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Abstract

Many upper bounds for the moduli of polynomial roots have been
proposed but reportedly assessed on selected examples or restricted
classes only. Regarding quality measured in terms of worst-case rel-
ative overestimation of the maximum root-modulus we establish a
simple, nearly optimal result.
Keywords: upper limits, polynomial zeros, a priori bounds, Cassini
ovals
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1 Introduction

The general solution of polynomial equations via algebraic expressions is im-
possible according to the Ruffini-Abel theorem [2, 10]. Over time a multitude
of numerical methods to approximate solutions [15, 9, 10] or to estimate the
root moduli [14, 8] has evolved. A special mention is warranted for Kalan-
tari’s infinite family of modulus bounds [6] which has been shown by Jin
[5] to converge to the extremal root-modulus, see also [4] for reference. We
want to consider in this note upper bounds for the largest modulus of roots
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of p(z) = anz
n + an−1z

n−1 + . . . + a1z + a0. The bounds should be explicit
algebraic expressions of the absolute values |ai|. Thus, we will be dealing
with a priori bounds ideally of low computational effort.

New inventive methods to approximate the largest root-modulus via al-
gebraic expressions are still being developed, e.g. [7, 12, 13], but the results
are seldom assessed in a fully choice-free fashion. The usual assessment of
any bound is carried out through individual evaluation for carefully selected
polynomials or via batch-testing sets of polynomials with a given coefficient
distribution. We want to consider in this note a generally applicable qual-
ity measure for modulus bounds established by van der Sluis [16] in 1970.
This measure avoids the necessity of any choices of examples or coefficient
distributions. We recall van der Sluis’ fundamental results in the subsequent
Section 1.1. We derive a new bound based on the parametrized Cassini ovals
in Section 2. In Section 3 we show that the parameter choice in our bound
leads to a nearly optimal result.

1.1 Known results and thresholds

We denote the maximum modulus of the roots of non-constant p ∈ C[z]
by µ(p) := max{|λ| : λ ∈ C, p(λ) = 0}. The relative overestimation of the
maximum root- modulus by a given root bound B(p) is defined (cf. [16]) as
B(p)/µ(p) for monic p 6≡ zn. An upper bound for the largest root-modulus
employing only the absolute values of the coefficients is called an absolute

root bound here (compare [16]). It was shown by van der Sluis ([16], Th.3.8)
that the Cauchy bound ρ(p) of a monic polynomial

p(z) = zn +
n−1
∑

i=0

aiz
i, (1)

defined as the largest non-negative root of zn −
∑n−1

i=0 |ai|zi (see also [14],
Def. 8.1.2.), has smallest worst-case relative overestimation of µ(p) among
all absolute root bounds. Taking the supremum of the quotients ρ(p)/µ(p)
for non-trivial polynomials of fixed degree n ≥ 1 it was shown (cf. [16],
Th.3.8(e)) that

lim sup
p∈C[z],p(z) 6≡zn

p monic,deg(p)=n≥1.

ρ(p)

µ(p)
= 1/(

n
√
2− 1) ≈ 1.442n ∼ n/ log(2). (2)
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Thus, no bound using only the coefficient moduli can have a worst-case rel-
ative overestimation smaller than ( n

√
2 − 1)−1. This remark applies, for ex-

ample, to all bounds in [14], Th.8.1.7 and Cor. 8.1.8 as well as 42 of the
45 bounds in ([9], Chap.1, pp.28ff.) with the exemption of A5, A6 and B5.
While van der Sluis’ result also applies, e.g., to the bound of Th.3.3 in [11]
it is not applicable to the explicitly computed, more intricate inclusion sets
in [11] (defined by Cassini ovals with boundary curves of 8th degree) from
which said theorem is derived. Unfortunately, the worst-case relative over-
estimation of available bounds often is considerably larger than 1.442n as
can be verified for chosen bounds following [16] or the arguments leading to
Theorem 3.1 below.

There is no explicit a priori coefficient expression of the Cauchy bound
ρ(p). Hence, we face the problem to produce an approximation with low
worst-case relative overestimation via a priori calculated expressions. For a
monic p given by (1) the Fujiwara bound F (p) (see [3], or, e.g., [14], Theorem
8.1.7 (ii), or, [8], Ch.30, ex.5), is defined by
F (p) := 2max{|an−1|, 2

√

|an−2|, 3
√

|an−3|, . . . , n−1
√

|a1|; n
√

|a0|/2}.
This bound has worst-case relative overestimation of 2n (which estimate is
attainable for every n ≥ 3) cf. [16].

Modifying the related Lagrange bound, an improvement to a bound with
worst-case relative overestimation bounded by 1.58n was obtained in [1].
Instead of small improvements of existing upper bounds (via modifications
and case distinctions) we consider here a different approach. Our technique
eventually leads to a bound which is within two percent of the theoretical
optimum (2).

2 New inclusion circle via Cassini ovals

For a monic polynomial p of the form (1) let us consider the classical Frobe-
nius companion matrix CF (p) with non-trivial last column. Thus, the matrix
CF = CF (p) has subdiagonal equal to 1, and (−a0,−a1, . . . ,−an−2,−an−1)

T

makes up the last column. A similarity transform with the diagonal matrix
S = S(t) = diag(1, t, . . . , tn−1), t > 0, yields SCFS

−1 =: C(t) such that
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C(t) =



















0 . . . . . . 0 −a0/t
n−1

t 0 0 . . . 0 −a1/t
n−2

0 t 0 . . . 0 −a2/t
n−3

...
. . .

0 t 0 −an−2/t
0 0 t −an−1



















=: (cij(t))
n
i,j=1.

It is very well-known that the roots of p are the eigenvalues of C(t), see,
e.g., [8]. To locate the eigenvalues of C(t) we employ the reduced row sums
ri(t) :=

∑

k 6=i |cik(t)|. It is well-known (see, e.g., [17]) that the eigenvalues of
C(t) are contained in the union of Cassini ovals (the Ostrowski-Brauer sets)

Oi,j(t) := {z ∈ C : |z− cii(t)| · |z− cjj(t)| ≤ ri(t) · rj(t)}; i 6= j, i, j = 1, . . . , n.

The following bound will be shown in the next section to have a worst-case
relative overestimation close to the optimum stated in (2).

Proposition 2.1 Given a complex polynomial p of degree n ≥ 3 with Taylor

expansion p(z) =
∑n

i=0 aiz
i, normalized to be monic (an = 1) and with largest

root-modulus µ(p). With

τ := max{ 3
√

|an−3|/2.15; 4
√

|an−4|/2, 5
√

|an−5|, . . . , n
√

|a0|} (3)

we have that µ(p) ≤ Γ(p), where Γ(p) is defined as

max{
√
3.15

√

τ 2 +max{|an−2|, 2τ 2};
|an−1|+

√

|an−1|2 + 4(τ 2 +max{|an−2|; 2.15τ 2})
2

}.

Proof: Let us assume first that τ > 0, and put t = τ. To estimate the
maximum modulus of the roots of p it suffices to bound the points of largest
modulus in the Cassini ovals Oi,j(t) for t = τ > 0. In the following, we will
repeatedly use the estimate

(1 + |ak−1|/tn+1−k) = (1 + |ak−1|/τn+1−k) ≤











2 for k ≤ n− 4;

(1 + 2) for k = n− 3;

(1 + 2.15) for k = n− 2.

(4)

1.) If 1 ≤ j < i ≤ n− 2 the Cassini oval Oi,j(t) is actually a circular disk
around the origin. The radius

√

ri(τ)rj(τ) equals τ ·
√

(1 + |ai−1|/τn+1−i)(1 + |aj−1|/τn+1−j).
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We estimate the parentheses via (4), and find that in the case i ≤ n− 2 all
the ovals lie inside

|z| ≤
√

(1 + 2) · (1 + 2.15) · τ.
2.) Further, if i = n− 1, 1 ≤ j ≤ n− 2, we write

rn−1(t) · rj(t) = (t+ |an−2|/t)(t+ |aj−1|/tn−j) = (t2 + |an−2|)(1 +
|aj−1|
tn+1−j

).

As in the preceding case, the term (1+|aj−1|/τn+1−j) is bounded for j ≤ n−4
by 2, and by (1 + max{2; 2.15}) if j ≥ n− 3. Thus, the ovals Oi,j(τ) in this
case lie in

|z| ≤
√

(1 + 2.15) · (τ 2 + |an−2|) =
√
3.15

√

τ 2 + |an−2|.

For the remaining two cases let us first note that if i = n > j we have
Cassini ovals of the form

|z + an−1||z| ≤ t(t+ aj−1/t
n−j) = t2(1 + |aj−1|/tn+1−j) =: gn,j(t).

The point farthest from the origin lies at a distance

1

2
(|an−1|+

√

|an−1|2 + 4gn,j(t)),

(see [12], p.186, Sec.2.1).
3.) For n − 2 ≥ j ≥ n − 3 and t = τ we estimate the product gn,j(t) =

gn,j(τ) by τ 2(1 + |aj−1|/τn+1−j) ≤ τ 2(1 + max{2; 2.15}) = 3.15τ 2 =: γn,j(τ).
For 1 ≤ j ≤ n − 4, we obtain from (4), the inequality gn,j(τ) = [τ 2(1 +
|aj−1|/τn+1−j)] ≤ 2τ 2 =: γn,j(τ). The Cassini ovals On,j for j ≤ n − 2 are
thus contained in the circle

|z| ≤ 1

2
(|an−1|+

√

|an−1|2 + 4 · 3.15τ 2).

4.) The last oval to consider stems from the last two rows with i = n =
j + 1, and is given as

On,n−1(τ) = {z ∈ C : |z + an−1||z| ≤ τ 2 + |an−2|}.

This oval is contained in the circle

|z| ≤ 1

2
(|an−1|+

√

|an−1|2 + 4(τ 2 + |an−2|)).
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The union of all our circular inclusion regions yield a new root-modulus
bound Γ(p) for a monic polynomial p whenever τ > 0, namely,

Γ(p) := max{
√
3 · 3.15 · τ ;

√
3.15

√

τ 2 + |an−2|;
|an−1|+

√

|an−1|2 + 12.6τ 2

2
;
|an−1|+

√

|an−1|2 + 4τ 2 + 4|an−2|
2

}.

If τ is equal to zero, then we are essentially dealing with a quadratic
polynomial multiplied into xn−2. Trivially, the value Γ(p) is a valid upper
bound for the root-modulus even if τ = 0. �

3 Relative overestimations of the new root

bound

3.1 Overestimation of the maximum root-modulus

Our bound functional Γ(·) has the following quality.

Theorem 3.1 For any p ∈ C[z] of degree n ≥ 3 s.t. p(z) = zn+
∑n−1

i=0 aiz
i 6≡ zn,

the maximum relative overestimation of µ(p) := max{|λ| : p(λ) = 0} by Γ(p)
does not exceed 1.4655n. For n ≥ 11 the overestimation exceeds by less than

5 per cent the lower threshold (2) for any absolute root bound. For n ≥ 85
the worst-case overestimation realized by our bound Γ(p) exceeds the lower

threshold for any overestimation by at most 2 per cent.

Proof: Using Viète’s representation of the coefficients an−k as the sum
of all possible products of k different roots we obtain the trivial estimates

|an−k| ≤ µ(p)k
(

n

k

)

≤ µknk/k! ,

where we write µ instead of µ(p) to save clutter. The preceding inequalities
imply k

√

|an−k|/(n · µ) ≤ k
√

1/k! . For k ≥ 5, let ck be ck := c5 := 1/ 5
√
120 ∼

0.4518, a value larger or equal to k
√

1/k!, and let c4 :=
4
√

1/48 ∼ 0.3799, c3 :=
3
√

1/12.9 ∼ 0.4264, c2 := 1/
√
2 ∼ 0.7071, c1 := 1. With φ := τ/(nµ) (where

τ is defined in (3)) we have

φ ≤ max{c3; c4, c5, . . . , cn} = c3 ∼ 0.4264, and
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Γ(p)

nµ(p)
≤ max{

√
9.45φ;

√
3.15

√

φ2 + 1/2;
1 +

√

1 + 12.6φ2

2
;
1 +

√

1 + 4φ2 + 2

2
}.

The right-hand side of the preceding inequality is determined as (approxi-
mately) max{1.3107; 1.4655, 1.4070; 1.4653}= 1.4655. The quality claim now
follows from (2). �

3.2 Overestimation of the Cauchy bound

To assess an absolute root bound fully, van der Sluis [16] made additional
comparison to the Cauchy bound. Our new bound Γ(p) is homogeneous like
the Cauchy bound (i.e., it scales with c > 0 for cnp(z/c) see [16], Def. 1.7).
Hence, when estimating Γ(p)/ρ(p) for non-trivial p we may assume (compare
Theorem 2.6 in [16]) that ρ(p) = 1 and hence

∑n−1
i=0 |ai| = 1. This implies

that k
√

|an−k| ≤ 1, and moreover τ ≤ 1. Thus, the relative overestimation
of the Cauchy bound by our new bound Γ(p) does not exceed the factor√
9.45 ∼ 3.0741.
Finally, a root-modulus bound simultaneously having good relative over-

estimation of the Cauchy bound ρ(p) and the maximum root-modulus µ(p)
can be defined by min{Γ(p);F (p)}. This bound is at most double the Cauchy
bound (like F (p), cf. [16], Th. 2.6), and retains the very good relative overes-
timation of Γ(p) (see Theorem 3.1 above) at the same asymptotic complexity
as Fujiwara’s bound F (p).

3.3 Outlook

While the above result brings a certain closure to the search for measurably
good, absolute root bounds for root-moduli a lot remains to be investigated.
A new, different quality measure could be established via a benchmark suite
of polynomials with several, wide ranging coefficient and zero distributions.
It would be valuable to determine bounds, composed via algebraic functions
of coefficients, which improve over (2). A study of such non-absolute bounds
should relate the computational effort to the quality of the bound.
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