Bounds for the maximum modulus of polynomial roots with nearly optimal worst-case overestimation

Prashant Batra

Hamburg University of Technology, D-21071 Hamburg. e-mail: batra@tuhh.de, Phone: ++49(40)42878-3478. https://orcid.org/0000-0002-4079-3792

November 26, 2024

Abstract

Many upper bounds for the moduli of polynomial roots have been proposed but reportedly assessed on selected examples or restricted classes only. Regarding quality measured in terms of worst-case relative overestimation of the maximum root-modulus we establish a simple, nearly optimal result.

Keywords: upper limits, polynomial zeros, a priori bounds, Cassini ovals

MSC Classification: 65H04, 15A18, 12D10

1 Introduction

The general solution of polynomial equations via algebraic expressions is impossible according to the Ruffini-Abel theorem [2, 10]. Over time a multitude of numerical methods to approximate solutions [15, 9, 10] or to estimate the root moduli [14, 8] has evolved. A special mention is warranted for Kalantari's infinite family of modulus bounds [6] which has been shown by Jin [5] to converge to the extremal root-modulus, see also [4] for reference. We want to consider in this note upper bounds for the largest modulus of roots

of $p(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0$. The bounds should be explicit algebraic expressions of the absolute values $|a_i|$. Thus, we will be dealing with *a priori* bounds ideally of low computational effort.

New inventive methods to approximate the largest root-modulus via algebraic expressions are still being developed, e.g. [7, 12, 13], but the results are seldom assessed in a fully choice-free fashion. The usual assessment of any bound is carried out through individual evaluation for carefully selected polynomials or via batch-testing sets of polynomials with a given coefficient distribution. We want to consider in this note a generally applicable quality measure for modulus bounds established by van der Sluis [16] in 1970. This measure avoids the necessity of any choices of examples or coefficient distributions. We recall van der Sluis' fundamental results in the subsequent Section 1.1. We derive a new bound based on the parametrized Cassini ovals in Section 2. In Section 3 we show that the parameter choice in our bound leads to a nearly optimal result.

1.1 Known results and thresholds

We denote the maximum modulus of the roots of non-constant $p \in \mathbb{C}[z]$ by $\mu(p) := \max\{|\lambda| : \lambda \in \mathbb{C}, p(\lambda) = 0\}$. The *relative* overestimation of the maximum root- modulus by a given root bound B(p) is defined (*cf.* [16]) as $B(p)/\mu(p)$ for monic $p \not\equiv z^n$. An upper bound for the largest root-modulus employing only the absolute values of the coefficients is called an *absolute root bound* here (compare [16]). It was shown by van der Sluis ([16], Th.3.8) that the *Cauchy bound* $\rho(p)$ of a *monic* polynomial

$$p(z) = z^{n} + \sum_{i=0}^{n-1} a_{i} z^{i}, \qquad (1)$$

defined as the largest non-negative root of $z^n - \sum_{i=0}^{n-1} |a_i| z^i$ (see also [14], Def. 8.1.2.), has smallest worst-case relative overestimation of $\mu(p)$ among all absolute root bounds. Taking the supremum of the quotients $\rho(p)/\mu(p)$ for non-trivial polynomials of fixed degree $n \ge 1$ it was shown (cf. [16], Th.3.8(e)) that

$$\lim_{\substack{p \in \mathbb{C}[z], p(z) \neq z^n \\ p \text{ monic,} \deg(p) = n \ge 1.}} \frac{\rho(p)}{\mu(p)} = 1/(\sqrt[n]{2} - 1) \approx 1.442n \sim n/\log(2).$$
(2)

Thus, no bound using only the coefficient moduli can have a worst-case relative overestimation smaller than $(\sqrt[n]{2} - 1)^{-1}$. This remark applies, for example, to all bounds in [14], Th.8.1.7 and Cor. 8.1.8 as well as 42 of the 45 bounds in ([9], Chap.1, pp.28*ff.*) with the exemption of A5, A6 and B5. While van der Sluis' result also applies, e.g., to the bound of Th.3.3 in [11] it is not applicable to the explicitly computed, more intricate inclusion sets in [11] (defined by Cassini ovals with boundary curves of 8th degree) from which said theorem is derived. Unfortunately, the worst-case relative overestimation of available bounds often is considerably larger than 1.442*n* as can be verified for chosen bounds following [16] or the arguments leading to Theorem 3.1 below.

There is no explicit a priori coefficient expression of the Cauchy bound $\rho(p)$. Hence, we face the problem to produce an approximation with low worst-case relative overestimation via a priori calculated expressions. For a monic p given by (1) the Fujiwara bound F(p) (see [3], or, e.g., [14], Theorem 8.1.7 (ii), or, [8], Ch.30, ex.5), is defined by $F(p) := 2 \max\{|a_{n-1}|, \sqrt[2]{|a_{n-2}|}, \sqrt[3]{|a_{n-3}|}, \ldots, \sqrt[n-1]{|a_1|}; \sqrt[n]{|a_0|/2}\}.$

This bound has worst-case relative overestimation of 2n (which estimate is attainable for every $n \geq 3$) cf. [16].

Modifying the related Lagrange bound, an improvement to a bound with worst-case relative overestimation bounded by 1.58n was obtained in [1]. Instead of small improvements of existing upper bounds (via modifications and case distinctions) we consider here a different approach. Our technique eventually leads to a bound which is within two percent of the theoretical optimum (2).

2 New inclusion circle via Cassini ovals

For a monic polynomial p of the form (1) let us consider the classical Frobenius companion matrix $C_F(p)$ with non-trivial last column. Thus, the matrix $C_F = C_F(p)$ has subdiagonal equal to 1, and $(-a_0, -a_1, \ldots, -a_{n-2}, -a_{n-1})^T$ makes up the last column. A similarity transform with the diagonal matrix $S = S(t) = diag(1, t, \ldots, t^{n-1}), t > 0$, yields $SC_FS^{-1} =: C(t)$ such that

$$C(t) = \begin{pmatrix} 0 & \dots & 0 & -a_0/t^{n-1} \\ t & 0 & 0 & \dots & 0 & -a_1/t^{n-2} \\ 0 & t & 0 & \dots & 0 & -a_2/t^{n-3} \\ \vdots & \ddots & & & \\ 0 & & t & 0 & -a_{n-2}/t \\ 0 & & 0 & t & -a_{n-1} \end{pmatrix} =: (c_{ij}(t))_{i,j=1}^n.$$

It is very well-known that the roots of p are the eigenvalues of C(t), see, e.g., [8]. To locate the eigenvalues of C(t) we employ the reduced row sums $r_i(t) := \sum_{k \neq i} |c_{ik}(t)|$. It is well-known (see, e.g., [17]) that the eigenvalues of C(t) are contained in the union of Cassini ovals (the Ostrowski-Brauer sets)

$$O_{i,j}(t) := \{ z \in \mathbb{C} : |z - c_{ii}(t)| \cdot |z - c_{jj}(t)| \le r_i(t) \cdot r_j(t) \}; i \neq j, i, j = 1, \dots, n.$$

The following bound will be shown in the next section to have a worst-case relative overestimation close to the optimum stated in (2).

Proposition 2.1 Given a complex polynomial p of degree $n \ge 3$ with Taylor expansion $p(z) = \sum_{i=0}^{n} a_i z^i$, normalized to be monic $(a_n = 1)$ and with largest root-modulus $\mu(p)$. With

$$\tau := \max\{\sqrt[3]{|a_{n-3}|/2.15}; \sqrt[4]{|a_{n-4}|/2}, \sqrt[5]{|a_{n-5}|}, \dots, \sqrt[n]{|a_0|}\}$$
(3)

we have that $\mu(p) \leq \Gamma(p)$, where $\Gamma(p)$ is defined as

$$\max\{\sqrt{3.15}\sqrt{\tau^2 + \max\{|a_{n-2}|, 2\tau^2\}}; \frac{|a_{n-1}| + \sqrt{|a_{n-1}|^2 + 4(\tau^2 + \max\{|a_{n-2}|; 2.15\tau^2\})}}{2}\}.$$

Proof: Let us assume first that $\tau > 0$, and put $t = \tau$. To estimate the maximum modulus of the roots of p it suffices to bound the points of largest modulus in the Cassini ovals $O_{i,j}(t)$ for $t = \tau > 0$. In the following, we will repeatedly use the estimate

$$(1+|a_{k-1}|/t^{n+1-k}) = (1+|a_{k-1}|/\tau^{n+1-k}) \le \begin{cases} 2 & \text{for } k \le n-4; \\ (1+2) & \text{for } k=n-3; \\ (1+2.15) & \text{for } k=n-2. \end{cases}$$

1.) If $1 \le j < i \le n-2$ the Cassini oval $O_{i,j}(t)$ is actually a circular disk around the origin. The radius $\sqrt{r_i(\tau)r_j(\tau)}$ equals $\tau \cdot \sqrt{(1+|a_{i-1}|/\tau^{n+1-i})(1+|a_{j-1}|/\tau^{n+1-j})}$.

We estimate the parentheses via (4), and find that in the case $i \leq n-2$ all the ovals lie inside

$$|z| \le \sqrt{(1+2) \cdot (1+2.15)} \cdot \tau.$$

2.) Further, if i = n - 1, $1 \le j \le n - 2$, we write

$$r_{n-1}(t) \cdot r_j(t) = (t + |a_{n-2}|/t)(t + |a_{j-1}|/t^{n-j}) = (t^2 + |a_{n-2}|)(1 + \frac{|a_{j-1}|}{t^{n+1-j}}).$$

As in the preceding case, the term $(1+|a_{j-1}|/\tau^{n+1-j})$ is bounded for $j \leq n-4$ by 2, and by $(1 + \max\{2; 2.15\})$ if $j \geq n-3$. Thus, the ovals $O_{i,j}(\tau)$ in this case lie in

$$|z| \le \sqrt{(1+2.15) \cdot (\tau^2 + |a_{n-2}|)} = \sqrt{3.15}\sqrt{\tau^2 + |a_{n-2}|}.$$

For the remaining two cases let us first note that if i = n > j we have Cassini ovals of the form

$$|z + a_{n-1}||z| \le t(t + a_{j-1}/t^{n-j}) = t^2(1 + |a_{j-1}|/t^{n+1-j}) =: g_{n,j}(t).$$

The point farthest from the origin lies at a distance

$$\frac{1}{2}(|a_{n-1}| + \sqrt{|a_{n-1}|^2 + 4g_{n,j}(t)}),$$

(see [12], p.186, Sec.2.1).

3.) For $n-2 \ge j \ge n-3$ and $t = \tau$ we estimate the product $g_{n,j}(t) = g_{n,j}(\tau)$ by $\tau^2(1+|a_{j-1}|/\tau^{n+1-j}) \le \tau^2(1+\max\{2;2.15\}) = 3.15\tau^2 =: \gamma_{n,j}(\tau)$. For $1 \le j \le n-4$, we obtain from (4), the inequality $g_{n,j}(\tau) = [\tau^2(1+|a_{j-1}|/\tau^{n+1-j})] \le 2\tau^2 =: \gamma_{n,j}(\tau)$. The Cassini ovals $O_{n,j}$ for $j \le n-2$ are thus contained in the circle

$$|z| \le \frac{1}{2} (|a_{n-1}| + \sqrt{|a_{n-1}|^2 + 4 \cdot 3.15\tau^2}).$$

4.) The last oval to consider stems from the last two rows with i = n = j + 1, and is given as

$$O_{n,n-1}(\tau) = \{ z \in \mathbb{C} : |z + a_{n-1}| |z| \le \tau^2 + |a_{n-2}| \}.$$

This oval is contained in the circle

$$|z| \le \frac{1}{2}(|a_{n-1}| + \sqrt{|a_{n-1}|^2 + 4(\tau^2 + |a_{n-2}|)}).$$

The union of all our circular inclusion regions yield a new root-modulus bound $\Gamma(p)$ for a monic polynomial p whenever $\tau > 0$, namely,

$$\Gamma(p) := \max\{\sqrt{3 \cdot 3.15} \cdot \tau; \sqrt{3.15}\sqrt{\tau^2 + |a_{n-2}|}; \\ \frac{|a_{n-1}| + \sqrt{|a_{n-1}|^2 + 12.6\tau^2}}{2}; \frac{|a_{n-1}| + \sqrt{|a_{n-1}|^2 + 4\tau^2 + 4|a_{n-2}|}}{2}\}.$$

If τ is equal to zero, then we are essentially dealing with a quadratic polynomial multiplied into x^{n-2} . Trivially, the value $\Gamma(p)$ is a valid upper bound for the root-modulus even if $\tau = 0$. \Box

3 Relative overestimations of the new root bound

3.1 Overestimation of the maximum root-modulus

Our bound functional $\Gamma(\cdot)$ has the following quality.

Theorem 3.1 For any $p \in \mathbb{C}[z]$ of degree $n \geq 3$ s.t. $p(z) = z^n + \sum_{i=0}^{n-1} a_i z^i \neq z^n$, the maximum relative overestimation of $\mu(p) := \max\{|\lambda| : p(\lambda) = 0\}$ by $\Gamma(p)$ does not exceed 1.4655n. For $n \geq 11$ the overestimation exceeds by less than 5 per cent the lower threshold (2) for any absolute root bound. For $n \geq 85$ the worst-case overestimation realized by our bound $\Gamma(p)$ exceeds the lower threshold for any overestimation by at most 2 per cent.

Proof: Using Viète's representation of the coefficients a_{n-k} as the sum of all possible products of k different roots we obtain the trivial estimates

$$|a_{n-k}| \le \mu(p)^k \binom{n}{k} \le \mu^k n^k / k!,$$

where we write μ instead of $\mu(p)$ to save clutter. The preceding inequalities imply $\sqrt[k]{|a_{n-k}|}/(n \cdot \mu) \leq \sqrt[k]{1/k!}$. For $k \geq 5$, let c_k be $c_k := c_5 := 1/\sqrt[5]{120} \sim 0.4518$, a value larger or equal to $\sqrt[k]{1/k!}$, and let $c_4 := \sqrt[4]{1/48} \sim 0.3799$, $c_3 := \sqrt[3]{1/12.9} \sim 0.4264$, $c_2 := 1/\sqrt{2} \sim 0.7071$, $c_1 := 1$. With $\phi := \tau/(n\mu)$ (where τ is defined in (3)) we have

$$\phi \le \max\{c_3; c_4, c_5, \dots, c_n\} = c_3 \sim 0.4264$$
, and

$$\frac{\Gamma(p)}{n\mu(p)} \le \max\{\sqrt{9.45}\phi; \sqrt{3.15}\sqrt{\phi^2 + 1/2}; \frac{1 + \sqrt{1 + 12.6\phi^2}}{2}; \frac{1 + \sqrt{1 + 4\phi^2 + 2}}{2}\}$$

The right-hand side of the preceding inequality is determined as (approximately) max $\{1.3107; 1.4655, 1.4070; 1.4653\} = 1.4655$. The quality claim now follows from (2). \Box

3.2 Overestimation of the Cauchy bound

To assess an absolute root bound fully, van der Sluis [16] made additional comparison to the Cauchy bound. Our new bound $\Gamma(p)$ is homogeneous like the Cauchy bound (i.e., it scales with c > 0 for $c^n p(z/c)$ see [16], Def. 1.7). Hence, when estimating $\Gamma(p)/\rho(p)$ for non-trivial p we may assume (compare Theorem 2.6 in [16]) that $\rho(p) = 1$ and hence $\sum_{i=0}^{n-1} |a_i| = 1$. This implies that $\sqrt[k]{|a_{n-k}|} \leq 1$, and moreover $\tau \leq 1$. Thus, the relative overestimation of the Cauchy bound by our new bound $\Gamma(p)$ does not exceed the factor $\sqrt{9.45} \sim 3.0741$.

Finally, a root-modulus bound simultaneously having good relative overestimation of the Cauchy bound $\rho(p)$ and the maximum root-modulus $\mu(p)$ can be defined by min{ $\Gamma(p); F(p)$ }. This bound is at most double the Cauchy bound (like F(p), cf. [16], Th. 2.6), and retains the very good relative overestimation of $\Gamma(p)$ (see Theorem 3.1 above) at the same asymptotic complexity as Fujiwara's bound F(p).

3.3 Outlook

While the above result brings a certain closure to the search for measurably good, *absolute root bounds* for root-moduli a lot remains to be investigated. A new, different quality measure could be established via a benchmark suite of polynomials with several, wide ranging coefficient and zero distributions. It would be valuable to determine bounds, composed via algebraic functions of coefficients, which improve over (2). A study of such *non-absolute* bounds should relate the computational effort to the quality of the bound.

References

- Prashant Batra, Maurice Mignotte, and Doru Ştefănescu. Improvements of Lagrange's bound for polynomial roots. J. Symbolic Comput., 82:19– 25, 2017.
- [2] William Snow Burnside and Arthur William Panton. The theory of equations: With an introduction to the theory of binary algebraic forms. Dover Publications, Inc., New York, 1960. 2 volumes.
- [3] Fujiwara, M. Uber die obere Schranke des absoluten Betrages der Wurzeln einer algebraischen Gleichung. *Tôhoku Math. Journal*, 10:167– 171, 1916.
- [4] Shun-Pin Hsu and Feng-Chi Cheng. On the infinite families of zero bounds of complex polynomials. J. Comput. Appl. Math., 256:219–229, 2014.
- [5] Yi Jin. On efficient computation and asymptotic sharpness of Kalantari's bounds for zeros of polynomials. *Math. Comp.*, 75(256):1905–1912, 2006.
- [6] Bahman Kalantari. An infinite family of bounds on zeros of analytic functions and relationship to Smale's bound. *Math. Comp.*, 74(250):841– 852, 2005.
- [7] Fuad Kittaneh, Mohammad Odeh, and Khalid Shebrawi. Bounds for the zeros of polynomials from compression matrix inequalities. *Filomat*, 34(3):1035–1051, 2020.
- [8] Marden, M. M. The Geometry of Polynomials. AMS, Providence, Rhode Island, second edition, 1966.
- J. M. McNamee. Numerical methods for roots of polynomials. Part I, volume 14 of Studies in Computational Mathematics. Elsevier B. V., Amsterdam, 2007.
- [10] J. M. McNamee and V. Y. Pan. Numerical methods for roots of polynomials. Part II, volume 16 of Studies in Computational Mathematics. Elsevier/Academic Press, Amsterdam, 2013.
- [11] A. Melman. Generalizations of Gershgorin disks and polynomial zeros. Proc. Amer. Math. Soc., 138(7):2349–2364, 2010.

- [12] A. Melman. A single oval of Cassini for the zeros of a polynomial. Linear Multilinear Algebra, 61(2):183–195, 2013.
- [13] A. Melman. An efficient approximation to the Cauchy radius. Numer. Algorithms, 96(1):1–11, 2024.
- [14] Rahman, Q. I.; Schmeisser, G. Analytic Theory of Polynomials. Oxford University Press, Oxford, UK, 2002.
- [15] Sendov, Bl.; Andreev, A.; Kjurkchiev, N. Numerical solution of polynomial equations. In P.G. Ciarlet and J.L. Lions, editors, *Handbook of Numerical Analysis*, volume III, pages 625–778. Elsevier Science, Amsterdam, 1994.
- [16] van der Sluis, A. Upperbounds for Roots of Polynomials. Numerische Mathematik, 15:250–262, 1970.
- [17] Richard S. Varga. Geršgorin and his circles, volume 36 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2004.