
TIFeD: a Tiny Integer-based Federated learning algorithm
with Direct feedback alignment

Luca Colombo
Politecnico di Milano

Milan, Italy
luca2.colombo@polimi.it

Alessandro Falcetta
Politecnico di Milano

Milan, Italy
alessandro.falcetta@polimi.it

Manuel Roveri
Politecnico di Milano

Milan, Italy
manuel.roveri@polimi.it

ABSTRACT
Training machine and deep learning models directly on extremely
resource-constrained devices is the next challenge in the field of
tiny machine learning. The related literature in this field is very lim-
ited, since most of the solutions focus only on on-device inference
or model adaptation through online learning, leaving the training
to be carried out on external Cloud services. An interesting tech-
nological perspective is to exploit Federated Learning (FL), which
allows multiple devices to collaboratively train a shared model in a
distributed way. However, the main drawback of state-of-the-art
FL algorithms is that they are not suitable for running on tiny de-
vices. For the first time in the literature, in this paper we introduce
TIFeD, a Tiny Integer-based Federated learning algorithm with Di-
rect Feedback Alignment (DFA) entirely implemented by using an
integer-only arithmetic and being specifically designed to operate
on devices with limited resources in terms of memory, computation
and energy. Besides the traditional full-network operating modality,
in which each device of the FL setting trains the entire neural net-
work on its own local data, we propose an innovative single-layer
TIFeD implementation, which enables each device to train only a
portion of the neural network model and opens the door to a new
way of distributing the learning procedure across multiple devices.
The experimental results show the feasibility and effectiveness of
the proposed solution. The proposed TIFeD algorithm, with its full-
network and single-layer implementations, is made available to the
scientific community as a public repository.

CCS CONCEPTS
• Computing methodologies→ Cooperation and coordina-
tion; Neural networks; Artificial intelligence; Machine learn-
ing; • Computer systems organization→ Distributed archi-
tectures; Embedded systems.

KEYWORDS
Tiny Machine Learning, Federated Learning, DFA, Deep Learning.

1 INTRODUCTION
Tiny Machine Learning (TinyML) is a new emerging research area
aiming at bringing Machine Learning (ML) and Deep Learning (DL)
algorithms on embedded systems and Internet-of-Things (IoT) de-
vices [1]. The main reason behind this paradigm is that, in recent
years, the scientific trend is to move the processing of data as close

© ACM 2023. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was published in
the Proceedings of the Third International Conference on AI-ML Systems (AIMLSystems
2023), http://dx.doi.org/10.1145/3639856.3639867.

as possible to where they are generated. This leads to several advan-
tages. First, it enables decision making directly on devices, hence
reducing the latency between data production and data processing
and supporting real-time applications. Second, it increases the en-
ergy efficiency, given that sending data is more power-consuming
than performing computations on device. Third, it enhances privacy
and security because sensitive data remain on the IoT units and are
not transmitted to remote servers [15].

The main drawback of TinyML, however, is that on-device train-
ing of DL models is, in most cases, challenging or even impossible
due to the severe technological constraints on memory, computa-
tion and energy characterizing IoT units. In the related literature,
only a few works, such as [3, 16], have attempted to implement
an incremental mechanism, based on transfer learning, to locally
adapt the model as new data become available.

To provide on-device training within an IoT system, an inter-
esting technological perspective is to leverage Federated Learning
(FL), which is a distributed approach that allows multiple devices
to collaboratively train a shared model. Each device performs a
local training with its own data, and then sends the model updates
to a central server that aggregates the locally computed updates
of all the devices in the network [2]. The main drawback of state-
of-the-art FL algorithms is that they are designed to operate on
edge devices such as smartphones and tablets, which are signifi-
cantly more powerful from the technological point of view than IoT
units. For this reason, traditional FL is not suitable for running on
resource-constrained devices, given that: (i) the traditional learning
procedure with Backpropagation (BP) may not be feasible since it
is computationally expensive; (ii) the Neural Network (NN) must
be shallow and with few parameters; (iii) the training dataset has
to be small enough to fit into the device’s memory.

In this perspective, the aim of this paper is to address the follow-
ing research question: how can we train deep and complex machine
learning models directly on extremely resource-constrained devices in
a federated way? To the best of our knowledge, we propose for the
first time in the literature a Tiny Integer-based Federated learning
algorithm with Direct feedback alignment (TIFeD) that introduces
the following innovations:

• It enables resource-constrained devices to train a NN with-
out having to rely on external Cloud services by leveraging
federated learning. In this way, we can exploit all the ad-
vantages of TinyML also during the learning phase and not
only for the inference.

• It allows only single layers to be trained, thus reducing
the computational and memory demands on the micro-
controllers. A direct consequence is that sending weights
updates also requires less data since only a portion of the

ar
X

iv
:2

41
1.

16
44

2v
1

 [
cs

.L
G

]
 2

5
N

ov
 2

02
4

http://dx.doi.org/10.1145/3639856.3639867

Luca Colombo, Alessandro Falcetta, and Manuel Roveri

model needs to be sent to the central server, resulting in
energy savings.

• It is entirely implemented through an integer-only arith-
metic. In this way, memory consumption can be reduced by
using integers less than 32 bits long and, in addition, even
devices without floating-point unit (FPU) can train ML and
DL models.

The proposed TIFeD algorithm is based on the Direct Feedback
Alignment (DFA) [12] learning procedure, which has two main
advantages over BP. First, it is much less computationally expensive
because each hidden layer is trained independently from the rest
of the NN. Second, it allows the implementation of an integer-only
arithmetic while avoiding the risk of overflow, which is a major
issue when using BP with integer operations.

The paper is organized as follows. Section 2 gives an overview
on the related literature. In Section 3, the background on DFA and
FL is introduced. Section 4 presents the proposed TIFeD algorithm,
while experimental results are shown and discussed in Section 5.
Conclusions are finally drawn in Section 6.

2 RELATED LITERATURE
This section describes the related literature in the field of federated
learning and the available works aiming at implementing the most
used FL algorithm, namely Federated Averaging (FedAvg), on tiny
devices.

The most popular FL algorithm, introduced by Google in 2016, is
Federated Averaging [11]. In FedAvg, each node performs multiple
iterations of mini-batch Stochastic Gradient Descent (SGD) with
BP to update the local model before sending the gradients to the
server. In the central server, received model updates are aggregated
together by using an averaging function to combine knowledge
learned from different datasets. The main disadvantage of FedAvg
is that it has not been designed to operate on resource-constrained
devices, as it requires a large amount of memory and high pro-
cessing power to perform the local learning procedure, and thus
it is not suitable in a TinyML scenario. Other works in the field,
such as [4, 6, 18], try to optimize the FedAvg algorithm either by
improving its efficiency or by using more complex and sophisti-
cated aggregation functions, but without addressing the issue of
TinyML-specific design.

On the other hand, [7, 10] are the first papers implementing Fe-
dAvg on a device with limited resources, the Arduino Nano 33 BLE
Sense board. In particular, Kopparapu et al. [7] exploited transfer
learning to solve a binary image classification task, while Llisterri
et al. [10] implemented a feed-forward neural network on a simpler
keyword spotting task. Given the aforementioned limitations of
FedAvg in working on tiny devices, however, both works are only
able to train the last fully-connected layer of the considered neural
networks.

Differently from the literature, the solution proposed in this
paper provides some fundamental aspects for on-device training
of ML models, as summarized in Table 1. In particular, TIFeD is
specifically designed for operating on resource-constrained devices
and it is entirely implemented using an integer-only arithmetic.
Moreover, the single-layer TIFeD implementation introduces a new

Table 1: Comparison with existing solutions.

Algorithms Tiny devices-
specific design

Integer-only
arithmetic

Partial model
training

[4] No No No
[7] Yes No No
[11] No No No

TIFeD Yes Yes Yes

operating modality in which each device can train only a portion
of the global shared model.

3 BACKGROUND
This section introduces the basic concepts on both the DFA training
algorithm and the Federated Learning approach.

3.1 Direct Feedback Alignment (DFA)
Direct Feedback Alignment [12] is a new learning method for ML
and DL models based on the Feedback Alignment (FA) [9] principle.
FA showed that the symmetry of weights used in the forward and
backward phases, which is required in the BP algorithm, is not
necessary. In simpler terms, the network can learn to effectively
use fixed and random feedback weights to reduce the error.

The FA training algorithm is based on two insights [9]:

(1) The feedback weights do not need to be exactly equal to the
forward weights𝑊 , but it is sufficient that, for any random
matrix 𝐵 whose elements are uniformly distributed, on
average

e⊺𝑊𝐵e > 0 (1)

where e is the error of the network.
(2) In order to guarantee Eq. (1), instead of adjusting 𝐵, we can

keep it fixed and adjust𝑊 accordingly. From a geometrical
point of view, Eq. (1) means that the teaching signal used
by FA (i.e., 𝐵e) lies within 90° of the signal used by BP (i.e.,
e⊺𝑊), that is, 𝐵 pushes the weights in roughly the same
direction as BP. This alignment of signals implies that 𝐵
acts as𝑊 ⊺ and, since 𝐵 is fixed, the alignment is driven by
changes in the forward weights𝑊 . In this way, even ran-
dom feedback weights convey useful teaching information
throughout the network.

When adopted in deep networks with more than one hidden
layer, however, even FA back-propagates the error from the output
layer through the upper layers. On the other hand, DFA propagates
the output error directly to each of the hidden layers and exploits
the FA principle to train them independently of the rest of the
neural network.

Let 𝐻 be the number of hidden layers of a feed-forward NN.
Formally, the layer’s update directions for FA – denoted by 𝛿ℎ

𝐹𝐴
,

ℎ = 1, . . . , 𝐻 – are calculated as:

𝛿ℎ𝐹𝐴 =

{
𝐿′ ⊙ act′ℎ (aℎ) for ℎ = 𝐻

𝛿ℎ+1
𝐹𝐴

𝐵ℎ ⊙ act′ℎ (aℎ) for 1 ≤ ℎ ≤ 𝐻 − 1

TIFeD: a Tiny Integer-based Federated learning algorithm with Direct feedback alignment

where 𝐿′ is the derivative of the Loss Function, and act′ℎ (·), aℎ , and
𝐵ℎ are the derivative of the activation function, the sum of products,
and the fixed random weight matrix of layer ℎ, respectively.

Concerning DFA, the layer’s update directions – denoted by
𝛿ℎ
𝐷𝐹𝐴

, ℎ = 1, . . . , 𝐻 – are computed as:

𝛿ℎ𝐷𝐹𝐴 = 𝐿′𝐵ℎ ⊙ act′ ℎ (aℎ). (2)

Once 𝛿ℎ
𝐷𝐹𝐴

, with ℎ = 1, . . . , 𝐻 , have been computed, the weights
updates for each layer are computed as:

𝛿𝑊 ℎ = −oℎ−1 ⊺𝛿ℎ𝐷𝐹𝐴

𝛿bℎ = −𝛿ℎ𝐷𝐹𝐴

(3)

where oℎ−1 is the output of the previous layer in the network.
According to [13], a network trained with DFA converges to the

same region of the loss landscape regardless of the initialization of
the network weights𝑊 . This property is guaranteed by the align-
ment step of the DFA learning procedure, in which the weights
𝑊 align with the random feedback vectors 𝐵 used to propagate
the network error to each layer. The alignment phase also explains
why the random feedback vectors 𝐵 must be considered as an ini-
tialization of the network. Indeed, they drive the learning towards
different minima of the loss function, resulting in different perfor-
mance and accuracies of the final model. DFA has been successfully
used in PocketNN [14], a feed-forward neural network tailored for
IoT devices.

3.2 Federated Learning
Federated learning allows multiple clients to train a shared ML
model on decentralized data sources. It addresses the drawbacks
of classical ML (i.e. data privacy and security) by distributing the
learning procedure across several nodes, thus allowing the data to
remain local. Instead of collecting and sending acquired data to an
external Cloud service, each device performs a local training by us-
ing a shared model as initialization and exchanges only the weights
updates with a central server. Local updates are then aggregated
by the server to create a global model that will be forwarded to the
clients. This process is repeated iteratively until the global model
reaches the desired level of accuracy [5, 6].

4 THE PROPOSED SOLUTION
This section details the proposed TIFeD algorithm. We emphasize
that, as stated in Section 2 and outlined in Table 1, our work intro-
duces the following innovations compared with the literature. First,
TIFeD is specifically designed to operate on resource-constrained
devices, taking into account their technological limitations in terms
of memory, computation and energy. Second, inspired by [14],
TIFeD is implemented using an integer-only arithmetic, which en-
ables a reduction in memory consumption by using integers less
than 32 bit long and, in addition, allows DL models to be trained on
devices without a floating-point unit. Third, the single-layer TIFeD
implementation introduces a new way of distributing the learning
procedure across multiple devices, allowing each IoT unit to train
only a portion of the whole NN.

Models
Aggregation

Central
Server S

Train layer h on
local dataset

DFA

IoT Unit 1

Train layer h on
local dataset

DFA

IoT Unit M

Figure 1: Overview of the TIFeD algorithm operating in a
federated learning scenario.

In particular, Subsection 4.1 gives a general overview on the
proposed federated learning scenario. In Subsection 4.2, the transi-
tion from DFA to Federated DFA is described, while Subsection 4.3
presents an extension to Federated DFA in which each client node
trains only specific layers of the considered neural networks.

4.1 Overview
An overview of the proposed TIFeD algorithm operating in a FL
scenario is shown in Fig. 1. Without any loss of generality, in the
followings a supervised learning image classification task is con-
sidered as a reference.

Consider a pervasive system consisting of𝑀 IoT units, each of
which collects local data 𝑋𝑚 through some sensors. The objective
is to obtain a ML model trained directly on-device by the IoT units,
without relying on external Cloud services. To achieve this goal,
the proposed TIFeD algorithm, detailed in the next subsections,
exploits FL. The key role in this setup is played by the central
server 𝑆 , which is the orchestrator of the entire architecture. At
each communication round 𝑡 , the server 𝑆 sends the global model 𝜃𝑡
to all the𝑀 IoT units, that perform a local computation of the DFA
algorithm based on their dataset 𝑋 𝑡

𝑚 . Once the learning procedure
is completed, each IoT unit𝑚, with𝑚 = 1, . . . , 𝑀 , submits the local
updates 𝜃𝑚

𝑡+1 to the server 𝑆 , which is in charge of aggregating the
results into a new global model.

In particular, the proposed TIFeD algorithm can operate in two
modalities. The first, called full-network implementation (detailed
in Subsection 4.2), allows each IoT unit to train all the 𝐻 hidden
layers of the DL model. In this case, the result of the computation
will be a set containing the weights and bias updates for each
layer ℎ = 1, . . . , 𝐻 . The second, named single-layer implementation
(explained in Subsection 4.3), enables the IoT units to train only
the ℎ-th layer of the NN. The result of the computation, in this
second scenario, will be a single tuple containing the weights and
bias updates related to layer ℎ.

Luca Colombo, Alessandro Falcetta, and Manuel Roveri

Algorithm 1: Full-network TIFeD algorithm implementa-
tion.𝑀 is the number of devices,𝐻 is the number of hidden
layers, 𝑏𝑠 is the mini-batch size, 𝑋 𝑡

𝑚 is the local dataset at
the 𝑡-th round of client𝑚, 𝑒 is the number of local epochs,
and 𝜂 is the learning rate.
central server executes:

initialize 𝐵ℎ foreach ℎ = 1, . . . , 𝐻
foreach round 𝑡 = 1, . . . ,𝑇 do

foreach device𝑚 = 1, . . . , 𝑀 in parallel do
𝜃𝑚
𝑡+1 ←− NodeUpdate(𝑚, 𝑡, 𝜃𝑡)

end
𝜃𝑡+1 ←− 1

𝑀

∑𝑀
𝑚=1 𝜃

𝑚
𝑡+1

end

NodeUpdate(𝑚, 𝑡, 𝜃):
A ←− (split 𝑋 𝑡

𝑚 into mini-batches of size 𝑏𝑠)
foreach local epoch 𝑒 do

foreach mini-batch 𝛼 ∈ A do
𝛿𝜃 ←−

{
[𝛿𝑊 1, 𝛿b1], . . . , [𝛿𝑊𝐻 , 𝛿b𝐻]

}
𝜃 ←− 𝜃 − 𝜂 𝛿𝜃

end
end
return 𝜃𝑚

𝑡+1 to the central server

4.2 From DFA to Federated DFA
In the federated learning setting, we consider a fixed set of clients
𝑀 , each with a local dataset 𝑋𝑚 , and a global model 𝜃 composed
of 𝐻 hidden layers. At the beginning of each round 𝑡 , the central
server sends the current model parameter

𝜃𝑡 =

{
[𝑊 1

𝑡 , b
1
𝑡], . . . , [𝑊𝐻

𝑡 , b𝐻𝑡]
}
,

being𝑊 ℎ
𝑡 and bℎ𝑡 the matrix of weights and the bias vector of layer

ℎ respectively, to each of the clients, which perform a local compu-
tation of the DFA algorithm. Once the weight updates have been
computed by each client𝑚 on its dataset 𝑋 𝑡

𝑚 , the new local model
parameters 𝜃𝑚

𝑡+1 are sent to the central server, which aggregates all
the results and updates its global state with the new model 𝜃𝑡+1.

It is important to note that since we are in an embedded sce-
nario where devices have a limited amount of memory (e.g., the
Arduino Nano 33 BLE Sense board has 256kB of SRAM), the local
dataset 𝑋𝑚 cannot be arbitrarily big, because it must fit into the
device’s memory. This is a major limitation compared to traditional
FL, where learning procedures benefit from very large and varied
datasets.

More in detail, the full-network TIFeD algorithm implementation,
summarized in Algorithm 1, can be divided into two blocks: the
central server component and the IoT units component. Concerning
the former part, executed by the central server, it works as follows:

(1) The node initializes, for each hidden layer ℎ of the network,
the matrix of feedback weights 𝐵ℎ by sampling values from
a uniform distribution, and sends them to each client𝑚.

Algorithm 2: Single-layer TIFeD algorithm implementa-
tion.𝑀 is the number of devices,𝐻 is the number of hidden
layers, 𝑏𝑠 is the mini-batch size, 𝑋 𝑡

𝑚 is the local dataset at
the 𝑡-th round of client𝑚, 𝑒 is the number of local epochs,
and 𝜂 is the learning rate.
central server executes:

initialize 𝐵ℎ foreach ℎ = 1, . . . , 𝐻
𝑠 ←−

⌊
𝑀
𝐻

⌋
foreach round 𝑡 = 1, . . . ,𝑇 do
Sℎ ←− (split the clients into 𝐻 groups of size 𝑠)
foreach group ℎ = 1, . . . , 𝐻 in parallel do

foreach device𝑚 ∈ Sℎ in parallel do
𝜃
𝑚,ℎ
𝑡+1 ←− NodeUpdate(𝑚, 𝑡, ℎ, 𝜃𝑡)

end
𝜃ℎ
𝑡+1 ←−

1
𝑠

∑𝑠
𝑚=1 𝜃

𝑚,ℎ
𝑡+1

end
𝜃𝑡+1 ←−

{
𝜃1
𝑡+1, . . . , 𝜃

𝐻
𝑡+1

}
end

NodeUpdate(𝑚, 𝑡, ℎ, 𝜃):
A ←− (split 𝑋 𝑡

𝑚 into mini-batches of size 𝑏𝑠)
foreach local epoch 𝑒 do

foreach mini-batch 𝛼 ∈ A do
𝛿𝜃ℎ ←−

{
[𝛿𝑊 ℎ, 𝛿bℎ]

}
𝜃ℎ ←− 𝜃ℎ − 𝜂 𝛿𝜃ℎ

end
end
return 𝜃

𝑚,ℎ
𝑡+1 to the central server

(2) For each round 𝑡 = 1, . . . ,𝑇 , the node sends the current
model parameters 𝜃𝑡 to the clients in order to let them
perform local updates using DFA.

(3) After receiving the 𝑀 local updates 𝜃𝑚
𝑡+1 from the clients,

the node upgrades the global model 𝜃𝑡+1 by aggregating
the results with the average function:

𝜃𝑡+1 ←−
1
𝑀

𝑀∑︁
𝑚=1

𝜃𝑚𝑡+1 .

Regarding the NodeUpdate function, executed by each IoT unit,
it works as follows:

(1) The node splits its local part of the dataset 𝑋 𝑡
𝑚 (relative to

the current round 𝑡) into mini-batches 𝛼 of size 𝑏𝑠 .
(2) For each local epoch 𝑒 and for each mini-batch 𝛼 , the node

computes the weights updates through the DFA learning
algorithm, as shown in Eq. (3), and applies them to the
current model parameters 𝜃𝑡 .

(3) Once the computation is completed, the node sends the
new model parameters 𝜃𝑡+1 back to the central server.

The models aggregation can be done at different points: after
each mini-batch 𝛼 , after the entire buffer 𝑋 𝑡

𝑚 , or after the number
of training passes 𝑒 each client makes on the current buffer 𝑋 𝑡

𝑚 .
The choice of the aggregation point represents a trade-off between

TIFeD: a Tiny Integer-based Federated learning algorithm with Direct feedback alignment

the accuracy of the final model and the number of required com-
munication rounds, which results into higher power consumption.
A detailed analysis about this point is provided in the experimental
results in Section 5.

4.3 Single layers training
One of the main advantages of the DFA learning algorithm is the
ability to train each NN layer independently. Indeed, as shown in
Eq. (2), the layer’s update direction formula 𝛿ℎ

𝐷𝐹𝐴
is not recursive

and, for each hidden layer ℎ, depends only on the derivative of
the Loss Function 𝐿′, the fixed matrix of feedback weights 𝐵ℎ and
the derivative of the activation function act′ℎ (·). This means that,
unlike BP, the network error is propagated directly to each hidden
layer and does not have to traverse the entire network.

By exploiting this feature, it is possible to design a federated algo-
rithm in which each IoT unit, instead of training an entire network
on its local dataset, trains only a single layer of the global model.
This results in two benefits: (i) the algorithm is more lightweight
in terms of computational and memory demands and can therefore
run on devices with tighter resource constraints, and (ii) the com-
munication between the devices and the central server requires the
exchange of a smaller amount of data since only a portion of the
network (i.e., only the updates 𝜃𝑚,ℎ

𝑡+1 of the ℎ-th layer) needs to be
sent, resulting in energy savings. On the other hand, the drawbacks
are that some overhead is added to the central server that has to
decide which device trains which layer, and that there is a loss in
the accuracy of the final global model. More accurate analyses are
provided in Section 5.

The single-layer TIFeD algorithm implementation is shown in
Algorithm 2 and works as follows:

• The central server also defines, for each round 𝑡 , the set
Sℎ which contains a random splitting of the clients into 𝐻
different groups of size 𝑠 ←−

⌊
𝑀
𝐻

⌋
. Each group is in charge

of training only the ℎ-th layer of the network.
• The IoT units compute the weights update related only to

the ℎ-th layer through the DFA learning algorithm, apply
it to the current model parameters 𝜃ℎ𝑡 , and send the new
model parameters 𝜃ℎ

𝑡+1 back to the central server.
• After receiving the𝑀 local updates 𝜃𝑚,ℎ

𝑡+1 from the clients,
the server updates the global model 𝜃𝑡+1 by aggregating
the results with the average function, layer-by-layer:

𝜃𝑡+1 ←−
{
𝜃1𝑡+1, . . . , 𝜃

𝐻
𝑡+1

}
,

𝜃ℎ𝑡+1 ←−
1
𝑠

𝑠∑︁
𝑚=1

𝜃
𝑚,ℎ
𝑡+1

for ℎ = 1, . . . , 𝐻 .

5 EXPERIMENTAL RESULTS
In this section, the proposed TIFeD algorithm with its full-network
and single-layer implementations are evaluated from different points
of view. The code of the following experiments, written in Python,
can be found in the code repository1.

1https://github.com/AI-Tech-Research-Lab/TIFeD

Table 2: NNs architecture considered in this experimental sec-
tion. The rescaled Piecewise Linear Approximation (PLA) of
the tanh function [14] was used after each FC layer, whereas
after the Conv2D layers the ReLU activation function was
employed. The kernel size for the Conv2D layers is (3 × 3),
while for the MaxPooling layer is (2× 2). * Only the classifier
is trained using the proposed TIFeD algorithm.

Model Layers
NN-1 FC(28 ∗ 28) → FC(200) → FC(10)

CNN-1 * Conv2D(4) →MaxPool→ Conv2D(8) →
MaxPool→ FC(200) → FC(50) → FC(10)

CNN-2 *
Conv2D(128) →MaxPool→ Conv2D(256) →
MaxPool→ Conv2D(512) → Conv2D(256) →
MaxPool→ FC(256) → FC(128) → FC(10)

In the following experiments, we consider a fixed set of clients𝑀 ,
each with a local dataset 𝑋𝑚 uniformly sampled from the training
set 𝑋 . It is important to note that since we are in a tiny scenario
where devices have a limited amount of memory (e.g., the Arduino
Nano 33 BLE Sense board has 256kB of SRAM), the local dataset
𝑋𝑚 cannot be processed all at once as if it were entirely available
to the device, because it could not fit into the memory of the device.
Therefore, the local dataset 𝑋𝑚 is further divided into smaller por-
tions of length buff_len and, at each round 𝑡 , only one portion of
the dataset of size buff_len is considered for training (i.e., the 𝑡-th
buffer 𝑋 𝑡

𝑚).

5.1 Datasets
A brief description of the datasets employed in our study is given
in the following.

5.1.1 MNIST. The first considered dataset is the MNIST (Modified
National Institute of Standards and Technology) database [19], a
collection of handwritten digits commonly used for training and
testing ML models able to recognize images. The elements are grey-
scale images of size 28 × 28. The dataset is composed of 60000
training images and 10000 testing images from 10 different classes,
each one representing a digit from 0 to 9.

5.1.2 FashionMNIST. The FashionMNIST database [17] was cre-
ated in 2017 as an improvement of the original MNIST dataset
for benchmarking ML algorithms. FashionMNIST consists in gray-
scale images of dimension 28×28 of Zalando’s articles. The training
dataset contains 60000 elements, while the testing dataset includes
10000 elements. Each image is then associated with a label from 10
different classes.

5.1.3 CIFAR10. Lastly, the CIFAR10 (Canadian Institute for Ad-
vanced Research) dataset [8] is considered. CIFAR10 is a collection
of colour images representing objects with size 32 × 32 belonging
to 10 different classes. The dataset is divided into 50000 training
samples and 10000 test samples.

Luca Colombo, Alessandro Falcetta, and Manuel Roveri

2048 4096 8192
1/

0.89

0.90

0.91

0.92

0.93

0.94

0.95

Ac
cu

ra
cy

Implementation
Single-layer
Full-network

(a) MNIST dataset

2048 4096 8192
1/

0.81

0.82

0.83

0.84

0.85

0.86

Ac
cu

ra
cy

Implementation
Single-layer
Full-network

(b) FashionMNIST dataset

Figure 2: Test accuracies of NN-1 trained with the proposed
full-network and single-layer TIFeD implementations in a
federated setting composed of 𝑀 = 8 worker nodes. NN-1
hyperparameters: length of the local dataset 𝑋𝑚 = 7.5𝑘 im-
ages, buff_len = 50, 𝑏𝑠 = 25, and 𝑒 = 5. Three different values
of the learning rate 1

𝜂 were considered. Results are computed
for 100 different initialization of the DFA random-feedback
weights 𝐵ℎ .

5.2 Feed-forward neural network training
The goal of the first experiment is to show that the proposed TIFeD
algorithm is able to train a feed-forward neural network from
scratch. To this end, we trained a neural network composed of
two fully-connected layers (NN-1 in Table 2) in a federated set-
ting with𝑀 = 8 worker nodes on the MNIST and FashionMNIST

2048 4096 8192
1/

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Ac
cu

ra
cy

Implementation
Single-layer
Full-network

Figure 3: Test accuracies of CNN-1 trained, by exploiting
transfer learning, with the proposed full-network and single-
layer TIFeD implementations in a federated setting com-
posed of𝑀 = 8 worker nodes on the FashionMNIST dataset.
CNN-1 hyperparameters: length of the local dataset𝑋𝑚 = 7.5𝑘
images, buff_len = 50,𝑏𝑠 = 25, and 𝑒 = 5. Three different values
of the learning rate 1

𝜂 were considered. Results are computed
for 100 different initialization of the DFA random-feedback
weights 𝐵ℎ .

datasets with the following set of hyperparameters: length of the lo-
cal dataset 𝑋𝑚 = 7.5𝑘 images, buff_len = 50, 𝑏𝑠 = 25, and 𝑒 = 5. We
evaluated the test accuracy for both the full-network and single-layer
implementations with three different values of the learning rate
1
𝜂 and for 100 different initialization of the DFA random-feedback
weights 𝐵ℎ .

As we can see in Figure 2, the𝑀 worker nodes are able to train a
shared model initialized with zero-valued weights by using the pro-
posed TIFeD algorithm. It is important to note that the single-layer
implementation performs worse than the full-network implementa-
tion. This can be easily explained by the fact that, in the former case,
each FC layer of the NN was trained by 4 out of 8 nodes, while, in
the latter case, each NN layer is trained by all the 8 nodes in the fed-
erated setting. On the other hand, the computational, memory, and
energy demands of the nodes are halved in the single-layer imple-
mentation compared to the full-network implementation, given that
weight updates have to be computed and sent for only one layer ℎ.
As a consequence, the single-layer implementation is more suitable
when devices are extremely constrained in terms of resources.

5.3 Transfer learning for convolutional neural
networks training

In a TinyML environment, the ability to adapt a general and complex
ML model to the specific application scenario is a fundamental
aspect. This second experiment aims to prove that, in addition to
feed-forward NNs, it is possible to use TIFeD to train the classifier

TIFeD: a Tiny Integer-based Federated learning algorithm with Direct feedback alignment

4096 8192 16384
1/

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

Implementation
Single-layer
Full-network

Figure 4: Test accuracies of CNN-2 trained, by exploiting
transfer learning, with the proposed full-network and single-
layer TIFeD implementations in a federated setting com-
posed of𝑀 = 8 worker nodes on the CIFAR10 dataset. CNN-2
hyperparameters: length of the local dataset 𝑋𝑚 = 6.25𝑘 im-
ages, buff_len = 50, 𝑏𝑠 = 25, and 𝑒 = 10. Three different values
of the learning rate 1

𝜂 were considered. Results are computed
for 100 different initialization of the DFA random-feedback
weights 𝐵ℎ .

of a Convolutional Neural Network (CNN) that exploits transfer
learning.

First, we reconsidered the experiment presented in Section 5.2
on the FashionMNIST dataset. We trained CNN-1 and quantized
the feature extractor weights, which are then used by each worker
node𝑚. At this point, by exploiting TL, the FC layers of CNN-1
were re-trained from scratch directly on the worker nodes, using
the same set of hyperparameters as in the experiment of Section 5.2.
Similarly to the previous experiment, as can be seen from the results
in Figure 3, both the implementations of TIFeD are able to train the
considered model.

Then, by adopting the same procedure, we trained CNN-2 on
the more complex CIFAR10 dataset. The following set of hyperpa-
rameters was used: length of the local dataset 𝑋𝑚 = 6.25𝑘 images,
buff_len = 50, 𝑏𝑠 = 25, and 𝑒 = 10. The results, provided in Figure 4,
show that TIFeD is capable of making CNN-2 learn this more chal-
lenging image classification task, that a simpler feed-forward NN
would not be able to solve.

5.4 Exploring TIFeD as the number of worker
nodes increases

In this third experiment, the behaviour of TIFeD as the number of
worker nodes𝑀 increases is analyzed. As a reference, we consider
the state-of-the-art FL algorithm, i.e., Federated Averaging. We
emphasize that this experiment is not intended to compare the final
accuracy achieved by our TIFeD algorithm with respect to FedAvg.

4 8 16 32 64 128
M

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Floating-point FedAvg
Full-network TIFeD
Single-layer TIFeD

Figure 5: Analysis of the behaviour of full-network TIFeD
and single-layer TIFeD as the number of worker nodes 𝑀

increases. Floating-point FedAvg is taken as a reference, but
we emphasize that the goal is not to compare their final
accuracies, since the two algorithms are tailored for two dif-
ferent application scenarios. Training of CNN-1, by exploit-
ing transfer learning, on the FashionMNIST dataset. FedAvg
hyperparameters: 𝑋𝑚 = 100 images, buff_len = 10, 𝑏𝑠 = 10,
𝑒 = 10, and 𝜂 = 0.1. TIFeD hyperparameters: 𝑋𝑚 = 100 im-
ages, buff_len = 20, 𝑏𝑠 = 10, 𝑒 = 10, and 1

𝜂 = 2048. Results are
computed for 100 different initialization of the DFA random-
feedback weights 𝐵ℎ for TIFeD and 100 different network
initialization for FedAvg.

In fact, as previously mentioned, they are tailored for two deeply
different application scenarios: TIFeD is specifically designed to
run on resource-constrained devices, while FedAvg would not be
able to be executed on tiny devices.

We trained the classifier of CNN-1 on the FashionMNIST dataset
for different values of 𝑀 . In particular, we set a fixed number of
100 images per worker and trained both FedAvg, which uses 32-bit
long floating-point values, and the full-network and single-layer
implementations of the TIFeD algorithm, which operate with 16-bit
long integers and an integer-only arithmetic. The experiment was
performed using the following set of hyperparameters for both
algorithms: length of the local dataset 𝑋𝑚 = 100 images, 𝑏𝑠 = 10,
and 𝑒 = 10. To take into account the lower memory consumption of
TIFeD with respect to FedAvg, we set buff_len = 20 for the former,
buff_len = 10 for the latter.

The results in Figure 5 show that the full-network and single-layer
TIFeD implementations behave exactly as FedAvg when increasing
the number of worker nodes 𝑀 . It should be noted that for the
same number of nodes 𝑀 , FedAvg performs twice as many com-
munication rounds than the full-network TIFeD implementation,
since its buffer length is half as large, resulting in a longer and more
energy-consuming training.

Luca Colombo, Alessandro Falcetta, and Manuel Roveri

Table 3: Impact of the aggregation point within the full-
network and single-layer TIFeD implementations in terms of
test accuracy and number of communication rounds 𝑡 . Train-
ing of CNN-1, by exploiting transfer learning, in a federated
setting composed of 𝑀 = 128 worker nodes on the Fashion-
MNIST dataset. CNN-1 hyperparameters: length of the local
dataset 𝑋𝑚 = 100 images, buff_len = 20, 𝑏𝑠 = 10, 𝑒 = 10, and
1
𝜂 = 2048. Results are computed for 100 different initializa-

tion of the DFA random-feedback weights 𝐵ℎ .

TIFeD
Implementation

Aggregation
Point

Test
Accuracy

Communication
Rounds

Full-network
Mini-batch 𝛼 0.819 100
Buffer 𝑋 𝑡

𝑚 0.841 50
Epochs 𝑒 0.823 5

Single-layer
Mini-batch 𝛼 0.780 100
Buffer 𝑋 𝑡

𝑚 0.791 50
Epochs 𝑒 0.776 5

5.5 The impact of the aggregation point within
the TIFeD algorithm

Lastly, an experiment to evaluate the impact of the aggregation
point within the TIFeD algorithm, is proposed. As explained in
Section 4.2, the aggregation of the weights updates by the central
server can occur at three different points: after each mini-batch 𝛼 ,
after the entire buffer 𝑋 𝑡

𝑚 , or after the number of training epochs 𝑒 .
To this end, we performed the learning of the CNN-1 classifier with
both the implementations of TIFeD on the FashionMNIST dataset,
using the following set of hyperparameters: 𝑀 = 128, 𝑋𝑚 = 100
images, buff_len = 20, 𝑏𝑠 = 10, 𝑒 = 10, and 1

𝜂 = 2048.
As summarized in Table 3, the choice of the aggregation point

represents a trade-off between the final test accuracy and the num-
ber of required communication rounds for both the full-network and
single-layer implementations. In particular, the Epochs aggregation
point represents the one with the lowest number of required rounds,
but it results in a final accuracy drop of 1.5% and 1.8% compared to
that provided by the Buffer aggregation point. On the other hand,
the latter requires 𝑒 times more communication rounds than the
former, resulting in more energy consumption by the tiny devices.

6 CONCLUSIONS
The aim of this paper was to present a novel federated learning
algorithm specifically designed for training ML and DL models
directly on extremely resource-constrained devices. Specifically,
we introduced TIFeD, a Tiny Integer-based Federated learning al-
gorithm with Direct feedback alignment, with its two variants:
the full-network implementation, which allows each node in the
federated setting to train all the fully-connected layers of the neu-
ral network, and the single-layer implementation, that enables the
devices to train only a single layer of the entire NN, resulting in
a more lightweight algorithm in terms of computation, memory
and energy required. The experimental results show the feasibility

and effectiveness of the proposed solution. Future works will con-
sider new models as well as further optimizations in the learning
procedure.

ACKNOWLEDGMENTS
This paper is supported by Dhiria s.r.l. and by PNRR-PE-AI FAIR
project funded by the NextGeneration EU program.

REFERENCES
[1] Colby R Banbury, Vijay Janapa Reddi, Max Lam, William Fu, Amin Fazel, Jeremy

Holleman, Xinyuan Huang, Robert Hurtado, David Kanter, Anton Lokhmotov,
et al. 2020. Benchmarking tinyml systems: Challenges and direction. arXiv
preprint arXiv:2003.04821 (2020).

[2] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
Brendan McMahan, et al. 2019. Towards federated learning at scale: System
design. Proceedings of machine learning and systems 1 (2019), 374–388.

[3] Simone Disabato and Manuel Roveri. 2020. Incremental on-device tiny machine
learning. In Proceedings of the 2nd International workshop on challenges in artificial
intelligence and machine learning for internet of things. 7–13.

[4] Jack Goetz, Kshitiz Malik, Duc Bui, Seungwhan Moon, Honglei Liu, and Anuj
Kumar. 2019. Active federated learning. arXiv preprint arXiv:1909.12641 (2019).

[5] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, et al. 2021. Advances and open problems in federated
learning. Foundations and Trends® in Machine Learning 14, 1–2 (2021), 1–210.

[6] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies
for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).

[7] Kavya Kopparapu and Eric Lin. 2021. TinyFedTL: Federated transfer learning on
tiny devices. arXiv preprint arXiv:2110.01107 (2021).

[8] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2009. Cifar-10 (canadian
institute for advanced research). 2009. URL http://www. cs. toronto. edu/kriz/cifar.
html 5 (2009).

[9] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman.
2014. Random feedback weights support learning in deep neural networks. arXiv
preprint arXiv:1411.0247 (2014).

[10] Nil Llisterri Giménez, Marc Monfort Grau, Roger Pueyo Centelles, and Felix
Freitag. 2022. On-device training of machine learning models onmicrocontrollers
with federated learning. Electronics 11, 4 (2022), 573.

[11] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[12] Arild Nøkland. 2016. Direct feedback alignment provides learning in deep neural
networks. Advances in neural information processing systems 29 (2016).

[13] Maria Refinetti, Stéphane d’Ascoli, Ruben Ohana, and Sebastian Goldt. 2021.
Align, then memorise: the dynamics of learning with feedback alignment. In
International Conference on Machine Learning. PMLR, 8925–8935.

[14] Jaewoo Song and Fangzhen Lin. 2022. PocketNN: Integer-only Training and Infer-
ence of Neural Networks via Direct Feedback Alignment and Pocket Activations
in Pure C++. arXiv preprint arXiv:2201.02863 (2022).

[15] John A Stankovic. 1996. Real-time and embedded systems. ACM Computing
Surveys (CSUR) 28, 1 (1996), 205–208.

[16] Prahalathan Sundaramoorthy, Gautham Krishna Gudur, Manav Rajiv Moorthy,
R Nidhi Bhandari, and Vineeth Vijayaraghavan. 2018. Harnet: Towards on-
device incremental learning using deep ensembles on constrained devices. In
Proceedings of the 2nd International Workshop on Embedded and Mobile Deep
Learning. 31–36.

[17] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747 (2017).

[18] Kai Yang, Tao Jiang, Yuanming Shi, and Zhi Ding. 2020. Federated learning via
over-the-air computation. IEEE Transactions on Wireless Communications 19, 3
(2020), 2022–2035.

[19] LeCun Yann. 1998. The mnist database of handwritten digits. R (1998).

	Abstract
	1 Introduction
	2 Related Literature
	3 Background
	3.1 Direct Feedback Alignment (DFA)
	3.2 Federated Learning

	4 The Proposed Solution
	4.1 Overview
	4.2 From DFA to Federated DFA
	4.3 Single layers training

	5 Experimental Results
	5.1 Datasets
	5.2 Feed-forward neural network training
	5.3 Transfer learning for convolutional neural networks training
	5.4 Exploring TIFeD as the number of worker nodes increases
	5.5 The impact of the aggregation point within the TIFeD algorithm

	6 Conclusions
	Acknowledgments
	References

