
RUNGE-KUTTA DISCONTINUOUS GALERKIN METHOD BASED ON
FLUX VECTOR SPLITTING WITH CONSTRAINED

OPTIMIZATION-BASED TVB(D)-MINMOD LIMITER FOR SOLVING
HYPERBOLIC CONSERVATION LAWS

ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

Date: November 26, 2024.

2020 Mathematics Subject Classification. 65M60, 65M99, 35L65.
Key words and phrases. Flux Vector Splitting; RKDG; Hyperbolic Conservation Law; TVB(D)-minmod

Limiter; Lagrange Multiplier Method; Local Characteristic Decomposition.

1

ar
X

iv
:2

41
1.

16
36

7v
1

 [
m

at
h.

N
A

]
 2

5
N

ov
 2

02
4

2

Abstract. The flux vector splitting (FVS) method, employed for solving hyperbolic con-

servation systems, is frequently observed in finite difference and finite volume schemes,

where it serves to reconstruct the numerical fluxes at the interfaces of adjacent cells. This

method now has been incorporated into the discontinuous Galerkin (DG) framework for re-

constructing the numerical fluxes required for the spatial semi-discrete formulation, setting

it apart from the conventional DG approaches that typically utilize the Lax-Friedrichs flux

scheme or classical Riemann solvers such as HLL and HLLC. The FVS method inherently

does not introduce any error. Consequently, the control equations of hyperbolic conserva-

tion systems are initially reformulated into a flux-split form. Subsequently, a variational

approach is applied to this flux-split form, from which a DG spatial semi-discrete scheme

based on FVS is derived. When solving hyperbolic conservation laws, DG schemes are prone

to numerical pseudo-oscillations, necessitating the incorporation of limiters for correction.

Initially, the smoothness measurement function IS from the WENO limiter is integrated into

the TVB(D)-minmod limiter, constructing an optimization problem based on the smooth-

ness factor constraint, thereby realizing a TVB(D)-minmod limiter applicable to arbitrary

high-order polynomial approximation. Subsequently, drawing on the “reconstructed poly-

nomial and the original high-order scheme’s L2-error constraint” from the literature [1],

combined with our smoothness factor constraint, a bi-objective optimization problem is for-

mulated to enable the TVB(D)-minmod limiter to balance oscillation suppression and high

precision. The aforementioned constrained optimization-type TVB(D)-minmod limiter has

been extended to two-dimensional scenarios. When solving hyperbolic conservation systems,

limiters are typically required to be used in conjunction with local characteristic decompo-

sition. To transform polynomials from the physical space to the characteristic space, an

interpolation-based characteristic transformation scheme has been proposed, and its equiv-

alence with the original moment characteristic transformation has been demonstrated in

one-dimensional scenarios. For variable-coefficient and nonlinear equations, the transfor-

mation matrix utilized in characteristic transformation must be determined through local

freezing. To achieve this, we employ the arithmetic mean or Roe average of the integral

means on the common interface of adjacent cells for local freezing, rather than the con-

ventional approach of using the arithmetic mean or Roe average of the cell integral means

of each adjacent cell for this purpose. Finally, the concept of “flux vector splitting based

on Jacobian eigenvalue decomposition” has been applied to the conservative linear scalar

transport equations and the nonlinear Burgers’ equation. This approach has led to the red-

erivation of the classical Lax-Friedrichs flux scheme and the provision of a Steger-Warming

flux scheme for scalar equations.

Contents

1. Introduction 3

2. Overview of RKDG 9

3. Overview of Flux Vector Splitting for Hyperbolic Conservative System in

One-dimension 13

3.1. Based on Jacobian eigenvalue Splitting 13

FLUX VECTOR SPLITTING RKDG METHOD 3

3.2. Based on Mach Number Splitting 16

4. Roe Average 19

5. DG Based on Flux Vector Splitting in One Dimension (1D-FVS-DG) 20

6. DG Based on Flux Vector Splitting in Two-dimension (2D-FVS-DG) 22

6.1. DG Based on Flux Vector Splitting in Two-dimension 23

6.2. Normal Roe Average Employed by DG in Two-dimension 25

7. A Novel TVB(D)-minmod Limiter for Numerical Pseudo-Oscillation Treatment 26

7.1. Commonly Used Discontinuity Indicators 26

7.2. Constrained Optimization-based TVB(D)-minmod Limiter Compatible with

High-Order Polynomial Approximation 29

8. Reconstruction in Characteristic Field 39

8.1. Local Freezing Based on Cell Interface Integral Mean 43

8.2. Interpolation-based Characteristic Transformation 43

8.3. Equivalence of Interpolation-based Characteristic Transformation and Moment

Characteristic Transformation 45

9. Numerical Results 46

9.1. Accuracy Tests for FVS-DG 46

9.2. Performance of the IS-L2-TVB(D)-minmod Limiter for Scalar Conservation

Law 52

9.3. Solving the Riemann Problems for Hyperbolic Conservative Systems Using

FVS-DG with IS-L2-TVB(D)-minmod Limiter 62

10. Conclusion 72

Acknowledgments 72

References 73

Appendix A. Vector, Matrix, and Tensor Operations in FVS-DG 75

Appendix B. Flux Vector Splitting Method for Shallow Water System 77

B.1. Flux Vector Splitting for Shallow Water Wave Equations in One-dimension 79

B.2. Flux Vector Splitting for Shallow Water Wave Equations in Two-dimension 80

Appendix C. Development of Numerical Flux Formats for Scalar Equations Based

on the System’s Jacobian-FVS Method 81

C.1. The Classical Lax-Friedrichs Flux Format from the Jacobian-FVS Perspective 81

C.2. Constructing Steger-Warming flux for the scalar equation based on Steger-

Warming splitting for system 82

1. Introduction

The Hyperbolic Conservation Law (HCL) is a homogeneous hyperbolic system of quasi-

linear divergence form equations, which can be uniformly represented as follows:

∂tU +∇ · F(U) = 0 in Ω ⊂ Rd, (1.1)

4 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

here, d denotes the spatial dimension, and U can represent either a scalar or a vector.

In the one-dimensional case,

∇ · F(U) = ∂x(F(U));

For higher-dimensional scenarios,

F(U) = (F1(U), F2(U), . . . , Fd(U)),

∇ · F(U) =
i=d∑
i=1

∂xi
Fi(U).

Hyperbolic conservation laws are utilized to describe physical phenomena where the incre-

ment of extensive quantities within a system is balanced by the net flux passing through the

system’s boundaries [3]. Common examples of hyperbolic conservation laws include scalar

transport equations, Euler equations, and source-free shallow water wave equations.

Numerical solutions to equation (1.1) commonly employ schemes such as the finite differ-

ence method (FD), the finite volume method (FV), and the discontinuous Galerkin method

(DG). These methods share a common characteristic in that they are all ”local” approxima-

tion schemes: first, the FD method, which is derived from a Taylor expansion around the

grid framework points, inherently belongs to a local approximation technique; second, the

FV method can be regarded as a special case of the DG method when using P0 polynomial

approximation, and in the DG method, the basis functions are entirely discontinuous, i.e.,

they are piecewise defined according to the grid cells, allowing for different orders or types

of basis functions on different grid cells. Accordingly, the DG method independently and in

parallel carries out variation on each grid cell, ultimately yielding a series of weak equivalent

integral equations that are as numerous as the grid cells. To distinguish from the global

variational process of traditional finite element methods, we refer to this as local variation.

The FD scheme, when reconstructing the flux value Fi+1/2 at the midpoint of the grid, faces

the issue of choosing which side of the cell interface to use for interpolation based on the grid

framework points. In both FV and DG schemes, each cell generates boundary integral terms

during the variational process. However, due to the local nature of the variational form,

the flux function F is multivalued at the common interface of adjacent cells. Numerical

flux techniques are employed in local approximation schemes to ensure the uniqueness of

the flux at the common interfaces of neighboring cells. That is, numerical flux techniques

map a multivalued function to a single-valued function, thereby restoring the mathematical

structure and physical connection of the field functions within different cells. Let the mesh

be partitioned as Th. Consider any cell Ωk ∈ Th, with its boundary denoted by ∂Ωk. Let

Γk denote any part of the boundary ∂Ωk, such that Γk ⊂ ∂Ωk. Denote C(Γk) as the set

of all cells sharing the boundary segment Γk, and suppose there are q cells sharing Γk, i.e.,

|C(Γk)| = q. The numerical solution Uh is a multivalued function on the cell interface Γk,

with q states (∂U1, ∂U2, · · · , ∂U c, · · · , ∂U q), where ∂U c = U
(c)
h

∣∣∣
Γk

, c ∈ C(Γk). The numerical

FLUX VECTOR SPLITTING RKDG METHOD 5

flux F̂ is a single-valued function, such that{
Uh|Γk

= (∂U1, ∂U2, · · · , ∂U c, · · · , ∂U q) , c ∈ C(Γk),

F̂ : Uh|Γk
−→ F̂Γk

, ∀Γk ∈ ∂Ωk.
(1.2)

Upwind numerical flux formats are one of the common numerical flux techniques, and

this method of constructing numerical fluxes originates from the characteristic line theory

of hyperbolic equations: along the reverse direction of the characteristic line (which we refer

to as the upwind direction), the state quantities located in the dependency domain of the

hyperbolic equation are selected to participate in the calculation of the numerical flux. The

upwind direction is easy to determine for scalar hyperbolic equations: since ∂f(U)
∂x

= ∂f
∂U

∂U
∂x
,

the upwind direction can be determined based on the sign of ∂f
∂U

. Of course, considering

variable coefficients and nonlinear cases, the upwind direction itself is also a local concept,

meaning that the trend of characteristic lines, and thus the upwind direction, is different in

different computational regions. However, for systems, since ∂f
∂U

will be a matrix, which we

refer to as the Jacobian matrix, the aforementioned approach of “judging the wind direction

based on the sign of ∂f
∂U

” cannot be directly generalized. Scalar hyperbolic conservation laws

involve only a single characteristic wave, but the Jacobian matrix of a hyperbolic conservation

system has more than one eigenvalue, corresponding to multiple characteristic waves. Thus,

the propagation direction of each characteristic wave can be entirely inconsistent. As long

as the Jacobian of the system’s flux function is indefinite over the entire flow field (the

eigenvalues of the flux function’s Jacobian at some point in the flow field are not all of

the same sign), then from a global flow field perspective, each conservation variable U (i)

corresponds to a flux F(i) that is composed of two scalar sub-fluxes with opposite propagation

directions
{
F+

(i),F
−
(i)

}i=m

i=1
. Here, i is the system component index, and m is the dimension of

the system’s state. Therefore, applying the ”upwind philosophy” to hyperbolic conservation

systems can be achieved by splitting the flux F into two sub-fluxes with opposite propagation

directions, F+ and F−, and then constructing corresponding upwind schemes for each sub-

flux.

Flux splitting techniques, commonly seen in FD schemes and FV schemes, include two

categories: flux vector splitting (FVS) and flux difference splitting (FDS) [4, 5]. Flux Vector

Splitting (FVS) schemes can be further divided into two categories: those based on Jacobian

eigenvalue splitting and those based on Mach number splitting. The former requires the flux

function to satisfy homogeneity, i.e., F = ∂F
∂U

· U . The latter is designed for some practical

fluid control equations, such as the compressible Euler equations and shallow water wave

equations. Let A = ∂F
∂U

, where A is referred to as the Jacobian matrix of the flux function F .

In the Jacobian-FVS scheme, the Jacobian matrix A is diagonalized by a similarity trans-

formation, and then its eigenvalues are split to obtain A+ and A−, which satisfy positive

definiteness and negative definiteness, respectively. This allows the flux F to be split into

positive flux F+ and negative flux F− [6], and subsequently, numerical fluxes are constructed

6 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

for each according to their respective upwind directions. Some hyperbolic conservation sys-

tems do not satisfy F = ∂F
∂U

· U , such as the shallow water wave equations. We forcibly

modify the wave speed to a∗ =
√

1
2
gh to satisfy the homogeneity requirement of the flux

function, and then perform flux splitting based on the modified Jacobian eigenvalues [7].

Regardless of whether the flux function of a hyperbolic conservation system satisfies the ho-

mogeneity requirement, the Mach-FVS scheme can be employed. In the Mach-FVS scheme,

the characteristic wave propagation direction is no longer determined by the eigenvalues of

the Jacobian matrix. Instead, the local Mach number Ma = u
a
(where a is the local speed

of sound) is used to determine the characteristic propagation direction at that point: when

Ma ≥ 1, the characteristic propagates in the positive direction; when Ma ≤ −1, it propa-

gates in the negative direction; and when |Ma| < 1, both positive and negative characteristic

waves coexist. Similar to the Jacobi-FVS splitting of the Jacobian eigenvalues, a natural

idea is to achieve flux vector splitting by splitting the Mach number Ma. Depending on

whether the pressure term is split separately, the Mach-FVS can be further divided into the

van Leer splitting method [4, 5] and the AUSM splitting method [8]. The former includes

the pressure term in the flux function for splitting, while the latter separates the pressure

term from the flux function for individual splitting.

Reed and Hill [9] proposed the first Discontinuous Galerkin method in 1973, for solving

the neutron transport equation. Since then, the DG method has developed rapidly, with

the emergence of local discontinuous Galerkin methods (LDG) [10], direct discontinuous

Galerkin methods (DDG) [11], and ultra-weak discontinuous Galerkin methods (UWDG)

[12] for solving higher-order equations. In addition, semi-Lagrangian discontinuous Galerkin

methods (SLDG) [13] and Euler-Lagrange discontinuous Galerkin (ELDG) [14] have been

developed based on the characteristic line theory of hyperbolic equations from a Lagrangian

perspective. These methods exhibit high-order structure-preserving and unconditional sta-

bility (large time-step stability) characteristics when solving transport equations. The DG

method discussed in this paper is the Runge-Kutta Discontinuous Galerkin (RKDG) method.

RKDG [15, 16, 17, 18, 19] is a commonly used DG scheme for solving hyperbolic conservation

systems such as the compressible Euler equations. It employs explicit and nonlinearly sta-

ble high-order Runge-Kutta methods for temporal discretization and uses DG methods for

spatial discretization. The former ensures the nonlinear stability of the method regardless

of accuracy, while the latter integrates the concepts of numerical fluxes and slope limiters

from high-resolution FD and FV schemes. The resulting RKDG method is stable, high-order

accurate, and highly parallelizable [20], capable of easily handling complex geometries and

boundary conditions. The RKDG method has the advantages of local conservation, arbi-

trary triangular meshing, good parallel efficiency, h-p adaptive capability [21], and certain

superconvergence properties [22, 23, 24, 25, 26].

Even if the initial conditions are smooth, hyperbolic conservation law equations may

develop discontinuities during their evolution. When calculating discontinuous problems,

FLUX VECTOR SPLITTING RKDG METHOD 7

high-order schemes such as the RKDG method can exhibit numerical pseudo-oscillations

(non-physical oscillations) near discontinuities, which can lead to instability in the numerical

scheme. To suppress numerical oscillations, a common practice is to introduce limiters.

There are currently two types of common limiters: TVD/TVB-type limiters [1, 27] and

ENO/WENO-type limiters [2, 28, 29, 30, 31, 32].

TVD (Total Variation Diminishing) limiters initially decompose a high-order scheme into a

first-order upwind scheme and a linear sum of a correction term (the first-order scheme has

sufficient dissipation to automatically satisfy the non-oscillation property). Subsequently,

according to Harten’s lemma [33], the correction term is restricted. The requirement is that

in smooth regions, the limiter does not affect the correction term, while near discontinuities,

the limiter sets the correction term to zero, thereby automatically degrading to a stable, non-

oscillatory first-order upwind scheme. TVD limiters tend to lose accuracy near extremum

points, leading to the development of TVB (Total Variation Bounded) limiters, which only

require that the average total variation be bounded. WENO (Weighted Essentially Non-

Oscillatory) limiters utilize several stencils composed of the troubled cell and its neighboring

cells. Based on the cell integral mean, several template polynomials are obtained through

interpolation. Subsequently, a template smoothness measurement function is introduced

to non-linearly weight and combine the various template polynomials to obtain the final

reconstructed polynomial on the troubled cell. The smoother the stencil, the greater the

weight of the corresponding template polynomial, thereby achieving a smooth filtering of

the pseudo-oscillations near discontinuities [28, 34].

From the above, it is known that limiters should act near discontinuities; using limiters in

smooth regions can easily lead to loss of accuracy and increase unnecessary computational

time costs. Therefore, a discontinuity indicator can be introduced to identify troubled cells,

i.e., those that contain discontinuities. Accordingly, the steps for using the limiter are: (1)

The discontinuity indicator identifies troubled cells; (2) The limiter is applied to troubled

cells.

It should be noted that some limiters, such as the TVB(D)-minmod limiter, have built-in

discontinuity indication functions, while WENO limiters require additional configuration of

a discontinuity indicator [35]. An obvious idea is to remove the slope correction part of

the TVB(D)-minmod limiter and keep the remaining part as a discontinuity indicator for

WENO. In addition, a commonly used discontinuity indicator is the KXRCF discontinuity

indicator [36]. This indicator is based on the conclusion that “DG algorithms have strong

superconvergence on the outflow boundaries of each cell in smooth areas”. If a cell contains

a discontinuity, then its strong superconvergence on the outflow boundary will be destroyed,

which in turn can determine that the cell is a troubled cell.

When applying limiters to a system of equations, there are typically two implementation

methods: (a) reconstruct each component individually; (b) in conjunction with characteristic

decomposition [37]. The former is easy to implement in a program; reconstructing directly

by component is essentially assuming that the components are already decoupled, but in the

8 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

original system of equations, the unknown components are usually coupled, hence the actual

effect may not be good. The latter leverages the Jacobian of the flux function to transform

the system of equations into the characteristic space to achieve true decoupling, and then

reconstructs each component individually.

The main work of this paper is as follows: For the first time, the FVS method is introduced

into the DG scheme. By utilizing F = F++F−, an equivalent flux-split form of the original

differential equation is obtained: Ut +∇ · F+ +∇ · F− = 0. A variation is then performed

based on the flux-split form of the original equation, leading to the derivation of a numerical

flux format based on flux vector splitting within the DG framework. Specifically, for the

two-dimensional hyperbolic conservation system, flux vector splitting is implemented using

normal fluxes in the outward normal direction on the interfaces of cells. In terms of lim-

iters, we have introduced the smoothness measurement function IS from the WENO limiter

into the TVB(D)-minmod limiter. An optimization problem based on the smoothness factor

constraint has been constructed, realizing a TVB(D)-minmod limiter applicable to arbitrary

high-order polynomial approximation, which we refer to as the IS-TVB(D)-minmod lim-

iter. Thanks to the constraint of the smoothness factor IS, the IS-TVB(D)-minmod limiter

possesses strong capabilities in suppressing numerical oscillations, but correspondingly, it is

prone to losing high-order accuracy. To address this issue, we have adopted the approach

from the literature [1], introducing the L2-error between the reconstructed polynomial and

the original high-order scheme into the objective function. We have constructed a “smooth-

ness factor IS-L2-error constraint dual-objective optimization” problem to further improve

the TVB(D)-minmod limiter, which we refer to as IS-L2-TVB(D)-minmod limiter. Further-

more, when reconstructing for the hyperbolic systems, it is often necessary to accompany it

with local characteristic decomposition, and the transformation matrix required for charac-

teristic decomposition is determined by local freezing techniques. To this end, we propose

to use the integral mean on the cell interfaces instead of the traditional approach of using

the cell integral mean to achieve local freezing. After obtaining the characteristic transfor-

mation matrix, it is necessary to transform the DG polynomials from the physical space to

the characteristic space. The traditional approach is to construct a column vector of modal

coefficients for the same degree terms of each system component’s DG polynomial, and then

perform characteristic transformation through matrix-vector multiplication, referred to as

“moment characteristic transformation”. In contrast, we have constructed an interpolation-

based polynomial characteristic transformation to achieve characteristic decomposition, and

in the one-dimensional case, we have proven the equivalence of the interpolation-based char-

acteristic transformation with the moment characteristic transformation.

The structure of this paper is organized as follows: In Section 2, a review of the Runge-

Kutta Discontinuous Galerkin (RKDG) method is presented. Subsequently, Section 3 intro-

duces two implementations of Flux Vector Splitting (FVS) for one-dimensional hyperbolic

conservation systems, exemplified by Jacobian eigenvalue-based splitting and Mach number-

based splitting. Considering that characteristic reconstruction necessitates the use of local

FLUX VECTOR SPLITTING RKDG METHOD 9

freezing techniques, and that local freezing for variable-coefficient or nonlinear equations

requires the employment of some form of averaging, Roe’s averaging is introduced in Section

4. Section 5 details the flux vector splitting formulation for the RKDG scheme applied to

one-dimensional hyperbolic conservation systems, while the construction process for the two-

dimensional case is elaborated in Section 6. Section 7 focuses on the improvements made to

the TVB(D)-minmod limiter. Section 8 is dedicated to showcasing our unique perspectives

on local characteristic decomposition. The effectiveness of the aforementioned work is val-

idated through carefully designed numerical experiments in Section 9. Finally, Section 10

provides a summary of the work presented in this paper.

Note that a detailed explanation of the symbols and operational rules used in the definition

of the FVS-DG weak solution process in Section 5 and Section 6 must be referred to Appendix

A. Furthermore, Appendix B provides the FVS-DG formulation for the shallow water wave

equations. Lastly, Appendix C re-examines the construction process and working principles

of the classical Lax-Friedrichs flux scheme from the perspective of Jacobian-FVS. Inspired by

the Steger-Warming splitting method for systems, Appendix C presents the Steger-Warming

flux scheme for scalar transport equations and the Burgers’ equation, and proves that this

flux scheme satisfies compatibility, Lipschitz continuity, and monotonicity, thereby ensuring

that the weak solutions obtained for scalar transport equations and the Burgers’ equation

using this flux scheme meet the cell entropy inequality and L2-stability.

2. Overview of RKDG

Let the computational domain be Ω ⊂ Rd, where d = 1, 2, · · · . The mesh partitioning

is denoted as Th = Ω1 ∪ Ω2 ∪ · · · ∪ ΩN , with the property that Ωi ∩ Ωj = ∅, for all i, j ∈
{1, 2, · · · , N}.
The definition of the local orthogonal basis functions on an arbitrary domain Ωi is as

follows:

Definition 2.1 (Normative Orthogonal System). Let
{
ϕ
(D)
0 , ϕ

(D)
1 , · · · , ϕ(D)

ℓ

}
(where ℓ is finite

or ℓ ∈ ∞) be a set of functions defined on a bounded domain D, with ϕ
(D)
i ∈ L2(D), for

all i = 0, 1, 2, · · · , ℓ. We refer to
{
ϕ
(D)
i

}i=ℓ

i=0
as an normative orthonormal system on the

bounded domain D, if〈
ϕ
(D)
j , ϕ

(D)
k

〉
L2(D)

=

∫
D
ϕ
(D)
j ϕ

(D)
k dX = δjk =

{
0, j ̸= k

1, j = k
(2.1)

where, X ∈ Rd, d = 1, 2,

Let PK(Ωi) be the space of polynomials of degree K defined on Ωi. It can be spanned by

any normative orthonormal system
{
ϕ
(i)
m

}m=K

m=0
on it. The set

{
ϕ
(i)
m

}m=K

m=0
satisfies:

•
{
ϕ
(i)
m

}m=K

m=0
is an normative orthonormal system in PK(Ωi),

• ∀q ∈ PK(Ωi), ∃! {αm}m=K
m=0 ⊂ R, s.t. q =

∑m=K
m=0 αmϕ

(i)
m .

10 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

On this basis, the space VK
h (Ω), where the DG weak solution resides, can be defined:

Definition 2.2 (DG Weak Solution Space).

VK
h (Ω) =

{
v ∈ L2(Ω) : v |Ωi

∈ PK(Ωi), ∀Ωi ∈ Th

}
here, Th is a partitioning of Ω ⊂ Rd.

Thus, for Equation (1.1), the definition of the DG weak solution is as follows:

Definition 2.3 (DG Weak Solution). In the DG weak solution space, a unique polynomial

function Uh ∈ VK
h is determined such that for all V ∈ VK

h and for all Ωi ∈ Th, the following

is satisfied: ∫
Ωi

V ∂t(Uh) dX =

∫
Ωi

F(Uh) · (∇V) dX−
∫
∂Ωi

F̂νV dσ. (2.2)

Here, F̂ν is the numerical normal flux, which is a single-valued function on ∂Ωi and satisfies

F̂ν ≈ n · F(Uh), where n is the unit outward normal vector on ∂Ωi.

Remark 2.1. The construction of the numerical flux F̂ν to approximate n · F(Uh) is key

to the spatial discretization in the DG algorithm. The literature [38, 39] introduces a variety

of typical numerical flux formats, while our work involves the introduction of flux splitting

methods from FD/FV schemes, especially the flux vector splitting method, to construct F̂ν

in the DG scheme.

Let U
(i)
h := Uh|Ωi

∈ PK(Ωi), then we have

U
(i)
h (X, t) =

ℓ=K∑
ℓ=0

α
(i)
ℓ (t)ϕ

(i)
ℓ (X), (2.3)

The α
(i)
ℓ is referred to as the ℓ-th moment or the ℓ-th modal coefficient of U

(i)
h , satisfying

α
(i)
ℓ =

〈
U

(i)
h , ϕ

(i)
ℓ

〉
L2(Ωi)

. (2.4)

Note that the set {ϕ(i)
ℓ }ℓ=K

ℓ=0 is normative orthonormal.

On Ωi, take the test function V = ϕ
(i)
r . Note that the basis function ϕ

(i)
ℓ depends only on

X, that is, it does not evolve with time. Thus, we have∫
Ωi

ϕ(i)
r ∂t(Uh) dX =

∫
Ωi

ϕ(i)
r ∂t

(
U

(i)
h

)
dX =

ℓ=K∑
ℓ=0

∂t

(
α
(i)
ℓ

)
·
〈
ϕ(i)
r , ϕ

(i)
ℓ

〉
L2(Ωi)

. (2.5)

Utilizing the orthogonality (2.1), it immediately follows that∫
Ωi

ϕ(i)
r ∂t(Uh) dX = ∂t

(
α(i)
r

)
. (2.6)

From equations (2.2) and (2.6), the following semi-discrete spatial format can be derived:

d

dt

(
α(i)
r

)
= DG

(
U

(i)
h

)
, (2.7)

where i = 1, 2, · · · , N ; r = 0, 1, · · · , K.

FLUX VECTOR SPLITTING RKDG METHOD 11

The following presents the third-order Total Variation Diminishing (TVD) Runge-Kutta

(RK) temporal discretization scheme (TVD-RK3), the fourth-order four-stage non-Strong

Stability Preserving (non-SSP) RK temporal discretization scheme (RK4), and the 10-stage

fourth-order SSP RK temporal discretization scheme (SSPRK(10, 4)): Let ∆t > 0, and

partition the time domain as tn = n ·∆t, for 0 ≤ n ≤ M = T/∆t. Let Lh be some spatial

discretization operator, such as the previously mentioned Discontinuous Galerkin spatial

discretization scheme DG(·). Then,
• TVD-RK3

u(1) = un +∆t · Lh (u
n; tn) ,

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆t · Lh

(
u(1); tn +∆t

)
,

u(3) =
1

3
un +

2

3
u(2) +

2

3
∆t · Lh

(
u(2); tn +

1

2
∆t

)
,

un+1 = u(3).

(2.8)

• RK4

u(1) = un +
1

2
∆t · Lh (u

n; tn) ,

u(2) = un +
1

2
∆t · Lh

(
u(1); tn +

1

2
∆t

)
,

u(3) = un +∆t · Lh

(
u(2); tn +

1

2
∆t

)
,

u(4) =
1

3

(
−un + u(1) + 2u(2) + u(3)

)
+

1

6
∆t · Lh

(
u(3); tn +∆t

)
,

un+1 = u(4).

(2.9)

12 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

• SSPRK(10, 4)

u(1) = un +
1

6
∆tLh (u

n; tn) ,

u(2) = u(1) +
1

6
∆tLh

(
u(1); tn +

1

6
∆t

)
,

u(3) = u(2) +
1

6
∆tLh

(
u(2); tn +

1

3
∆t

)
,

u(4) = u(3) +
1

6
∆tLh

(
u(3); tn +

1

2
∆t

)
,

u(5) =
3

5
un +

2

5
u(4) +

1

15
∆tLh

(
u(4); tn +

2

3
∆t

)
,

u(6) = u(5) +
1

6
∆tLh

(
u(5); tn +

1

3
∆t

)
,

u(7) = u(6) +
1

6
∆tLh

(
u(6); tn +

1

2
∆t

)
,

u(8) = u(7) +
1

6
∆tLh

(
u(7); tn +

2

3
∆t

)
,

u(9) = u(8) +
1

6
∆tLh

(
u(8); tn +

5

6
∆t

)
,

un+1 =
1

25
un +

9

25
u(4) +

3

5
u(9) +

3

50
∆tLh

(
u(4); tn +

2

3
∆t

)
+

1

10
∆tLh

(
u(9); tn +∆t

)
.

(2.10)

By combining the RK-type temporal discretization schemes such as (2.8), (2.9), or (2.10)

with the DG spatial discretization format (2.2), one obtains the fully discrete RKDG scheme,

which allows the evolution of Un
h to Un+1

h . This is succinctly denoted as

Un+1
h = RKDG (Un

h) . (2.11)

To suppress numerical pseudo-oscillations, it is necessary to introduce a limiter ΛΠh to

restrict Un
h before the temporal evolution from tn to tn+1, yielding Ũn

h , that is,

Ũn
h = ΛΠh (U

n
h) . (2.12)

Using Ũn
h in the temporal evolution gives

Un+1
h = RKDG

(
Ũn
h

)
. (2.13)

Lastly, for convenience, we take the explicit Euler temporal discretization scheme as an ex-

ample to provide a complete description of the spatial discretization, temporal discretization,

and limiter correction processes in the DG algorithm:

FLUX VECTOR SPLITTING RKDG METHOD 13

Determine a unique polynomial function Un+1
h ∈ VK

h in the DG weak solution space such

that for all V ∈ VK
h and for all Ωi ∈ T d

h , the following is satisfied:∫
Ωi

V
Un+1
h − Ũn

h

∆t
dX =

∫
Ωi

F
(
Ũn
h

)
· (∇V) dX−

∫
∂Ωi

F̂ν

n
V dσ, (2.14)

where Ũn
h = ΛΠh (U

n
h), and F̂ν

n
is the normal numerical flux at time tn.

3. Overview of Flux Vector Splitting for Hyperbolic Conservative System

in One-dimension

This section introduces the flux vector splitting method using the one-dimensional hyper-

bolic conservation system as an example. In general, homogeneous systems can be split based

on the eigenvalues of the Jacobian matrix of the flux function, with the goal of obtaining

both a positive definite matrix and a negative definite matrix whose sum equals the original

Jacobian matrix. This allows the flux function to be divided into positive and negative flux

components, where the positive flux corresponds to characteristic waves propagating in the

positive direction of the coordinate system, and the negative flux corresponds to character-

istic waves propagating in the negative direction. Consequently, the upwind direction for

both can be clearly defined, and a stable upwind scheme can be employed for computation.

For practical fluid equations such as the compressible Euler equations or shallow water wave

equations, the Mach number Ma (or the Froude number Fr for shallow water waves) can

be introduced to rewrite the flux function as a linear function of Ma, thereby achieving flux

function splitting through the splitting of Ma.

3.1. Based on Jacobian eigenvalue Splitting. The purpose of splitting the flux function

through Jacobian eigenvalue splitting is to construct an upwind-type numerical flux scheme.

This method requires that the flux function itself be a homogeneous function. The following

provides the definition of a homogeneous function:

Definition 3.1 (Homogeneous Function). A function f is homogeneous if it satisfies f(αu) =

αf(u), for all u ∈ D(f), where D(f) is the domain of f , and α is any constant such that

for a given u, αu ∈ D(f).

It is easy to see that homogeneous functions satisfy f ′(αu) · u = f(u).

By taking α = 1, we obtain

f(u) = f ′(u) · u. (3.1)

Consider the following one-dimensional homogeneous system ∂tU + ∂xf(U) = 0, where

U = (u1, u2, u3, · · · , um)
T, and f(U) = (f1(U), f2(U), f3(U), · · · , fm(U))T, with the prop-

erty that f(U) = ∂f
∂U

·U. Let A = ∂f
∂U

, then f = AU.

The general process of Jacobian-FVS is as follows:

• Step1. First, the flux function needs to be rewritten as f(U) = A(U) ·U.

14 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

Remark 3.1. if f(U) is a homogeneous function (e.g., Euler equations), then take

A(U) = ∂f
∂U

.

Remark 3.2. The flux function f of the shallow water wave equations is not a

homogeneous function and requires special preprocessing. For example, the wave speed

a =
√
gh may be forcibly modified to a∗ =

√
gh
2
. For more details, see Appendix B.

• Step2. Diagonalize A by similarity transformation.

T−1AT = Λ,

A = TΛT−1 = RΛL.

Note: RL = Id(identity matrix), T = R, T−1 = L. A,R,L,Λ are all matrix-valued

functions of U.

• Step3. Split Λ.

Λ = Λ+ + Λ−,

satisfying

λ
(
Λ+
)
≥ 0, λ

(
Λ−) ≤ 0,

that is, Λ+ is positive definite, Λ− is negative definite.

• Step4. Split A.

A = R
(
Λ+ + Λ−)L = RΛ+L+RΛ−L = A+ + A−,

A+ = RΛ+L, A− = RΛ−L,

satisfying

λ
(
A+
)
≥ 0, λ

(
A−) ≤ 0,

that is, A+ is positive definite, A−is negative definite.

• Step5. Split the flux vector f .

f = f+ + f− , f+ = A+U , f− = A−U.

There are two common schemes to implement Step 3, namely the Steger-Warming splitting

scheme and the Lax-Friedrichs splitting scheme. They are introduced separately below.

Remark 3.3. The flux function for the 1D-Euler equations, given by f = (ρu, ρu2+P, (E+

u)P)T, and the normal flux function for the 2D-Euler equations, given by Fn = nx ·F+ny ·G,

are homogeneous functions of the 1-dimensional conservative vector U = (ρ, ρu,E)T and the

2-dimensional conservative vector U = (ρ, ρu, ρv, E)T, respectively.

FLUX VECTOR SPLITTING RKDG METHOD 15

3.1.1. Steger-Warming Splitting. The Steger-Warming splitting scheme (S-W Splitting) is

as follows:

λ+
k =

λk + |λk|
2

, λ−
k =

λk − |λk|
2

, k = 1, 2, · · · ,m. (3.2)

Then,

Λ+ =
1

2
(Λ + |Λ|) , Λ− =

1

2
(Λ− |Λ|). (3.3)

Hence,

A+ = R
(Λ + |Λ|)

2
L =

1

2
(A+ |A|) , A− = R

(Λ− |Λ|)
2

L =
1

2
(A− |A|). (3.4)

Here, |A| = R|Λ|L, where |Λ| denotes taking the absolute value of the elements in Λ.

If smoothness is considered, it can be improved as:

λ+
k =

λk +
√
|λk|2 + δ2

2
, λ−

k =
λk −

√
|λk|2 + δ2

2
, (3.5)

where δ is a small positive constant, for example, δ can be taken as 10−8.

3.1.2. Lax-Friedrichs Splitting. The Lax-Friedrichs splitting scheme (L-F Splitting) is as fol-

lows:

λ+
k =

λk +M

2
, λ−

k =
λk −M

2
, M > 0. (3.6)

Local L-F splitting:

Mj = max
k

{|λk (xj)|} . (3.7)

Global L-F splitting:

M = max
j

max
k

{λk (xj)} . (3.8)

Therefore,

Λ+ =
1

2
(Λ +MId) , Λ− =

1

2
(Λ−MId). (3.9)

Note that RL = Id, hence

A+ = R
(Λ +MId)

2
L =

1

2
(A+MId) , A− = R

(Λ−MId)

2
L =

1

2
(A−MId). (3.10)

Remark 3.4. From this, it can be seen that the L-F flux vector splitting is a “simplified”

version of the S-W flux vector splitting, as L-F replaces the individual moduli of all eigen-

values with a common upper bound of their moduli, using this upper bound uniformly in the

splitting process. Conversely, S-W provides more precise control over artificial viscosity than

L-F (S-W has less dissipation than L-F), because S-W involves the splitting with the modulus

of each eigenvalue itself, rather than a simplified treatment using a single upper bound value.

16 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

Remark 3.5. The S-W flux vector splitting and local L-F flux vector splitting possess adap-

tivity, meaning that at each cell boundary, the corresponding |λ|i+1/2,Mi+1/2 are taken. In

contrast, the global Lax-Friedrichs flux vector splitting scheme abandons this adaptivity, but it

is more convenient to implement and introduces greater artificial viscosity, which is beneficial

for suppressing numerical oscillations (at the cost of reduced accuracy).

Remark 3.6. Noticing the similarity between the Lax-Friedrichs splitting method and the

common Lax-Friedrichs flux format in DG schemes, we may also attempt to develop the

Steger-Warming splitting method into a flux format for scalar equations. Details can be

found in Appendix C.

3.2. Based on Mach Number Splitting. For practical fluid control equations, such as the

compressible Euler equations and shallow water wave equations, a dimensionless parameter,

the Mach number, can be defined as the ratio of the fluid velocity to the local speed of sound,

denoted as Ma =
u
a
. The Mach number determines the characteristic propagation direction.

This section illustrates the concept using the 1D-Euler equations as an example, and for the

Mach-FVS related to the shallow water wave equations, please refer to Appendix B.

The eigenvalues of the Jacobian for the one-dimensional (1D) Euler equations are given

as follows:

λ1 = u λ2 = u− a λ3 = u+ a. (3.11)

Note that the speed of sound a =
√

γP
ρ

> 0, where γ is the specific heat ratio.

• if Ma > 1, then u > a > 0,

hence u > 0, u− a > 0, u+ a > 0.

This implies that all three characteristic waves propagate in the positive direction.

Consequently, there is no negative flux in the flux vector F, that is F = F+,F− = 0.

• if Ma < −1, then u < −a < 0,

hence u < 0, u− a < 0, u+ a < 0.

This implies that all three characteristic waves propagate in the negative direction.

Consequently, there is no positive flux in the flux vector F, that is F = F−,F+ = 0.

• If |Ma| < 1, the situation can be discussed in the following two cases:

Case 1: u > 0, u− a < 0, u+ a > 0 (both positive and negative fluxes exist);

Case 2: u < 0, u− a < 0, u+ a > 0 (both positive and negative fluxes exist).

Remark 3.7. When |Ma| > 1, that is, Ma > 1 or Ma < −1, it is referred to as supersonic;

when |Ma| < 1, it is referred to as subsonic.

3.2.1. van Leer Splitting. The split fluxes f+ and f− of the Steger-Warming scheme are not

continuously differentiable near the sonic point, which can lead to errors in calculations. In

contrast, the van Leer split fluxes are continuously differentiable near the sonic point [4].

FLUX VECTOR SPLITTING RKDG METHOD 17

Rewrite the flux function F of the 1D-Euler equations in the van Leer form:

F =

 ρu

ρu2 + P

(E + P)u

 =

 ρu

ρu2 + P(
1
2
ρu2 + P

γ−1
+ P

)
u

 =

 ρu

ρu2 + P(
1
2
ρu2 + γP

γ−1

)
u

=

ρu

ρu2 + ρa2

γ(
1
2
ρu2 + γ

γ−1
ρa2

γ

)
u

 =

ρaMa

ρaMau+ ρa2

γ(
1
2
Mau+ a

γ−1

)
ρau

= ρa

 Ma

uMa + a/γ

u2Ma/2 + au/(γ − 1)

 , (3.12)

Then achieve the splitting of F by splitting Ma.

• When Ma ≥ 1 (characteristics propagate to the right, flux is positive),

F = F+
(
F− = 0

)
. (3.13)

• When Ma ≤ −1 (characteristics propagate to the left, flux is negative),

F = F− (F+ = 0
)
. (3.14)

• |Ma| < 1, that is, −1 < Ma < 1:

F = F+ + F− , F± =

 1

[(γ − 1)u± 2a]/γ

[(γ − 1)u± 2a]2/ [2 (γ2 − 1)]

 · ρaM±
a , (3.15)

here,

M+
a =

(Ma + 1)2

4
, M−

a = −(Ma − 1)2

4
, (3.16)

satisfying

Ma = M+
a +M−

a . (3.17)

3.2.2. Liou-Stenffen Splitting (AUSM-type Methods). The fundamental idea of the AUSM

(Advection Upstream Splitting Method) scheme is to consider the advection waves (related

to the characteristic velocity u, linear) and the acoustic waves (related to the characteristic

velocities u+ c and u− c, nonlinear) as physically distinct processes. Therefore, the inviscid

flux is split into advection and pressure flux terms for separate treatment. In terms of

scheme construction, the AUSM scheme is an evolution and improvement of the van Leer

scheme. However, it distinguishes between linear and nonlinear characteristics, splits the

pressure term and the advection flux, obtains the “upwind” property by judging the specially

constructed interface Mach number, and accurately captures shocks through the careful

design of a unified sound speed in the adjacent cells at the interface. From the analysis of its

18 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

dissipation term, this is a composite scheme of FVS (Flux Vector Splitting) and FDS (Flux

Difference Splitting). The AUSM scheme theoretically distinguishes between the linear field

(related to the characteristic velocity u) and the nonlinear field (related to the characteristic

velocities u± c) in the flow’s advection characteristics and splits the pressure term and the

advection flux separately.

The flux function F of the one-dimensional (1D) Euler equations, in the Liou-Stenffen

form, is given as follows:

F =

 ρu

ρu2 + P

u(E + P)

 =

 ρu

ρu2 + P

ρuH̃

 =

 ρaMa

ρaMau+ P

ρaMaH̃

 = ρaMa

 1

u

H̃

︸ ︷︷ ︸

Fa

+

 0

P

0

︸ ︷︷ ︸

FP

, (3.18)

where Fa is referred to as the advection flux and FP as the pressure flux, satisfying F =

Fa + FP .

The Mach number Ma is split to thereby split the advection flux:

Ma = M+
a +M−

a ,

where,

M+
a =

Ma , Ma > 1

(Ma + 1)2 /4 , |Ma| ≤ 1

0 , Ma < −1

M−
a =

0 , Ma > 1

− (Ma − 1)2 /4 , |Ma| ≤ 1

Ma , Ma < −1

Thus,

Fa
± = ρaM±

a

 1

u

H̃

 . (3.19)

Splitting the pressure term thereby leads to the splitting of the pressure flux:

P = P+ + P−, (3.20)

where,

P+ =

P , Ma > 1

P (1+Ma)
2

, |Ma| ≤ 1

0 , Ma < −1

(3.21a)

P− =

0 , Ma > 1

P (1−Ma)
2

, |Ma| ≤ 1

P , Ma < −1

(3.21b)

FLUX VECTOR SPLITTING RKDG METHOD 19

Thus, there is

FP
± = P±

 0

1

0

 . (3.22)

In summary,

F = F+ + F− , F± = Fa
± + FP

±. (3.23)

Remark 3.8. The van Leer splitting method and the Liou-Stenffen splitting method (a class

of AUSM methods) share a consistent approach to the splitting of the Mach number Ma.

4. Roe Average

For control equations of a system, the limiters introduced typically need to be used in

conjunction with local characteristic decomposition. For variable-coefficient equations or

nonlinear equations, local freezing techniques are required to determine the characteristic

transformation matrix before performing local characteristic decomposition. A simple ap-

proach is naturally to take the arithmetic average of the left and right states (in 1D) or the

internal and external states of the cell (in 2D), but a more effective method, or one that is

more in line with the physical process, is the Roe average. The approach of Roe averaging

is as follows: by utilizing the constant states of the left and right functions, UL and UR, a

reasonable constant matrix Q
(
UL,UR

)
is constructed to approximate the original A(U).

This transformation simplifies the complex nonlinear problem into a linear one. Roe [40]

achieved this construction by ensuring that Q
(
UL

i+ 1
2

,UR
i+ 1

2

)
satisfies

F
(
UR

i+ 1
2

)
− F

(
UL

i+ 1
2

)
= Q

(
UL

i+ 1
2
,UR

i+ 1
2

)(
UR

i+ 1
2
−UL

i+ 1
2

)
, (4.1)

thereby completing the construction. (Here, F(U) is flux function in hyperbolic systems.)

In the Roe scheme, the matrix Q
(
UL

i+ 1
2

,UR
i+ 1

2

)
is a linear approximation of the Jacobian

matrix A at a certain state U∗
i+ 1

2

. The state U∗
i+ 1

2

is referred to as the Roe average of UL
i+ 1

2

and UR
i+ 1

2

.

In the subsequent sections, when employing characteristic reconstruction in the FVS-

RKDG scheme for the hyperbolic systems, Roe averaging is used to achieve local freezing.

Therefore, in this section, we provide the Roe averaging formulations for the compressible

Euler equations in 1D and 2D/3D as examples.

The Roe averaging scheme for the 1D-Euler equations is given by:√
ρRoe = (

√
ρL +

√
ρR) /2,√

ρRoe · uRoe = (
√
ρLuL +

√
ρRuR) /2,√

ρRoe · H̃
Roe

=
(√

ρLH̃L +
√
ρRH̃R

)
/2.

(4.2)

Note: H̃ is the specific enthalpy.

20 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

The pressure P
Roe

, speed of sound aRoe, and total energy E
Roe

are computed indirectly

from ρRoe, uRoe, and H̃
Roe

as follows:

P
Roe

=
γ − 1

γ

(
ρRoeH̃

Roe

− 1

2
(ρRoe)2

)
,

(aRoe)2 = (γ − 1)

(
H̃

Roe

− (uRoe)2

2

)
,

E
Roe

= ρRoeH̃
Roe

− P
Roe

.

(4.3)

Note: P
Roe

, aRoe, and E
Roe

are not obtained by directly averaging P , a, and E with density

but are computed indirectly.

The Roe matrix ARoe is constructed as:

U
Roe

=
(
ρRoe, (ρRoe · uRoe), E

Roe
)T

,

ARoe = A
(
U

Roe
)
= R

(
U

Roe
)
· Λ
(
U

Roe
)
· L
(
U

Roe
)
= R

Roe · ΛRoe · LRoe
,∣∣ARoe

∣∣ = R
Roe ·

∣∣∣ΛRoe
∣∣∣ · LRoe

,
∣∣∣ΛRoe

∣∣∣ = diag
(∣∣∣λ1

Roe
∣∣∣ , ∣∣∣λ2

Roe
∣∣∣ , ∣∣∣λ3

Roe
∣∣∣) .

(4.4)

For the 2D/3D case, the following additional formulas are included:

vRoe =

(√
ρLvL +

√
ρRvR

)
√
ρL +

√
ρR

,

wRoe =

(√
ρLwL +

√
ρRwR

)
√
ρL +

√
ρR

,

U
Roe

=
(
ρRoe, (ρRoe · uRoe), (ρRoe · vRoe), (ρRoe · wRoe), E

Roe
)T

.

(4.5)

Remark 4.1. In the 2D case, the Roe averaging scheme for the compressible Euler equations

presented in this paper is based on the normal flux, that is, the normal velocity qn = u · nx +

v · ny is introduced. For details, please refer to Section 6.2 below.

Remark 4.2. The specific form of the Roe average may vary for different fluid motion

models. For instance, in the case of the shallow water wave equations, the Roe averaging

scheme can be referred to in [41]

5. DG Based on Flux Vector Splitting in One Dimension (1D-FVS-DG)

This section will present the flux vector splitting scheme for one-dimensional hyperbolic

conservation systems within the DG framework. Flux vector splitting itself does not in-

troduce any error; therefore, one can first perform a functional split on the flux term in

the original control equation and then define the weak solution through variation. Based

on the physical interpretation of the split sub-fluxes and considering the characteristic line

theory and the stability of the discrete scheme, the corresponding upwind-type numerical

flux format can be derived.

FLUX VECTOR SPLITTING RKDG METHOD 21

Consider the one-dimensional hyperbolic conservation system

∂t(U) + ∂x(F(U)) = 0. (5.1)

We perform the following splitting on the flux vector F:

F(U) = F+(U) + F−(U), (5.2)

where F+ denotes the positive flux, which is the flux carried by characteristic waves prop-

agating in the positive direction of the one-dimensional coordinate system; F− denotes the

negative flux, which is the flux carried by characteristic waves propagating in the negative

direction of the one-dimensional coordinate system. The construction methods for F+ and

F− are discussed in Section 3.

Thus, we have

∂x(F(U)) = ∂x(F
+(U)) + ∂x(F

−(U)), (5.3)

∂t(U) + ∂x(F
+(U)) + ∂x(F

−(U)) = 0. (5.4)

Multiplying both sides of equation (5.4) by an arbitrary test function V ∈ VK
h and inte-

grating by parts over the cell Ii yields

⟨∂t(U),V⟩L2(Ii)
+
〈
∂x(F

+(U)),V
〉
L2(Ii)

+
〈
∂x(F

−(U)),V
〉
L2(Ii)

= ⟨∂t(U),V⟩L2(Ii)
−
〈
F+(U), ∂x(V)

〉
L2(Ii)

−
〈
F−(U), ∂x(V)

〉
L2(Ii)

+
(
F+ ⊙V

)i+1/2

i−1/2
+
(
F− ⊙V

)i+1/2

i−1/2

= ⟨∂t(U),V⟩L2(Ii)
−
〈
F+(U) + F−(U), ∂x(V)

〉
L2(Ii)

+
(
F+ ⊙V

)i+1/2

i−1/2
+
(
F− ⊙V

)i+1/2

i−1/2

= ⟨∂t(U),V⟩L2(Ii)
− ⟨F(U), ∂x(V)⟩L2(Ii)

+
(
F+ ⊙V

)i+1/2

i−1/2
+
(
F− ⊙V

)i+1/2

i−1/2
= 0. (5.5)

Thus, the definition of the DG weak solution Uh based on flux vector splitting can be given:

Definition 5.1 (Weak Solution Uh for 1D-FVS-DG). If Uh ∈ VK
h and for all Vh ∈ VK

h , it

satisfies

⟨∂t(Uh),Vh⟩L2(Ii)
− ⟨F(Uh), ∂x(Vh)⟩L2(Ii)

+
[(

F̂+
i+1/2 ⊙

(
VL

h

)
i+1/2

)
−
(
F̂+

i−1/2 ⊙
(
VR

h

)
i−1/2

)]
+
[(

F̂−
i+1/2 ⊙

(
VL

h

)
i+1/2

)
−
(
F̂−

i−1/2 ⊙
(
VR

h

)
i−1/2

)]
= 0, (5.6)

where F̂± are the numerical fluxes, then Uh is referred to as the weak solution of the original

equation (5.1) in the sense of FVS-DG.

Let

F̂i+1/2 := F̂+
i+1/2 + F̂−

i+1/2, (5.7)

22 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

then we have

⟨∂t(Uh),Vh⟩L2(Ii)
− ⟨F(Uh), ∂x(Vh)⟩L2(Ii)

+
(
F̂i+1/2 ⊙

(
VL

h

)
i+1/2

)
−
(
F̂i−1/2 ⊙

(
VR

h

)
i−1/2

)
= 0.

(5.8)

In actual calculations, after obtaining F̂+ and F̂− at the same interface, the two are super-

imposed scalarly to obtain F̂, which is then substituted into equation (5.8) for computation.

Based on the characteristic line theory of hyperbolic equations and the stability of the

discrete scheme, an upwind numerical flux can be employed, which takes the interface state

on the reverse side of the characteristic propagation direction as the numerical state. This

numerical state can be split into two numerical sub-fluxes with opposite directions, and the

sub-flux that is consistent with the characteristic propagation direction under consideration is

taken as the final numerical flux for this interface in that characteristic propagation direction.

From the definitions of F+ and F−, the following can be immediately obtained:

F̂+
i+1/2 = FL,+

i+1/2, F̂+
i−1/2 = FL,+

i−1/2, (5.9a)

F̂−
i+1/2 = FR,−

i+1/2, F̂−
i−1/2 = FR,−

i−1/2. (5.9b)

Remark 5.1 (DG Based on Jacobian Matrix Eigenvalues Splitting). In the Steger-Warming

and Lax-Friedrichs splitting schemes, we have F+ = A+U and F− = A−U, so we obtain

F̂+
i+1/2 = AL,+(UL

i+1/2)U
L
i+1/2, F̂+

i−1/2 = AL,+(UL
i−1/2)U

L
i−1/2, (5.10a)

F̂−
i+1/2 = AR,−(UR

i+1/2)U
R
i+1/2, F̂−

i−1/2 = AR,−(UR
i−1/2)U

R
i−1/2. (5.10b)

6. DG Based on Flux Vector Splitting in Two-dimension (2D-FVS-DG)

Consider the two-dimensional hyperbolic conservation system

∂t(U) + ∂x(F(U)) + ∂y(G(U)) = 0. (6.1)

Let

H = (F,G), (6.2)

the original equation can be written as

∂t(U) +∇ ·H = 0. (6.3)

Now, introduce the normal flux of the two-dimensional hyperbolic conservation system as

Fν := n ·H (6.4)

that is

Fν = nx · F+ ny ·G. (6.5)

FLUX VECTOR SPLITTING RKDG METHOD 23

Remark 6.1. For high-dimensional problems, the DG scheme cannot discretize space di-

mension by dimension like FD or FV schemes, especially on triangular meshes, where the

concept of “dimension-by-dimension discretization” is invalid. Therefore, we introduce the

outward normal flux on the cell interfaces, transforming the multi-dimensional problem into

several one-dimensional problems along the outward normal directions of the mesh inter-

faces (the number of normal one-dimensional problems depends on the number of numerical

integration points arranged on the interfaces).

6.1. DG Based on Flux Vector Splitting in Two-dimension. In the two-dimensional

hyperbolic conservation system, there are flux functions F and G in the x and y directions,

respectively. By using the outward normal vector on the cell interfaces, F and G are com-

bined into a single flux function, namely the normal flux Fν . On the basis of the normal flux

function Fν , the Jacobian matrix eigenvalue splitting or Mach number splitting is achieved.

Consider the two-dimensional hyperbolic conservation system

∂t(U) + ∂x(F(U)) + ∂y(G(U)) = 0,

following the one-dimensional case, split the flux vectors in each dimension (F is the flux

vector in the x direction, G is the flux vector in the y direction):

F = F+ + F− , G = G+ +G−. (6.6)

F+ represents the flux component in the x dimension along the +x direction; F− represents

the flux component in the x dimension along the −x direction; G+ represents the flux

component in the y dimension along the +y direction; G− represents the flux component in

the y dimension along the −y direction. The construction methods for F±,G± are discussed

in Section 3.

Let

H+ := (F+,G+)T , H− := (F−,G−)T, (6.7)

hence

H = H+ +H−, (6.8)

then

∂t(U) +∇ ·H+ +∇ ·H− = 0. (6.9)

Multiply both sides of equation (6.9) by an arbitrary test function V ∈ VK
h , and integrate

by parts over Ωi to obtain

⟨∂t(U),V⟩L2(Ωi)
+
〈
∇ ·H+ (U) ,V

〉
L2(Ωi)

+
〈
∇ ·H− (U) ,V

〉
L2(Ωi)

= ⟨∂t(U),V⟩L2(Ωi)
−
〈
H+ (U) : ∇V

〉
L2(Ωi)

−
〈
H− (U) : ∇V

〉
L2(Ωi)

+

∫
Ωi

∇ · (H+ (U)⊙V)dX+

∫
Ωi

∇ · (H− (U)⊙V)dX

= ⟨∂t(U),V⟩L2(Ωi)
−
〈
H+ (U) : ∇V

〉
L2(Ωi)

−
〈
H− (U) : ∇V

〉
L2(Ωi)

+

∫
∂Ωi

(H+ (U)⊙V) · ndl +
∫
∂Ωi

(H− (U)⊙V) · ndl

= ⟨∂t(U),V⟩L2(Ωi)
−
〈
H+ (U) : ∇V

〉
L2(Ωi)

−
〈
H− (U) : ∇V

〉
L2(Ωi)

+

∫
∂Ωi

(H+ (U) · n)⊙Vdl +

∫
∂Ωi

(H− (U) · n)⊙Vdl

24 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

= ⟨∂t(U),V⟩L2(Ωi)
−
〈
H+ +H− (U) : ∇V

〉
L2(Ωi)

+

∫
∂Ωi

(H+ (U) · n)⊙Vdl +

∫
∂Ωi

(H− (U) · n)⊙Vdl

= ⟨∂t(U),V⟩L2(Ωi)
− ⟨H (U) : ∇V⟩L2(Ωi)

+

∫
∂Ωi

(H+ (U) · n)⊙Vdl +

∫
∂Ωi

(H− (U) · n)⊙Vdl = 0. (6.10)

Let

F+
ν := H+ · n , F−

ν := H− · n. (6.11)

Note that the outward normal vector has been incorporated into the numerical fluxes.

Obviously,

F+
ν = nxF

+ + nyG
+ , F−

ν = nxF
− + nyG

−, (6.12)

and it holds that

Fν = F+
ν +F−

ν . (6.13)

Remark 6.2. Given the physical significance of F±,G±, it is understood that F+
ν represents

the flux flowing from the cell interior to the cell exterior in the direction of the unit outward

normal vector n. Conversely, F−
ν represents the flux flowing from the cell exterior to the

cell interior in the direction of the unit outward normal vector n.

Now, the definition of the DG weak solution Uh based on flux vector splitting is given:

Definition 6.1 (The weak solution of the 2D-FVS-DG). If Uh ∈ VK
h and for all Vh ∈ VK

h ,

it satisfies

⟨∂t(Uh),V⟩L2(Ωi)
− ⟨H (Uh) : ∇Vh⟩L2(Ωi)

+

∫
∂Ωi

F̂+
ν ·Vhdl +

∫
∂Ωi

F̂−
ν ·Vhdl = 0, (6.14)

where F̂±
ν are the normal numerical fluxes, then Uh is referred to as the weak solution of

the original equation (6.1) in the sense of FVS-DG.

Let

F̂ν := F̂+
ν + F̂−

ν , (6.15)

In actual calculations, the following form is used:

⟨∂t(Uh),V⟩L2(Ωi)
− ⟨H (Uh) : ∇Vh⟩L2(Ωi)

+

∫
∂Ωi

F̂ν ·Vh dl = 0. (6.16)

Similar to the one-dimensional problem, and still due to considerations of characteristic lines

and stability, based on the physical meaning of F±
ν , it can be obtained that

F̂+
ν = nxF

+(Uint) + nyG
+(Uint), (6.17a)

F̂−
ν = nxF

−(Uext) + nyG
−(Uext). (6.17b)

Here, “int” denotes the interior of the cell, and “ext” denotes the exterior of the cell.

FLUX VECTOR SPLITTING RKDG METHOD 25

6.2. Normal Roe Average Employed by DG in Two-dimension. Roe average can

be adopted for local-freezing when local characteristic decomposition discussed in Section

8. Similar to previous approach in Subsection 6.1, Roe average along the outward normal

direction on the cell interfaces is utilized to handle multi-dimensional cases. Here, we provides

the specific implementation details of the noraml Roe averaging.

Firstly, review that the Roe average along the coordinate vectors:√
ρRoe = (

√
ρint +

√
ρext) /2,√

ρRoe · uRoe = (
√
ρint · uint +

√
ρext · uext) /2,√

ρRoe · vRoe = (
√
ρint · vint +

√
ρext · vext) /2,√

ρRoe · H̃
Roe

=
(√

ρint · H̃int +
√
ρext · H̃ext

)
/2.

Note: H̃ is the specific enthalpy.

P
Roe

=
γ − 1

γ

(
ρRoeH̃

Roe

− 1

2
(ρRoe)2

)
,

(aRoe)2 = (γ − 1)

(
H̃

Roe

− 1

2
(uRoe)2 − 1

2
(vRoe)2

)
,

E
Roe

= ρRoeH̃
Roe

− P
Roe

.

Note that P
Roe

, aRoe, and E
Roe

are not obtained by directly averaging P , a, and E with

density but are computed indirectly.

Then, the normal Jacobian and its eigenstructure are substituted as follows:

qn
Roe = uRoenx + vRoeny,

λ1
Roe

= λ2
Roe

= qn
Roe, λ3

Roe
= qn

Roe − aRoe, λ4
Roe

= qn
Roe + aRoe,

An
Roe

= An

(
U

Roe
)
= Rn

(
U

Roe
)
· Λn

(
U

Roe
)
· Ln

(
U

Roe
)
= Rn

Roe · Λn
Roe · Ln

Roe
,∣∣∣An

Roe
∣∣∣ = Rn

Roe ·
∣∣∣Λn

Roe
∣∣∣ · Ln

Roe
,
∣∣∣Λn

Roe
∣∣∣ = diag

(∣∣∣λ1
Roe
∣∣∣ , ∣∣∣λ2

Roe
∣∣∣ , ∣∣∣λ3

Roe
∣∣∣ , ∣∣∣λ4

Roe
∣∣∣) .

(6.18)

Remark 6.3. The normal Roe flux for the 2D-Euler equations is given by:

F̂Roe
n =

1

2

(
Fext

n + Fint
n

)
− 1

2

∣∣An

∣∣ (Uext −Uint
)
, (6.19)

where

Fext
n = Fn

(
Uext

)
= F

(
Uext

)
· nx +G

(
Uext

)
· ny, (6.20a)

Fint
n = Fn

(
Uint

)
= F

(
Uint

)
· nx +G

(
Uint

)
· ny. (6.20b)

Roe flux is a kind of Riemann solvers, which is diffrenet from our FVS-based flux schemes

introduced in Section 5 and Subsection 6.1.

26 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

7. A Novel TVB(D)-minmod Limiter for Numerical Pseudo-Oscillation

Treatment

This section will introduce the discontinuity indicators firstly and then focuses on some

improvements we have made to the TVB(D)-minmod limiter.

7.1. Commonly Used Discontinuity Indicators. In this subsection, we introduce two

types of discontinuity indicators used in the subsequent numerical experiments, namely

the TVB(D)-minmod discontinuity indicator and the KXRCF discontinuity indicator. The

TVB(D)-minmod discontinuity indicator is applicable to 1D/2D scalar equations as well as

1D/2D systems. We employ this type of limiter solely on rectangular (arbitrary quadrilat-

eral) meshes; The KXRCF discontinuity indicator is used exclusively on triangular meshes

for the control equations of fluid systems. It is important to note that when discontinuity

indicators are applied to system control equations, each component’s troubled cells should

be inspected individually.

7.1.1. TVB(D)-minmod Discontinuity Indicator. The TVB(D)-minmod limiter is a slope

limiter that compares the jump between the average of the troubled cell and the averages of

the neighboring cells with the jump between the average of the troubled cell and the average

of the boundary integrals of the troubled cell. The smaller of these absolute values is taken

as the revised average of the boundary integrals of the troubled cell, thereby reducing the

average slope of the approximate solution curve within the troubled cell. When used as a

discontinuity indicator, the working principle of the TVB(D)-minmod limiter is as follows:

• 1D-TVB(D)-minmod Discontinuity Indicator

The deviation of the cell left boundary value from the cell average (left deviation) is given

by

Ûi := U i − U+
i− 1

2

,

hence,

U+
i− 1

2

= U i − Ûi.

The deviation of the cell right boundary value from the cell average (right deviation) is

Ũi := U−
i+ 1

2

− U i,

hence,

U−
i+ 1

2

= U i + Ũi.

The forward difference between neighboring cell averages is

∆− = U i − U i−1.

The backward difference between neighboring cell averages is

∆+ = U i+1 − U i.

FLUX VECTOR SPLITTING RKDG METHOD 27

The modified left deviation is calculated as

Ûmod
i = minmod

(
Ûi,∆−,∆+

)
.

The modified left boundary value is then

U+,mod

i− 1
2

= U i − Ûmod
i .

The modified right deviation is calculated as

Ũmod
i = minmod

(
Ũi,∆−,∆+

)
.

The modified right boundary value is then

U−,mod

i+ 1
2

= U i + Ũmod
i .

If the modification is not equal to the original, it indicates that the cell is a troubled cell,

that is:

if Ûmod
i ̸= Ûi or Ũmod

i ̸= Ũi then Ii is a troubled cell.

Remark 7.1 (Correct the end-point values of the troubled interval and implement the

TVB(D)-minmod limiter). According to U+,mod

i− 1
2

and U−,mod

i+ 1
2

, we can correct the DG poly-

nomial on the Ii cell. Executing this correction step can implement the TVB(D)-minmod

limiter (if not, then it just work as a discontinuity indicator).

• 2D-TVB(D)-minmod Discontinuity Indicator

The 2D rectangular cell integral average is given by

U ij = UΩij
=

1

|Ωij|

∫
Ωij

uij(x, y) dxdy.

The left boundary (L) integral average is

U
L

ij = U
L

∂Ωij
=

1

|∂ΩL
ij|

∫
∂ΩL

ij

uij(x, y) dl.

The right boundary (R) integral average is

U
R

ij = U
R

∂Ωij
=

1

|∂ΩR
ij|

∫
∂ΩR

ij

uij(x, y) dl.

The bottom boundary (B) integral average is

U
B

ij = U
B

∂Ωij
=

1

|∂ΩB
ij|

∫
∂ΩB

ij

uij(x, y) dl.

The top boundary (T) integral average is

U
T

ij = U
T

∂Ωij
=

1

|∂ΩT
ij|

∫
∂ΩT

ij

uij(x, y) dl.

The left difference between adjacent cell averages is

∆L = U ij − U i−1,j.

28 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

The right difference between adjacent cell averages is

∆R = U i+1,j − U i,j.

The bottom difference between adjacent cell averages is

∆B = U ij − U i,j−1.

The top difference between adjacent cell averages is

∆T = U i,j+1 − U ij.

The left deviation of the boundary average from the cell average is

ÛL
ij = U ij − U

L

ij,

hence,

U
L

ij = U ij − ÛL
ij .

The right deviation of the boundary average from the cell average is

ŨR
ij = U

R

ij − U ij,

hence,

U
R

ij = U ij + ŨR
ij .

The bottom deviation of the boundary average from the cell average is

ÛB
ij = U ij − U

B

ij,

hence,

U
B

ij = U ij − ÛB
ij .

The top deviation of the boundary average from the cell average is

ŨT
ij = U

T

ij − U ij,

hence,

U
T

ij = U ij + ŨT
ij .

The modified left deviation is

ÛL,mod
ij = minmod

(
ÛL
ij ,∆L,∆R

)
.

The modified right deviation is

ŨR,mod
ij = minmod

(
ŨR
ij ,∆L,∆R

)
.

The modified bottom deviation is

ÛB,mod
ij = minmod

(
ÛB
ij ,∆B,∆T

)
.

The modified top deviation is

ŨT,mod
ij = minmod

(
ŨT
ij ,∆B,∆T

)
.

FLUX VECTOR SPLITTING RKDG METHOD 29

The 2D-rectangular mesh TVB(D)-minmod discontinuity indicator is as follows:

if ÛL,mod
ij ̸= ÛL

ij or ŨR,mod
ij ̸= ŨR

ij or ÛB,mod
ij ̸= ÛB

ij or ŨT,mod
ij ̸= ŨT

ij ,

then Ωij is a troubled cell.

Remark 7.2 (Correction of Boundary Integral Averages using the 2D Rectangular Cell

TVB(D)-minmod Limiter).

U
L,mod

ij = U ij + ÛL,mod
ij ,

U
R,mod

ij = U ij + ŨR,mod
ij ,

U
B,mod

ij = U ij + ÛB,mod
ij ,

U
T,mod

ij = U ij + ŨT,mod
ij .

Executing this correction step can implement the TVB(D)-minmod limiter (if not, then it

just work as a discontinuity indicator).

As mentioned in the “Introduction”, the TVB(D)-minmod discontinuity indicator is ob-

tained by omitting the slope correction step from the the TVB(D)-minmod limiter. All

computational processes of the TVB(D)-minmod discontinuity indicator are naturally also

the main steps of the TVB(D)-minmod limiter.

7.1.2. KXRCF Discontinuity Indicator. Let the inflow boundary of the solution be denoted

as ∂Ω−. The KXRCF indicator is defined as follows:

JΩ =

∣∣∫
∂Ω−

(
u|Ω − u|Ωnb

)
dSx

∣∣
h

k+1
2 |∂Ω−| · ∥u|Ω∥L∞

.

If JΩ > 1, then Ω is identified as a troubled cell. Here, Ωnb refers to the neighboring cell

sharing the inflow boundary ∂Ω− (not all neighboring cells), K is the highest degree of the

piecewise polynomial, and h is the radius of the cell.

• 1D-KXRCF Discontinuity Indicator: For the 1D fluid systems, if v·n < 0, it is considered

an inflow boundary; otherwise, it is an outflow boundary. Here n is the unit outward normal

vector; For 1D scalar case, we define v, taking its value from inside the cell Ij as f
′(u) and

take u as the indicator variable.

• 2D-KXRCF Discontinuity Indicator: For the 2D fluid systems, if (vx, vy) · n < 0, it is

classified as an inflow boundary; otherwise, it is an outflow boundary. Here n is the unit

outward normal vector; For 2D scalar case, we define v1, v2, taking their values from inside

the cell Ωj as f
′(u), g′(u) respectively and still take u as the indicator variable.

7.2. Constrained Optimization-based TVB(D)-minmod Limiter Compatible with

High-Order Polynomial Approximation. In the context of high-order PK-polynomial

approximation (K ≥ 3), the original TVB(D)-minmod limiter results in indeterminate cor-

rection equations with non-unique solutions. Direct use of the least squares solution for

the above indeterminate correction equations will result in noticeable numerical oscillations

30 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

when using higher-order polynomial approximation (Please refer to Figure 1). The primary

goal of employing the TVB(D)-minmod limiter is to suppress numerical oscillations. To

better achieve this goal, we select the solution from the set of indeterminate solutions that is

“the smoothest,” serving as the DG solution modified by the TVB(D)-minmod limiter. To

address the ill-posed problems between the original TVB(D)-minmod limiter and high-order

polynomial approximation, we introduce the smoothness measurement function IS from

WENO reconstruction as the objective function to construct an optimization problem. Ad-

ditionally, while suppressing numerical oscillations, it is essential to maintain the solution’s

high accuracy. The approach taken in [1] is to introduce an L2-error term to characterize

the difference between the corrected solution and the original high-order scheme. By mini-

mizing the “L2-error between the corrected solution and the original high-order scheme,” we

ensure the accuracy of the solution modified by the limiter. Consequently, a natural idea is

to combine the aforementioned constraints to form a bi-objective optimization problem that

balances oscillation suppression and precision.

(a) (b) (c)

Figure 1. 1D-Burgers’ equation ut+(1
2
u2)x = 0 with initial condition u0(x) = sin(x). The simulation

is performed up to time t = 2.0. P 3-polynomial approximations and uniquely spaced 32 cells. TVB

parameter M = 1. The v for KXRCF indicator in scalar case is taken as ui±1/2 from inside the cell Ii:

(a) classical TVB-minmod limiter without discontinuity indicator; (b) classical TVB-minmod limiter with

TVB discontinuity indicator; (c) classical TVB-minmod limiter with KXRCF discontinuity indicator

7.2.1. Smoothness Factor IS Constrained TVB(D)-minmod Limiter: One-Dimensional Case.

The one-dimensional smoothness measurement function is defined as:

IS(QK
i (x)) =

l=K∑
l=1

∫ xi+1/2

xi−1/2

∆x2l−1
i

(
∂lQK

i (x)

∂xl

)2

dx. (7.1)

Let the original DG weak solution on interval Ii without the limiter be denoted as uold
i ,

with modal coefficients given by ai,old =
[
αi,old
0 , αi,old

1 , αi,old
2 , αi,old

3 , . . . , αi,old
K−1, α

i,old
K

]T
. An op-

timization problem for the DG weak solution ui on interval Ii is constructed as follows:

FLUX VECTOR SPLITTING RKDG METHOD 31

min IS(ui)

s.t.

1
|Ii|

∫
Ii
ui(x)dx = U i

ui

(
xi−1/2

)
= U+,mod

i−1/2

ui

(
xi+1/2

)
= U−,mod

i+1/2

(7.2)

Let the solution to problem (7.2) be umod
i , with modal coefficients

ai,mod =
[
αi,mod
0 , αi,mod

1 , αi,mod
2 , αi,mod

3 , . . . , αi,mod
K−1 , α

i,mod
K

]T
, (7.3)

such that

umod
i =

ℓ=K∑
ℓ=0

αi,mod
ℓ ϕ

(Ii)
ℓ . (7.4)

The integral mean remains unchanged, i.e., αi,mod
0 = αi,old

0 , which allows further simplification

to

min IS(ui)

s.t.

{
ui

(
xi−1/2

)
= U+,mod

i−1/2

ui

(
xi+1/2

)
= U−,mod

i+1/2

(7.5)

For the sake of brevity in notation, we omit the cell indices for the modal coefficients and

the basis functions. It is known that

u′
i = α1ϕ

′
1(x) + α2ϕ

′
2(x) + α3ϕ

′
3(x) + · · ·+ αKϕ

′
K(x),

u′′
i = α2ϕ

′′
2(x) + α3ϕ

′′
3(x) + · · ·+ αKϕ

′′
K(x),

u
(3)
i = α3ϕ

(3)
3 (x) + · · ·+ αKϕ

(3)
K (x),

...

u
(K−1)
i = αK−1ϕ

(K−1)
K−1 (x) + αKϕ

(K−1)
K (x),

u
(K)
i = αKϕ

(K)
K (x).

Define

Md
jk := ∆x2d−1

∫
Ii

∂dϕj

∂xd
· ∂

dϕk

∂xd
dx = ∆x2d−1

〈
ϕ
(d)
j , ϕ

(d)
k

〉
L2(Ii)

, (7.6)

then the smoothness factor is given by

ISi =
d=K∑
d=1

∫ xi+1/2

xi−1/2

∆x2d−1
i

(
u
(d)
i

)2
dx =

d=K∑
d=1

K∑
j=1

K∑
k=1

Md
jkαjαk =

d=K∑
d=1

(
K∑
j=1

Md
jjα

2
j +

K−1∑
j=1

K∑
k=j+1

2Md
jkαjαk

)
.

(7.7)

32 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

The corresponding relationship between coefficients is as follows:

α2
1

α1α2 α2
2

α1α3 α2α3 α2
3

...
...

...
. . .

α1αK−1 α2αK−1 α3αK−1 · · · α2
K−1

α1αK α2αK α3αK · · · αK−1αK α2
K

, (7.8a)

M1
11

2M1
12 M1

22 +M2
22

2M1
13 2

(
M1

23 +M2
23

)
M1

33 +M2
33 +M3

33

...
...

...
. . .

2M1
1K−1 2

(
M1

2K−1 +M2
2K−1

)
2
(
M1

3K−1 +M2
3K−1 +M3

3K−1

)
· · · M1

K−1K−1 +M2
K−1K−1 + · · ·+MK−1

K−1K−1

2M1
1K 2

(
M1

2K +M2
2K

)
2
(
M1

3K +M2
3K +M3

3K

)
· · · 2

(
M1

K−1K +M2
K−1K + · · ·+MK−1

K−1K

)
△

,

(7.8b)

△= M1
KK +M2

KK + · · ·+MK
KK . (7.8c)

From this point on, we restore the cell indices. Define

Mi :=

2M1
11

2M1
12 2

(
M1

22 +M2
22

)
2M1

13 2
(
M1

23 +M2
23

)
2
(
M1

33 +M2
33 +M3

33

)
...

...
...

. . .

2M1
1K−1 2

(
M1

2K−1 +M2
2K−1

)
2
(
M1

3K−1 +M2
3K−1 +M3

3K−1

)
· · · 2

(
M1

K−1K−1 +M2
K−1K−1 + · · ·+MK−1

K−1K−1

)
2M1

1K 2
(
M1

2K +M2
2K

)
2
(
M1

3K +M2
3K +M3

3K

)
· · · 2

(
M1

K−1K +M2
K−1K + · · ·+MK−1

K−1K

)
2 △

.

(7.9)

Note that each Md
jk of Mi belongs to the cell Ii. The matrix Mi is decomposed as follows:

Mi = Li + Di, Di = diag(Mi(1, 1),Mi(2, 2),Mi(3, 3), · · · ,Mi(K,K)). (7.10)

Let

Ui = LT
i . (7.11)

Define the matrix MIS
i as

MIS
i := Li + Di + Ui. (7.12)

FLUX VECTOR SPLITTING RKDG METHOD 33

Additionally, define

ãi,mod :=
[
αi,mod
1 , αi,mod

2 , αi,mod
3 , · · · , αi,mod

K−1 , α
i,mod
K

]T
, (7.13)

[Φ]i :=

[
ϕ1

(
xi−1/2

)
ϕ2

(
xi−1/2

)
· · · ϕK

(
xi−1/2

)
ϕ1

(
xi+1/2

)
ϕ2

(
xi+1/2

)
· · · ϕK

(
xi+1/2

)]T , (7.14)

[Λ∗] := [λ∗
1, λ

∗
2]

T . (7.15)

To solve the constrained optimization problem (7.5), the Lagrangian is constructed as follows:

Li(α
i
1, α

i
2, . . . , α

i
K , λ1, λ2) = ISi + λ1 ·

(
ui

(
xi−1/2

)
− U+,mod

i−1/2

)
+ λ2 ·

(
ui

(
xi+1/2

)
− U−,mod

i+1/2

)
.

(7.16)

The solution to problem (7.5), denoted as umod
i (x;αi,old

0 , ãi,mod), should satisfy the saddle-

point equation, that is:

∇Li =

∂α1Li

∂α2Li

...

∂αK
Li

∂λ1Li

∂λ2Li

(ãmod

i ,λ∗
1,λ

∗
2)

=

MIS

i ãmod
i + [Φ]i [Λ

∗]∑K
k=0 α

i,mod
k ϕk

(
xi−1/2

)
− U+, mod

i−1/2∑K
k=0 α

i,mod
k ϕk

(
xi+1/2

)
− U−, mod

i+1/2

 = 0. (7.17)

Taking into account that αi,mod
0 = αi,old

0 is known, the matrix form of the saddle-point

equation is given by:

AIS
i XIS

i = bIS
i , (7.18)

where

AIS
i =

 MIS
i [Φ]i

[Φ]Ti 02×2

 , (7.19a)

bIS
i =

0K×1

U+,mod
i−1/2 − αi,old

0 ϕ
(Ii)
0

(
xi−1/2

)
U−,mod
i+1/2 − αi,old

0 ϕ
(Ii)
0

(
xi+1/2

)

 , (7.19b)

XIS
i =

 ãmod
i

[Λ∗]

 . (7.19c)

34 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

Thus, the DG modal coefficients modified by the IS-TVB(D)-minmod limiter can be obtained

amod
i =

[
αi,old
0 ,

[
ãmod
i

]T]T
.

7.2.2. Smoothness Factor IS Constrained TVB(D)-minmod Limiter: Two-Dimensional Case.

We consider the DG weak solution on the rectangular element ΩK:

Uh(x, y, t) =
K∑
k=0

αk(t)ϕk(x, y), (x, y) ∈ ΩK. (7.20)

Let D be a multi-index of spatial partial derivatives, then

U
(D)
h (x, y, t) =

K∑
k=0

αk(t)ϕ
(D)
k (x, y). (7.21)

In the two-dimensional case, the computation of the smoothness measurement function IS

is as follows:

IS (QK(x, y)) =
∑

1≤|D|≤K

|ΩK|2|D|−1

∫
ΩK

(
∂DQK(x, y)

)2
dxdy. (7.22)

We denote

MD
kl := |ΩK|2|d|−1

∑
|d|=|D|

⟨ϕ(d)
k , ϕ

(d)
l ⟩L2(ΩK), (7.23)

where d is a multi-index of spatial partial derivatives.

Thus, we have

IS (Uh) =
∑

1≤|D|≤K

|ΩK|2|D|−1

∫
ΩK

(
∂DUh

)2
dxdy

=
∑

1≤|D|≤K

|ΩK|2|D|−1

∫
ΩK

(
K∑
k=1

αkϕ
(D)
k

)2

dxdy

=
∑

1≤|D|≤K

|ΩK|2|D|−1
K∑
k=1

K∑
l=1

αkαl⟨ϕ(D)
k , ϕ

(D)
l ⟩L2(ΩK)

=
∑

1≤|D|≤K

K∑
k=1

K∑
l=1

αkαlM
D
kl

=
∑

1≤|D|≤K

(
K∑
k=1

α2
kM

D
kk +

K−1∑
k=1

K∑
l=k+1

2αkαlM
D
kl

)

=
∑

1≤|D|≤K

K∑
k=1

α2
kM

D
kk +

∑
1≤|D|≤K

K−1∑
k=1

K∑
l=k+1

2αkαlM
D
kl

=
K∑
k=1

α2
k ·

 ∑
1≤|D|≤K

MD
kk

+
K−1∑
k=1

K∑
l=k+1

2αkαl ·

 ∑
1≤|D|≤K

MD
kl

 . (7.24)

FLUX VECTOR SPLITTING RKDG METHOD 35

Note that when |d| > min(k, l), it holds that ϕ
(d)
min(k,l) = 0,

we have ∑
1≤|D|≤K

MD
kl =

∑
1≤|D|≤min(k,l)

MD
kl , (7.25)

therefore,

IS (Uh) =
K∑
k=1

α2
k ·

 ∑
1≤|D|≤k

MD
kk

+
K−1∑
k=1

K∑
l=k+1

2αkαl ·

 ∑
1≤|D|≤min(k,l)

MD
kl

=

K∑
k=1

α2
k ·

 ∑
1≤|D|≤k

MD
kk

︸ ︷︷ ︸

∼D

+
K−1∑
k=1

K∑
l=k+1

2αkαl ·

 ∑
1≤|D|≤k

MD
kl

︸ ︷︷ ︸

∼(L+U), L=UT

. (7.26)

Note that unlike the 1D case,

MD
kl =

∑
|d|=|D|

⟨ϕ(d)
k , ϕ

(d)
l ⟩L2(ΩK). (7.27)

The remaining derivation is similar to the 1D case.

7.2.3. TVB(D)-minmod Limiter under Dual Constraints of Smoothness Factor IS and L2-

Error. The TVB(D)-minmod limiter provides three (or two) correction conditions that

inherently suppress numerical oscillations, optimizing for the smoothness factor still only

serves to further suppress numerical oscillations, but over-suppression of numerical oscil-

lations is clearly detrimental to accuracy: the smoothness measurement function is in the

form of a sum of squares, with 0 being its optimization ideal point (extreme value). Ob-

viously, 0 is quite unfavorable for accuracy (large dissipation, with the numerical solution

curve tending towards a horizontal line).

Numerical oscillations are generally more prevalent in high-order schemes, Considering

that the TVB(D)-minmod limiter’s three (or two) correction conditions have already played a

role in suppressing numerical oscillations , we should select the solution with higher precision

from the weakly oscillatory solution set provided by the original TVB(D)-minmod limiter.

Therefore, it is appropriate to make the corrected numerical solution as close as possible

to the oscillating numerical solution of the original high-order scheme under the premise of

weak oscillations. Hence, one can choose the L2-norm to characterize the “closeness” of the

corrected solution to the original high-order scheme’s solution. This is the approach taken

in the literature [1].

It is worth noting the following observations:

• For the computation of the Burgers’ equation using P 3-polynomial approximation, the

“smoothness factor constraint” is superior to the “high-order scheme L2-error constraint.”

(Please refer to Example 9.4 in Subsection 9.2.)

• In the 1D-Euler Lax shock tube problem, the “smoothness factor constraint” is superior

36 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

to the “high-order scheme L2-error constraint” (the “high-order scheme L2-error constraint”

may lead to a “blow-up”).

The shock tube problem is an example that is relatively extreme and demanding, hence

stability (suppression of oscillations) is more important than accuracy. The “smoothness

factor constraint” introduces additional conditions to suppress oscillations beyond those

provided by the TVB(D)-minmod limiter (equivalent to additional artificial viscosity), thus

yielding better results. On the other hand, the “high-order scheme L2-error constraint” may

lead to computational divergence due to insufficient suppression of oscillations.

Therefore, we can further consider the combination of the two and construct and solve

the bi-objective optimization problem according to “Linear Weighted Sum Method” from

optimization theory.

■ One-dimensional case

A common approach to multi-objective optimization is to form a new objective function

by taking a linear convex combination of several objective functions, i.e.,

min
{
ωIS · IS(umod

i) + ωL2 ·
∥∥umod

i − uold
i

∥∥
L2(Ii)

}

s.t.

1
|Ii|

∫
Ii
umod
i (x)dx = U i

umod
i

(
xi−1/2

)
= U+,mod

i−1/2

umod
i

(
xi+1/2

)
= U−,mod

i+1/2

(7.28)

The integral mean remains unchanged, hence αi,mod
0 = αi,old

0 , which allows further simplifi-

cation as follows:

min
{
ωIS · IS(umod

i) + ωL2 ·
∥∥umod

i − uold
i

∥∥
L2(Ii)

}
s.t.

 umod
i

(
xi−1/2

)
= U+,mod

i−1/2

umod
i

(
xi+1/2

)
= U−,mod

i+1/2

(7.29)

We continue to use the notations from the previous Section 7.2.1:

ãmod
i :=

[
αi,mod
1 , αi,mod

2 , αi,mod
3 , · · · , αi,mod

K−1 , α
i,mod
K

]T
,

[Φ]i :=

 ϕ
(Ii)
1

(
xi−1/2

)
ϕ
(Ii)
2

(
xi−1/2

)
· · · ϕ

(Ii)
K

(
xi−1/2

)
ϕ
(Ii)
1

(
xi+1/2

)
ϕ
(Ii)
2

(
xi+1/2

)
· · · ϕ

(Ii)
K

(
xi+1/2

)

T

,

[Λ∗] := [λ∗
1, λ

∗
2]

T .

The solution umod
i to problem (7.29) satisfies the following saddle-point equation:

AIS+L2

i XIS+L2

i = bIS+L2

i , (7.30)

FLUX VECTOR SPLITTING RKDG METHOD 37

where

AIS+L2

i =

 ωISMIS
i + ωL2ML2

i [Φ]i

[Φ]Ti 02×2

 , (7.31a)

bIS+L2

i =

ωIS · 0K×1 + ωL2 · 2ãi,old

U+,mod
i−1/2 − αi,old

0 ϕ
(Ii)
0

(
xi−1/2

)
U−,mod
i+1/2 − αi,old

0 ϕ
(Ii)
0

(
xi+1/2

)

 , (7.31b)

XIS+L2

i =

 ãmod
i

[Λ∗]

 . (7.31c)

Note:

ML2

i = diag(2)K×K , (7.32)

ãi,old =
[
αi,old
1 , αi,old

2 , αi,old
3 , . . . , αi,old

K−1, α
i,old
K

]T
. (7.33)

Finally, the optimal solution to problem (7.29) can be obtained amod
i =

[
αi,old
0 ,

[
ãmod
i

]T]T
.

■ Two-dimensional case

For the DG weak solution Uij on the two-dimensional rectangular element Ωij, the following

bi-objective optimization problem is constructed:

min
{
ωIS · IS(Umod

ij) + ωL2 ·
∥∥Umod

ij − U old
ij

∥∥
L2(Ωij)

}

s.t.

∫
∂ΩL

ij

Umod
ij (x, y)dl = U

L,mod

∂Ωij
= U

L,mod

ij∫
∂ΩR

ij

Umod
ij (x, y)dl = U

R,mod

∂Ωij
= U

R,mod

ij∫
∂ΩB

ij

Umod
ij (x, y)dl = U

B,mod

∂Ωij
= U

B,mod

ij∫
∂ΩT

ij

Umod
ij (x, y)dl = U

T,mod

∂Ωij
= U

T,mod

ij

(7.34)

For conservation requirement, it still holds that α
(ij),mod
0 = α

(ij),old
0 .

Here, we denote

ãold
(ij) :=

[
α
(ij),old
1 , α

(ij),old
2 , . . . , α

(ij),old
(K+1)(K+2)/2−1

]T
, (7.35)

ãmod
(ij) :=

[
α
(ij),mod
1 , α

(ij),mod
2 , . . . , α

(ij),mod
(K+1)(K+2)/2−1

]T
, (7.36)

38 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

Γ
L,(ij)
k :=

∫
∂ΩL

ij

ϕ
(ij)
k (x, y)dl, Γ

R,(ij)
k :=

∫
∂ΩR

ij

ϕ
(ij)
k (x, y)dl

Γ
B,(ij)
k :=

∫
∂ΩB

ij

ϕ
(ij)
k (x, y)dl, Γ

T,(ij)
k :=

∫
∂ΩT

ij

ϕ
(ij)
k (x, y)dl

k = 0, 1, 2, 3, · · · , (K + 1)(K + 2)/2− 1

, (7.37)

[Γ](ij) :=

Γ
L,(ij)
1 Γ

L,(ij)
2 · · · Γ

L,(ij)
(K+1)(K+2)/2−1

Γ
R,(ij)
1 Γ

R,(ij)
2 · · · Γ

R,(ij)
(K+1)(K+2)/2−1

Γ
B,(ij)
1 Γ

B,(ij)
2 · · · Γ

B,(ij)
(K+1)(K+2)/2−1

Γ
T,(ij)
1 Γ

T,(ij)
2 · · · Γ

T,(ij)
(K+1)(K+2)/2−1

 , (7.38)

[Λ∗] := [λ∗
1, λ

∗
2, λ

∗
3, λ

∗
4]

T . (7.39)

The saddle-point equation is given by:

AIS+L2

(ij) XIS+L2

(ij) = bIS+L2

(ij) , (7.40)

where

AIS+L2

(ij) =

 ωISMIS
(ij) + ωL2ML2

(ij) [Γ]T(ij)

[Γ](ij) 04×4

 , (7.41a)

bIS+L2

(ij) =

ωIS · 0(K+1)(K+2)/2−1 × 1 + ωL2 · 2ãold
(ij)

U
L,mod

ij − α
(ij),old
0 Γ

L,(ij)
0

U
R,mod

ij − α
(ij),old
0 Γ

R,(ij)
0

U
B,mod

ij − α
(ij),old
0 Γ

B,(ij)
0

U
T,mod

ij − α
(ij),old
0 Γ

T,(ij)
0

, (7.41b)

XIS+L2

(ij) =

 ãmod
(ij)

[Λ∗]

 . (7.41c)

Note that in the two-dimensional case, ML2

(ij) = diag(2)(K+1)(K+2)/2−1 × (K+1)(K+2)/2−1, while

MIS
(ij) must be derived based on the conclusions equations (7.26) and (7.27) in Section 7.2.2,

following the process equations (7.8) to (7.12) outlined in Section 7.2.1.

Then, amod
(ij) =

[
α
(ij),old
0 ,

[
ãmod
(ij)

]T]T
is just the optimal solution to problem (7.34)

We denote the limiter based on the bi-objective optimization problem concerning the IS

function and L2-error as the IS-L2-TVB(D)-minmod limiter. It is worth noting that when

setting ωL2 = 0 and ωIS = 1, the IS-L2-TVB(D)-minmod limiter degenerates into the IS-

TVB(D)-minmod limiter discussed in the previous sections 7.2.1 and 7.2.2; On the other

FLUX VECTOR SPLITTING RKDG METHOD 39

hand, if we take ωL2 = 1 and ωIS = 0, then the IS-L2-TVB(D)-minmod limiter degenerates

into the L2-TVB(D)-minmod limiter originated from literature [1].

8. Reconstruction in Characteristic Field

When applying limiters to a system of equations, there are typically two implementation

methods: (a) directly reconstructing each component in the original physical space; (b) per-

forming local characteristic decomposition in conjunction to transform into the characteristic

space and then reconstructing each component individually.

The former is easier to implement in a program. Directly reconstructing by component is

essentially assuming that the components are already decoupled. However, in the original

system of equations, the unknown components are usually coupled, so the actual effect may

not be satisfactory. The latter method uses the Jacobian of the flux function to transform

the system into the characteristic space, achieving true decoupling, and then proceeds to

reconstruct each component individually.

The basic principle of characteristic reconstruction is as follows (taking a one-dimensional

hyperbolic conservation system as an example):

Consider the equation

∂tU+ ∂x(f(U)) = 0,

where A = ∂f(U)
∂U

, and assume it is diagonalizable, that is, A = RΛL and RL = Id. Then the

above equation can be rewritten as

∂tU+RΛL∂xU = 0. (8.1)

When A is a constant matrix (R,Λ, L are all constant matrices), introduce the characteristic

variable V = LU, and multiply both sides of the equation by L to obtain

∂tV + Λ∂xV = 0. (8.2)

Since Λ is a constant diagonal matrix, the above equation is a completely decoupled set

of N independent constant-coefficient single-wave equations (U ∈ Rd). Thus, V can be

reconstructed component by component to obtain Ṽ, and then the inverse transformation

using R is applied to return to the original physical space, that is, Ũ = RṼ, which completes

the characteristic reconstruction.

Considering the variable coefficients and nonlinear characteristics of the equations (where

A, R, Λ, and L are function matrices), local freezing must be introduced to fix A, R, Λ, and

L. Similar to the point values in the FD method and the cell-averaged integrals in the FV

schemes, the DG scheme also requires determining the “values at which” to substitute into

the Jacobian of the flux function and its characteristic structure, i.e., the “values at which”

to implement local freezing.

Furthermore, in the DG scheme, each component of U is a polynomial function; there-

fore, special attention is needed on how to use the eigenstructure of the Jacobian (L,R) to

transform the polynomial into the corresponding characteristic space.

40 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

Currently, regarding the two aforementioned issues, for 2D systems, the existing practice

is to use the arithmetic mean of the area-weighted average of the troubled cell and the

area-weighted average of its adjacent cells as the local freezing value to determine the char-

acteristic transformation for (L,R). Note that for each edge of the troubled cell, there is an

adjacent cell, thus it is necessary to traverse all edges of the troubled cell, perform multiple

characteristic reconstructions, obtain multiple characteristic reconstruction polynomials, and

finally synthesize the final characteristic reconstruction result according to certain weights.

Of course, the Jacobian of a 2D hyperbolic conservation system on a certain edge can still

be implemented using the normal Jacobian following the idea of FVS as discussed earlier.

As for the characteristic transformation of the polynomial, although matrix transformation

cannot be applied to a single polynomial, since the overall transformation of U to the char-

acteristic space involves transforming multiple polynomials simultaneously, considering that

polynomial functions can be uniquely determined by their degree and coefficients, one can

form a column vector of coefficients in front of each like term (by traversing all degrees, a

coefficient matrix can be obtained). By sequentially applying the left eigenvector matrix L

to these like term coefficient column vectors, the characteristic transformation of the poly-

nomial can be completed. Since the coefficients of the DG polynomial are usually referred to

as “moments” (also known as “modal coefficients”), this paper refers to the aforementioned

characteristic transformation process as “moment characteristic transformation” (or “modal

coefficient transformation”).

Specifically, the general procedure for characteristic reconstruction in 2D systems is as

follows:

Let the troubled cell be denoted as Ω0, with its boundary composed of ∂Ω0 = ∪L
ℓ=1Γ

ℓ
0, and

the neighboring cells adjacent to Ω0 across Γℓ
0 are denoted as Ωℓ, ℓ = 1, 2, · · · ,L. The

outward normal vector on Γℓ
0 is n

ℓ =
(
nℓ
x, n

ℓ
y

)
, and the Jacobian in this direction (the normal

Jacobian) is Aℓ
n = nℓ

x · ∂F
∂U

+ nℓ
y · ∂G

∂U
, with its eigenstructure being Rℓ

n, Lℓ
n.

• step1. Generate Aℓ
n and its eigenstructure

(
Lℓ

n,Rℓ
n

)
using the arithmetic mean of the cell

integral means of Ω0,Ωℓ, i.e., (u0 + uℓ)/2.

• step2. Perform the characteristic transformation of the template polynomials using Lℓ
n for

each edge.

• step3. In the characteristic space, perform reconstruction component by component.

• setp4. Use the corresponding Rℓ
n to inverse transform back to the physical space, obtaining

L characteristic reconstruction polynomials umod,ℓ
0 , ℓ = 1, 2, · · · ,L.

• step5. The final result of the characteristic reconstruction is umod
0 =

∑
ℓ wℓ · umod,ℓ

0 . If it is

a uniform grid, then wi = 1/L; if it is a non-uniform grid, then wi =
|Ωi|∑L
ℓ=1 |Ωℓ|

.

Remark 8.1 (The process of characteristic reconstruction for a one-dimensional system).

Let the troubled cell be Ij, with its left and right nodes at xj−1/2 and xj+1/2, respectively.

The adjacent cells are Ij−1 and Ij+1. At the left and right nodes, the arithmetic mean of

the integral averages of the troubled cell and its neighboring cell sharing the node is used to

FLUX VECTOR SPLITTING RKDG METHOD 41

generate the locally frozen Jacobian and its eigenstructure:{
L1

(
ūj−1 + ūj

2

)
,R1

(
ūj−1 + ūj

2

)}
;

{
L2

(
ūj + ūj+1

2

)
,R2

(
ūj + ūj+1

2

)}
.

Two characteristic transformations are then performed using L1 and L2, i.e., P̃
i
s = LiPs, i =

1, 2, where Ps is the stencil polynomial used for the reconstruction. Reconstruction is executed

twice in the characteristic space, and the inverse transformations via R1 and R2 are applied

to return to the original physical space, yielding umod,1
j and umod,2

j . The final reconstruction

result is given by umod
j = w1 · umod,1

j + w2 · umod,2
j . For uniform grids, w1 = w2 = 1/2; for

non-uniform grids, the weights are proportional to the lengths of the stencil intervals. For

example, in SimpleWENO, w1 =
|Ij−1|

|Ij−1|+|Ij+1| , w2 =
|Ij+1|

|Ij−1|+|Ij+1| .

Below, the one-dimensional hyperbolic conservation system is taken as an example to

introduce the “moment characteristic transformation” (“modal coefficient transformation”)

process:

Consider ∂tU+ ∂xF(U) = 0, U = (u1, u2, u3, · · · , um)
T.

Let J = ∂F(U)
∂U

= RΛL. Note: RL = Id(identity matrix); J,R,Λ,L are all matrix-valued

functions of U.

The approximate solution for the i-th component ui is given by:

ui =
k=K∑
k=0

α
(i)
k ϕi,k,

where i denotes the i-th component, K represents the highest degree of the basis functions

(polynomials), ϕi,k represents the k-th basis function (polynomial) of the i-th component,

and α
(i)
k is the k-th moment (or k-th modal coefficient) of the i-th component. Form a

column vector with the basis functions of all orders for the i-th system component[
Φ(i)

]
= [ϕi,0, ϕi,1, ϕi,2, . . . , ϕi,K]

T . (8.3)

Now, partition the left eigenvector matrix L column-wise, such that

L =

l11 l12 l13 · · · l1m

l21 l22 l23 · · · l2m

l31 l32 l33 · · · l3m

...
...

... · · · ...

lm1 lm2 lm3 · · · lmm

= (L1,L2,L3, · · · ,Lm) . (8.4)

Form a row vector consisting of the modal coefficients of the i-th system component, denoted

as
[
a(i)
]T
. The modal coefficients of all components constitute the following modal coefficient

42 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

matrix

A =

α
(1)
0 α

(1)
1 α

(1)
2 · · · α

(1)
K

α
(2)
0 α

(2)
1 α

(2)
2 · · · α

(2)
K

α
(3)
0 α

(3)
1 α

(3)
2 · · · α

(3)
K

...
...

... · · · ...

α
(m)
0 α

(m)
1 α

(m)
2 · · · α

(m)
K

=

[
a(1)
]T

[
a(2)
]T

[
a(3)
]T

...[
a(m)

]T

. (8.5)

When the left eigenvector matrix L acts on the modal coefficient matrix A, it produces the
matrix of characteristic modal coefficients B, given by

B = LA = (L1,L2,L3, · · · ,Lm)

[
a(1)
]T

[
a(2)
]T

[
a(3)
]T

...[
a(m)

]T

= L1

[
a(1)
]T

+ L2

[
a(2)
]T

+ L3

[
a(3)
]T

+ · · ·+ Lm

[
a(m)

]T
. (8.6)

The characteristic modal coefficient matrix B has its i-th row denoted as B(i, :), satisfying

B(i, :) = L1(i) ·
[
a(1)
]T

+ L2(i) ·
[
a(2)
]T

+ L3(i) ·
[
a(3)
]T

+ · · ·+ Lm(i) ·
[
a(m)

]T
. (8.7)

Let [
b(i)
]T

= B(i, :), (8.8a)

β
(i)
k =

[
b(i)
]T

(k) = B(i, k). (8.8b)

Define

vi =
[
b(i)
]T [

Φ(i)
]
=

k=K∑
k=0

β
(i)
k ϕi,k, (8.9)

then the polynomial vi is the projection of the polynomial ui in the original physical space

onto the characteristic space.

Remark 8.2. The procedure for the inverse characteristic transformation is analogous to

that of the characteristic transformation; it only requires substituting L with R.

FLUX VECTOR SPLITTING RKDG METHOD 43

8.1. Local Freezing Based on Cell Interface Integral Mean. It is noted that limiters

ultimately serve to correct the interface fluxes, which are calculated on the boundaries of

cells. Therefore, it is reasonable to choose the integral average values of the field functions

on the grid edges as candidate states (the cells on either side of an edge can each provide

an edge integral average value). In fact, in the 1D problem FD framework, characteristic

reconstruction uses the arithmetic average or Roe average of the left and right states at

the grid midpoint to achieve local freezing. In one-dimensional problems, grid boundaries

collapse to nodes, so in higher dimensions, they should revert to curve (surface) integral

average values. Based on this, we make the following modifications to the local freezing

scheme during the characteristic reconstruction process for high-dimensional systems: each

adjacent cell calculates the line (surface) integral average value of the field function on the

common edge (face), and then takes the arithmetic average or Roe average as the local

freezing value.

Consider two adjacent cells, Ω0 and Ωℓ, sharing a common boundary Γℓ
0, with DG solutions

u0 and uℓ, respectively. The integral averages of u0 and uℓ on Γℓ
0 are computed component-

wise as follows:

Γ
ℓ

0(i,Ω0) =
1∣∣Γℓ
0

∣∣ ∫
Γℓ
0

u
(i)
0 dl, i = 1, 2, · · · ,m.

Γ
ℓ

0(i,Ωℓ) =
1∣∣Γℓ
0

∣∣ ∫
Γℓ
0

u
(i)
ℓ dl, i = 1, 2, · · · ,m.

Here, m denotes the total number of system components (the total number of unknown

field functions). Next, compute the arithmetic or Roe average of Γ
ℓ

0(i,Ω0) and Γ0ℓ(i,Ωℓ)

component-wise, and use these averages to generate the normal Jacobian.

Remark 8.3 (Improved Scheme for Local Freezing in 1D Systems). Consider the troubled

cell Ij with its left and right nodes at xj−1/2 and xj+1/2, respectively. The adjacent cells are

Ij−1 and Ij+1. At each of these nodes, the local freezing Jacobian and its eigenstructure are

generated by taking the arithmetic average of the left and right state values at the node:{
L1

(
UL
j−1/2 + UR

j−1/2

2

)
,R1

(
UL
j−1/2 + UR

j−1/2

2

)}
;

{
L2

(
UL
j+1/2 + UR

j+1/2

2

)
,R2

(
UL
j+1/2 + UR

j+1/2

2

)}
.

Alternatively, Roe averages of the left and right states can also be used.

8.2. Interpolation-based Characteristic Transformation. Distinct from the “moment

characteristic transformation” mentioned earlier, this paper proposes an “interpolation-based

characteristic transformation”, and illustrates the process using a one-dimensional hyperbolic

conservation system as an example.

Let the set of sampling points be X = (x0, x1, x2, · · · , xK)
T. Correspondingly, the sampled

values for the i-th component are Y(i) =
(
y
(i)
0 , y

(i)
1 , y

(i)
2 , · · · , y(i)K

)T
, where y

(i)
k = ui(xk). The

44 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

sampled values of all components together form the sampling point matrix Y:

Y =

[
Y(1)

]T
[
Y(2)

]T
[
Y(3)

]T
...[

Y(m)
]T

. (8.10)

Transform the sampling point matrix to the characteristic space

Ỹ = LY = (L1,L2,L3, · · · ,Lm)

[
Y(1)

]T
[
Y(2)

]T
[
Y(3)

]T
...[

Y(m)
]T

= L1

[
Y(1)

]T
+ L2

[
Y(2)

]T
+ L3

[
Y(3)

]T
+ · · ·+ Lm

[
Y(m)

]T
. (8.11)

The i-th row of the characteristic sampling point matrix Ỹ is denoted as Ỹ(i, :), satisfying

Ỹ(i, :) = L1(i) ·
[
Y(1)

]T
+ L2(i) ·

[
Y(2)

]T
+ L3(i) ·

[
Y(3)

]T
+ · · ·+ Lm(i) ·

[
Y(m)

]T
. (8.12)

Let

Ỹ(i) := [Ỹ(i, :)]T = L1(i) ·Y(1) + L2(i) ·Y(2) + L3(i) ·Y(3) + · · ·+ Lm(i) ·Y(m), (8.13)

then Ỹ(i) is the projection of the original physical space’s Y(i) onto the characteristic space.

In other words, Ỹ(i) represents the values of the characteristic projection ũi of the original

physical space’s ui at the same set of sampling points X = (x0, x1, x2, · · · , xK)
T.

At this point, the polynomial ũi in the characteristic space that satisfies the interpolation

data set
(
X, Ỹ(i)

)
is determined using the method of undetermined coefficients.

Let the modal coefficient set of the characteristic polynomial ũi be ã(i), so that

ũi =
K∑
k=0

α̃
(i)
k ϕi,k with α̃

(i)
k = ã(i)(k).

FLUX VECTOR SPLITTING RKDG METHOD 45

Let

P(i) :=

ϕi,0 (x0) ϕi,1 (x0) ϕi,2 (x0) · · · ϕi,K (x0)

ϕi,0 (x1) ϕi,1 (x1) ϕi,2 (x1) · · · ϕi,K (x1)

ϕi,0 (x2) ϕi,1 (x2) ϕi,2 (x2) · · · ϕi,K (x2)

...
...

... · · · ...

ϕi,0 (xK) ϕi,1 (xK) ϕi,2 (xK) · · · ϕi,K (xK)

. (8.14)

The characteristic polynomial ũi should satisfy

ũi(X) = Ỹ(i), (8.15)

hence

P(i)ã(i) = Ỹ(i), (8.16)

and thus

ã(i) =
[
P(i)
]−1

Ỹ(i). (8.17)

With this, the projection of the polynomial ui from the original physical space onto the

characteristic space, ũi, can be obtained.

8.3. Equivalence of Interpolation-based Characteristic Transformation and Mo-

ment Characteristic Transformation.

Proposition 8.1 (Equivalence of Interpolation-based Characteristic Transformation and

Moment Characteristic Transformation when Basis Functions are Identical). When all com-

ponents of the system share the same set of basis functions, that is, K1 = K2 = K3 = · · · =
Km = K and ϕ1,k(·) ≡ ϕ2,k(·) ≡ ϕ3,k(·) ≡ · · · ≡ ϕm,k(·), ∀k ∈ {1, 2, 3, · · · , K}, it follows
that P(1) = P(2) = P(3) = · · · = P(m), thus the interpolation-based characteristic transfor-

mation is equivalent to the moment characteristic transformation, i.e., ã(i) = b(i), ∀i ∈
{1, 2, 3, . . . ,m}.

Taking the one-dimensional hyperbolic conservation system as an example, Proposition

8.1 is proven.

Proof. By substituting equation (8.13) into equation (8.17), we obtain[
ã(i)
]T

=
([

P(i)
]−1

Ỹ(i)
)T

=
[
Ỹ(i)

]T ([
P(i)
]−1
)T

=
[
Ỹ(i)

]T ([
P(i)
]T)−1

=
(
L1(i) ·Y(1) + L2(i) ·Y(2) + · · ·+ Lm(i) ·Y(m)

)T ([P(i)
]−1
)T

= L1(i) ·
[
Y(1)

]T ([P(i)
]−1
)T

+ L2(i) ·
[
Y(2)

]T ([P(i)
]−1
)T

+ · · ·+ Lm(i) ·
[
Y(m)

]T ([P(i)
]−1
)T

.

(8.18)

46 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

From equations (8.7) and (8.8), it is easy to know[
b(i)
]T

= L1(i) ·
[
a(1)
]T

+ L2(i) ·
[
a(2)
]T

+ L3(i) ·
[
a(3)
]T

+ · · ·+ Lm(i) ·
[
a(m)

]T
. (8.19)

Note that in the original physical space, it holds that ui(X) = Y(i), similar to equations

(8.15) and (8.16), we have

P(i)a(i) = Y(i), i = 1, 2, . . . ,m; (8.20a)

a(i) =
[
P(i)
]−1

Y(i), i = 1, 2, . . . ,m. (8.20b)

By substituting equation (8.20b) into equation (8.19), we get[
b(i)
]T

= L1(i) ·
[
Y(1)

]T ([P(1)
]−1
)T

+ L2(i) ·
[
Y(2)

]T ([P(2)
]−1
)T

+ · · ·+ Lm(i) ·
[
Y(m)

]T ([P(m)
]−1
)T

.

(8.21)

Comparing
[
ã(i)
]T

and
[
b(i)
]T
, and noting the superscripts of the matrix P,

it can be seen that

if ϕ1,k = ϕ2,k = ϕ3,k = · · · = ϕm,k,∀k ∈ {1, 2, 3, · · · , K},
then P(1) = P(2) = P(3) = · · · = P(m),

and thus ã(i) = b(i), i = 1, 2, 3, · · · ,m.

That is, at this point, the “moment characteristic transformation” and the “interpolation-

based characteristic transformation” are equivalent. □

9. Numerical Results

This section first conducts a accuracy test on the FVS-DG method for the compressible

Euler equations and the shallow water wave equations, including one-dimensional and two-

dimensional test cases. Subsequently, it demonstrates the advantage of the IS-L2-TVB(D)-

minmod limiter in suppressing numerical oscillations near discontinuities on the linear scalar

transport equation, the nonlinear Burgers’ equation, and the non-convex Buckley-Leverett

equation. Finally, we solve several classical Riemann problems for the compressible Euler

equations and the shallow water wave equations using the FVS-DG method coupled with

the IS-L2-TVB(D)-minmod limiter, including the Sod problem, Lax problem, Shu-Osher

problem, Blast problem, three typical Riemann test cases from the literature [42], and the

Dam Break problem for the shallow water wave equations [43].

In all numerical experiments of this section, the adiabatic index for the compressible Euler

equations is set to γ = 1.4 (simulating the dynamical process of air), and the acceleration

due to gravity for the shallow water wave equations is set to g = 9.8120 m/s2.

All numerical experiments in this section use a uniform mesh partitioning, where the

two-dimensional test cases include both rectangular and structured triangular meshes.

9.1. Accuracy Tests for FVS-DG.

FLUX VECTOR SPLITTING RKDG METHOD 47

9.1.1. One-dimensional Test Cases.

Example 9.1. 1D-Euler Compressible Equations.

Control Eqs:

∂

∂t

ρ

ρu

E

+
∂

∂x

ρu

ρu2 + p

u(E + p)

 = 0;

Computational domain:

Ω× [0, Tend] = [0, 1]× [0, 1];

ICs:

ρ0(x) = 1 + 0.2 cos(πx), u0(x) = −0.7, P0(x) = 1;

BCs: periodic boundary conditions;

True solutions:

ρ(x, t) = 1 + 0.2 cos(π(x+ 0.7t)), u(x, t) = −0.7, P (x, t) = 1.

• Numderical flux format: AUSM;
Temporal discretization format: TVD-RK3;
CFL=0.1.
L∞, L2, L1 numerical errors and convergence orders for conservative variables ρ, ρu, E
with P 2- and P 3-polynomial approximations are summarized respectively in Table 1
and Table 2.

• Numderical flux format: Steger-Warming;
Temporal discretization format: TVD-RK3;
CFL=0.1.
L∞, L2, L1 numerical errors and convergence orders for conservative variables ρ, ρu, E
with P 2- and P 3-polynomial approximations are summarized respectively in Table 3
and Table 4.

Example 9.2. 1D-Shallow Water Wave Equations.

Control Eqs:

∂t

 h

hu

+ ∂x

 hu

hu2 + 1
2
gh2

 =

 0

−gh (z0)x

;
Bottom elevation:

Z0 = sin2(πx);

Computational domain:

Ω× [0, Tend] = [0, 1]× [0, 0.075];

Note: The equation will develop a discontinuity near t = 0.1. To test for accuracy, we set the

simulation time to t = 0.075, at which point the solution is still smooth. This example does

48 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

Table 1. P 2-FVS(AUSM)-DG using equally spaced cells. 1D-Compressible Euler Equations with

smooth initial conditions: ρ0(x) = 1 + 0.2 cos(πx), u0(x) = −0.7, P0(x) = 1. L∞, L2, L1 errors and

convergence orders for conservative variables ρ, ρu, E.

Mesh 10 20 40 80 160

L∞-error 1.1024E-03 1.4025E-04 1.7693E-05 2.2156E-06 2.7701E-07

L∞-order — 2.9746 2.9868 2.9974 2.9997

ρ L2-error 2.4737E-04 3.1521E-05 3.9607E-06 4.9575E-07 6.1989E-08

L2-order — 2.9723 2.9925 2.9981 2.9995

L1-error 1.8559E-04 2.3295E-05 2.9126E-06 3.6395E-07 4.5479E-08

L1-order — 2.9940 2.9997 3.0005 3.0005

L∞-error 5.3443E-04 6.6924E-05 8.4195E-06 1.0543E-06 1.3184E-07

L∞-order — 2.9974 2.9907 2.9975 2.9994

ρu L2-error 2.4737E-04 3.1521E-05 3.9607E-06 4.9575E-07 6.1989E-08

L2-order — 2.9723 2.9925 2.9981 2.9995

L1-error 1.8559E-04 2.3295E-05 2.9126E-06 3.6395E-07 4.5479E-08

L1-order — 2.9940 2.9997 3.0005 3.0005

L∞-error 8.2911E-04 1.0494E-04 1.3268E-05 1.6616E-06 2.0772E-07

L∞-order — 2.9819 2.9836 2.9972 2.9999

E L2-error 2.4737E-04 3.1521E-05 3.9607E-06 4.9575E-07 6.1989E-08

L2-order — 2.9723 2.9925 2.9981 2.9995

L1-error 1.8559E-04 2.3295E-05 2.9126E-06 3.6395E-07 4.5479E-08

L1-order — 2.9940 2.9997 3.0005 3.0005

not have an analytical true solution; instead, we use numerical solutions on finer meshes as

references to obtain the errors and convergence orders of the algorithm.

ICs:

h0(x) = 5 + ecos(2πx), u0(x) =
sin(cos(2πx))

5 + ecos(2πx)
;

BCs: periodic boundary conditions;

Numderical flux format: van Leer;

Temporal discretization format: TVD-RK3;

L∞, L2, L1 numerical errors and convergence orders for conservative variables h, hu with

P 2-polynomial approximation are summarized respectively in Table 5.

9.1.2. Two-dimensional Test Cases.

FLUX VECTOR SPLITTING RKDG METHOD 49

Table 2. P 3-FVS(AUSM)-DG using equally spaced cells. 1D-Compressible Euler Equations with

smooth initial conditions: ρ0(x) = 1 + 0.2 cos(πx), u0(x) = −0.7, P0(x) = 1. L∞, L2, L1 errors and

convergence orders for conservative variables ρ, ρu, E.

Mesh 10 20 40 80 160

L∞-error 4.1850E-05 2.7313E-06 1.7220E-07 1.0778E-08 6.7472E-10

L∞-order — 3.9376 3.9875 3.9978 3.9977

ρ L2-error 7.8755E-06 4.9119E-07 3.0563E-08 1.9097E-09 1.1935E-10

L2-order — 4.0030 4.0064 4.0004 4.0001

L1-error 5.4508E-06 3.3906E-07 2.0980E-08 1.3095E-09 8.1857E-11

L1-order — 4.0069 4.0145 4.0019 3.9998

L∞-error 2.3771E-05 1.5271E-06 9.6370E-08 6.0382E-09 3.7818E-10

L∞-order — 3.9604 3.9861 3.9964 3.9970

ρu L2-error 7.8755E-06 4.9119E-07 3.0563E-08 1.9097E-09 1.1935E-10

L2-order — 4.0030 4.0064 4.0004 4.0001

L1-error 5.4508E-06 3.3906E-07 2.0980E-08 1.3095E-09 8.1857E-11

L1-order — 4.0069 4.0145 4.0019 3.9998

L∞-error 3.2236E-05 2.0668E-06 1.2930E-07 8.0974E-09 5.0454E-10

L∞-order — 3.9632 3.9986 3.9971 4.0044

E L2-error 7.8755E-06 4.9119E-07 3.0563E-08 1.9097E-09 1.1935E-10

L2-order — 4.0030 4.0064 4.0004 4.0001

L1-error 5.4508E-06 3.3906E-07 2.0980E-08 1.3095E-09 8.1857E-11

L1-order — 4.0069 4.0145 4.0019 3.9998

Example 9.3. 2D-Compressible Euler Equations.

Control Eqs:

∂

∂t

ρ

ρu

ρv

E

+

∂

∂x

ρu

ρu2 + p

ρuv

u(E + p)

+

∂

∂y

ρv

ρuv

ρv2 + p

v(E + p)

= 0;

Computational domain:

Ω× [0, Tend] = {[0, 2]× [−1, 1]} × [0, 1];

ICs:

ρ0(x, y) = 1 + 0.2 cos(πx+ πy), u0(x, y) = −0.7, v0(x, y) = 0.3, P0(x, y) = 1;

50 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

Table 3. P 2-FVS(Steger-Warming)-DG using equally spaced cells. 1D-Compressible Euler Equations

with smooth initial conditions: ρ0(x) = 1 + 0.2 cos(πx), u0(x) = −0.7, P0(x) = 1. L∞, L2, L1 errors and

convergence orders for conservative variables ρ, ρu, E.

Mesh 10 20 40 80 160

L∞-error 1.1728E-03 1.5873E-04 2.0237E-05 2.5390E-06 3.1747E-07

L∞-order — 2.8853 2.9716 2.9947 2.9996

ρ L2-error 2.7279E-04 3.6698E-05 4.6856E-06 5.8895E-07 7.3721E-08

L2-order — 2.8940 2.9694 2.9920 2.9980

L1-error 2.0508E-04 2.7383E-05 3.4908E-06 4.3859E-07 5.4894E-08

L1-order — 2.9048 2.9717 2.9926 2.9981

L∞-error 5.2307E-04 6.8032E-05 8.5503E-06 1.0695E-06 1.3369E-07

L∞-order — 2.9427 2.9922 2.9991 3.0000

ρu L2-error 2.7279E-04 3.6698E-05 4.6856E-06 5.8895E-07 7.3721E-08

L2-order — 2.8940 2.9694 2.9920 2.9980

L1-error 2.0508E-04 2.7383E-05 3.4908E-06 4.3859E-07 5.4894E-08

L1-order — 2.9048 2.9717 2.9926 2.9981

L∞-error 8.8839E-04 1.2148E-04 1.5573E-05 1.9591E-06 2.4527E-07

L∞-order — 2.8705 2.9636 2.9908 2.9978

E L2-error 2.7279E-04 3.6698E-05 4.6856E-06 5.8895E-07 7.3721E-08

L2-order — 2.8940 2.9694 2.9920 2.9980

L1-error 2.0508E-04 2.7383E-05 3.4908E-06 4.3859E-07 5.4894E-08

L1-order — 2.9048 2.9717 2.9926 2.9981

BCs: periodic boundary conditions;

True solutions:

ρ(x, y, t) = 1 + 0.2 cos(π(x+ 0.7t) + π(y − 0.3t)),

u(x, y, t) = −0.7,

v(x, y, t) = 0.3,

P (x, y, t) = 1.

• Numderical flux format: AUSM;

Temporal discretization format: TVD-RK3;

CFL=0.025;

L∞, L2, L1 numerical errors and convergence orders for conservative variables ρ, ρu, ρv, E

with P 2-polynomial approximation are shown in Table 6.

FLUX VECTOR SPLITTING RKDG METHOD 51

Table 4. P 3-FVS(Steger-Warming)-DG using equally spaced cells. 1D-Compressible Euler Equations

with smooth initial conditions: ρ0(x) = 1 + 0.2 cos(πx), u0(x) = −0.7, P0(x) = 1. L∞, L2, L1 errors and

convergence orders for conservative variables ρ, ρu, E.

Mesh 10 20 40 80 160

L∞-error 3.6110E-05 2.3683E-06 1.4967E-07 9.3550E-09 5.8578E-10

L∞-order — 3.9304 3.9840 3.9999 3.9973

ρ L2-error 6.6707E-06 4.1281E-07 2.5553E-08 1.5954E-09 9.9687E-11

L2-order — 4.0143 4.0139 4.0015 4.0004

L1-error 4.6767E-06 2.8866E-07 1.7743E-08 1.1087E-09 6.9260E-11

L1-order — 4.0180 4.0240 4.0003 4.0008

L∞-error 2.1895E-05 1.4053E-06 8.8435E-08 5.5424E-09 3.4715E-10

L∞-order — 3.9616 3.9901 3.9960 3.9969

ρu L2-error 6.6707E-06 4.1281E-07 2.5553E-08 1.5954E-09 9.9687E-11

L2-order — 4.0143 4.0139 4.0015 4.0004

L1-error 4.6767E-06 2.8866E-07 1.7743E-08 1.1087E-09 6.9260E-11

L1-order — 4.0180 4.0240 4.0003 4.0008

L∞-error 2.4615E-05 1.5544E-06 9.6544E-08 6.0418E-09 3.7597E-10

L∞-order — 3.9851 4.0090 3.9981 4.0063

E L2-error 6.6707E-06 4.1281E-07 2.5553E-08 1.5954E-09 9.9687E-11

L2-order — 4.0143 4.0139 4.0015 4.0004

L1-error 4.6767E-06 2.8866E-07 1.7743E-08 1.1087E-09 6.9260E-11

L1-order — 4.0180 4.0240 4.0003 4.0008

• Numderical flux format: AUSM;

Temporal discretization format: RK4;

CFL=0.01;

L∞, L2, L1 numerical errors and convergence orders for conservative variables ρ, ρu, ρv, E

with P 3-polynomial approximation are shown in Table 7.

• Numderical flux format: Steger-Warming;

Temporal discretization format: TVD-RK3;

CFL=0.05;

L∞, L2, L1 numerical errors and convergence orders for conservative variables ρ, ρu, ρv, E

with P 2-polynomial approximation are shown in Table 8.

From the accuracy test results of the aforementioned one-dimensional and two-dimensional

examples, it can be seen that both the PK-FVS-DG scheme based on the Jacobian eigenvalue

splitting and the PK-FVS-DG scheme based on the Mach number splitting can achieve the

52 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

Table 5. P 2-FVS(vanLeer)-DG using equally spaced cells with TVD-RK3 and CFL=0.01. 1D-Shallow

Water Equations with smooth initial conditions: h0(x) = 5+ecos(2πx), u0(x) =
sin(cos(2πx))

5+ecos(2πx) . L∞, L2, L1

errors and convergence orders for conservative variables h, hu.

Mesh 50 100 200 400 800

L∞-error 2.0111E-02 6.3551E-03 2.0769E-03 2.9931E-04 4.3458E-05

L∞-order — 1.6620 1.6135 2.7947 2.7840

h L2-error 2.9563E-03 5.3791E-04 9.2442E-05 1.1241E-05 1.4936E-06

L2-order — 2.4584 2.5407 3.0397 2.9119

L1-error 1.0235E-03 1.3895E-04 2.0637E-05 2.6006E-06 3.5516E-07

L1-order — 2.8809 2.7513 2.9883 2.8723

L∞-error 7.4667E-02 2.5399E-02 8.3407E-03 1.2216E-03 1.7540E-04

L∞-order — 1.5557 1.6065 2.7714 2.8000

hu L2-error 1.3649E-02 2.4733E-03 4.0608E-04 4.7905E-05 7.1252E-06

L2-order — 2.4643 2.6066 3.0835 2.7492

L1-error 5.6059E-03 7.4207E-04 1.0431E-04 1.3226E-05 1.8956E-06

L1-order — 2.9173 2.8307 2.9795 2.8026

optimal spatial convergence order of (K+1). In addition, The examples for the Euler system

and the shallow water wave system demonstrate the universality of the FVS-DG for general

hyperbolic conservation laws.

9.2. Performance of the IS-L2-TVB(D)-minmod Limiter for Scalar Conservation

Law. In this subsection, IS-L2-TVB(D)-minmod Limiter is applied to 1D/2D-scalar equa-

tions, including inviscid Burgers’ equation (Example 9.4 and Example 9.6), non-convex scalar

Buckley-Leverett problem (Example 9.5) and linear variable coefficient transport equation

(swirling deformation flow in Example 9.7).

9.2.1. One-dimensional Test Cases for Scalar Equations. To compare IS-L2-TVB(D)-minmod

Limiter with other classical limiters, we choose local Lax-Friedrichs (LLF) flux format for

all of them. The LLF flux format is given as follows:

f̂ LF =
1

2
·
(
f
(
UL
)
+ f

(
UR
)
− α ·

(
UR − UL

))
,

α = max
u∈I(uL,uR)

{|f ′ (u)|}, I(uL, uR) =
(
min

{
uL, uR

}
,max

{
uL, uR

})
.

• If f(u) = c · u then f ′(u) = c, α = |c|;
• If f(u) = c · 1

2
u2 then f ′(u) = c · u, α = |c| ·max

{∣∣uL
∣∣ , ∣∣uR

∣∣}.
The relationship between Local Lax-Friedrichs splitting method previously mentioned and

LLF flux format here should be referred to Appendix C.1.

FLUX VECTOR SPLITTING RKDG METHOD 53

Table 6. P 2-FVS(AUSM)-DG using uniform structured triangular meshes. 2D-Compressible Euler

Equationswith smooth initial conditions: ρ0(x, y) = 1 + 0.2 cos(πx + πy), u0(x, y) = −0.7, v0(x, y) =

0.3, P0(x, y) = 1. L∞, L2, L1 errors and convergence orders for conservative variables ρ, ρu, ρv, E.

Mesh 8×8 16×16 32×32 64×64

L∞-error 8.9167E-04 1.2342E-04 1.5657E-05 1.9642E-06

L∞-order — 2.8530 2.9786 2.9948

ρ L2-error 7.0277E-04 9.0059E-05 1.1425E-05 1.4334E-06

L2-order — 2.9641 2.9787 2.9947

L1-error 1.1249E-03 1.4124E-04 1.7661E-05 2.2048E-06

L1-order — 2.9936 2.9995 3.0018

L∞-error 5.5158E-04 7.6466E-05 9.7164E-06 1.2195E-06

L∞-order — 2.8507 2.9763 2.9942

ρu L2-error 4.5169E-04 5.7971E-05 7.3577E-06 9.2326E-07

L2-order — 2.9619 2.9780 2.9944

L1-error 7.2709E-04 9.1365E-05 1.1470E-05 1.4332E-06

L1-order — 2.9924 2.9938 3.0005

L∞-error 3.4939E-04 4.5836E-05 5.8122E-06 7.3063E-07

L∞-order — 2.9303 2.9793 2.9919

ρv L2-error 2.6454E-04 3.4709E-05 4.4310E-06 5.5688E-07

L2-order — 2.9301 2.9696 2.9922

L1-error 4.2513E-04 5.4671E-05 6.8958E-06 8.6307E-07

L1-order — 2.9590 2.9870 2.9982

L∞-error 4.1011E-04 5.2523E-05 6.6514E-06 8.3368E-07

L∞-order — 2.9650 2.9812 2.9961

E L2-error 3.2336E-04 4.2374E-05 5.4071E-06 6.7950E-07

L2-order — 2.9319 2.9702 2.9923

L1-error 4.9739E-04 6.5928E-05 8.3778E-06 1.0506E-06

L1-order — 2.9154 2.9762 2.9954

Example 9.4. 1D inviscid Burgers’ problem with smooth initial conditions and a shock

during the evolution.

Control Eq: ut + (1
2
u2)x = 0;

Computational domain: Ω× [0, Tend] = [0, 2π]× [0, 2.0];

ICs: u0(x) = sin(x);

Note: a discontinuity occurs at t = 1 and x = π under this given initial condition;

BCs: periodic boundary conditions;

True solutions: u(x, t) = u0(x
∗), x∗ satisfies x∗ + u0(x

∗) · t = x;

54 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

Table 7. P 3-FVS(AUSM)-DG using uniform structured rectangular meshes. 2D-Compressible Euler

Equationswith smooth initial conditions: ρ0(x, y) = 1 + 0.2 cos(πx + πy), u0(x, y) = −0.7, v0(x, y) =

0.3, P0(x, y) = 1. L∞, L2, L1 errors and convergence orders for conservative variables ρ, ρu, ρv, E.

Mesh 10×10 20×20 40×40 80×80

L∞-error 1.5314E-04 9.0975E-06 5.6476E-07 3.2868E-08

L∞-order — 4.0732 4.0098 4.1029

ρ L2-error 1.2555E-04 8.8175E-06 5.9757E-07 2.8805E-08

L2-order — 3.8317 3.8832 4.3747

L1-error 2.0791E-04 1.4274E-05 1.0451E-06 4.8381E-08

L1-order — 3.8645 3.7717 4.4331

L∞-error 9.2719E-05 5.8423E-06 3.6815E-07 1.9127E-08

L∞-order — 3.9883 3.9882 4.2666

ρu L2-error 8.0222E-05 5.7501E-06 3.9938E-07 1.8463E-08

L2-order — 3.8024 3.8477 4.4351

L1-error 1.3091E-04 9.3984E-06 6.9878E-07 3.0859E-08

L1-order — 3.8000 3.7495 4.5010

L∞-error 5.6795E-05 3.1587E-06 1.7577E-07 1.1372E-08

L∞-order — 4.1684 4.1675 3.9502

ρv L2-error 4.2407E-05 2.7470E-06 1.8497E-07 9.3140E-09

L2-order — 3.9484 3.8925 4.3118

L1-error 7.0188E-05 4.3302E-06 3.2201E-07 1.5252E-08

L1-order — 4.0187 3.7493 4.4000

L∞-error 7.6232E-05 4.8337E-06 2.8666E-07 1.6498E-08

L∞-order — 3.9792 4.0757 4.1190

E L2-error 5.7506E-05 3.8493E-06 2.3815E-07 1.2923E-08

L2-order — 3.9011 4.0146 4.2038

L1-error 9.5498E-05 6.1273E-06 4.1033E-07 2.1644E-08

L1-order — 3.9621 3.9004 4.2448

Flux format: local Lax-Friedrichs flux;

Temporal discretization format: TVD-RK3;

CFL=0.1;

P 3 and P 5-polynomial approximations and uniquely spaced cells are utilized;

Note that in order to fully demonstrate the influence of various limiters on numerical results,

no discontinuity indicators are used in this Example 9.4.

Numerical results based on different limiters including IS-TVB-minmod limiter, L2-TVB-

minmod limiter, SimpleWENO and OEDG [44] are demonstrated in Figure 2. Note: when

FLUX VECTOR SPLITTING RKDG METHOD 55

(a) 20 cells, P 3-polynomial approximation with different limiters

(b) 20 cells, P 5-polynomial approximation with different limiters

(c) P 3-polynomial approximation with IS-TVB-minmod limiter and OEDG on different meshes

Figure 2. 1D-Burgers’ equation ut + (1
2
u2)x = 0 with initial condition u0(x) = sin(x). The simu-

lation is performed up to time t = 2.0. P 3 and P 5-polynomial approximations and uniquely spaced cells.

Numerical results based on different limiters including IS-TVB-minmod limiter, L2-TVB-minmod limiter,

SimpleWENO and OEDG are compared with each other. Localized magnification has been applied to all

sub-figures.

56 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

Table 8. P 2-FVS(Steger-Warming)-DG using uniform structured triangular meshes. 2D-Compressible

Euler Equationswith smooth initial conditions: ρ0(x, y) = 1+ 0.2 cos(πx+ πy), u0(x, y) = −0.7, v0(x, y) =

0.3, P0(x, y) = 1. L∞, L2, L1 errors and convergence orders for conservative variables ρ, ρu, ρv, E.

Mesh 8×8 16×16 32×32 64×64

L∞-error 9.3377E-04 1.3671E-04 1.7590E-05 2.1995E-06

L∞-order — 2.7719 2.9583 2.9996

ρ L2-error 8.1292E-04 1.1096E-04 1.4344E-05 1.8091E-06

L2-order — 2.8730 2.9515 2.9872

L1-error 1.3097E-03 1.7368E-04 2.1929E-05 2.7399E-06

L1-order — 2.9147 2.9856 3.0006

L∞-error 5.9550E-04 8.5540E-05 1.1053E-05 1.3838E-06

L∞-order — 2.7994 2.9522 2.9977

ρu L2-error 5.1786E-04 7.0930E-05 9.1898E-06 1.1599E-06

L2-order — 2.8681 2.9483 2.9861

L1-error 8.4123E-04 1.1217E-04 1.4225E-05 1.7796E-06

L1-order — 2.9069 2.9791 2.9988

L∞-error 3.7102E-04 5.5142E-05 7.1893E-06 9.1021E-07

L∞-order — 2.7503 2.9392 2.9816

ρv L2-error 3.0768E-04 4.3852E-05 5.7438E-06 7.2709E-07

L2-order — 2.8107 2.9326 2.9818

L1-error 4.9562E-04 6.8821E-05 8.8443E-06 1.1098E-06

L1-order — 2.8483 2.9600 2.9945

L∞-error 4.2025E-04 6.0872E-05 7.8618E-06 9.9419E-07

L∞-order — 2.7874 2.9528 2.9833

E L2-error 3.4478E-04 4.9342E-05 6.4757E-06 8.2032E-07

L2-order — 2.8048 2.9297 2.9808

L1-error 5.4155E-04 7.7310E-05 1.0117E-05 1.2801E-06

L1-order — 2.8084 2.9339 2.9824

using P 5-polynomial approximation, SimpleWENO doesn’t work with 20 cells. (the numerical

results are “NaN”)

According to the Figure 2, we can see that when approximating with high-order polynomi-

als, the IS-TVB-minmod limiter exhibits no overshoot near discontinuities, whereas both the

L2-TVB-minmod limiter and OEDG show overshoot phenomena; When approximating with

P 3-polynomial, SimpleWENO, although not overshoot near discontinuities, has slight oscilla-

tions and is not as smooth as the IS-TVB-minmod limiter; Under the same CFL number (0.1)

and the same coarse mesh (20 cells) conditions, when approximating with P 5-polynomial,

FLUX VECTOR SPLITTING RKDG METHOD 57

SimpleWENO does not work (in fact , even if adding up cells to 500, SimpleWENO still

doesn’t work), while the IS-TVB-minmod limiter remains effective, demonstrating that the

mesh resolution of the IS-TVB-minmod limiter is superior to that of SimpleWENO and

IS-TVB-minmod limiter is more suitable for high-order approximation than SimpleWENO.

Compared with the IS-TVB-minmod limiter, OEDG requires more cells to mitigate overshoot

phenomena, in fact, OEDG still has overshoot even with 500 cells, while IS-TVB-minmod

limiter consistently maintains no overshoot during mesh refinement, even on a very coarse

mesh (20 cells), there is no overshoot phenomenon with IS-TVB-minmod limiter. There-

fore, the artificial viscosity and the mesh resolution of the IS-TVB-minmod limiter is also

superior to that of OEDG. Finally, it needs to be emphasized that as the mesh is refined, the

discontinuities captured by IS-TVB-minmod limiter become increasingly clear and sharp, yet

there is still no overshoot.

Example 9.5. nonlinear non-convex scalar Buckley-Leverett problem.

Control Eq: ut + (4u2

4u2+(1−u)2
)x = 0;

Computational domain: Ω× [0, Tend] = [−1, 1]× [0, 0.4];

ICs: u0(x) =

1 , −1
2
≤ x ≤ 0,

0 , elsewhere;

BCs: periodic boundary conditions;

Flux format: global Lax-Friedrichs flux with fixed α = 2.4;

Temporal discretization format: TVD-RK3;

CFL=0.1;

P 3-polynomial approximation and uniquely spaced 80 cells are utilized;

TVB-minmod discontinuity indicator with parameter M = 1 is utilized for all limiters in this

Example 9.5.

Numerical results based on different limiters including IS-TVB-minmod limiter, L2-TVB-

minmod limiter, WENO5-JS, SimpleWENO and OEDG are demonstrated in Figure 3.

The IS-TVB exhibits no overshoot behavior, while the SimpleWENO and OEDG exhibit

noticeable overshoot phenomena; the IS-TVB has no numerical spurious oscillations, whereas

the L2-TVB shows noticeable numerical oscillations within the range −0.2 ≤ x ≤ 0; although

the WENO5-JS does not have numerical oscillations, its dissipation is significantly larger and

its precision is inferior to that of the IS-TVB within the range −0.06 ≤ x ≤ −0.02.

9.2.2. Two-dimensional Test Cases for Scalar Equations. In this subsection, in addition to

LLF flux, we used “scalar Steger-Warming flux” inspired by Steger-Warming splitting for

systems. More details about “scalar Steger-Warming flux”, please refer to Appendix C.2.2.

Example 9.6. 2D nonlinear inviscid Burgers’ problem.

Control Eq: Ut + (1
2
U)x + (1

2
U)y = 0;

• 2D-Burgers’ problem with smooth initial conditions and a shock during the evolution

58 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

(a) 80 cells, P 3-polynomial approximation with IS-TVB

(b) 80 cells, P 3-polynomial approximation with L2-TVB

(c) 80 cells, P 3-polynomial approximation with WENO5-JS

FLUX VECTOR SPLITTING RKDG METHOD 59

(d) 80 cells, P 3-polynomial approximation with SimpleWENO (e) 80 cells, P 3-polynomial approximation with OEDG

Figure 3. 1D-Buckley-Leverett problem ut + (4u2

4u2+(1−u)2
)x = 0 with initial condition u = 1 when

− 1
2

≤ x ≤ 0 and u = 0 elsewhere. The simulation is performed up to time t = 0.4. P 3-polynomial

approximation and uniquely spaced 80 cells. Numerical results based on different limiters including IS-

TVB-minmod limiter, L2-TVB-minmod limiter, WENO5-JS, SimpleWENO and OEDG are compared with

each other.

Computational domain: Ω× [0, Tend] = {[0, 4]× [0, 4]} × [0, 1.5
π
];

ICs: U0(x, y) = sin
(
π
2
(x+ y)

)
BCs: periodic boundary conditions;

Flux format: local Lax-Friedrichs flux;

Temporal discretization format: TVD-RK3;

CFL=0.1;

P 3-polynomial approximation and uniform rectangular 50 × 50 cells are utilized;

TVB-minmod discontinuity indicator with parameter M = 1 is utilized in this test case.

Numerical results based on IS-TVB-minmod limiter (ωIS = 1, ωL2 = 0) are demonstrated

in Figure 4.

• 2D-Burgers’ problem with discontinuous initial conditions

Computational domain: Ω× [0, Tend] = {[0, 0.1]× [0, 0.1]} × [0, 0.05];

60 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

(a) 3D view for IS-TVB numerical solution (b) IS-TVB solution vs. exact solution along the cut y = x

Figure 4. 2D-Burgers’ problem Ut + (1
2
U)x + (1

2
U)y = 0 with smooth initial conditions U0(x, y) =

sin
(
π
2
(x+ y)

)
while a shock during the evolution. The simulation is performed up to time t = 1.5

π
when a

shock has already appeared. P 3-polynomial approximation and uniquely spaced rectangular 50 × 50 cells.

Discontinuity is captured based on IS-TVB-minmod limiter (ωIS = 1, ωL2 = 0).

ICs: u0(x, y) =

0.5, x < 0.05, y < 0.05

0.8, x > 0.05, y < 0.05

−1, x > 0.05, y > 0.05

−0.2, x < 0.05, y > 0.05

BCs: free boundary conditions are imposed on all edges of Ω;

Flux format: Steger-Warming flux (please refer to Appendix C.2.2);

Temporal discretization format: TVD-RK3;

CFL=0.1;

P 3-polynomial approximation and uniform rectangular 50 × 50 cells are utilized;

TVB-minmod discontinuity indicator with parameter M = 1 is utilized in this test case.

Numerical results based on IS-TVB-minmod limiter (ωIS = 1, ωL2 = 0) are demonstrated

in Figure 5.

Example 9.7. 2D linear advection equation.

• Swirling deformation flow [45].

Control Eqs: Ut −
(
cos2

(
x
2

)
sin(y)g(t)U

)
x
+
(
sin(x) cos2

(
y
2

)
g(t)U

)
y
= 0,

where g(t) = 2π cos(πt/T), T = 0.75.

FLUX VECTOR SPLITTING RKDG METHOD 61

(a) 3D view (b) 3D view (handstand) (c) 2D top-down view

Figure 5. 2D-Burgers’ problem with discontinuous initial conditions. Ut + (1
2
U)x + (1

2
U)y = 0. At

t = 0, U0(x, y) = 0.5 when x < 0.05 and y < 0.05, U0(x, y) = 0.8 when x > 0.05 and y < 0.05, U0(x, y) = −1

when x > 0.05 and y > 0.05, U0(x, y) = −0.2 when x < 0.05 and y > 0.05. The simulation is performed

up to time t = 0.05. P 3-polynomial approximation and uniform rectangular 50 × 50 cells. Discontinuity is

dealed with IS-TVB-minmod limiter (ωIS = 1, ωL2 = 0).

(a) 3D view (b) 2D top-down view

Figure 6. initial profile for rigid body rotation and swirling deformation flow

Computational Domain: Ω× [0, Tend] = {[−π, π]× [−π, π]} × [0, 0.75]

ICs: initial condition plotted in Figure.6 which consists of a slotted disk, a cone as well as a

smooth hump, similar to the one used in [45].

BCs: periodic boundary conditions;

Flux format: Steger-Warming flux (please refer to Appendix C.2.2);

Temporal discretization format: TVD-RK3;

CFL=0.1;

P 3-polynomial approximation and uniform rectangular 120 × 120 cells are utilized;

TVB-minmod discontinuity indicator with parameter M = 1 is utilized in this test case.

Numerical results based on IS-L2-TVB-minmod limiter (ωIS = 0.75, ωL2 = 0.25) are

demonstrated in Figure 7 and Figure 8.

62 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

(a) 3D view (b) 2D top-down view

Figure 7. 2D-swirling deformation flow Ut −
(
cos2

(
x
2

)
sin(y)g(t)U

)
x
+

(
sin(x) cos2

(y
2

)
g(t)U

)
y

=

0, g(t) = 2π cos(πt/T) with initial data in Fig.6: the period T = 0.75 and the final integration time

0.375. P 3-polynomial approximation with IS-L2-TVB-minmod limiter (ωIS = 0.75, ωL2 = 0.25). Uniform

rectangular 120 × 120 cells.

(a) 3D view (b) 2D top-down view

Figure 8. 2D-swirling deformation flow Ut −
(
cos2

(
x
2

)
sin(y)g(t)U

)
x
+

(
sin(x) cos2

(y
2

)
g(t)U

)
y

=

0, g(t) = 2π cos(πt/T) with initial data in Fig.6: the period T = 0.75 and the final integration time

0.75. P 3-polynomial approximation with IS-L2-TVB-minmod limiter (ωIS = 0.75, ωL2 = 0.25). Uniform

rectangular 120 × 120 cells.

9.3. Solving the Riemann Problems for Hyperbolic Conservative Systems Using

FVS-DG with IS-L2-TVB(D)-minmod Limiter.

9.3.1. One-dimensional Test Cases for Hyperbolic Systems. In this subsection, several clas-

sical one-dimensional Riemann problems related to the compressible Euler equations and

FLUX VECTOR SPLITTING RKDG METHOD 63

shallow water wave equations are numerically simulated to test the suitability of the IS-L2-

TVB(D)-minmod limiter with high-order polynomial approximations (PK , K ≥ 3) and its

ability to suppress numerical oscillations.

• Riemann Problems for one-dimensional compressible Euler system.

Example 9.8. Sod problem with compressible Euler equations.

ICs:

(ρ, u, p) =

(1, 0, 1), −1 < x < 0,

(0.125, 0, 0.1), 0 < x < 1;

Free boundary conditions are applied on both the left and right boundaries;

Computational Domain:

Ω× [0, Tend] = [−1, 1]× [0, 0.2];

Limiter parameters: IS-TVB-minmod limiter, ωIS = 1.0, ωL2 = 0.0;

TroubledCell-Indicator: TVB-minmod discontinuous indicator and take M = 1 into effect;

P 3-polynomial approximation was applied;

Numderical flux format: Steger-Warming;

Temporal discretization format: TVD-RK3;

CFL=0.05;

Mesh with 400 cells was applied.

At t = 0.2, the density ρ, velocity u, pressure P and total energy E are ploted in Figure 9.

Example 9.9. Lax problem with compressible Euler equations.

ICs:

(ρ, u, p) =

(0.445, 0.698, 3.528), −5 < x < 0

(0.5, 0, 0.571), 0 < x < 5

Free boundary conditions are applied on both the left and right boundaries;

Computational Domain:

Ω× [0, Tend] = [−5, 5]× [0, 1.3];

Limiter parameters: IS-TVB-minmod limiter, ωIS = 1.0, ωL2 = 0.0;

TroubledCell-Indicator: TVB-minmod discontinuous indicator and take M = 1 into effect;

P 3-polynomial approximation was applied;

Numderical flux format: van Leer;

Temporal discretization format: TVD-RK3;

CFL=0.1;

Uniform mesh with 2000 cells was applied.

At t = 1.3, the density ρ, velocity u, pressure P and total energy E are ploted in Figure 10.

64 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

(a) Density ρ (b) Velocity u

(c) Pressure P (d) Total energy E

Figure 9. Sod problem for 1D-Compressible Euler Equations. P 3-

FVS(Steger-Warming)-DG with IS-TVB-minmod limiter using equally spaced

400 cells. At t = 0.2, primitive physical variables ρ, u, P, E are demonstrated.

FLUX VECTOR SPLITTING RKDG METHOD 65

(a) Density ρ (b) Velocity u

(c) Pressure P (d) Total energy E

Figure 10. Lax problem for 1D-Compressible Euler Equations. P 3-FVS(van

Leer)-DG with IS-TVB-minmod limiter using equally spaced 2000 cells. At

t = 1.3, primitive physical variables ρ, u, P, E are demonstrated.

66 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

Example 9.10. Shu-Osher problem with compressible Euler equations.

ICs:

(ρ, u, p) =

(3.857143, 2.629369, 10.333333), −5 < x < −4

(1 + 0.2 sin(5x), 0, 1), −4 < x < 5

Free boundary conditions are applied on both the left and right boundaries;

Computational Domain:

Ω× [0, Tend] = [−5, 5]× [0, 1.8];

Limiter parameters: IS-L2-TVB-minmod limiter, ωIS = 0.75, ωL2 = 0.25;

TroubledCell-Indicator: TVB-minmod discontinuous indicator and take M = 1 into effect;

P 5-polynomial approximation was applied;

Numderical flux format: Steger-Warming;

Temporal discretization format: TVD-RK3;

CFL=0.1;

Uniform mesh with 500 cells was applied.

At t = 1.8, the density ρ, velocity u, pressure P and total energy E are ploted in Figure 11.

Example 9.11. Blast problem with compressible Euler equations.

ICs:

(ρ, u, p) =

(1, 0, 103) , 0 ≤ x < 0.1

(1, 0, 10−2) , 0.1 < x ≤ 0.9

(1, 0, 102) , 0.9 < x ≤ 1

Reflect boundary conditions are applied on both the left and right boundaries;

Computational Domain:

Ω× [0, Tend] = [0, 1]× [0, 0.026];

Limiter parameters: IS-L2-TVB-minmod limiter, ωIS = 0.8, ωL2 = 0.2;

TroubledCell-Indicator: TVB-minmod discontinuity indicator and take M = 1 into effect;

P 2-polynomial approximation was applied;

Numderical flux format: AUSM;

Temporal discretization format: TVD-RK3;

CFL=0.005;

uniform mesh with 800 cells was applied.

At t = 0.026, the density ρ is ploted in Figure 12.

• Riemann Problems for one-dimensional shallow water wave system.

Example 9.12. Dam break on a flat bed with shallow water wave equations.

Bottom elevation:

Z0 ≡ 0;

Computational domain:

Ω× [0, Tend] = [−1, 1]× [0, 0.2];

FLUX VECTOR SPLITTING RKDG METHOD 67

(a) Density ρ (b) Velocity u

(c) Pressure P (d) Total energy E

Figure 11. Shu-Osher problem for 1D-Compressible Euler Equations. P 5-

FVS(Steger-Warming)-DG with IS-L2-TVB-minmod limiter using equally

spaced 500 cells. At t = 1.8, primitive physical variables ρ, u, P, E are

demonstrated.

68 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

Figure 12. Blast problem for 1D-Compressible Euler Equations. P 2-

FVS(AUSM)-DG with IS-L2-TVB-minmod limiter (ωIS = 0.8, ωL2 = 0.2)

using equally spaced 800 cells. At t = 0.026, physical variable ρ is demon-

strated.

Riemann ICs:

(h, u) =

(1, 0) , −1 < x < 0,

(0.1, 0) , 0 < x < 1;

BCs: free boundary conditions are applied on both the left and right boundaries;

P 4-polynomial approximation was applied;

Limiter parameters: IS-L2-TVB-minmod limiter, ωIS = 0.75, ωL2 = 0.25;

TroubledCell-Indicator: TVD-minmod discontinuous indicator;

Numderical flux format: van Leer;

Temporal discretization format: TVD-RK3;

CFL=0.1;

FLUX VECTOR SPLITTING RKDG METHOD 69

Uniform mesh with 200 cells was applied.

At t = 0.2, the surface level h and discharge hu are ploted in Figure 13.

(a) DamBreak: surface level h at t = 0.2 (b) DamBreak: discharge hu at t = 0.2

Figure 13. Dam break at a flat bed with shallow water wave equations. P 4-

FVS(vanLeer)-DG with IS-L2-TVB-minmod limiter using equally spaced 200

cells. At t = 0.2, conservative variables h, hu are demonstrated.

9.3.2. Two-dimensional Test Cases for Hyperbolic Systems. Three Riemann problems in 2D

case for compressible Euler equations are simulated here to demonstrate the performance of

IS-L2-TVB(D)-Limiter in conjunction with FVS-DG.

Example 9.13.

Computational Domain: Ω× [0, Tend] = {[0, 0.1]× [0, 0.1]} × [0, 0.022];

ICs(1):

(ρ, u, v, p)T =

(0.5313, 0, 0, 0.4)T , x > 0.05, y > 0.05,

(1, 0.7276, 0, 1)T , x < 0.05, y > 0.05,

(0.8, 0, 0, 1)T , x < 0.05, y < 0.05,

(1, 0, 0.7276, 1)T , x > 0.05, y < 0.05,

70 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

BCs: free boundary conditions are imposed on all edges of Ω;

P 3-polynomial approximation was applied;

Limiter parameters: IS-L2-TVB-minmod limiter, ωIS = 0.8, ωL2 = 0.2;

TroubledCell-Indicator: TVB-minmod discontinuity indicator with M = 1;

Numderical Flux Format: Steger-Warming;

Temporal Discretization: TVD-RK3;

CFL: 0.2;

Uniform rectangular mesh with 40× 40 cells.

The numerical result of density at t = 0.022 is plotted in Figure 14.

Figure 14. 2D Euler equations for Riemann problem with ICs(1). P 3-FVS(Steger-Warming)-DG

with IS-L2-TVB-minmod limiter (ωIS = 0.8, ωL2 = 0.2). Uniform rectangular mesh with 40 × 40 cells.

The density distribution at t = 0.022

Example 9.14.

Computational Domain: Ω× [0, Tend] = {[0, 1]× [0, 1]} × [0, 0.25];

ICs(2):

(ρ, u, v, p)T =

(1.1, 0, 0, 1.1)T , x > 0.5, y > 0.5

(0.5065, 0.8939, 0, 0.35)T , x < 0.5, y > 0.5

(1.1, 0.8939, 0.8939, 1.1)T , x < 0.5, y < 0.5

(0.5065, 0, 0.8939, 0.35)T , x > 0.5, y < 0.5

BCs: free boundary conditions are imposed on all edges of Ω;

P 2-polynomial approximation was applied;

Limiter parameters: IS-TVB-minmod limiter, ωIS = 1.0, ωL2 = 0.0;

TroubledCell-Indicator: TVB-minmod discontinuity indicator with M = 1;

Numderical Flux Format: AUSM;

FLUX VECTOR SPLITTING RKDG METHOD 71

Temporal Discretization: TVD-RK3;

CFL: 0.2;

Uniform rectangular mesh with 100× 100 cells.

The numerical result of density at t = 0.25 is plotted in Figure 15.

Figure 15. 2D Euler equations for Riemann problem with ICs(2). P 2-FVS(AUSM)-DG with IS-

TVB-minmod limiter (ωIS = 1.0, ωL2 = 0.0). Uniform rectangular mesh with 100× 100 cells. The density

distribution at t = 0.25

Example 9.15.

Computational Domain: Ω× [0, Tend] = {[0, 1]× [0, 1]} × [0, 0.3];

ICs(3):

(ρ, u, v, p)T =

(0.5313, 0, 0, 0.4)T , x > 0.5, y > 0.5,

(1, 0.7276, 0, 1)T , x < 0.5, y > 0.5,

(0.8, 0, 0, 1)T , x < 0.5, y < 0.5,

(1, 0, 0.7276, 1)T , x > 0.5, y < 0.5,

BCs: free boundary conditions are imposed on all edges of Ω;

P 2-polynomial approximation was applied;

Limiter parameters: IS-L2-TVB-minmod limiter, ωIS = 0.8, ωL2 = 0.2;

TroubledCell-Indicator: TVB-minmod discontinuity indicator with M = 1;

Numderical Flux Format: Steger-Warming;

Temporal Discretization: TVD-RK3;

CFL: 0.2;

Uniform rectangular mesh with 100× 100 cells.

The numerical result of density at t = 0.3 is plotted in Figure 16.

72 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

Figure 16. 2D Euler equations for Riemann problem with ICs(3). P 2-FVS(Steger-Warming)-DG

with IS-L2-TVB-minmod limiter (ωIS = 0.8, ωL2 = 0.2). Uniform rectangular mesh with 100 × 100 cells.

The density distribution at t = 0.3

10. Conclusion

This paper constructs the numerical flux required for the DG spatial discretization scheme

based on the flux vector splitting method, which is implemented in two-dimensional problems

by introducing the normal flux on cell interfaces. The TVB(D) limiter and the WENO lim-

iter are currently the two main streams of limiters; we utilize the smoothness factor IS from

the WENO limiter in the TVB(D)-minmod limiter, successfully overcoming the ill-posed

problem of the TVB(D)-minmod limiter in the case of high-order polynomial approxima-

tion by constructing an optimization problem based on the smoothness factor constraint.

Furthermore, by drawing on existing practices and introducing the L2-error constraint, the

TVB(D)-minmod limiter is able to balance the suppression of oscillations and the main-

tenance of high precision. For local characteristic decomposition, we use an arithmetic

average or Roe average of the integral mean on the common interface of adjacent cells for

local freezing, which is different from the usual practice. We also use an interpolation-based

characteristic transformation to achieve the mutual conversion between the one-dimensional

model in physical space and characteristic space. Numerical experiments have confirmed the

effectiveness of the aforementioned work.

Acknowledgments

The authors would like to thank the anonymous referees for their very valuable comments

and suggestions.

FLUX VECTOR SPLITTING RKDG METHOD 73

References

[1] HOTEIT H, ACKERER P, MOSE R, et al. New two-dimensional slope limiters for discontinuous

Galerkin methods on arbitrary meshes [J]. International Journal for Numerical Methods in Engineering,

2004, 61: 2566-93. (document), 1, 7.2, 7.2.3, 7.2.3

[2] ZHONG X, SHU C-W. A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontin-

uous Galerkin methods [J]. Journal of Computational Physics, 2013, 232(1): 397-415. 1

[3] DAFERMOS C M. Hyperbolic Conservation Laws in Continuum Physics [M]. 4th ed. Springer. 2016:

XII Introduction. 1

[4] VAN LEER B. Flux-vector splitting for the Euler equations; proceedings of the Eighth International

Conference on Numerical Methods in Fluid Dynamics: Proceedings of the Conference, Rheinisch-

Westfälische Technische Hochschule Aachen, Germany, June 28–July 2, 1982, F, 2005 [C]. Springer.

1, 3.2.1

[5] VAN LEER B, THOMAS J L, ROE P L, et al. A comparison of numerical flux formulas for the Euler

and Navier-Stokes equations [J]. 1987. 1

[6] STEGER J L, WARMING R. Flux vector splitting of the inviscid gasdynamic equations with application

to finite-difference methods [J]. Journal of computational physics, 1981, 40(2): 263-93. 1

[7] BERMúDEZ A, VáZQUEZ M. Flux-vector and flux-difference splitting methods for the shallow water

equations in a domain with variable depth [M]. Computer Modelling of Seas and Coastal Regions.

Springer. 1992: 255-67. 1, B, B.1.2, B.2.2

[8] LIOU M-S. Ten years in the making-AUSM-family; proceedings of the 15th AIAA Computational Fluid

Dynamics Conference, F, 2001 [C]. 1

[9] REED W H, HILL T R. Triangular mesh methods for the neutron transport equation [Z]. Conference:

National topical meeting on mathematical models and computational techniques for analysis of nuclear

systems, Ann Arbor, Michigan, USA, 8 Apr 1973; Other Information: Orig Receipt Date: 31-DEC-73.

United States. 1973: Medium: ED; Size: Pages: 23 1

[10] COCKBURN B, SHU C-W. The Local Discontinuous Galerkin Method for Time-Dependent Convection-

Diffusion Systems [J]. SIAM Journal on Numerical Analysis, 1998, 35: 2440-63. 1

[11] YI N, HUANG Y, LIU H. A direct discontinuous Galerkin method for the generalized Korteweg–de

Vries equation: Energy conservation and boundary effect [J]. Journal of Computational Physics, 2013,

242: 351-66. 1

[12] CHENG Y, SHU C-W. A discontinuous Galerkin finite element method for time dependent partial

differential equations with higher order derivatives [J]. Math Comput, 2008, 77: 699-730. 1

[13] CAI X, BOSCARINO S, QIU J. High order semi-Lagrangian discontinuous Galerkin method coupled

with Runge-Kutta exponential integrators for nonlinear Vlasov dynamics [J]. Journal of Computational

Physics, 2020, 427: 110036. 1

[14] CAI X, QIU J-M, YANG Y. An Eulerian-Lagrangian discontinuous Galerkin method for transport

problems and its application to nonlinear dynamics [J]. Journal of Computational Physics, 2021, 439:

110392 1

[15] COCKBURN B, SHU C-W. TVB Runge-Kutta local projection discontinuous Galerkin finite element

method for conservation laws. II. General framework [J]. Mathematics of computation, 1989, 52(186):

411-35. 1

[16] COCKBURN B, LIN S-Y, SHU C-W. TVB Runge-Kutta local projection discontinuous Galerkin finite

element method for conservation laws III: one-dimensional systems [J]. Journal of computational Physics,

1989, 84(1): 90-113. 1

74 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

[17] COCKBURN B, HOU S, SHU C-W. The Runge-Kutta local projection discontinuous Galerkin finite

element method for conservation laws. IV. The multidimensional case [J]. Mathematics of Computation,

1990, 54(190): 545-81. 1

[18] COCKBURN B, SHU C-W. The Runge-Kutta discontinuous Galerkin method for conservation laws V:

multidimensional systems [J]. Journal of computational physics, 1998, 141(2): 199-224. 1

[19] COCKBURN B, SHU C-W. The Runge-Kutta local projection-discontinuous-Galerkin finite element

method for scalar conservation laws [J]. ESAIM: Mathematical Modelling and Numerical Analysis, 1991,

25(3): 337-61. 1

[20] BISWAS R, DEVINE K D, FLAHERTY J E. Parallel, adaptive finite element methods for conservation

laws [J]. Applied Numerical Mathematics, 1994, 14(1-3): 255-83. 1

[21] REMACLE J-F, FLAHERTY J E, SHEPHARD M S. An adaptive discontinuous Galerkin technique

with an orthogonal basis applied to compressible flow problems [J]. SIAM review, 2003, 45(1): 53-72. 1

[22] CAO W, ZHANG Z. Point-wise and cell average error estimates of the DG and LDG methods for 1D

hyperbolic and parabolic equations [J]. SCIENTIA SINICA Mathematica, 2015, 45(8): 1115-32. 1

[23] CAO W, HUANG Q. Superconvergence of local discontinuous Galerkin methods for partial differential

equations with higher order derivatives [J]. Journal of Scientific Computing, 2017, 72: 761-91. 1

[24] XU X, HUANG Q. Superconvergence of discontinuous Galerkin methods for nonlinear delay differential

equations with vanishing delay [J]. Journal of Computational and Applied Mathematics, 2019, 348:

314-27. 1

[25] MENG X, SHU C-W, YANG Y. Superconvergence of discontinuous Galerkin methods for time-

dependent partial differential equations [J]. SCIENTIA SINICA Mathematica, 2015, 45(7): 1041-60.

1

[26] CHENG Y, SHU C-W. Superconvergence of local discontinuous Galerkin methods for one-dimensional

convection-diffusion equations [J]. Computers and Structures, 2009, 87(11): 630-41. 1

[27] SWEBY P K. High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws [J].

SIAM Journal on Numerical Analysis, 1984, 21: 995-1011. 1

[28] JIANG G-S, SHU C-W. Efficient Implementation of Weighted ENO Schemes [J]. Journal of Computa-

tional Physics, 1996, 126(1): 202-28. 1

[29] ZHU J, ZHONG X, SHU C-W, et al. Runge-Kutta discontinuous Galerkin method using a new type of

WENO limiters on unstructured meshes [J]. Journal of Computational Physics, 2013, 248: 200-20. 1

[30] QIU J, SHU C-W. Hermite WENO schemes and their application as limiters for Runge-Kutta discon-

tinuous Galerkin method: one-dimensional case [J]. Journal of Computational Physics, 2004, 193(1):

115-35. 1

[31] QIU J, SHU C-W. Hermite WENO schemes and their application as limiters for Runge-Kutta discon-

tinuous Galerkin method II: Two dimensional case [J]. Computers and Fluids, 2005, 34(6): 642-63.

1

[32] QIU J, SHU C-W. Hermite WENO schemes for Hamilton-Jacobi equations [J]. Journal of Computational

Physics, 2005, 204(1): 82-99. 1

[33] HARTEN A. High Resolution Schemes for Hyperbolic Conservation Laws [J]. Journal of Computational

Physics, 1997, 135(2): 260-78. 1

[34] SHU C-W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes [J]. Acta Nu-

merica, 2020, 29: 701-62. 1

[35] QIU J, SHU C-W. A Comparison of Troubled-Cell Indicators for Runge–Kutta Discontinuous Galerkin

Methods Using Weighted Essentially Nonoscillatory Limiters [J]. SIAM Journal on Scientific Computing,

2005, 27(3): 995-1013. 1

FLUX VECTOR SPLITTING RKDG METHOD 75

[36] KRIVODONOVA L, XIN J, REMACLE J F, et al. Shock detection and limiting with discontinuous

Galerkin methods for hyperbolic conservation laws [J]. Applied Numerical Mathematics, 2004, 48(3):

323-38. 1

[37] SHU C-W, ZANG T A, ERLEBACHER G, et al. High-order ENO schemes applied to two- and three-

dimensional compressible flow [J]. Applied Numerical Mathematics, 1992, 9(1): 45-71. 1

[38] LU C, QIU J, WANG R. A NUMERICAL STUDY FOR THE PERFORMANCE OF THE WENO

SCHEMES BASED ON DIFFERENT NUMERICAL FLUXES FOR THE SHALLOWWATER EQUA-

TIONS [J]. Journal of Computational Mathematics, 2010: 807-25. 2.1

[39] QIU J, KHOO B C, SHU C-W. A numerical study for the performance of the Runge-Kutta discontinuous

Galerkin method based on different numerical fluxes [J]. Journal of Computational Physics, 2006, 212(2):

540-65. 2.1

[40] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes [J]. Journal of

computational physics, 1981, 43(2): 357-72. 4

[41] BURGERJON L, KOREN B. Numerical Methods for the Shallow Water Equations [D]. the Netherlands:

Eindhoven University of Technology, Department of Mathematics and Computer Science, 2021. 4.2

[42] CAI X, ZHU J, QIU J. Hermite Weno Schemes with Strong Stability Preserving Multi-Step Temporal

Discretization Methods for Conservation Laws [J]. Journal of Computational Mathematics, 2017, 35:

53-74. 9

[43] LU C, QIU J, WANG R. A NUMERICAL STUDY FOR THE PERFORMANCE OF THE WENO

SCHEMES BASED ON DIFFERENT NUMERICAL FLUXES FOR THE SHALLOWWATER EQUA-

TIONS [J]. Journal of Computational Mathematics, 2010: 807-25. 9

[44] PENG M, SUN Z, WU K. OEDG: Oscillation-eliminating discontinuous Galerkin method for hyperbolic

conservation laws [J]. arXiv preprint arXiv:231004807, 2023. 9.4

[45] CAI X, GUOW, QIU J-M. A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method

for Two-Dimensional Transport Simulations [J]. J Sci Comput, 2017, 73(2-3): 514-42. 9.7

[46] MASATSUKA K. I do like CFD, VOL.1, Second Edition [M]. Lulu.com, 2009. B

[47] SHU C-W. Discontinuous Galerkin methods: General approach and stability [J]. Numerical Solutions

of Partial Differential Equations, 2009. C.2.3

[48] JIANG G, SHU C-W. On a cell entropy inequality for discontinuous Galerkin methods [J]. Math Com-

put, 1994, 62(206): 531-8. C.2.3

Appendix A. Vector, Matrix, and Tensor Operations in FVS-DG

The following notations and operational rules are used for the derivation of the FVS-DG

spatial discretization scheme (definition of the FVS-DG weak solution).

• The Hadamard product between two vector-valued functions: a⊙b = (a1b1, a2b2, . . . , ambm)
T.

• The quasi-Hadamard product between a matrix-valued function and a vector-valued

function is defined as

H⊙V =

H(1) · v1

H(2) · v2
...

H(m) · vm

,

where H(i) = (hi1, hi2, . . . , hid), that is, the matrix H is partitioned row-wise.

76 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

• The inner product between vector-valued functions acts component-wise, i.e.,

⟨U,V⟩ =

⟨u1, v1⟩

⟨u2, v2⟩
...

⟨um, vm⟩

.

• The Frobenius inner product between vector functions is defined as ⟨U : V⟩ =∑m
i=1 ⟨ui, vi⟩.

• Let the matrix-valued function H =

H(1)

H(2)

...

H(m)

, where H(i) = (hi1, hi2, . . . , hid), that is,

the matrix H is partitioned into row blocks.

Let the matrix-valued function V =

V(1)

V(2)

...

V(m)

, where V(i) = (vi1, vi2, . . . , vid), that is,

the matrix V is partitioned into row blocks.

The Frobenius inner product between the matrix-valued functions is defined to act

component-wise along the rows, i.e., ⟨H : V⟩ =

〈
H(1) : V(1)

〉
〈
H(2) : V(2)

〉
...〈
H(m) : V(m)

〉

.

• When the divergence operator acts on a matrix-valued function, the matrix-valued

function is partitioned column-wise for the computation, such that

∇ ·H = ∂x1H(1) + ∂x2H(2) + · · ·+ ∂xd
H(d),

where H(j) = (h1j, h2j, . . . , hmj)
T represents the j-th column of matrix H.

FLUX VECTOR SPLITTING RKDG METHOD 77

• In this paper, Kronecker product between two vector-valued functions, still denoted

by ⊗, is redefined as:

a⊗ b = abT =

a1

a2

a3

 [b1, b2, b3] =

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

 .

In the dummy index summation notation, the new Kronecker product between two

vector-valued functions is expressed as: a⊗ b = aiei ⊗ bjej = aibjeiej, where ei and

ej are the standard basis vectors in their respective spaces.

• The gradient of a vector function is a second-order tensor function. Let V =

(v1, v2, . . . , vm)
T, then we have

∇V =

∂x1v1 ∂x2v1 · · · ∂xd
v1

∂x1v2 ∂x2v2 · · · ∂xd
v2

...
...

...
...

∂x1vm ∂x2vm · · · ∂xd
vm

,

∇V = (∂ivj)eiej.

Appendix B. Flux Vector Splitting Method for Shallow Water System

• 1D-Shallow Water Equations:

Ut + Fx = S,

U =

 h

hu

 ,F =

 hu

hu2 + 1
2
gh2

 ,S =

 0

−gh (z0)x

 .

Jacobian matrix of flux function:

A =
∂F

∂U
=

 0 1

gh− u2 2u

 .

The eigenstructure of the Jacobian matrix is given by

A = RΛL,

Λ =

u−
√
gh 0

0 u+
√
gh

 , R =

 1 1

u−
√
gh u+

√
gh

 , L =

 u+
√
gh

2
√
gh

− 1
2
√
gh

−u−
√
gh

2
√
gh

1
2
√
gh

 .

78 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

• 2D-Shallow Water Equations:

Ut + Fx +Gy = S,

U =

h

hu

hv

 ,F =

hu

p+ hu2

huv

 ,G =

hv

huv

p+ hv2

 ,S =

0

−gh (z0)x

−gh (z0)y

 .

Let n = (nx, ny) be the unit outward normal vector; then the normal flux is defined

as

Fn = nx · F+ ny ·G.

The Jacobians in the x-direction, y-direction, and normal direction are given by

A =
∂F

∂U
=

0 1 0

gh− u2 2u 0

−uv v u

 ,B =
∂G

∂U
=

0 0 1

−uv v u

gh− v2 0 2v

 ,

An = Anx +Bny =

0 nx ny

ghnx − uqn qn + unx uny

ghny − vqn vnx qn + vny

 ,

where qn is the normal velocity, defined as

qn = unx + vny.

The eigenstructure of the outward normal Jacobian is

An = RnΛnLn,

Λn =

qn −

√
gh 0 0

0 qn 0

0 0 qn +
√
gh

 ,

Rn =

1 0 1

u−
√
ghnx ℓx u+

√
ghnx

v −
√
ghny ℓy v +

√
ghny

 ,

Ln =

√
gh+qn
2
√
gh

− nx

2
√
gh

− ny

2
√
gh

−qℓ ℓx ℓy
√
gh−qn
2
√
gh

nx

2
√
gh

ny

2
√
gh

 ,

FLUX VECTOR SPLITTING RKDG METHOD 79

where τ = (ℓx, ℓy) is the unit tangent vector, and ql is the tangential velocity, defined

as

[ℓx, ℓy] = [−ny, nx] ,

qℓ = uℓx + vℓy.

In shallow water equations

a =
√
gh,

P =
1

2
gh2.

Note that in the shallow water wave equations, the conservation of mass is described by the

water level equation, namely

ρ(SW) = h.

Further, combining this with the speed of sound calculation formula a =
√

γP
ρ
, it can be

deduced that

γ(SW) = 2.

It should be noted that the source-free shallow water wave equations do not have an en-

ergy conservation equation. In summary, the source-free shallow water wave equations are

isentropic Euler equations with the thermodynamic property parameter γ = 2.

To implement the flux calculation based on Mach number splitting for the shallow water

wave equations, simply set the parameter γ to 2 in the van Leer and AUSM splitting sub-

routines of the compressible Euler equations, replace the density ρ with the water level h,

and use P = 1
2
gh2.

It is emphasized once again, the Jacobian of the shallow water wave equations does not

possess homogeneity, hence it does not satisfy f(u) = ∂f
∂u

· u. Reference [7] reconstructs a

homogeneous Jacobian by forcibly modifying the wave speed and then applies the eigenvalue

splitting method.

For a more detailed introduction to the shallow water wave equations, readers are referred

to [46].

B.1. Flux Vector Splitting for Shallow Water Wave Equations in One-dimension.

B.1.1. Mach Number Splitting Based on True Wave Speed.

True wave speed: a =
√
gh.

True local Mach number: Ma = u/a.

Pressure: P = 1
2
gh2; Adiabatic index: γ = 2.

(vanLeer) F =

 hu

hu2 + 1
2
gh2

 = ha

 Ma

uMa + a/γ

 .

80 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

(AUSM) F =

 hu

hu2 + 1
2
gh2

 =

 haMa

haMau+ P

 = haMa

 1

u

︸ ︷︷ ︸

Fa

+ P

 0

1

︸ ︷︷ ︸

FP

.

The splitting method for Ma and P is the same as for the compressible Euler equations.

B.1.2. Jacobian Eigenvalue Splitting Based on Modified Wave Speed[7].

True wave speed: a =
√
gh.

Modified wave speed: a∗ =
√

gh/2.

The Jacobian and its eigenstructure after forced modification are:

A∗ =

 0 1

gh
2
− u2 2u

 ,

Λ∗ =

u−
√

gh/2 0

0 u+
√

gh/2

 ,

R∗ =

 1 1

u−
√
gh/2 u+

√
gh/2

 ,

L∗ =

 u+
√

gh/2

2
√

gh/2
− 1

2
√

gh/2

−u−
√

gh/2

2
√

gh/2

1

2
√

gh/2

 .

After the modification of the wave speed, it holds that F = A∗U.

Subsequently, the Steger-Warming splitting or Lax-Friedrichs splitting can be applied.

B.2. Flux Vector Splitting for Shallow Water Wave Equations in Two-dimension.

B.2.1. Mach Number Splitting Based on True Wave Speed.

True wave speed: a =
√
gh.

True local normal Mach number: Mn
a = qn/a.

Pressure: P = 1
2
gh2; Adiabatic index: γ = 2.

(AUSM) Fn =

hqn

huqn + Pnx

hvqn + Pny

 =

haMa

haMau+ Pnx

haMav + Pny

 = haMa

1

u

v

︸ ︷︷ ︸

Fa

+ P

0

nx

ny

︸ ︷︷ ︸

FP

.

The splitting method for Ma and P is the same as for the compressible Euler equations.

FLUX VECTOR SPLITTING RKDG METHOD 81

B.2.2. Jacobian Eigenvalue Splitting Based on Modified Wave Speed[7].

True wave speed: a =
√
gh.

Modified wave speed: a∗ =
√

gh/2.

The Jacobian and its eigenstructure after forced modification are:

Λ∗
n =

qn −

√
gh/2 0 0

0 qn 0

0 0 qn +
√

gh/2

 ,

R∗
n =

1 0 1

u−
√

gh/2nx ℓx u+
√

gh/2nx

v −
√
gh/2ny ℓy v +

√
gh/2ny

 ,L∗
n =

√

gh/2+qn

2
√

gh/2
− nx

2
√

gh/2
− ny

2
√

gh/2

−qℓ ℓx ℓy√
gh/2−qn

2
√

gh/2

nx

2
√

gh/2

ny

2
√

gh/2

 ,

A∗
n = R∗

nΛ
∗
nL

∗
n.

After the modification of the wave speed, it holds that Fn = A∗
nU.

Subsequently, the Steger-Warming splitting or Lax-Friedrichs splitting can be applied.

Appendix C. Development of Numerical Flux Formats for Scalar

Equations Based on the System’s Jacobian-FVS Method

C.1. The Classical Lax-Friedrichs Flux Format from the Jacobian-FVS Perspec-

tive. This section attempts to derive the classical Lax-Friedrichs flux format from the L-F

splitting method within the Jacobian-FVS.

Consider a one-dimensional hyperbolic conservation system as an example. The L-F split-

ting process is shown below:

Take

AL,+ =
1

2
(AL +MLId) =

1

2
(A(UL) +MLId),

AR,− =
1

2
(AR −MRId) =

1

2
(A(UR)−MRId),

where ML,MR are positive constants that should ensure

λ(AL,+) = λ(AL +MLId) ≥ 0,

λ(AR,−) = λ(AR −MRId) ≤ 0,

}

82 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

hold at every cell interface.

At xi+1/2, there is

f̂i+1/2 = AL,+
i+1/2U

L
i+1/2 + AR,−

i+1/2U
R
i+1/2

=
1

2

(
A
(
UL

i+1/2

)
+ML

i+1/2I
)
UL

i+1/2 +
1

2

(
A
(
UR

i+1/2

)
−MR

i+1/2I
)
UR

i+1/2

=
1

2

(
A
(
UL

i+1/2

)
UL

i+1/2 +ML
i+1/2U

L
i+1/2

)
+

1

2

(
A
(
UR

i+1/2

)
UR

i+1/2 −MR
i+1/2U

R
i+1/2

)
=

1

2

(
f
(
UL

i+1/2

)
+ML

i+1/2U
L
i+1/2

)
+

1

2

(
f
(
UR

i+1/2

)
−MR

i+1/2U
R
i+1/2

)
=

1

2

(
f
(
UR

i+1/2

)
+ f

(
UL

i+1/2

)
−
(
MR

i+1/2U
R
i+1/2 −ML

i+1/2U
L
i+1/2

))
.

The classic L-F flux format is given by

ˆ̂
fi+1/2 =

1

2

(
f
(
UR

i+1/2

)
+ f

(
UL

i+1/2

)
− αi+1/2

(
UR

i+1/2 −UL
i+1/2

))
,

where αi+1/2 is usually taken as

αi+1/2 = ρ

(
∂f

∂u

∣∣∣∣
xi+1/2

)
,

which means αi+1/2 is the spectral radius of the Jacobian of the flux function f with respect

to the field variable u evaluated at xi+1/2.

It is noted that if we take

Mi+1/2 = max{ML
i+1/2,M

R
i+1/2},

then Mi+1/2 also satisfies

λ(AL,+
i+1/2) = λ(AL

i+1/2 +Mi+1/2Id) ≥ 0,

λ(AR,−
i+1/2) = λ(AR

i+1/2 −Mi+1/2Id) ≤ 0.

}
Thus, Mi+1/2 can be used to simultaneously replace ML

i+1/2 and MR
i+1/2 in the numerical flux

f̂ to obtain

˜̂
fi+1/2 =

1

2

(
f
(
UR

i+1/2

)
+ f

(
UL

i+1/2

)
−
(
Mi+1/2U

R
i+1/2 −Mi+1/2U

L
i+1/2

))
=

1

2

(
f
(
UR

i+1/2

)
+ f

(
UL

i+1/2

)
−Mi+1/2

(
UR

i+1/2 −UL
i+1/2

))
.

By comparing
˜̂
f and

ˆ̂
f , it can be observed that the αi+1/2 in the classical Lax-Friedrichs flux

formula is a specific choice for the Mi+1/2 in the Lax-Friedrichs splitting method.

C.2. Constructing Steger-Warming flux for the scalar equation based on Steger-

Warming splitting for system.

From C.1, it is known that the Lax-Friedrichs splitting method can derive the classical

Lax-Friedrichs flux format, which is not only used for system control equations but also

commonly applied to scalar equations. Inspired by this, this section attempts to apply the

FLUX VECTOR SPLITTING RKDG METHOD 83

Steger-Warming splitting method to scalar equations in order to derive a new numerical flux

format suitable for scalar equations.

C.2.1. Steger-Warming Flux for One-Dimensional Scalar Equations. The Jacobian-FVS for

a system of equations first requires rewriting the flux function in the form F (U) = A(U) ·U.

Similarly, for the 1D scalar equation, we make a similar rewrite:

Let

a = Kf ′(u), (C.1)

satisfy

f(u) = au = Kf ′(u)u, (C.2)

where K is an undetermined constant that varies with different equations (different f(u)).

Generally, a = a(x, t, u).

It should be emphasized that in scalar equations, A, Λ, and λ are “the same”, all “equal

to a”. Thus, the scalar form of the Steger-Warming splitting method is as follows:

a+ =
a+ |a|

2
, a− =

a− |a|
2

. (C.3)

If smoothness is considered:

a+ =
a+

√
|a|2 + δ2

2
, a− =

a−
√
|a|2 + δ2

2
, (C.4)

where δ is a small positive quantity, for example, δ can be taken as 10−8.

Taking the interface xi+1/2 as an example, due to the multi-valuedness of u at the interface

(uL
i+1/2, u

R
i+1/2), a is also multi-valued at the interface, i.e., (aLi+1/2, a

R
i+1/2). Accordingly, the

Steger-Warming flux format for the 1D scalar equation is as follows:

f̂SW
i+1/2 = aL,+i+1/2u

L
i+1/2 + aR,−

i+1/2u
R
i+1/2

=

aLi+1/2 +
∣∣∣aLi+1/2

∣∣∣
2

uL
i+1/2 +

aRi+1/2 −
∣∣∣aRi+1/2

∣∣∣
2

uR
i+1/2

=
1

2

(
f
(
uR
i+1/2

)
+ f

(
uL
i+1/2

)
−
(∣∣aRi+1/2

∣∣uR
i+1/2 −

∣∣aLi+1/2

∣∣uL
i+1/2

))
. (C.5)

The following discussion will focus on the linear advection equation and the nonlinear

Burgers’ equation in detail:

• Case 1: ut + (c(x, t)u)x = 0.

f(u) = c(x, t)u, f ′(u) = c(x, t),

thus we take

K = 1, a = c(x, t).

84 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

At this point, with aLi+1/2 = aRi+1/2 = c(xi+1/2, ·), the Steger-Warming flux splitting

scheme for the linear scalar advection equation is given by:

f̂SW
i+1/2 =

1

2

(
c(xi+1/2, t)

(
uR
i+1/2 + uL

i+1/2

)
−
∣∣c(xi+1/2, t)

∣∣ (uR
i+1/2 − uL

i+1/2

))
. (C.6)

Let’s examine the time step tn:

– If c(xi+1/2, t
n) > 0, abbreviated as cni+1/2 > 0,

then ai+1/2 = cni+1/2 > 0, and thus |ai+1/2| = ai+1/2.

Consequently, aL,+i+1/2 = ai+1/2, a
R,−
i+1/2 = 0,

and the Steger-Warming numerical flux at the interface is given by

f̂SW
i+1/2 = aL,+i+1/2u

L
i+1/2 = cni+1/2u

L
i+1/2.

Given that cni+1/2 > 0, the local upwind direction at xi+1/2 should be in the

direction of −x, meaning that the numerical flux should be calculated using the

left state of the field function. That is, take f̂i+1/2 = f(uL
i+1/2) = cni+1/2u

L
i+1/2.

It can be seen that f̂SW
i+1/2 satisfies the upwind property.

– If c(xi+1/2, t
n) < 0, abbreviated as cni+1/2 < 0,

then ai+1/2 = cni+1/2 < 0, and thus |ai+1/2| = −ai+1/2.

Consequently, aL,+i+1/2 = 0, aR,−
i+1/2 = ai+1/2,

and the Steger-Warming numerical flux at the interface is given by

f̂SW
i+1/2 = aR,−

i+1/2u
R
i+1/2 = cni+1/2u

R
i+1/2.

Given that cni+1/2 < 0, the local upwind direction at xi+1/2 should be in the

direction of +x, meaning that the numerical flux should be calculated using the

right state of the field function. That is, take f̂i+1/2 = f(uR
i+1/2) = cni+1/2u

R
i+1/2.

It can be seen that f̂SW
i+1/2 satisfies the upwind property.

Remark C.1. The fact that c is a function of x and t implies that the upwind

direction in different regions of the flow field is not consistent and may change over

time. When c is only a function of t, or more so when c = const, the above discussion

results are still applicable, but the entire flow field will share the same upwind direction

(if c = c(t), this upwind direction will change over time).

• Case 2: ut +
(
1
2
u2
)
x
= 0.

f(u) =
1

2
u2, f ′(u) = u,

thus we take

K =
1

2
, a = Kf ′(u) =

1

2
u.

FLUX VECTOR SPLITTING RKDG METHOD 85

The Steger-Warming flux for the Burgers’ equation is given by

f̂SW
i+1/2 =

1

2

(
1

2

∣∣uR
i+1/2

∣∣2 + 1

2

∣∣uL
i+1/2

∣∣2 − (1

2

∣∣uR
i+1/2

∣∣uR
i+1/2 −

1

2

∣∣uL
i+1/2

∣∣uL
i+1/2

))
=

1

4

(∣∣uR
i+1/2

∣∣2 + ∣∣uL
i+1/2

∣∣2 − (∣∣uR
i+1/2

∣∣uR
i+1/2 −

∣∣uL
i+1/2

∣∣uL
i+1/2

))
=

1

4

(∣∣uR
i+1/2

∣∣ (∣∣uR
i+1/2

∣∣− uR
i+1/2

)
+
∣∣uL

i+1/2

∣∣ (∣∣uL
i+1/2

∣∣+ uL
i+1/2

))
. (C.7)

When applied to the nonlinear Burgers’ equation, the Steger-Warming flux satisfies

“compatibility, Lipschitz continuity, and monotonicity.” This ensures that the spatial

semi-discrete weak solution of the Burgers’ equation, based on the Steger-Warming

flux, satisfies the cell entropy inequality and L2 stability, as detailed below in section

C.2.3.

C.2.2. Steger-Warming Flux for Two-Dimensional Scalar Equations. Similar to the tech-

niques used in Section 6, the 2D problem is converted into several 1D problems along the

outward normal direction by introducing the normal flux.

Consider the following two-dimensional scalar equation:

Ut + (f(U))x + (g(U))y = 0.

Let F(U) = (f(U), g(U)), and suppose the unit outward normal vector at a point on the cell

boundary is n = (nx, ny), The normal flux is then defined as

Fn(U) = n · F = nxf(U) + nyg(U).

To use the Jacobian-FVS, it is necessary to construct an(x, t, U) such that

Fn(U) = an · U.

Similar to the one-dimensional case, an is chosen in the following form:

an = KF ′
n(U),

where K is a constant to be determined.
The splitting method for an is consistent with the previously described one-dimensional case.
Consequently, the Steger-Warming flux for the two-dimensional scalar equation at a specific
point on the cell interface, denoted by Gk, is delineated as follows:

F̂SW
n (U int(Gk, t), U

ext(Gk, t)) = aint,+
n · U int(Gk, t) + aext,−

n · Uext(Gk, t)

=

(
aint
n +

∣∣aint
n

∣∣
2

)
U int(Gk, t) +

(
aext
n −

∣∣aext
n

∣∣
2

)
Uext(Gk, t)

=
1

2

(
Fn

(
U(Gk, t)

ext)+ Fn

(
U int(Gk, t)

)
−
(∣∣aext

n

∣∣Uext(Gk, t)−
∣∣∣aint

n

∣∣∣U int(Gk, t)
))

.

(C.8)

• The two-dimensional conservative linear scalar transport equation

Ut + (α(x, y, t)U)x + (β(x, y, t)U)y = 0.

Fn(U) = nx · α(x, y, t)U + ny · β(x, y, t)U,

F ′
n(U) = nx · α(x, y, t) + ny · β(x, y, t),

86 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

hence we take

K = 1, an = nx · α(x, y, t) + ny · β(x, y, t).

Therefore, aint(Gk, ·) = aext(Gk, ·) = nx · α(Gk, ·) + ny · β(Gk, ·),
the Steger-Warming flux for the two-dimensional linear scalar transport equation is

given by

F̂ SW
n (U int(Gk, t), U

ext(Gk, t))

=
1

2

(
(nx · α(Gk, t) + ny · β(Gk, t)) ·

(
U ext(Gk, t) + U int(Gk, t)

)
− |nx · α(Gk, t) + ny · β(Gk, t)|

(
U ext(Gk, t)− U int(Gk, t)

))
. (C.9)

• The two-dimensional nonlinear Burgers’ equation Ut + (1
2
U2)x + (1

2
U2)y = 0.

Fn(U) = (nx + ny) ·
1

2
U2,

F ′
n(U) = (nx + ny) · U,

hence we take

K =
1

2
, an =

1

2
(nx + ny) · U.

the Steger-Warming flux for the 2D Burgers’ equation is given by

F̂ SW
n (U int(Gk, t), U

ext(Gk, t)) (C.10)

=
1

4
(nx + ny)

(((
U ext(Gk, t)

)2
+
(
U int(Gk, t)

)2)
−
(∣∣U ext(Gk, t)

∣∣U ext(Gk, t)−
∣∣U int(Gk, t)

∣∣U int(Gk, t)
))

. (C.11)

C.2.3. Properties of the Steger-Warming Flux for the Scalar Equation. This section discusses

the properties of the Steger-Warming flux within the scope of one-dimensional conservative

linear scalar transport equations and nonlinear Burgers’ equations.

The one-dimensional scalar equation Steger-Warming flux is given by

f̂SW
i+1/2 =

1

2

(
f
(
uR
i+1/2

)
+ f

(
uL
i+1/2

)
−
(∣∣aRi+1/2

∣∣uR
i+1/2 −

∣∣aLi+1/2

∣∣uL
i+1/2

))
.

• Conservative linear scalar transport equation ut + (c(x, t)u)x = 0,

a = c(x, t);

• Nonlinear Burgers’ equation ut + (1
2
u2)x = 0,

a =
1

2
u.

FLUX VECTOR SPLITTING RKDG METHOD 87

When applied to conservative linear scalar transport equations and nonlinear Burgers’

equations, the Steger-Warming flux scheme satisfies “consistency, Lipschitz continuity, and

monotonicity”, which will be introduced and proven below:

Since all discussions are at xi+1/2, the subscript “i + 1/2” is omitted for all variables in

the following processes.

• Consistency, that is, it satisfies f̂SW (u, u) = f(u).

Proof. Let

uL = uR = u∗.

Since a = a(x, t, u), then

aL(·, ·, uL) = aR(·, ·, uR) = a(·, ·, u∗).

Let us denote a∗ = a(·, ·, u∗), thus we have

f̂SW (u∗, u∗) =
1

2
(f (u∗) + f (u∗)− (|a∗|u∗ − |a∗|u∗))

=
1

2
· 2f (u∗)

= f (u∗) .

□

• When f(u;x, t) is Lipschitz continuous function of u, the Steger-Warming numerical

flux f̂SW (uL, uR) is Lipschitz continuous with respect to both uL and uR.

Proof.

We first establish the Lipschitz continuity of f̂SW (uL, uR) with respect to uL.

Let ∆ is a constant that can be either positive or negative, and define

aL+∆ := a(·, ·, uL +∆), (C.12)

then

f̂SW (uL +∆, uR) =
1

2

(
f
(
uR
)
+ f

(
uL +∆

)
−
(∣∣aR∣∣uR −

∣∣aL+∆
∣∣ (uL +∆

)))
, (C.13)

hence

f̂SW (uL +∆, uR)− f̂SW (uL, uR)

=
1

2

(
f
(
uL +∆

)
+
∣∣aL+∆

∣∣ (uL +∆
)
− f

(
uL
)
−
∣∣aL∣∣uL

)
. (C.14)

Perform the following simple decomposition:

f̂SW (uL +∆, uR)− f̂SW (uL, uR)

=
1

2

(
f
(
uL +∆

)
− f

(
uL
)
+
∣∣aL+∆

∣∣ (uL +∆
)
−
∣∣aL∣∣ (uL +∆

)
+
∣∣aL∣∣ (uL +∆

)
−
∣∣aL∣∣uL

)

88 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

=
1

2

[f (uL +∆
)
− f

(
uL
)]︸ ︷︷ ︸

T1

+
(∣∣aL+∆

∣∣− ∣∣aL∣∣) · (uL +∆
)︸ ︷︷ ︸

T2

+
∣∣aL∣∣ ·∆︸ ︷︷ ︸

T3

 . (C.15)

Since f(u;x, t) is Lipschitz continuous with respect to u, then

∃L1 > 0, s.t. |T1| ≤ L1|∆|.

f being Lipschitz continuous implies that its derivative f ′ is bounded. Consequently,

a is bounded as well (given a = Kf ′(u), where K is a constant), and thus we have

∃L3 > 0, s.t. |T3| ≤ L3|∆|.

Both aL+∆ and aL are bounded, which implies that the difference |aL+∆| − |aL| is
also bounded. Noting that uL is a finite state, we deduce that

∃L2 > 0, s.t. |T2| ≤ L2|∆|.

Hence, there exists a constant M > 0 (e.g. take M = 3
2
·max{L1, L2, L3}) such that∣∣∣f̂SW (uL +∆, uR)− f̂SW (uL, uR)

∣∣∣ ≤ 1

2
(|T1|+ |T2|+ |T3|) ≤ M |∆| , (C.16)

which implies that f̂SW (uL, uR) is Lipschitz continuous with respect to uL when

f(u;x, t) is Lipschitz continuous function of u.

Similarly, it can be shown that f̂SW (uL, uR) is Lipschitz continuous with respect to

uR under the same conditions. □

• Monotonicity: The Steger-Warming numerical flux f̂SW (uL, uR) is non-decreasing

with respect to the first variable uL and non-increasing with respect to the second

variable uR. This property is succinctly denoted as f̂SW (↑, ↓).

Proof.

We first prove that f̂SW (uL, uR) is non-decreasing with respect to the first variable

uL.

Following the proof of Lipschitz continuity, we have

f̂SW (uL +∆, uR)− f̂SW (uL, uR)

=
1

2

(
f
(
uL +∆

)
+
∣∣aL+∆

∣∣ (uL +∆
)
− f

(
uL
)
−
∣∣aL∣∣uL

)
.

However, here we set ∆ > 0.

– Conservative linear scalar transport equation: ut + (c(x, t)u)x = 0, f(u) =

c(x, t)u, a = c(x, t).

Since a is independent of u, it follows that aL+∆ = aL. Consequently,

f̂SW (uL +∆, uR)− f̂SW (uL, uR)

=
1

2

(
c ·
(
uL +∆

)
+ |c|

(
uL +∆

)
− c ·

(
uL
)
− |c|uL

)

FLUX VECTOR SPLITTING RKDG METHOD 89

=
1

2
(c+ |c|)∆ ≥ 0.

This implies that f̂SW (uL, uR) is non-decreasing with respect to the first variable

uL when applied to the conservative linear scalar transport equation.

– Nonlinear Burgers’ equation: ut + (1
2
u2)x = 0, f(u) = 1

2
u2, a = 1

2
u.

f̂SW (uL +∆, uR)− f̂SW (uL, uR)

=
1

2

(
1

2

(
uL +∆

)2
+

1

2

∣∣uL +∆
∣∣ (uL +∆

)
− 1

2

(
uL
)2 − 1

2

∣∣uL
∣∣uL

)
=

1

4

(∣∣uL +∆
∣∣ (∣∣uL +∆

∣∣+ uL +∆
)
−
∣∣uL
∣∣ (∣∣uL

∣∣+ uL
))

.

We introduce an auxiliary function g(u) = u2 + |u|u. Then, we have

f̂SW (uL +∆, uR)− f̂SW (uL, uR) =
1

4

(
g(uL +∆)− g(uL)

)
.

It is clear that g(u) is non-decreasing with respect to u.

Given that ∆ > 0 and uL +∆ > uL,

it follows that f̂SW (uL +∆, uR) ≥ f̂SW (uL, uR),

which demonstrates the non-decreasing nature of f̂SW (uL, uR) with respect to

the first variable uL.

By similar reasoning, it can be proven that the Steger-Warming numerical flux

f̂SW (uL, uR), when applied to either the conservative linear scalar transport equa-

tion or the nonlinear Burgers’ equation, is non-increasing with respect to the second

variable uR. □

When a numerical flux scheme satisfies the aforementioned properties of “consistency, Lip-

schitz continuity, and monotonicity,” it can be proven that the DG (Discontinuous Galerkin)

weak solution based on this flux scheme satisfies the cell entropy inequality and L2 stability.

This proof process is standardized, and readers are referred to the literature [47, 48] for

details.

C.2.4. Numerical Experiments. We conducted numerical experiments to compare the Steger-

Warming flux scheme discussed in this appendix with the classical Lax-Friedrichs flux scheme

within the context of conservative linear scalar transport equations and nonlinear Burgers’

equation.

• Accuracy test

Example C.1. Linear transport equations.

• Control Eqs: ut + (sin(ωt)u)x = 0, ω = π;

Computational domain: Ω× [0, Tend] = [0, 2π]× [0, 20];

ICs: u0(x) = sin(x);

BCs: periodic boundary conditions;

True solutions: u(x, t) = u0(x+
1

ω
(cos(ωt)− 1));

90 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

Note: The smallest positive period of the solution u is T ∗ = 2π
ω

= 2, hence, it implies

simulating up to 10 periods that Tend is taken as 20.

Temporal discretization format: TVD-RK3;

CFL=0.1.

L2, L1 numerical errors and convergence orders with P 2-polynomial approximation

are summarized respectively in Table 9 and Figure 17.

Table 9. P 2-Steger-Warming-scalar-DG and P 2-Lax-Friedrichs-scalar-DG both using equally spaced

cells. ut + (sin(t)u)x = 0 with smooth initial conditions: u0(x) = sin(x). L2, L1 errors for u.

Mesh 20 40 80 160 320

S-W L2-error 5.0283E-04 6.3601E-05 0.7973E-05 0.9975E-06 1.2471E-07

L-F L2-error 6.1941E-04 8.8553E-05 1.2804E-05 1.8863E-06 2.8289E-07

S-W L1-error 1.1090E-03 1.4070E-04 1.7664E-05 2.2117E-06 2.7663E-07

L-F L1-error 1.3487E-03 1.9093E-04 2.7256E-05 3.9575E-06 5.8503E-07

• Control Eqs: ut + (sin(x)u)x = 0;

Computational domain: Ω× [0, Tend] = [0, 2π]× [0, 1];

ICs: u0(x) = 1;

BCs: periodic boundary conditions;

True solutions: u(x, t) =
sin(2 arctan(e−t tan(x

2
)))

sin(x)
;

Temporal discretization format: RK4;

CFL=0.05.

L2, L1 numerical errors with P 5-polynomial approximation are summarized respec-

tively in Table 10 and Figure 18 .

Table 10. P 5-Steger-Warming-scalar-DG and P 5-Lax-Friedrichs-scalar-DG both using equally spaced

cells. ut + (sin(x)u)x = 0 with smooth initial conditions: u0(x) = 1. L2, L1 errors and convergence orders

for u.

Mesh 20 40 80 160 320

S-W L2-error 1.1214E-06 3.1954E-08 5.3956E-10 9.4229E-12 5.7994E-13

L-F L2-error 1.2660E-06 3.3854E-08 4.7961E-10 7.8348E-12 7.5041E-13

S-W L1-error 1.1410E-06 3.0824E-08 4.8678E-10 1.0050E-11 0.8858E-12

L-F L1-error 1.3414E-06 3.2669E-08 4.6412E-10 0.9267E-11 1.0540E-12

Example C.2. Nonlinear Burgers’ equation.
• 1D-Control Eqs: ut + (1

2
u2)x = 0;

Computational domain: Ω× [0, Tend] = [0, 2π]× [0, 0.6];
Note: the exact solution remains smooth during t ∈ [0, 0.6];
ICs: u0(x) = sin(x);
BCs: periodic boundary conditions;
True solutions: u(x, t) = u0(x

∗), x∗ satisfies x∗ + u0(x
∗) · t = x;

Temporal discretization format: RK4;
CFL=0.05.

FLUX VECTOR SPLITTING RKDG METHOD 91

(a) L2-convergence order (b) L1-convergence order

Figure 17. P 2-Steger-Warming-scalar-DG and P 2-Lax-Friedrichs-scalar-DG

both using equally spaced cells. ut + (sin(t)u)x = 0 with smooth initial condi-

tions: u0(x) = sin(x). L2, L1 convergence orders for u.

L2, L1 numerical errors and convergence orders with P 3-polynomial approximation are sum-
marized respectively in Table 11 and Figure 19.

Table 11. P 5-Steger-Warming-scalar-DG and P 5-Lax-Friedrichs-scalar-DG both using equally spaced

cells. ut+(1
2
u2)x = 0 with smooth initial conditions: u0(x) = sin(x). L2, L1 errors and convergence orders

for u.

Mesh 20 40 80 160 320

S-W L2-error 5.342170E-06 1.62220980E-07 2.285972076E-09 3.9838927E-11 8.2960E-13

L-F L2-error 5.342175E-06 1.62220986E-07 2.285972077E-09 3.9838921E-11 8.2980E-13

S-W L1-error 4.25502E-06 1.0785780E-07 1.4120418E-09 2.2865E-11 1.2853E-12

L-F L1-error 4.25507E-06 1.0785784E-07 1.4120415E-09 2.2864E-11 1.2861E-12

• 2D-Control Eqs: Ut + (1
2
U2)x + (1

2
U2)y = 0;

Computational domain: Ω× [0, Tend] = {[0, 4]× [0, 4]} × [0, 0.5
π
];

Note: the exact solution remains smooth during t ∈ [0, 0.5
π
];

92 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

(a) L2-convergence order (b) L1-convergence order

Figure 18. P 5-Steger-Warming-scalar-DG and P 5-Lax-Friedrichs-scalar-DG

both using equally spaced cells. ut + (sin(x)u)x = 0 with smooth initial con-

ditions: u0(x) = 1. L2, L1 convergence orders for u.

ICs: U0(x) = sin(
π

2
x+

π

2
y);

BCs: periodic boundary conditions;

By performing the variable substitution ξ = x + y on U0(x, y), we obtain ũ0(ξ) = sin(π
2
ξ),

then the true solution is given as:

U(x, y, t) = ũ0(ξ
∗), ξ∗ satisfies ξ = ξ∗ + 2ũ0(ξ

∗) · t, where ξ = x+ y;

Temporal discretization format: TVD-RK3;

CFL=0.05.

L∞, L2, L1 numerical errors and convergence orders with P 2-polynomial approximation

based on scalar Steger-Warming flux are summarized in Table 12.

The one-dimensional and two-dimensional numerical results indicate that the PK-DG

method, based on the Steger-Warming flux scheme, is capable of achieving the optimal

convergence order of K + 1. Furthermore, the accuracy test results in one-dimensional case

indicate that for scalar equations, the dissipation of the Steger-Warming flux is slightly lower

FLUX VECTOR SPLITTING RKDG METHOD 93

(a) L2-convergence order (b) L1-convergence order

Figure 19. P 5-Steger-Warming-scalar-DG and P 5-Lax-Friedrichs-scalar-DG

both using equally spaced cells. ut+(1
2
u2)x = 0 with smooth initial conditions:

u0(x) = sin(x). L2, L1 convergence orders for u.

Table 12. P 2-Steger-Warming-scalar-DG using uniform rectangular meshes. 2D-Burgers’ Equation

with smooth initial condition: U0(x) = sin(π
2
x+ π

2
y). L∞, L2, L1 errors and convergence orders for U .

Mesh 15×15 30×30 60×60 120×120 240×240

L∞-error 6.5224E-02 1.1657E-02 1.5466E-03 1.8680E-04 3.0712E-05

L∞-order — 2.4843 2.9140 3.0495 2.6046

S-W L2-error 5.1671E-02 6.5497E-03 8.5550E-04 1.1426E-04 1.5193E-05

L2-order — 2.9798 2.9366 2.9044 2.9109

L1-error 1.0390E-01 1.1668E-02 1.6231E-03 2.1695E-04 2.7951E-05

L1-order — 3.1546 2.8456 2.9034 2.9564

than that of the classical Lax-Friedrichs flux. This is consistent with the statement that “in

system control equations, the dissipation of the Steger-Warming splitting is less than that

of the Lax-Friedrichs splitting”.

94 ZHENGRONG XIE, XIAOFENG CAI, AND HAIBIAO ZHENG

Remark C.2. Due to the excessive dissipation of the Lax-Friedrichs flux, it paradoxically

results in a slightly smaller L∞-error compared to the Steger-Warming flux. This is pri-

marily because the L∞-error is more sensitive to peaks than L2-error and L1-error; hence,

a scheme with higher dissipation may often achieve a smaller L∞-error. The degree of dis-

sipation of numerical fluxes becomes more pronounced in high-order schemes, which is why

this paper selects the P 5-DG method for testing, in order to more clearly reflect the dissi-

pative characteristics of the L-F and S-W fluxes respectively. Furthermore, the dissipative

properties of the flux scheme become evident in long-time numerical simulations. At such

times, using lower-order polynomial approximation, such as P 2-polynomial approximation,

can distinguish the degree of dissipation between the S-W flux and the L-F flux, as we have

done in the test case “ut + (sin(ωt)u)x = 0, t ∈ [0, 20]”.

• Numerical oscillation test

Example C.3. We continue to utilize the one-dimensional test case presented in Example

C.2, with the simulation duration extended to Tend = 2.6, at which point discontinuities

have developed. No additional limiters are incorporated to amend the numerical solutions,

allowing for observing the inherent performance differences of the Steger-Warming and Lax-

Friedrichs numerical fluxes near discontinuities. Contrastive tests were performed under

four distinct conditions: coarse and fine meshes, as well as low- and high-order polynomial

approximations (P 1 and P 3). The results are demonstrated in Figure 20.

Without the introduction of any limiters, near discontinuities, the number of oscillations

and the degree of overshoot of the L-F flux are both greater than those of the S-W flux. Ad-

ditionally, by observing the jump in the DG approximation solution uh at the cell interfaces,

it is found that [[uh]]
L−F
xi+1/2

> [[uh]]
S−W
xi+1/2

. In summary, the S-W flux scheme inherently has a

better capability for handling discontinuities than the L-F flux, and the DG approximation

based on the S-W flux is more “smooth” (with smaller jumps at interfaces).

(Z. Xie) School of Mathematical Sciences, East China Normal University, Shanghai 200241,

China

Email address: xzr nature@163.com; 52265500018@stu.ecnu.edu.cn

(X. Cai)Research Center for Mathematics, Beijing Normal University, Division of Science

and Technology, BNU-HKBU United international College, Zhuhai 519087, China

Email address: xfcai@bnu.edu.cn

(H. Zheng) School of Mathematical Sciences, East China Normal University, Shanghai

200241, China

Email address: hbzheng@math.ecnu.edu.cn

FLUX VECTOR SPLITTING RKDG METHOD 95

(a) P 1, Mesh=10 (b) P 1, Mesh=100

(c) P 3, Mesh=10 (d) P 3, Mesh=100

Figure 20. Steger-Warming-scalar-DG and Lax-Friedrichs-scalar-DG both

using equally spaced cells. ut + (1
2
u2)x = 0 with u0(x) = sin(x) and Tend = 2.6

(Discontinuity has been developed). No limiters. Localized magnification has

been applied to all sub-figures.

	1. Introduction
	2. Overview of RKDG
	3. Overview of Flux Vector Splitting for Hyperbolic Conservative System in One-dimension
	3.1. Based on Jacobian eigenvalue Splitting
	3.2. Based on Mach Number Splitting

	4. Roe Average
	5. DG Based on Flux Vector Splitting in One Dimension (1D-FVS-DG)
	6. DG Based on Flux Vector Splitting in Two-dimension (2D-FVS-DG)
	6.1. DG Based on Flux Vector Splitting in Two-dimension
	6.2. Normal Roe Average Employed by DG in Two-dimension

	7. A Novel TVB(D)-minmod Limiter for Numerical Pseudo-Oscillation Treatment
	7.1. Commonly Used Discontinuity Indicators
	7.2. Constrained Optimization-based TVB(D)-minmod Limiter Compatible with High-Order Polynomial Approximation

	8. Reconstruction in Characteristic Field
	8.1. Local Freezing Based on Cell Interface Integral Mean
	8.2. Interpolation-based Characteristic Transformation
	8.3. Equivalence of Interpolation-based Characteristic Transformation and Moment Characteristic Transformation

	9. Numerical Results
	9.1. Accuracy Tests for FVS-DG
	9.2. Performance of the IS-L2-TVB(D)-minmod Limiter for Scalar Conservation Law
	9.3. Solving the Riemann Problems for Hyperbolic Conservative Systems Using FVS-DG with IS-L2-TVB(D)-minmod Limiter

	10. Conclusion
	Acknowledgments
	References
	Appendix A. Vector, Matrix, and Tensor Operations in FVS-DG
	Appendix B. Flux Vector Splitting Method for Shallow Water System
	B.1. Flux Vector Splitting for Shallow Water Wave Equations in One-dimension
	B.2. Flux Vector Splitting for Shallow Water Wave Equations in Two-dimension

	Appendix C. Development of Numerical Flux Formats for Scalar Equations Based on the System's Jacobian-FVS Method
	C.1. The Classical Lax-Friedrichs Flux Format from the Jacobian-FVS Perspective
	C.2. Constructing Steger-Warming flux for the scalar equation based on Steger-Warming splitting for system

