3(x;Z))])r1/r2 · E[|I3(x;Z)− I4(x;Z)|pr1 ]

]
+ CEQ

[
(E [exp(r2pI4(x;Z))])r1/r2 · E[|I3(x;Z)− I4(x;Z)|pr1 ]

]
≤ C

[(
EQ[I9(x)

r1 ]
)1/r2

+
(
EQ[I8(x)

r1 ]
)1/r2](

EQ[I7(x)
r1 ]
)1/r1
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with

I7(x) := E[|I3(x;Z)− I4(x;Z)|pr1 ], I8(x) := E [exp(r2pI4(x;Z))] , I9(x) := E [exp(r2pI3(x;Z))]

Step 3. The remainder of the proof will focus on showing that the terms involving I8 and I9 can be
bounded by constants (depending on t only). The term involving I7 will the be shown to go to zero
as d → ∞, yielding the desired convergence result. Starting with I8(x) and using the shorthand
notation pr := p(r − s),

E [exp(r2prI4(x;Z))] = E
[
exp

(
r2pr

∫ t

0
h(ξu(x))

⊤Ξ−1 ◦ dZu

)]
= E

[
exp

(
r2pr

∫ t

0
h(ξu(x))

⊤Ξ−1h(x∗u)du+ r2pr

∫ t

0
h(ξu(x))

⊤Ξ−1/2dBu

)]
≤
(
E
[
exp

(
r1r2pr

∫ t

0
h(ξu(x))

⊤Ξ−1h(x∗u)du

)])1/r1

·
(
E
[
exp

(
r22pr

∫ t

0
h(ξu(x))

⊤Ξ−1/2dBu

)])1/r2

≤
(
E
[
exp

(
r1r2pr

∫ t

0
h(ξu(x))

⊤Ξ−1h(x∗u)du

)])1/r1

·

(
n∏

k=1

E
[
exp

(
nr22pr

∫ t

0
(h(ξu(x))

⊤Ξ−1/2)kdBk
u

)])1/(r2n)

≤
(
E
[
exp

(
r1r2pr

∫ t

0
h(ξu(x))

⊤Ξ−1h(x∗u)du

)])1/r1

·

(
exp

(
nr22pr
2

n∑
k=1

∫ t

0
((h(ξu(x))

⊤Ξ−1/2)k)2du

))1/(r2n)

=

(
E
[
exp

(
r1r2pr

∫ t

0
h(ξu(x))

⊤Ξ−1h(x∗u)du

)])1/r1

·
(
exp

(
nr22pr
2

∫ t

0
h(ξu(x))

⊤Ξ−1h(ξu(x))du

))1/(r2n)

(5.8)

where in the last line, we have used Lemma (A.1) and the fact that ξs is defined on a different
probability space to the signal process. Then we have

(
EQ[I8(x)

r1 ]
)1/r2

≤
(
EQ
[
E
[
exp

(
r1r2pr

∫ t

0
h(ξu(x))

⊤Ξ−1h(x∗u)du

)]
· exp

(
r1r2pr

2

∫ t

0
h(ξu(x))

⊤Ξ−1h(ξu(x))du

)])1/r2

=

(
EQ
[
exp

(
r1r2pr

∫ t

0
h(ξu(x))

⊤Ξ−1h(x∗u)du

)
· exp

(
r1r2p

2

∫ t

0
h(ξu(x))

⊤Ξ−1h(ξu(x))du

)])1/r2

=

(
EQ
[
exp

(
r1r2pr

∫ t

0
h(ξu(x))

⊤Ξ−1

(
h(x∗u) +

1

2
h(ξu(x))

)
du

)])1/r2

=: I10(x)
1/r2

since the expectation E is with respect to the observation noise and x∗s is taken as a fixed realisation.
To proceed further, we will make use of Lemma A.4 which allows us to bound exponential

moments of a non-decreasing process by its raw moments. Generally, it is not possible to bound
exponential moments in terms of polynomial moments, as the exponential term grows faster. The
crucial point of this lemma is in a careful specification of the factor in the exponential (c.f. L in
Lemma A.4) which acts to “dampen” the growth relative to the growth of the raw moments. We
have using the shorthand notation L̃ := r1r2pr

2 ,

I10(x) ≤ EQ
[
exp

(
L̃

∫ t

0
h̃u(ξu(x))

⊤Ξ−1h̃u(ξu(x))du

)]
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where h̃u(y) := h(y) + h(x∗u). Furthermore,

h̃u(x)
⊤Ξ−1h̃u(x) = |Ξ−1/2h̃u(x)|2 ≤ λ2

Ξ|h̃u(x)|2, ∀ x ∈ Rm,

where λΞ is the smallest eigenvalue of Ξ1/2. Combining, we have letting L = L̃λ2
Ξ,

I10(x) ≤ EQ
[
exp

(
L

∫ t

0
|h̃u(ξu(x))|2du

)]
Let Yt(x) :=

∫ t
0 |h̃u(ξu(x))|

2du. Clearly this is a non-decreasing (and adapted) process, so that we
may apply lemma A.4. In particular,

EQ[Yt(x)− Yτ (x)] =

∫ t

τ
EQ
[
|h̃u(ξu(x))|2

]
du ≤ tC(1 + EQ[|x|2]) =: K(t), ∀ τ ∈ [0, t)

where C is a constant depending on the growth properties of h and for the last inequality, we have
used that since g, h satisfy lipschitz and linear growth assumptions,

EQ[|h̃u(ξu(x))|2] ≤ C(1 + EQ[|ξu(x)|2]) ≤ C(1 + EQ[|x|2])

Therefore by Lemma A.4, whenever

r1r2(r − s)pλ2
Ξ

2
<

1

K(t)
(5.9)

where K(t) is a constant depending on time, the second moment of the initial density f(x) and the
linear growth constant of h, we have

I10(x) ≤ EQ
[
exp

(
L

∫ t

0
|h̃s(ξs(x))|2ds

)]
<

1

1− LK(t)
.

Notice that condition (5.9) can be satisfied whenver r, s are chosen such that (r − s) is small
enough. As will be seen in Section 4.2, this is at least possible in the linear-Gaussian setting whilst
maintaining optimality (in the mean squared error sense) even in the case of a misspecified model.
Finally, we have (

EQ[I8(x)
r1 ]
)1/r2

≤ (1− LK(t))
− 1

r2

The term involving I9(x) can be analysed in much the same way as for I8(x), with the only
difference being that the stochastic integral. In particular, we have letting j refer to the index such
that t ∈ (tj , tj+1],

E [exp(r2prI3(x;Z))] = E
[
exp

(
r2pr

∫ t

0
h(ξu(x))

⊤Ξ−1Żd
udu

)]

≤
(
E
[
exp

(
r1r2pr

∫ t

0
h(ξu(x))

⊤Ξ−1h(x∗u)du

)])1/r1

·

(
n∏

k=1

E
[
exp

(
nr22pr

∫ t

0
(h(ξu(x))

⊤Ξ−1/2)kḂk
udu

)])1/(r2n)

.
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where with a slight abuse of notation, we let Ḃt ≡ Ḃd
t and Ḃk

t denotes the kth component of Ḃt.
Furthermore,

E
[
exp

(
nr22pr

∫ t

0
(h(ξu(x))

⊤Ξ−1/2)kḂk
τ dτ

)]
= E

[
exp

(
nr22pr

j∑
i=1

1

δd

∫ ti

ti−1

(∫ ti

ti−1

(h(ξu(x))
⊤Ξ−1/2)kdu

)
dBk

τ + nr22pr

∫ t

tj

(h(ξs(x))
⊤Ξ−1/2)kḂk

τ dτ

)]

=

j∏
i=1

E

[
exp

(
nr22pr

1

δd

(∫ ti

ti−1

(h(ξu(x))
⊤Ξ−1/2)kdu

)∫ ti

ti−1

dBk
τ

)]
E

[
exp

(
nr22pr

(∫ t

tj

(h(ξu(x))
⊤Ξ−1/2)kdu

)∫ tj+1

tj

dBk
τ

)]

≤
j∏

i=1

exp

(
nr22pr
2

∫ ti

ti−1

(h(ξu(x))
⊤Ξ−1/2)kdu

)
· exp

(
nr22pr
2

∫ t

tj

(h(ξu(x))
⊤Ξ−1/2)kdu

)

= exp

(
nr22pr
2

∫ t

0
(h(ξu(x))

⊤Ξ−1/2)kdu

)
≤ exp

(
nr22pr
2

∫ t

0
|(h(ξu(x))⊤Ξ−1/2)k|2du

)
≤ exp

(
nr22pr
2

∫ t

0
|(h(ξu(x))⊤Ξ−1/2)k|2du

)
where the second equality holds due to independence of brownian increments and in the first in-
equality holds due to lemma A.1. Combining this result with the same calculations as for I8 yields
an upper bound on I9 which is identical to (5.8). Therefore, following the same reasoning as in for
I8, we have (

EQ[I9(x)
r1 ]
)1/r2

≤ (1− LK(t))
− 1

r2

Finally, for I7, first note that for t ∈ [tj , tj+1),∫ t

0
h(ξu(x))

⊤Ξ−1Żd
udu =

j∑
i=1

∫ ti

ti−1

h(ξu(x))
⊤Ξ−1

(
h(x∗ti−1

) +
1

δd
Ξ1/2(Bti −Bti−1)

)
du

+

∫ t

tj

h(ξu(x))
⊤Ξ−1

(
h(x∗tj ) +

1

δd
Ξ1/2(Btj+1 −Btj )

)
du

similarly,∫ t

0
h(ξu(x))

⊤Ξ−1 ◦ dZu =

∫ t

0
h(ξu(x))

⊤Ξ−1dZu

=

j∑
i=1

∫ ti

ti−1

h(ξu(x))
⊤Ξ−1(h(x∗u)du+ Ξ1/2dBu) +

∫ t

tj

h(ξu(x))
⊤Ξ−1(h(x∗u)du+ Ξ1/2dBu)

Then

|I3 − I4|pr1 ≤ |2(r − s)|pr1
(∣∣∣∣∣

j∑
i=1

∫ ti

ti−1

h(ξu(x))
⊤Ξ−1(h(x∗ti−1

)− h(x∗u))du+

∫ t

tj

h(ξu(x))
⊤Ξ−1(h(x∗tj )− h(x∗u))du

∣∣∣∣∣
pr1

+

∣∣∣∣∫ t

0
h(ξu(x))

⊤Ξ−1/2Ḃd
udu−

∫ t

0
h(ξu(x))

⊤Ξ−1/2dBu

∣∣∣∣pr21
)

=: |2(r − s)|pr1 (I11 + I12)
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As we are required to upper bound E[|I3−I4|pr1 ], we obtain the following bound for E[I12] following
the same reasoning as in pg 41 of [HKX02] (bound on IΠ5 (x) in their proof),

E[I12] = E

[∣∣∣∣∣
n∑

k=1

∫ t

0
(h(ξu(x))

⊤Ξ−1/2)kḂk
udu−

∫ t

0
(h(ξu(x))

⊤Ξ−1/2)kdBk
u

∣∣∣∣∣
pr1]

≤ npr1

n∑
k=1

E
[∣∣∣∣∫ t

0
(h(ξu(x))

⊤Ξ−1/2)kḂk
udu−

∫ t

0
(h(ξu(x))

⊤Ξ−1/2)kdBk
u

∣∣∣∣pr1]

≤ C
1

δd

j∑
i=1

∫ ti

ti−1

∫ ti

ti−1

E[|(h(ξu(x)⊤Ξ−1/2)k − (h(ξτ (x))
⊤Ξ−1/2)k|pr1 ]dτdu

+ Cδ
pr1
2

−1

d

∫ t

tj

E[|(h(ξτ (x))⊤Ξ−1/2)k|pr1 ]dτ

where C is a constant depending on n. It is worthwhile clarifing that classical Wong-Zakai/piecewise
smooth convergence results are focused on stochastic integrals of the form |

∫
h(Xs)◦dBs−

∫
h(Xd

s )Ḃ
d
sds|

where the integrand Xd
s is dependent on Bd

s . As the coefficient here h(ξs(x) evolves independently
of B, we can resort to simpler convergence tools than used in e.g. [Pat24]. Starting with the second
term, we have under the assumptions on b, g, h using lemma A.3,

E[|(h(ξτ (x))⊤Ξ−1/2)k|pr1 ] ≤ E[|(h(ξτ (x))⊤Ξ−1/2)k − (h(x)⊤Ξ−1/2)k|pr1 ] + E[|(h(x)⊤Ξ−1/2)k|pr1 ]
≤ C(x)|τ |pr1/2 + C(x)

so that

Cδ
pr1
2

−1

d

∫ t

tj

E[|(h(ξτ (x))⊤Ξ−1/2)k|pr1 ]dτ ≤ Cδ
pr1
2

−1

d C(x)

∫ t

tj

(|τ |pr1/2 + 1)dτ

≤ Cδ
pr1
2

−1

d C(x)(δ
pr1/2+1
d + δd)

≤ C(x)δ
pr1/2
d

Then for the first term on the rhs of the inequality, making use of lemma A.3 and that h is lipschitz
continuous and at most linear growth, we have

C
1

δd

j∑
i=1

∫ ti

ti−1

∫ ti

ti−1

E[|(h(ξu(x)⊤Ξ−1/2)k − (h(ξτ (x))
⊤Ξ−1/2)k|pr1 ]dτdu

≤ C(x)
1

δd

j∑
i=1

∫ ti

ti−1

∫ ti

ti−1

|τ − u|pr1/2dτdu

=≤ C(x)
1

δd

j∑
i=1

δpr1/2
∫ ti

ti−1

∫ ti

ti−1

dτdu

≤ C(x)
1

δd

j∑
i=1

δpr1/2+2

= C(x)
1

δd

tj
δd
δpr1/2+2 = C(x)δ

pr1/2
d

Combining the two yields

E[I12(x)] ≤ C(x)δ
pr1/2
d
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Finally, for I11(x) we have using the notation ⌊x∗t ⌋ = x∗ti , t ∈ [ti−1, ti] and Lemma A.3 and the
linear growth assumption on h,

E[I11(x)] = E

[∣∣∣∣∣
∫ tj

0
h(ξs(x))

⊤Ξ−1(h(⌊x∗u⌋)− h(x∗u))du+

∫ t

tj

h(ξu(x))
⊤Ξ−1(h(x∗tj )− h(x∗u))du

∣∣∣∣∣
pr1]

≤ C

∫ tj

0
E
[∣∣∣h(ξu(x))⊤Ξ−1(h(⌊x∗u⌋)− h(x∗u))

∣∣∣pr1] du+ C

∫ t

tj

E
[∣∣∣h(ξu(x))⊤Ξ−1(h(x∗tj )− h(x∗u))

∣∣∣pr1] du
≤ npr1C(1 + Ch(x))

j∑
i=1

∫ ti

ti−1

E
[∣∣∣h(x∗ti−1

)− h(x∗u)
∣∣∣pr1] du+

∫ t

tj

E
[∣∣∣h(x∗tj )− h(x∗u)

∣∣∣pr1] du
≤ npr1C(1 + Ch(x))

j+1∑
i=1

∫ ti

ti−1

δ
pr1/2
d du

≤ npr1C(1 + Ch(x))
tj+1

δd
δ
pr1/2+1
d

≤ npr1C(t)(1 + Ch(x))δ
pr1/2
d

We are now ready to bound the remaining term involving I7, i.e.(
EQ[I7(x)

r1 ]
)1/r1

≤ (2(r − s))p
(
EQ[(E[I11(x)] + E[I12(x)])r1 ]

)1/r1
≤ C(r − s)p

(
EQ[C(x)r1 ]δ

pr21/2
d

)1/r1
≤ C(r − s)pδ

pr1/2
d

under the assumption of finite p > 1 moments of the initial density f(x). Choosing r1 > 1 large
enough for a given p gives us the required decay as δd → 0.

5.4 Proof of Lemma 4.1

Proof. Here we focus on the proof of the fully scalar case for clarity, although the calculations
extend similarly to the multivariate setting with extra matrix algebra. Starting with the proof of
the second claim, notice that (4.8) in the scalar case takes the form

dX̄t = µt(x)dt+Σ1/2dWt + σtdW̄t

with

σt =
√
r − sHCtΞ

−1/2;

µt(x) = Gx− s

2
H2CtΞ

−1(x−mt) + (r − s)HCtΞ
−1

(
dZd

t

dt
−Hx

)
The (conditional) forward Kolmgorov equation is then given by

∂tρt(x) = −∂x(ρt(x)µt(x)) +
1

2
(σ2

t +Σ)∂xxρt(x) (5.10)

= −µt(x)∂xρt(x)− ρt(x)∂xµt(x) +
1

2
(σ2

t +Σ)∂xxρt(x) (5.11)
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and once again, we know that ρt(x) = N (x;mt, Ct). First define

L∗ρt(x) := Gx
1

Ct
(x−mt)ρt(x)− ρt(x)g(x) +

1

2
Σ

(
− 1

Ct
+

1

C2
t

(x−mt)
2

)
ρt(x)

and using Gaussianity, we have

∂xµt(x) = G− s

2
H2CtΞ

−1 − (r − s)H2CtΞ
−1

∂xρt(x) = − 1

Ct
(x−mt)ρt(x)

∂xxρt(x) = − 1

Ct
ρt(x) +

1

C2
t

(x−mt)
2ρt(x)

Substituting the above expressions into (5.14) yields

∂tρt(x) =

(
Gx− s

2
H2CtΞ

−1(x−mt) + (r − s)HCtΞ
−1

(
dZd

t

dt
−Hx

))
1

Ct
(x−mt)ρt(x)

−
(
G− s

2
H2CtΞ

−1 − (r − s)H2CtΞ
−1
)
ρt(x)

+
1

2

(
(r − s)H2C2

t Ξ
−1 +Σ

)(
− 1

Ct
ρt(x) +

1

C2
t

(x−mt)
2ρt(x)

)
= L∗ρt(x) +

(
−s

2
H2CtΞ

−1(x−mt) + (r − s)HCtΞ
−1

(
dZd

t

dt
−Hx

))
1

Ct
(x−mt)ρt(x)

+
(s
2
H2CtΞ

−1 + (r − s)H2CtΞ
−1
)
ρt(x)

+
1

2

(
(r − s)H2C2

t Ξ
−1
)(

− 1

Ct
ρt(x) +

1

C2
t

(x−mt)
2ρt(x)

)
= L∗ρt(x) + (r − s)(Hx−Hmt)Ξ

−1dZ
d
t

dt
ρt(x)

+
(r
2
H2CtΞ

−1 +
(r
2
− s
)
H2Ξ−1(x−mt)

2 − (r − s)H2Ξ−1x(x−mt)
)
pt(x) (5.12)

Also, (4.2) can be simplified to obtain

∂tpt(x) = L∗pt(x) + (r − s)(Hx−Hmt)Ξ
−1dZ

d
t

dt
pt(x)+

+

(
−(r − s)

1

2
((Hx)2 − Ept [(Hx)2])− s

2

(
(Hx−Hmt)

2 −H2Ct

))
Ξ−1pt(x)

Then using

x2 − Ept [x
2] = −(x−mt)

2 + 2x(x−mt)− Ct (5.13)

we obtain

− (r − s)
1

2
((Hx)2 − Ept [(Hx)2])− s

2

(
(Hx−Hmt)

2 −H2Ct

)
=

r

2
H2CtΞ

−1 +
(r
2
− s
)
H2Ξ−1(x−mt)

2 − (r − s)H2Ξ−1x(x−mt)

Therefore, (4.2) is formally equivalent to (5.12), as desired.

34



The proof of the first claim follows from a very similar line of reasoning, nevertheless, we present
the calculations here for completeness. Starting from (4.6), which in the scalar case takes the form

dX̄t = µt(x)dt+Σ1/2dWt + σtdW̄t + σz
t dZt

with

σt =
√
r − sCtH

⊤Ξ−1/2;

µt(x) = Gx− s

2
CtH

⊤Ξ−1H(x−mt)− (r − s)CtH
⊤Ξ−1Hx

σz
t = (r − s)CtH

⊤Ξ−1

The (observation conditioned) forward Kolmogorov equation (see e.g. [PRS21]) is then given by

dρt(x) = −∂x(ρt(x)µt(x))dt+
1

2
(σtσ

⊤
t +Σ)∂xxρt(x)dt− ∂x(ρt(x)σ

z
t )dZt

= −(∂xρ(x))µt(x)dt− ρt(x)∂xµt(x)dt− (∂xρt(x)) · σz
t dZt +

1

2
(σ2

t +Σ)∂xxρt(x) (5.14)

It is well known that ρt(x) = N (x;mt, Ct) when µt(x) is linear and ρ0 is also Gaussian (c.f. ensemble
Kalman-Bucy filter). Making use of Gaussianity of ρt(x), we have

∂xµt(x) = tr(G− s

2
CtH

⊤Ξ−1H − (r − s)CtH
⊤Ξ−1H)

∂xρt(x) = −C−1
t (x−mt)ρt(x)

∂xxρt(x) = −tr(C−1
t )ρt(x) + (x−mt)

⊤C−1
t C−1

t (x−mt)ρt(x)

and define

L∗ρt(x) := (x−mt)C
−1
t Gxρt(x)− tr(G)ρt(x) +

1

2
Σ
(
−tr(C−1

t )ρt(x) + (x−mt)
⊤C−1

t C−1
t (x−mt)

)
ρt(x)

substituting the derivative expressions into (5.14) yields

dρt(x) = (x−mt)
⊤C−1

t

(
Gx− s

2
CtH

⊤Ξ−1H(x−mt)− (r − s)CtH
⊤Ξ−1Hx

)
ρt(x)dt

+
1

2

(
(r − s)CtH

⊤Ξ−1HCt +Σ
)(

−tr(C−1
t ) + (x−mt)

⊤C−1
t C−1

t (x−mt)
)
ρt(x)dt

= L∗ρt(x)dt+ (x−mt)
⊤C−1

t

(
−s

2
CtH

⊤Ξ−1H(x−mt)− (r − s)CtH
⊤Ξ−1Hx

)
ρt(x)dt

+
(
tr(

s

2
CtH

⊤Ξ−1H + (r − s)CtH
⊤Ξ−1H)

)
ρt(x)dt+ (r − s)(x−mt)

⊤H⊤Ξ−1dZt

+
1

2

(
(r − s)CtH

⊤Ξ−1HCt

)(
−tr(C−1

t ) + (x−mt)
⊤C−1

t C−1
t (x−mt)

)
ρt(x)dt

= L∗ρt(x)dt+ (r − s)ρt(x)(x−mt)
⊤H⊤Ξ−1dZt − (r − s)(x−mt)

⊤H⊤Ξ−1Hxρt(x)dt

+ (x−mt)
⊤C−1

t

(
−s

2
CtH

⊤Ξ−1H(x−mt)
)
ρt(x)dt+

(
r − s

2

)(
CtH

⊤Ξ−1H
)
ρt(x)dt

+
1

2

(
(r − s)CtH

⊤Ξ−1HCt

)(
−(C−1

t ) + (x−mt)
⊤C−1

t C−1
t (x−mt)

)
ρt(x)dt

= L∗ρt(x)dt+ (r − s)ρt(x)(x−mt)
⊤H⊤Ξ−1dZt − (r − s)(x−mt)

⊤H⊤Ξ−1Hxρt(x)dt

+
(
r − s

2

)
(x−mt)

⊤H⊤Ξ−1H(x−mt)ρt(x)dt+
r

2
CtH

⊤Ξ−1Hρt(x)dt

= L∗ρt(x)dt+ (r − s)ρt(x)(x−mt)
⊤H⊤Ξ−1dZt

−
(
(r − s)

2
((Hx)2 − Eρt [(Hx)2])Ξ−1 − s

2
CtH

2Ξ−1 +
r

2
(Hx−Hmt)

2Ξ−1

)
ρt(x)dt
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where in the last line we have used the identity (5.13). Also, (4.1) can be re-written in the form

dpt(x) = L∗pt(x)dt + (r − s)pt(x)(Hx−Hmt)
⊤Ξ−1dZt

−
(
(r − s)(Hx−Hmt)

⊤Ξ−1Hmtdt+
s

2
(Hx−Hmt)

2Ξ−1 − s

2
CtH

2Ξ−1
)
pt(x)dt

Then using once again using (5.13) we obtain

−
(
(r − s)

2
((Hx)2 − Eρt [(Hx)2])Ξ−1 − s

2
CtH

2Ξ−1 +
r

2
(Hx−Hmt)

2Ξ−1

)
= −

(
(r − s)(Hx−Hmt)

⊤Ξ−1Hmtdt+
s

2
(Hx−Hmt)

2Ξ−1 − s

2
CtH

2Ξ−1
)

so that the first claim holds.

5.5 Proof of Lemma 4.3

Proof. Starting with (4.10), by similar reasoning as in Lemma 4.1, we have that the conditional
forward Kolmogorov has as solution ρt(x) = N (mt, Ct) and is given by

∂tρt(x) = L∗ρt(x)−∇ ·
(
ρt(Ct + ϵT )HTΞ−1

[
dZδ

t

dt
−H

(
X̄t +mt

2

)])
Starting with the second term on the rhs of the above equation, using the shorthand notation

B := (Ct + ϵT )H⊤Ξ−1, v :=
dZδ

t

dt
−H

(
X̄t +mt

2

)

−∇ · (ρt(x)Bv =− ρt(x)∇ · (Bv)− (∇ρt(x)) ·Bv

= −ρt(x)∇ · (Bv) + C−1
t (x−mt) · (Ct + ϵT )HTΞ−1

(
dZδ

t

dt
− 1

2
H(x+mt)

)
ρt(x)

= −ρt(x)∇ · (Bv) + (C−1
t (x−mt))

T (Ct + ϵT )HTΞ−1

(
dZδ

t

dt
− 1

2
H(x+mt)

)
ρt(x)

= −ρt(x)∇ · (Bv) + (x−mt)
TC−1

t (Ct + ϵT )HTΞ−1

(
dZδ

t

dt
− 1

2
H(x+mt)

)
ρt(x)

=
1

2
Tr((Ct + ϵT )HTΞ−1H)ρt(x) + (x−mt)

TC−1
t (Ct + ϵT )HTΞ−1

(
dZδ

t

dt
− 1

2
H(x+mt)

)
ρt(x)

=
1

2
Tr(CtH

TΞ−1H)ρt(x) + (x−mt)
THTΞ−1

(
dZδ

t

dt
− 1

2
H(x+mt)

)
ρt(x)

+
ϵ

2
Tr(THTΞ−1H)ρt(x) + ϵ(x−mt)

TC−1
t THTΞ−1

(
dZδ

t

dt
− 1

2
H(x+mt)

)
ρt(x)

= −1

2
xTHTΞ−1Hx+

1

2
Eρt

[
(xH)TΞ−1Hx

]
+ (x−mt)

THTΞ−1dZ
δ
t

dt

+
ϵ

2
Tr(THTΞ−1H)ρt(x) + ϵ(x−mt)

TC−1
t THTΞ−1

(
dZδ

t

dt
− 1

2
H(x+mt)

)
ρt(x)

where in the last line we have used the cyclic property of the trace,

Tr(CtH
⊤Ξ−1H) = Eρt

[
(xH)TΞ−1Hx

]
−m⊤

t H
⊤Ξ−1Hmt
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Recall the quadratic replicator-mutator with r, s = 0 is given by

∂tpt(x) = L∗pt(x) + r

(
−1

2

(
x⊤H⊤Ξ−1Hx− Ept

[
x⊤H⊤Ξ−1Hx

])
+ (Hx−Hmt)

⊤ Ξ−1dZ
d
t

dt

)
pt(x)

=: L∗pt(x) +Mrpt(x)

Returning to the forward Kolmogorov equation, we have

∂tρt(x) = L∗ρt(x) +M1ρt(x) +
ϵ

2
Tr(THTΞ−1H)ρt(x) + ϵ(x−mt)

TC−1
t THTΞ−1

(
dZδ

t

dt
− 1

2
H(x+mt)

)
ρt(x)

that is, the rhs coincides with the rhs of the replicator-mutator plus two extra terms. For the special
case T = Ct, we have

−∇ · (ρt(x)Bv = −1

2
xTHTΞ−1Hx+

1

2
Eρt

[
(xH)TΞ−1Hx

]
+ (x−mt)

THTΞ−1dZ
δ
t

dt

+
ϵ

2

(
Eρt

[
(xH)TΞ−1Hx

]
−mT

t H
TΞ−1Hmt

)
ρt(x) + ϵ(x−mt)

THTΞ−1

(
dZδ

t

dt
− 1

2
H(x+mt)

)
ρt(x)

= (1 + ϵ)

(
−1

2
xTHTΞ−1Hx+

1

2
Eρt

[
(xH)TΞ−1Hx

]
+ (x−mt)

THTΞ−1dZ
δ
t

dt

)
ρt(x)

= M1+ϵρt(x)

that is, for the special case T = Ct, the forward Kolmogorov equation for (4.10) is given by

∂tρt(x) = L∗ρt(x) +M1+ϵρt(x)

proving the claim for (4.10). The proof for (4.9) follows from a similar line of reasoning and is
therefore omitted.

5.6 Proof of Lemma 4.4

Proof. First recall the evolution equation for the mean of the linear-Gaussian replicator-mutator
equation in the limit δd → 0,

dmt = Gmtdt− (r − s)Kt(Hmtdt− dZt)

Then

dεt = dmt − dX∗
t

= Gmtdt− (r − s)Kt(Hmtdt− dZt)−GX∗
t dt− bdt+Σ1/2dWt

= Gmtdt− (r − s)Kt(Hmtdt−HX∗
t dt+ Ξ1/2dBt)−GX∗

t dt− bdt+Σ1/2dWt

= Gεtdt− bdt+Σ1/2dWt − (r − s)KtHεtdt+ (r − s)KtΞ
1/2dBt

= (G− (r − s)KtH)εtdt− bdt+Σ1/2dWt + (r − s)KtΞ
1/2dBt (5.15)

and

dE[εt] = (G− (r − s)KtH)E[εt]dt− bdt (5.16)
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from which we obtain

dE[εt]E[ε⊤t ] = E[εt]dE[ε⊤t ] + dE[εt]E[ε⊤t ]
= E[εt]E[ε⊤t ](G− (r − s)KtH)⊤dt+ (G− (r − s)KtH)E[εt]E[ε⊤t ]dt− E[εt]b⊤dt− bE[ε⊤t ]dt

Since P̃t = E[εtε⊤t ] and using Ito formula, we have

dP̃t = E[εt(dεt)⊤] + E[(dεt)ε⊤t ] + E[dεt(dεt)⊤]
= E[εtε⊤t (G− (r − s)KtH)⊤dt− εtb

⊤dt] + E[(G− (r − s)KtH)εtε
⊤
t dt− bε⊤t dt] + Σdt+ (r − s)2KtΞK

⊤
t dt

= P̃t(G− (r − s)KtH)⊤dt+ (G− (r − s)KtH)P̃tdt− E[εt]b⊤dt− bE[ε⊤t ]dt+Σdt+ (r − s)2KtΞK
⊤
t dt

which yields (4.15). Using, Pt = P̃t −E[εt]E[ε⊤t ] and combining the above expressions yields (4.14).
For the second claim, consider that when s = 0, we have

dPt = (G− rKtH)Ptdt+ Pt(G− rKtH)⊤dt+Σdt+ r2KtΞK
⊤
t dt

whose solution at any given time t is formally equivalent to Ct (whose time evolution is given by
4.4) if P0 = C0 and r = 1, since KtΞK

⊤
t = KtHCt. Notice that due to the r2KtΞK

⊤
t rather than

rKtΞK
⊤
t term, this equivalence only holds when r = 1 in addition to s = 0.

Finally, for (4.16), since Tr(P̃t) = Et, we start with

dTr(P̃t)

dt
= 2Tr(A⊤

t P̃t)− 2Tr(E[εt]b⊤) + Tr(Σ) + (r − s)2Tr(KtΞK
⊤
t )

where At(r, s) := G − (r − s)KtH. Note that by the cyclic property of the trace and using
Tr(AB⊤B) ≤ λmax(A)∥B∥F for any A p.d.,

Tr(KtΞK
⊤
t ) ≤ λmax(H

⊤Ξ−1H)∥Ct∥F

if Ξ−1/2H is an invertible matrix. For the remainder of the proof, we drop the (r, s) in At(r, s).
Also,

Tr(A⊤
t P̃t) ≤ ∥A⊤

t ∥F ∥P̃t∥F ≤ ∥A⊤
t ∥FTr(P̃t)

Note also that we have an explicit solution for E[εt], since starting from (5.15),

dE[εt] = (G− (r − s)KtH)E[εt]dt− bdt (5.17)

E[εt] = exp

(∫ t

0
Au du

)
E[ε0]−

∫ t

0
exp

(∫ t

u
Av dv

)
bdu (5.18)

combining all yields (4.16).

5.7 Proof of Lemma 4.5

Proof. When C0 = C∞ we have that Kt = K∞ = C∞H⊤Ξ−1 for all t ≥ 0. Using the evolution
equation for the mean error (5.16), we obtain the explicit solution for E[εt], using the shorthand
notation A∞(r, s) = G− (r − s)K∞H,

E[εt] = exp(tA∞(s, r))E[ε0] +A−1
∞ (s, r)[I − exp (tA∞(s, r))]b (5.19)
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When A∞(r, s) < 0, it holds that t → ∞, E[εt] → −A∞(r, s)−1b, from which we obtain (4.18).
For the scalar case, (4.17) is explicitly solvable with

C∞ =
G+

√
G2 + rH2Ξ−1Σ

rH2Ξ−1
(5.20)

and

A∞(s, r) = G− (r − s)

r

(
G+

√
G2 + rH2Ξ−1Σ

)
(5.21)

=
s

r
G− (r − s)

r

√
G2 + rH2Ξ−1Σ

Notice that A∞(s, r) is a weighted linear combination G and A∞(0, r) = −
√
G2 + rH2Ξ−1Σ, i.e.

A∞(s, r) =
s

r
G+

(r − s)

r
A∞(0, r)

where from now onwards we use the shorthand notation A∞(0) := A∞(s = 0, r). Then returning
to (4.15), we have

dP̃t

dt
= 2A∞(r, s)P̃t + Bt

where

Bt := Σ + (r − s)2(K∞)2Ξ− 2E[εt]b

which has explicit solution

P̃t = exp (t2A∞(r, s)) P̃0 +

∫ t

0
exp ((t− u)2A∞(r, s)) Bu du

= exp (t2A∞(r, s)) P̃0 + (Σ + (r − s)2K2
∞Ξ)

∫ t

0
exp ((t− u)2A∞(r, s)) du− 2b

∫
exp ((t− u)2A∞(r, s))E[εu]du

to simplify further, we need to evaluate (dropping dependence on r, s in A∞(r, s)),∫
exp ((t− u)2A∞)E[εu]du =

∫ t

0
exp((t− u)2A∞

[
exp(uA∞)E[ε0] +A−1

∞ [I − exp (uA∞)]b
]
du

= exp(2tA∞)

∫ t

0
exp(−uA∞)(E[ε0]−A−1

∞ b) +A−1
∞ b exp(−2uA∞)du

= exp(2tA∞)

(
−(E[ε0]−A−1

∞ b)A−1
∞ (exp(−tA∞)− 1)− 1

2
A−2

∞ b(exp(−t2A∞)− 1)

)
= A−2

∞ b

(
exp(tA∞)− exp(2tA∞)− 1

2
+

1

2
exp(t2A∞)

)
= A−2

∞ b

(
exp(tA∞)− 1

2
exp(2tA∞)− 1

2

)
= −1

2
A−2

∞ b (1− exp(tA∞))2

where in the last line we set E[ε0] = 0 for simplicity. Returning to the explicit solution for P̃t,

P̃t = exp (t2A∞) P̃0 −
1

2
(Σ + (r − s)2K2

∞Ξ)A−1
∞ (I − exp(2tA∞)) +A−2

∞ b2(1− exp(tA∞))2 (5.22)

from which (4.19) follows immediately whenever A∞ < 0 and using (r − s)K∞ = G−A∞
H .
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5.8 Proof of Lemma 4.6

Proof. In the below we drop the (s, r) dependency in A∞(s, r) where there is no ambiguity. Recall
also that in the scalar case Et = P̃t, and we will use the notation P̃∞ in the below to refer to the
asymptotic mse. Since we require A∞ < 0 to ensure the existence of P̃∞, any choice of s must
satisfy

s

r
G− (r − s)

r

√
G2 + rH2Ξ−1Σ < 0

from which the upper bound in (4.25) immediately follows (along with the requirement that s < r).
Before characterising the lower bound, we obtain an expression for the optimal s for any given r > 0
minimising (4.19) by solving

∂P̃∞
∂s

=
∂P̃∞
∂A∞

∂A∞
∂s

= 0

where

∂P̃∞
∂A∞

= −2b2A−3
∞ +A−1

∞

(
G−A∞

H

)
Ξ

H
+

1

2
A−2

∞

(
Σ+

(
G−A∞

H

)2

Ξ

)
∂A∞
∂s

=
G

r
+

√
G2 + rH2Ξ−1Σ

r

Since ∂A∞
∂s is clearly never zero, we need only solve

g(A∞) := A3
∞ − (H2Σ+ ΞG2)

Ξ
A∞ +

4b2H2

Ξ
= 0 (5.23)

which takes the form of a depressed cubic A3
∞ + pA∞ + q = 0 with p = −(H2Ξ−1Σ + G2), q =

4b2H2Ξ−1, and we have that q > 0, p < 0 always. The nature of the roots can be characterised
in the usual way via the discriminant τ , i.e. when τ > 0, (5.23) has one real root and two com-
plex roots, whilst when τ < 0, it has three real roots. We deal with these two cases below separately.

Case 1: τ > 0. First we show that the real root here is strictly negative. From inspection,
we have that g(0) > 0. Also, (5.23) always has two real extremal (turning) points, one of which is
strictly negative and the other is strictly positive, since g′(A∞) = 3A2

∞+p = 0 implies the extremal

points occur at A∞ = ±
√

−p
3 . Furthermore, g′(0) = p < 0. Combining these properties implies

that (5.23) has one negative real root when τ > 0. When τ > 0, we can use Cardano’s formula to
obtain an expression for the real root,

A∗
∞ =

(
−q

2
+
√
τ
)1/3

+
(
−q

2
−
√
τ
)1/3

from which we then obtain (4.24), and substituting the expression for A∗
∞ into (4.20) and re-

arranging yields (4.26). It can be verified straightforwardly that this this is indeed a minimum since
∂2P̃∞
∂A2

∞
(A∗

∞) > 0. In order to characterise the lower bound sl and to obtain ropt, we work with the
following change of variable

y :=
√

G2 + rH2Ξ−1Σ (5.24)
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which when substituted into (4.26) with r = y2−G2

H2Ξ−1Σ
yields

sopt(y) =
1

H2Ξ−1Σ
(y −G)(A∗

∞ + y)

The minimiser of sopt(y) wrt y, which we donte by y∗, can be found straightforwardly by solving
dsopt(y)

dy = 0, giving

y∗ =
G−A∗

∞
2

which implies that for any r > 0,

sopt ≥ −(G+A∗
∞)2

4H2ΞΣ
=: sl

since y is monotonically related to r (notice also that sl is independent of r. Furthermore, y∗ > 0
for any choice of G,H,Σ,Ξ satisfying the conditions of the lemma since from the definition of A∞,
G−A∞ = (r−s)

r (G+
√
G2 + rH2Ξ−1Σ) > 0. Therefore, the calculated minimum point is admissible.

Finally, we can obtain expressions for ropt for a given s satisfying (4.25) by solving

y2 + (A∗
∞ −G)y −GA∗

∞ − sH2Ξ−1Σ = 0 (5.25)

which combined with (5.24) gives

y =
(G−A∗

∞)±
√
(G−A∗

∞)2 + 4(GA∗
∞ + sH2Ξ−1Σ)

2

Since r > 0, we can only consider y > |G|, and since sopt(y) is a convex quadratic in y, it holds that
for sl < s < sopt(|G|), we have two possible values for the optimal y,

y =
(G−A∗

∞)±
√
(G−A∗

∞)2 + 4(GA∗
∞ + sH2Ξ−1Σ)

2

where sopt(|G|) = G2+(A∗
∞−G)|G|−GA∗

∞
H , whilst for sopt(|G|) < s < min

(
r,

√
G2+rH2Ξ−1Σ

G+
√
G2+rH2Ξ−1Σ

r
)
, there

is only one optimal y value given by

y =
(G−A∗

∞) +
√
(G−A∗

∞)2 + 4(GA∗
∞ + sH2Ξ−1Σ)

2

Combining these expressions with (5.24) and rearranging yields the final claim of the lemma.

Case 2: τ < 0. In this case, (5.23) has three real roots due to the usual condition on the discrimi-
nant. First we characterise the signs of the roots. We have directly from (5.23) that g(0) > 0. Also,
(5.23) always has two real extremal (turning) points, one of which is strictly negative and the other

is strictly positive, since g′(A∞) = 3A2
∞+p = 0 implies the extremal points occur at A∞ = ±

√
−p
3 .

Furthermore, g′(0) = p < 0. Combining these properties implies that (5.23) has two positive real
roots and one negative real root when τ < 0.

When τ < 0, the following trigonometric formula holds for the characterisation of the three real
roots, Ak

∞, k = 0, 1, 2

Ak
∞ = 2

√
−p

3
cos

[
1

3
cos−1

(
3q

2p

√
−3

p

)
− 2πk

3

]
for k = 0, 1, 2

41



To determine the negative root, first notice that −2πk
3 < 1

3 cos
−1(y)− 2πk

3 < −2πk
3 + π

3 for all −1 <

y < 1. Furthermore, cos(θ) < 0 for all −3π
2 < θ < −π

2 and it holds that for θ := 1
3 cos

−1(y) − 2πk
3

and k = 2, −4
3π < θ < −π, so that cos(θ) < 0 for k = 2. This yields the remaining case in (4.24).

5.9 Proof of Lemma 4.7

Proof. The first claim follows from a simple re-arrangement of the identity C∞ = P̃∞ with A∞ =
A∗

∞, i.e.

−1

2

(
Σ+

(
G−A∗

∞
H

)2

Ξ

)
1

A∗
∞

+

(
b

A∗
∞

)2

=
G+

√
G2 + rH2Ξ−1Σ

rH2Ξ−1

additionally, rearranging (5.21) yields

G+
√
G2 + rH2Ξ−1Σ =

r(G−A∗
∞)

(r − s)

substituting into the expression for P̃∞ = C∞ yields the result. Additionally, we have

r =
1

4H2Ξ−1Σ

(
G−A∗

∞ ±
√
(G−A∗

∞)2 + 4(GA∗
∞ + sH2Ξ−1Σ)

)2
− G2

H2Ξ−1Σ

so that

r − s =
1

4H2Ξ−1Σ

(
G−A∗

∞ ±
√
(G−A∗

∞)2 + 4(GA∗
∞ + sH2Ξ−1Σ)

)2
− G2

H2Ξ−1Σ
− s

=
(A∗

∞)2(G−A∗
∞)

−0.5A∗
∞ (H2Ξ−1Σ+ (G−A∗

∞)2) + b2H2Ξ−1

For the second claim, when s = 0, it follows directly from (4.26) that

ropt
0 =

(A∗
∞)2 −G2

H2Ξ−1Σ
(5.26)

First establish the following bound on A∗
∞,

A∗
∞ =

(
−q

2
+
√
τ
)1/3

+
(
−q

2
−
√
τ
)1/3

<

(
−q

2
+

√
q2

4
+

p3

27

)1/3

+
(
−q

2
−
√
τ
)1/3

<

(
−
(
−p3

27

)1/2

+

√
q2

4
+

p3

27

)1/3

+
(
−q

2
−
√
τ
)1/3

<

(
−
(
−p3

27

)1/2
)1/3

+
(
−q

2
−
√
τ
)1/3

recalling that p = −(H2Ξ−1Σ+G2), q = 4b2H2Ξ−1. The condition τ > 0 also implies

−q

2
< −

(
−p3

27

)1/2
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Then using the inequality
√
2(a1 + a2)

1/2 ≥ √
a1 +

√
a2,

−q

2
−
√
τ < −q

2
− 1√

2

(
q

2
+

∣∣∣∣p327
∣∣∣∣1/2
)

= −
√
2 + 1√
2

q

2
− 1√

2

∣∣∣∣p327
∣∣∣∣1/2 < −

(√
2 + 2√
2

)∣∣∣∣p327
∣∣∣∣1/2

Putting altogether, we have

A∗
∞ < −2

√
2 + 2√
6

√
|p|

Then letting c := 2
√
2+2√
6

and substituting into (5.26) yields

(A∗
∞)2 > c2(H2Ξ−1Σ+G2)

and

ropt
0 >

(c2 − 1)G2 + c2H2Ξ−1Σ

H2Ξ−1Σ
>

(c2 − 1)(G2 +H2Ξ−1Σ)

H2Ξ−1Σ
> 1

since c2 > 1, which yields (4.31). Then for the remainder of the claim, we have

C∞

Ĉ∞
=

1

r

(
G+

√
G2 + rH2Ξ−1Σ

G+
√
G2 +H2Ξ−1Σ

)

≤ 1

r

(
2|G|+

√
rH2Ξ−1Σ

G+
√
G2 +H2Ξ−1Σ

)

=
1

r

2|G|
(G+

√
G2 +H2Ξ−1Σ)

+
1√
r

√
H2Ξ−1Σ

(G+
√
G2 +H2Ξ−1Σ)

≤ 1√
r

(
2|G|+

√
H2Ξ−1Σ

(G+
√
G2 +H2Ξ−1Σ)

)
whenever r > 1.

6 Conclusion

We presented a detailed investigation of connections between continuous time, continuous trait
Crow-Kimura replicator-mutator dynamics [Kim65] and the fundamental equation of nonlinear fil-
tering, the Kushner-Stratonovich partial differential equation. Inspired by a non-local fitness func-
tional presented in the mathematical biology literature [CHR06], we extended this connection to
obtain a “modified” Kushner-Stratonovich equation. This equation was shown to beneficial for fil-
tering with misspecified models and a specific choice of parameters in the fitness functional was
shown to coincide with covariance inflated Kalman Bucy filtering, in the linear-Gaussian setting.
Additionally, we considered the misspecified model filtering problem, with linear-Gaussian dynamics
and where the misspecification arises through an unknown constant bias in the signal dynamics.
We proved that through a judicious choice of parameters in the fitness functional, mean squared
error and uncertainty quantification (through the covariance) could be improved via this modified
Kushner-Stratonovich equation. Estimation is improved over traditional covariance inflation tech-
niques, as well as over the standard filtering setup (assuming perfect model knowledge).

43



There are several avenues for further work, most notably, the analysis on misspecified models in
Section 4 has primarily focused on the scalar setting which has simplified the analysis. In future
works, the multivariate setting, as well as extensions to nonlinear dynamics should be explored.
Additionally, it would be worthwhile to extend the mode of convergence in Theorem 3.1 to Lp

convergence rather than pointwise convergence.
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A Technical lemmata

Theorem A.1. Forward representation formula (Theorem 3.1 in [Kun82].) Let ut(x, ω) for
t ∈ [0, T ], x ∈ Rd denote a measurable stochastic process on a probability space (Ω,F ,P) with ω ∈ Ω
(from now on we suppress the ω notation). Suppose its time evolution is given by

∂tut(x) = Lut(x) +
n∑

k=1

Mkut(x) ◦ dBk
t , u0(x) = f(x) (1.1)

where Bk
t is a Brownian motion wrt P and f a bounded C2 function with bounded derivatives and

L :=
1

2

m∑
j=1

(
m∑
i=1

aij(x)
∂

∂xi

)2

+

m∑
i=1

bi(x)
∂

∂xi
+ c0

=
1

2

m∑
i=1

m∑
j=1

(∑
k

aikajk

)
∂2

∂xi∂xj
+

1

2

∑
i,j

aij
∑
k

(
∂akj

∂xi

)
∂

∂xk
+

m∑
i=1

bi(x)
∂

∂xi
+ c0

Mk :=
m∑
i=1

lik(x)
∂

∂xi
+ ck

with ck(x) being uniformly bounded C2 functions with bounded derivatives in x and aij(x), bi(x),mik(x)
being uniformly bounded C4 functions with bounded first derivatives in x.

Then there exists another probability space (Ω̃,B,Q) on which the Brownian motion Wt = [W 1
t , . . . ,W

m
t ]⊤

is defined and an SDE on the product space (Ω⊗ Ω̃,F ⊗ B,P⊗Q) given by

dξt(x) =

d∑
i=1

bi(ξt(x))dt+

m∑
j=1

m∑
i=1

aij(ξt(x)) ◦ dW j
t +

n∑
k=1

m∑
i=1

lik(ξt(x))
∂ξt(x)

∂xi
◦ dBk

t (1.2)

where the notation ξt(x) is used to denote the solution of the SDE with initial condition ξ0 = x and
t > 0. The solution of (1.1) has the representation

ut(x) = EQ

[
f(ξt(x)) exp

(
n∑

k=1

∫ t

0
ck(ξs(x)) ◦ dBk

s +

∫ t

0
c0(ξs(x))ds

)]
, x ∈ Rm
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The following form of Ito-Stratonovich correction will also be useful. Consider the following
Stratonovich SDE

dξt = X0(t, ξt)dt+
m∑
j=1

Xj(t, ξt) ◦ dW j
t

where Xj is a lipschitz cts function with derivatives in the second argument up to second order. Let
ξ0,r(x) denote the solution of the above Stratonovich SDE at time r with initial condition ξ0 = x.
Then the following relation between the ito and stratonovich integral holds (backward form!)∫ t

s
Xk(f(ξr,t(x)) ◦ dBk

r =

∫ t

s
Xk(f(ξr,t(x)))dW

k
r +

1

2

∫ t

s
(Xk(f(ξr,t(x))))

2dr (1.3)

where f : Rd → R is a C3 function.

Some well-known results from stochastic analysis are presented below.

Lemma A.1. Moment generating function. Consider

Yt =

∫ t

0
αsdWs

where αs is a deterministic, scalar-valued continuous function of s and Wt is a real-valued Brownian
motion wrt a probability measure P. Then

EP[exp(λYt)] = exp

(
λ

2

∫ t

0
α2
sds

)
Lemma A.2. Consider a probability space (Ω,F ,P) on which a scalar valued Wiener process is
defined. Suppose f(s, ω) for ω ∈ Ω is an Ft-adapted process. Then the following inequality holds for
q > 1

E

[∣∣∣∣∫ t

0
f(s, ω)dWs

∣∣∣∣2q
]
≤ tq−1(q(2q − 1))qE

[∫ t

0
|f(s, ω)|2qds

]
(1.4)

The following well-known lemma will also be used

Lemma A.3. Continuity of solutions of SDEs Let g, σ be lipschitz continuous functions sat-
isfying linear growth conditions. Denote by ξt(x) the unique solution to

dξt = g(ξs)ds+ σ(ξs)dBs

with ξ0 = x. Suppose h is a globally lipschitz continuous real vector valued function. Then it holds
that

E [|h(ξs(x))− h(ξr(x))|q] ≤ C(x)|s− r|q/2

Lemma A.4. Exponential moment bounds. Let Ys for s ∈ [0, t] denote a non-decreasing scalar-
valued adapted process such that E[Yt − Ys|Fs] ≤ K for all s ∈ [0, t]. Then for any L < 1

K ,

E[exp (LYt)] <
1

1− LK
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