
Plastic Arbor: a modern simulation framework for

synaptic plasticity – from single synapses to networks of

morphological neurons

Jannik Luboeinski 1,2,3,B, Sebastian Schmitt 1,2, Shirin Shafiee Kamalabad 1,2,
Thorsten Hater 4, Fabian Bösch 5, Christian Tetzlaff 1,2,3

1 III. Institute of Physics – Biophysics, University of Göttingen, Germany
2 Department for Neuro- and Sensory Physiology, University Medical Center Göttingen, Germany

3 Campus Institute Data Science (CIDAS), Göttingen, Germany
4 Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany
5 Swiss National Supercomputing Centre, ETH Zürich, Switzerland

B Correspondence: jannik.luboeinski@med.uni-goettingen.de

25 November 2024

Abstract

Arbor is a software library designed for efficient simulation of large-scale networks of biological
neurons with detailed morphological structures. It combines customizable neuronal and synaptic
mechanisms with high-performance computing, supporting multi-core CPU and GPU systems.

In humans and other animals, synaptic plasticity processes play a vital role in cognitive func-
tions, including learning and memory. Recent studies have shown that intracellular molecular
processes in dendrites significantly influence single-neuron dynamics. However, for understanding
how the complex interplay between dendrites and synaptic processes influences network dynam-
ics, computational modeling is required.

To enable the modeling of large-scale networks of morphologically detailed neurons with di-
verse plasticity processes, we have extended the Arbor library to the Plastic Arbor framework,
supporting simulations of a large variety of spike-driven plasticity paradigms. To showcase the
features of the new framework, we present examples of computational models, beginning with
single-synapse dynamics, progressing to multi-synapse rules, and finally scaling up to large recur-
rent networks. While cross-validating our implementations by comparison with other simulators,
we show that Arbor allows simulating plastic networks of multi-compartment neurons at nearly
no additional cost in runtime compared to point-neuron simulations. Using the new framework,
we have already been able to investigate the impact of dendritic structures on network dynamics
across a timescale of several hours, showing a relation between the length of dendritic trees and
the ability of the network to efficiently store information.

By our extension of Arbor, we aim to provide a valuable tool that will support future studies
on the impact of synaptic plasticity, especially, in conjunction with neuronal morphology, in large
networks.

1

ar
X

iv
:2

41
1.

16
44

5v
1 

 [
cs

.C
E

] 
 2

5 
N

ov
 2

02
4

https://orcid.org/0000-0002-1959-5644
https://orcid.org/0000-0002-7935-0470
https://orcid.org/0009-0009-7271-8939
https://orcid.org/0000-0002-6249-7169
https://orcid.org/0009-0002-3236-8187
https://orcid.org/0000-0003-1901-6232


1 Introduction

Over the past decades, a number of open-source software simulators have been developed to
facilitate the investigation of biological neural networks. Current prominent examples are (Core)
NEURON [1, 2], NEST [3], and Brian 2 [4]. While NEST and Brian 2 are widely used for
the simulation of large-scale networks of point neurons, NEURON is a well-established tool for
modeling neurons with detailed morphology, with its first version already released in the 1980s [1].
Notably, NEURON enables to flexibly create realistic neuron models in its own script language
called NMODL. Over the past decades, NEURON was extended to include more features as
well as to keep up with the fast development in computing hardware [2, 5]. This has, however,
yielded a complex code base that constrains usability, flexibility, and the optimization for modern
hardware backends. To overcome these limitations, Arbor has been developed, which is a new
simulator library for networks of neurons with detailed morphology. With a Python frontend
and support for various model-descriptive formats, including NMODL, Arbor facilitates the
implementation and customization of neuron and synapse models. At the same time, Arbor offers
heavily optimized execution on different hardware systems [6]. It supports, in particular, modern
backend architectures such as multi-core central processing units (CPUs), graphics processing
units (GPUs), and message passing interface (MPI) ranks [6], and is openly developed and
available on GitHub [7].

Synaptic plasticity is the ability of synapses to strengthen or weaken in response to neural
activity, which is essential for learning and memory [8, 9]. So-called long-term synaptic plasticity
is crucial for both short- and long-term memory and appears in two types: long-term potentia-
tion (LTP) and long-term depression (LTD), which strengthen and weaken synaptic connections,
respectively. These processes mainly involve changes in the distribution of postsynaptic receptors
and in the structure of dendritic spines, driven by complex biochemical and biophysical mecha-
nisms within synapses as well as in dendrites [10, 11, 12, 13, 14]. Their dysregulation has further
been linked to neurological disorders like Alzheimer’s disease and schizophrenia [15, 16]. On the
other hand, recent machine learning approaches also make use of synaptic and dendritic processes
to improve the performance of large-scale neural networks [17, 18, 19]. Thus, investigations on
the functional impact of synapses and dendrites on network dynamics are becoming more and
more fundamental to advance research in areas of neuroscience, medicine, and machine learning.

Arbor offers a powerful tool for capturing processes at the synaptic, dendritic, and neuronal
levels, enabling the examination of their links to network dynamics. Although the core function-
ality for running network simulations has been available since the inception of the Arbor project
[6], the mechanisms required for modeling plasticity-related processes have largely been absent.
In our present work, we fill this gap by extending the Arbor simulator by the functionalities
needed to model diverse spike-driven plasticity rules (e.g., [20, 21, 22]), yielding the Plastic Ar-
bor framework. Thereby, we aim to provide a basis for investigating the functional impact of
plasticity dynamics in large networks of morphological neurons via our publicly available code
(see the data availability statement below, or see https://github.com/tetzlab/plastic arbor).

In this article, we describe the novel functionalities in two different sections, where we present
methods and results in a side-by-side fashion. The new technical features needed to implement
diverse plasticity rules are described in the section ‘Extensions of the Arbor core code’. In the
section ‘Computational modeling with synaptic plasticity’, we present examples for the newly
implemented technical features introduced before, with increasing complexity of the implemented
models. We start from the level of simulating a widely-used spike-timing-dependent plasticity
rule in a single synapse, then consider plasticity rules involving multiple synapses, move on
to more complex plasticity rules including several hidden states, and finally reproduce findings
from large recurrently connected networks. We cross-validate all Arbor implementations with the

2

https://github.com/tetzlab/plastic_arbor


Brian 2 simulator [4] or with model-specific custom simulators. Importantly, the newly extended
functionality of Arbor has enabled us to provide first predictions about the network dynamics
underlying synaptic memory consolidation across networks of neurons of different morphology.
Specifically, we provide insights into how the performance in a pattern completion task at the
network level depends on the length of the dendrites as well as on the overall size of the employed
neurons.

2 Extensions of the Arbor core code

In this section, we present new extensions of the Arbor core code, which are necessary for the
implementation of synaptic plasticity models in Arbor. Examples of related models are presented
in the following section 3.

2.1 Spike-time detection to simplify computation

Many formulations of synaptic plasticity depend on the timing of pre- and postsynaptic spikes
[23, 24, 20]. In neuroscience, spike-timing-dependent plasticity (STDP) serves as a valuable
phenomenological model that can encapsulate the intricacies of synaptic plasticity with respect
to its dependence on pre- and postsynaptic spike timing in a computationally efficient manner (cf.
subsection 3.1). The simplicity of its formulation, focusing on the relative timing of spikes, makes
STDP a practical choice for computational models that serve to understand learning processes in
complex neural systems, without the necessity of a detailed molecular blueprint. Nevertheless,
to capture the molecular and cellular mechanisms that underlie synaptic modification, more
detailed models such as the calcium-based models used in subsections 3.3–3.6 of this article are
needed.

To enable the implementation of models with reduced complexity, such as STDP, we have
introduced a hook named POST_EVENT that serves to detect spiking events in the postsynaptic
neuron (e.g., somatic action potentials or dendritic spikes) and to transmit this information to
another compartment or a synapse without explicit implementation of the physical transmission
process (e.g., the backpropagation of action potentials). This is, inter alia, needed for STDP
rules (cf. subsection 3.1) and calcium-based plasticity rules (cf. subsections 3.3–3.6).

2.2 Multiple postsynaptic variables depending on pre- and postsynap-
tic spiking

The Arbor documentation [25] defines a selection policy as ‘Enumeration used for selecting an
individual item from a group of items sharing the same label.’ (where, for example, the items
might be synapse objects with the label ‘exc input synapse’). Already present in previous Arbor
versions, the round_robin policy enables to iterate over the items of an object group in a round-
robin fashion, e.g., to iterate over synapses connecting to the same postsynaptic compartment.

We added the new selection policy round_robin_halt, which enables to halt at the current
item of the group until the round_robin policy is called again. This functionality is crucial
to implement the independent update of multiple postsynaptic variables that depend on pre-
and postsynaptic spiking. This is required, for instance, for large-scale network models includ-
ing spike-driven postsynaptic calcium dynamics (see subsections 3.5 and 3.6) that shall occur
alongside the usual postsynaptic voltage dynamics. In such a case, the round_robin_halt pol-
icy serves to target both dynamics without having to define explicit labels for every individual
connection in the network, which can save a tremendous amount of compute resources.

3



2.3 Computation with stochastic differential equations

For numerous learning mechanisms, in particular also for some of the plasticity rules that are
considered in the computational experiments presented here, random processes are required.
Such processes are often described by stochastic differential equations (SDEs). In general, the
coupled first-order equations for a vector of stochastic state variables X can be expressed in their
differential form as

dX(t) = f(t,X(t))dt+

M−1∑
i=0

gi(t,X(t))dBi(t), (1)

where the vector-valued function f denotes the deterministic differential, and the last term
represents the stochastic contribution. Here, the M functions gi with units [gi] = [X]/

√
t are

associated with standard Wiener processes Bi, where Bi(0) = 0 almost surely, and Bi(t) ∼
N (0, t) with units [Bi] =

√
t.

The stochastic integral is defined by Itô’s non-anticipative generalization of the Riemann–Stieltjes
summation

Si =

∫ t0+s

t0

gi(τ,X(τ))dBi(τ) = lim
N→∞

N−1∑
n=0

gi(ti,X(ti)) (B(ti)−B(ti−1)) , (2)

where t0 < t1 < · · · < tN−1 = t0 + s, and N ∈ N. By introducing stationary Gaussian
white noise Wi such that Wi(t)dt = dBi(t), the system of equations can be expressed using more
common shorthand notation as

X′(t) = f(t,X(t)) +

M−1∑
i=0

gi(t,X(t))Wi(t). (3)

We equipped Arbor with the capability to numerically solve the system of SDEs depicted in
Eq. 3 using the Euler-Maruyama algorithm, a first-order stochastic Runge-Kutta method [26].
The algorithm for integrating the stochastic dynamics from discrete time step tk to tk+1 = tk+∆t
comprises two steps:

1. Drawing random variables ∆W ∼ N (0,Q∆t), where Q denotes the correlation matrix of
the white noises Wi,

2. Computing X̂(tk+1) = X̂(tk) + f(tk, X̂(tk))∆t+
∑M−1

i=0 gi(tk, X̂(tk))∆Wi.

Currently, we assume uncorrelated noise, Q = I. Hence, to generate M independent ran-
dom samples for every instantiation of every stochastic process at each time step, a normally
distributed noise source of sufficient quality is required.

Traditional pseudorandom number generators (PRNGs) prove inadequate for this context,
as they typically generate a sequence of samples through the evaluation of a recurrence re-
lation φ of order k. Here, the nth sample un is contingent upon the k preceding values:
un = φ (n, un−1, un−2, · · · , un−k). For instance, the standard 64-bit implementation of the
Mersenne-Twister algorithm in C++ necessitates the sequential updating of a state comprising
at least 19968 bits (k = 312) to produce a series of independent random samples.

Consequently, we have opted for the utilization of counter-based PRNGs (CBPRNGs) [27]. In
CBPRNGs, each sample can be independently drawn by modulating the input to the generator
function. This input may be subdivided into a counter c(n) and a key κ(n), thus enabling the
construction of a distinct input for every required source of white noise, ui,n = φ (ci(n), κi(n)).

4



Owing to this characteristic and their stateless nature, CBPRNGs lend themselves well to par-
allelization on both CPU and GPU architectures.

Specifically, we employ the Threefry-4x64-12 algorithm from the random123 library [28].
This algorithm’s input width, at 2× 256 bits, affords ample capacity for uniquely encoding the
white noise sources. Threefry-4x64-12 yields four independent, uniformly distributed values
per invocation, which we cache for each noise source and refresh only upon depletion.

To generate random numbers following a normal distribution, we employ the Box-Muller
method, ensuring uniform cache depletion across all noise sources as opposed to rejection-
sampling based techniques.

In preceding versions of Arbor (before v0.8), the inclusion of random processes required mod-
ifying the C++ code produced by Arbor’s modcc compiler. This approach hindered the effective
utilization of CBPRNGs and mandated the manual crafting of solvers for SDEs. Presently,
however, we have augmented Arbor’s NMODL dialect with a specialized solver method, de-
noted stochastic, alongside a mechanism for specifying independent noise sources via the
WHITE_NOISE code block. These enhancements enable the seamless handling of SDEs as de-
scribed above.

2.4 Diffusion of arbitrary particles

Arbor’s comprehension of neuronal morphology is built on the cable model of neuronal dynamics:

1

Cm

∂

∂t
Um =

∂

∂x

1

Rl

∂

∂x
Um + Im, (4)

which describes the evolution of the membrane potential Um depending on time and one
spatial dimension [29, 30]. In this equation, Rl denotes the axial (longitudinal) resistance and
Cm the membrane capacity. The current Im accounts for the radial transport of charges across the
membrane via ion-channels (for more details, see Supplementary Fig. S7). The term ∂

∂x
1
Rl

∂
∂xUm

describes a longitudinal current along the dendritic segment that results in charge equalization.
It is usually assumed that this model is valid for a thin layer around the membrane where all

changes to individually ionic concentrations – commonly labeled Xi and Xo for the intra- and
extracellular concentration of ion species X – are equalized to that of a surrounding internal or
external buffer solution. This buffering is modeled as an infinitely fast process, such that any
alterations are visible only on timescales of the numerical timestep. The trans-membrane current
Im can be expressed as a function of individual ion species X:

Im =
∑
X

gX · (Um − EX),

with

EX =
RT

zXF
· ln
(
Xo

Xi

)
,

where the ion channel models produce the conductivities gX and the reversal potentials EX, with
universal gas constant R, Faraday constant F , temperature T , and charge number zX.

Note that models of neuronal dynamics that include the resolution of individual ions in the
evolution of the membrane potential are tractable but computationally more demanding than
the cable model [31]. The diffusion of particles along dendrites is, nevertheless, a critical element
for many computational neuron models. As mentioned before, a rigorous model for the transport
of ions is feasible, but involves a different equation for charge equalization as opposed to Eq. 4.
Namely, it requires handling the changes in the intra- and extracellular concentration of particles

5



through molar fluxes (including the buffering because now the associated timescale has become
relevant), and – closing the feedback loop – the Nernst equation for computing the individual
reversal potentials. The alternative of mixing models would lead to a flawed formulation, where
particles are transported by diffusion despite already being included in the longitudinal currents
of Eq. 4. Thus, we decided to implement diffusion of arbitrary particles in Arbor as if the relevant
species were strictly neutral, i.e. no additional flow of charges is considered, neither along the
dendrite nor across the membrane. The physical model for diffusion of the concentration X of
the specific particle species is then simply given by

∂

∂t
X =

∂

∂x
D

∂

∂x
X + ϕ, (5)

where we have the diffusivity D and the molar flux ϕ across the membrane, from, or to
internal stores. This equation is in shape identical to the cable equation, which allows us to
leverage Arbor’s existing, highly optimized solver. The diffusive model is decoupled from the
cable model and exposed via a separate quantity Xd to NMODL. Users can — if desired —
retrofit the interaction with the cable model by assigning the appropriate mechanisms formulated
in NMODL:

Im =
∑
X

IX =
∑
X

gX · (U − EX),

∂

∂t
Xd = ϕX +

IX
zXF

,

EX =
RT

zXF
· ln
(
Xo

Xd

)
,

yielding a closed model together with Eqs. (4) and (5), however, at the cost of the inherent
issues described above.

3 Computational modeling with synaptic plasticity

In this section, we present representative models of synaptic plasticity that we implemented
in Arbor, serving as examples to demonstrate the full functionality of the newly implemented
features. As we have made the respective code freely available, readers can simply reuse or adapt
the models for their own investigations with Arbor. For references to the code bases used for the
specific simulations, please see the data availability statement at the end of this article.

Please note that since plasticity dynamics are the main target of this paper, we only present
the model equations that correspond to those. For parts of the considered models other than
the plasticity dynamics, please refer to the cited literature and provided code.

Fig. 1 shows an overview of essential features of Arbor’s user interface, which is typically used
to implement and simulate models of plastic neuronal networks.

3.1 Spike-timing-dependent plasticity

Spike-timing-dependent plasticity (STDP) is a phenomenon that is reported in a number of
experimental studies [32, 33, 34, 23] and described by various theoretical models. The earlier
models of STDP have provided a relatively simple form of synaptic plasticity that only depends
on the specific timing of pre- and postsynaptic spikes via the temporal differences tnpre − tmpost
(m,n ∈ N) between pre- and postsynaptic spikes. In this case, plasticity does not directly

6



Arbor GUI:

HPC integration:

Python frontend:

import arbor as A
# ...

# Definition of a simple model:
# Define the cell model and labels
label = A.label_dict().add_swc_tags()
center = '(location 0 0.5)'
decor = (A.decor()
  # Set initial membrane potential
  .set_property(Vm=-55)
  # Assign mechanisms to soma and dendrites
  .paint('"soma"', A.density("hh"))
  .paint('"dend"', A.density("pas"))
  # Attach stimulus
  .place(center, A.iclamp(10, 1, current=5), "ic")
  # Introduce spike threshold/trigger
  .place(center, A.threshold_detector(-10), "det"))
# Load morphology data
morpho = A.load_swc_arbor("cell.swc")
# Use shortcut for single-cell model creation
sim = A.single_cell_model(morpho, decor, label)
# ...

# General model definition via *recipe*:
recipe = Recipe(*args)
# ...
sim = A.simulation(recipe, context, ddc)
# ...

# Run the simulation
sim.run(100, 0.005)
# ...

# Adding GPU support:
context = A.context(gpu_id=0)
# Decompose problem (the network) into domains
ddc = A.partition_load_balance(recipe, context)
sim = A.simulation(recipe, context, ddc)
# ...

# Adding MPI paradigm:
from mpi4py import MPI 
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
# Use GPUs round-robin, assuming 4 per node
context = A.context(mpi=comm, gpu_id=rank%4)
# Decompose problem (the network) into domains
ddc = A.partition_load_balance(recipe, context)
# ...

Figure 1: Key features of Arbor’s user interface: graphical presentation of cell morphology with
Arbor GUI (v0.8.0-dev-065b1c9); facilitated definition of models via the Python frontend (by setting up
a so-called recipe; in some cases, there are also shortcuts that further accelerate the definition of certain
simple models); modular integration of high performance computing (HPC) hardware such as graphics
processing units (GPUs) and message passing interface (MPI) ranks.

7



depend on the spike rate. As a first step, we implemented a commonly used description [24]
given by:

dapre(t)

dt
= −apre(t)

τpre
+Apre ·

∑
n

δ(t− tnpre), (6)

dapost(t)

dt
= −apost(t)

τpost
+Apost ·

∑
m

δ(t− tmpost), (7)

dw(t)

dt
= apre(t) ·

∑
m

δ(t− tmpost) + apost(t) ·
∑
n

δ(t− tnpre). (8)

Here, the constants τpre and τpost describe the decay of the eligibility traces apre(t) and apost(t)
induced by pre- and postsynaptic spikes, and δ(·) represents the Dirac delta distribution. The
amplitudes Apre > 0 µS and Apost < 0 µS define the strengthening and weakening of the synaptic
weight w(t) that follow the occurrence of spikes, which takes more effect the closer together pre-
and postsynaptic spikes occur in time. Note that the synaptic weight w(t) is updated for each
complete pair of pre- and postsynaptic spikes. The synaptic weight is initialized at the baseline
value w0, and its contribution to postsynaptic potentials is clipped at a value wmax. For the
parameter values, see Table 1.

To simulate this model with Arbor, we implemented a single, conductance-based excitatory
synapse. This synapse was connected to a Leaky Integrate-and-Fire (LIF) neuron that was
stimulated with Poisson input (see Fig. 2a). In addition, an inhibitory synapse was introduced
to stabilize the dynamics. Both the excitatory synapse and the LIF neuron were implemented as
custom mechanisms in Arbor (defined via NMODL scripts). Note that for this implementation,
the POST_EVENT hook, which we added to Arbor’s NMODL dialect, is needed (cf. subsection 2.1)
– the hook is called whenever a threshold detector on a cell is triggered. In the present case, this
is when the postsynaptic neuron spikes.

We evaluated the functionality of the STDP implementation by comparing between Arbor
and the Brian 2 simulator, which provides a suitable cross-validation due to the different imple-
mentations of the numerical solver as well as the algorithmic data representation. We observe a
good match between the presented measures recorded in Brian 2 and Arbor (Fig. 2c and Sup-
plementary Fig. S1a–c), which we quantified via the values of coefficient of variation (CV) and
root mean square error (RMSE), computed using scikit-learn in version 1.3.2. Regarding the
spike times, we also encounter only minimal differences, which we quantified by computing the
spike time mismatch (detailed in Supplementary Fig. S1d).

In addition to this experiment, we simulated a range of time delay settings to obtain a classical
STDP time window, which shows a very good match with Brian 2 simulations as well (Fig. 2d).

8



Symbol Value Description Refs.

w0 1.0 µS Baseline of the synaptic weight This study

τpre 20.0ms Decay of the eligibility trace of presynap-
tic spikes

[24, 35]

τpost {10.0, 20.0}ms Decay of the eligibility trace of postsy-
naptic spikes

[24, 35]

Apre {0.3, 0.01} µS Strengthening amplitude [24, 35]

Apost {−0.2,−0.0105}µS Weakening amplitude [24, 35]

wmax 10.0 µS Maximum synaptic weight contributing
to postsynaptic potentials

[35]

Table 1: Parameters for the plain STDP model. In the case that two values are given, the first value
was used for the detailed analysis shown in Fig. 2c and Supplementary Fig. S1a–d, and the second value
was used to obtain the classical curve shown in Fig. 2d (also cf. [35]).

9



Time delay Δt (ms)

W
e
ig

h
t 

ch
a
n
g

e
 Δ
w

 (
µ

S
)

a

dc

b

Eqs. 6-8
STDP

Post-event
hook

f=const.

f=const.

Σ
w(t)

Δw

tpre tpost

f=f(t)

f=const. Eq. 9
Homeostasis

Post-event
hook

Σ

tpre tpost

tpost

f=const.

f=const.

Eqs. 6-8
STDP

Post-event
hook

w(t) Δw
Delay
Δt

tpre

e f

S
te

a
d

y
 i
n
p

u
t

w
e
ig

h
t 

(n
A

)
V
a
ry

in
g

 i
n
p

u
t

fi
ri

n
g

 r
a
te

 (
H

z)
R

e
su

lt
in

g
 n

e
u
ro

n
a
l

fi
ri

n
g

 r
a
te

 (
H

z)

g

h

j

i W
e
ig

h
t 

ch
a
n
g

e
 Δ
w

 

Time delay Δt (ms)
– 100 – 50 0 50 100

tpost

f=const.

f=const.

Eqs. 10-12
Calcium-based plasticity

Post-event
hook

Stochastic
solver

w(t) ΔwDelay
Δt

tpre

w(t)
Δw

c(t)

Figure 2: Classical spike-timing dependent plasticity (STDP), spike-driven homeostasis,
and calcium-driven synaptic plasticity in Arbor. Arbor implementations (in lighter blue) are
cross-validated by comparison to Brian 2 or a custom simulator (in orange). New features of the Arbor
core code are highlighted in italic. (a) STDP paradigm where two Poisson spike sources stimulate
an excitatory and an inhibitory synapse connecting to a single neuron (spikes shown in blue and red,
respectively). The excitatory connection undergoes STDP (results shown in (c)). Image of dice from
Karen Arnold/publicdomainpictures.net. (b) STDP paradigm where two regular spike trains, phase-
shifted by delay ∆t, drive the weight dynamics of a single synapse (results shown in (d)). (c) Strength
of the excitatory synapse, subject to STDP, as shown in (a) (goodness of fit between Arbor and Brian
2: CV > 0.999, RMSE = 1.064 µS). (d) Classical STDP curve, obtained as detailed in (b) (CV > 0.999,
RMSE = 0.001 µS). (e) Homeostasis with two Poisson spike sources connected to an LIF neuron via
current-based delta synapses (results shown in (g–i), averaged over 50 trials). One of these Poisson
inputs spikes at a fixed rate and is plastic, while the other spikes at a varying rate and is static.

10



Figure 2 (previous page): (f) Paradigm of calcium-based, spike-timing- and rate-dependent synaptic
plasticity, using the model by Graupner & Brunel [20]. Two regular spike trains, phase-shifted by delay
∆t, drive the stochastic weight dynamics of a single synapse (results shown in (j)). (g) Time course
of the varying rate of the input in (e). (h) Strength of the plastic synapse, subject to the dynamics
given in (e) (CV = 0.996, RMSE = 0.307 nA). (i) Firing rate of the neuron shown in (e) in the presence
of homeostatic plasticity dynamics (CV = 0.508, RMSE = 1.981Hz). (j) Calcium-driven synaptic
plasticity as shown in (f). Reproduction of the numerical DP curve from Figure 2 of the related paper
[20] (the mean is given by the dashed orange line). Every synapse is subject to 60 spike pairs presented at
1Hz. Arbor results were averaged over 4000 trials, the solid blue line indicates the mean and the shaded
region the 95% confidence interval. Quantification of deviation between the mean curves: CV = 0.987,
RMSE = 0.123. Note that the generation of this plot is now also demonstrated in an Arbor tutorial [36].

3.2 Spike-driven homeostatic plasticity

After implementing an STDP rule at a single synapse, we now consider a type of synaptic
plasticity that depends on multiple presynaptic inputs onto the same postsynaptic neuron.

Spike-based homeostatic plasticity describes the finding that the strength of a synapse adapts
according to the spiking activity of the postsynaptic neuron – hence, the synaptic strength is
up- or downregulated to maintain a certain activity of the neuron (cf. [37]). By using the
newly implemented POST_EVENT hook (introduced in subsection 2.1), we could employ Arbor to
simulate spike-driven homeostasis. To show this, we connect (similar to [38]) an LIF neuron to
two Poisson-stimulus inputs – one with a varying spike rate and the other with a fixed spike
rate. The weight of the synapse for the varying-rate input is kept static, while the weight of the
synapse for the fixed-rate input is plastic. The plasticity of the latter synapse should cause the
neuron, in a homeostatic manner, to maintain a firing rate that is determined by the parameters
of the plasticity rule. This is realized by the following weight dynamics for the plastic synapse:

dw(t)

dt
= ∆w+ ·

∑
n

δ(t− tnpre) + ∆w− ·
∑
m

δ(t− tmpost), (9)

where the constants ∆w+ and ∆w− describe the weight changes upon the occurrence of pre- and
postsynaptic spikes at times tnpre and tmpost (n,m ∈ N). The weight is initialized at value winit

(see Table 2).
The resulting weight and firing rate dynamics, along with the varying input rate, are shown

in Fig. 2g-i and Supplementary Fig. S1e. We can see that in the case with homeostasis, the
resulting firing rate is maintained at values around 50Hz (Fig. 2i), while in the case without
homeostasis (Supplementary Fig. S1e), the resulting firing rate is mainly imposed by the input
rate. Note that for the time period with input rate 0 (from t = 20 s to 30 s), the homeostatic
weight adjustment can only happen to a limited extent since we do not allow the weights to
increase beyond wmax. We cross-validated our Arbor implementation with Brian 2, drawing
from an existing example implementation [39].

3.3 Calcium-based synaptic plasticity

Following the implementation of a simple phenomenological STDP rule (subsection 3.1) as well
as spike-driven homeostatic plasticity (subsection 3.2), we now consider a more complex rule of
synaptic plasticity that requires multiple postsynaptic variables. This rule describes the potenti-
ation and depression of synaptic strength depending on the postsynaptic calcium concentration,

11



Symbol Value Description Refs.

winit 0.00 nA Baseline weight of the plastic (fixed-rate
input) synapse

[38]

wmax 5.00 nA Maximum weight of the plastic (fixed-rate
input) synapse

[38]

∆w+ 0.35 nA Weight change due to presynaptic spike [38]

∆w− −0.35 nA Weight change due to postsynaptic spike [38]

wvarying 3.50 nA Weight of the varying-rate input synapse [38]

Table 2: Parameters for the homeostatic plasticity model.

which is driven by pre- and postsynaptic spiking activity. It was presented by Graupner and
Brunel in 2012 [20] and has since been used widely. In comparison to the phenomenological
STDP rule, the calcium-based rule adapts the synaptic weight dynamics to depend on spike
timing and spike rates, both of which have been shown to be important features of long-term
synaptic plasticity [40].

The change of the synaptic weight in this model is given by the following equation:

τw
dwji(t)

dt
=− wji(t) · (1− wji(t)) · (w∗ − wji(t))

+ γp · (1− wji(t)) ·Θ [cji(t)− θp]

− γd · wji(t) ·Θ [cji(t)− θd]

+ ξ(t), (10)

where τw is a time constant, w∗ defines the boundary between the basins of attraction for poten-
tiation and depression, γp and γd are the potentiation and depression rates, cji(t) is the calcium
concentration at the postsynaptic site, and θp and θd are thresholds for triggering potentiation
and depression, respectively. Moreover, Θ[·] denotes the Heaviside theta function, and

ξ(t) =
√
τw (Θ [c(t)− θp] + Θ [c(t)− θd]) · σpl · Γ(t) (11)

is a noise term with scaling factor σpl and Gaussian white noise Γ(t), which has a mean value
of zero and a variance of 1/dt (cf. [41]). Note that to implement the noise term, support for
stochastic differential equations was needed, which we have added to the Arbor core code as
described above in subsection 2.3.

Finally, the dynamics of the calcium concentration is given by the following equation:

dc(t)

dt
= −c(t)

τc
+ cpre ·

∑
n

δ(t− tnpre − tc,delay) + cpost ·
∑
m

δ(t− tmpost), (12)

where τc is a time constant, cpre and cpost are increases in the intracellular calcium concentration
of the dendritic spine induced by pre- and postsynaptic spikes at times tnpre and tmpost, tc,delay is
the delay of the presynaptic contributions, and δ(·) is the Dirac delta distribution.

Fig. 2j shows the results of our Arbor implementation for the weight change over the delay
between pre-and postsynaptic spikes (analogously to Fig. 2d), cross-validated with the numerical
results by the original study [20].

12



Symbol Value Description Refs.

w0 0.0 or 1.0 Initial value of the synaptic weight (drawn
randomly)

This study

w∗ 0.5 Boundary between the basins of attraction
for potentiation and depression

[20]

tc,delay 13.7ms Delay of postsynaptic calcium influx after
presynaptic spike

[20]

cpre 1 Presynaptic calcium contribution, in vivo
adjusted

[20]

cpost 2 Postsynaptic calcium contribution, in vivo
adjusted

[20]

τc 20ms Calcium time constant [20]

τw 150 s Weight dynamics time constant [20]

γp 321.808 Potentiation rate [20]

γd 200 Depression rate [20]

θp 1.3 Calcium threshold for potentiation [20]

θd 1 Calcium threshold for depression [20]

σpl 2.8248 Standard deviation for plasticity fluctua-
tions

[20]

Table 3: Parameters for the implementation of the calcium-based plasticity model by Graupner &
Brunel [20]. Note that as in the original mathematical model, the weights are kept without physical
unit.

3.4 Heterosynaptic calcium-based plasticity in dendrites

As a next step, we use a calcium-based plasticity rule slightly different to the one in the previous
subsection, with the aim to simulate the spread of calcium in a dendritic branch, which enables
us to model heterosynaptic plasticity. This model serves as an example of our diffusion extension
for the Arbor core code, which has been described in subsection 2.4.

Homosynaptic plasticity and heterosynaptic plasticity are two forms of plasticity that play
crucial roles in shaping neural connections. Homosynaptic plasticity involves changes within a
specific neural pathway or synapse in response to repeated stimulation or learning, leading to
the strengthening or weakening of that connection depending on factors such as frequency or
duration of stimulation. On the other hand, heterosynaptic plasticity is a broader phenomenon
where stimulation of one synapse induces changes in other, unstimulated synapses. Here, we
consider a calcium-based heterosynaptic plasticity rule [21] that is based on observations at the
level of a single neuron [20, 42].

Dendrites are crucial components for the information processing in neurons, as they receive
signals from other neurons and integrate them to generate a particular response. Spiny structures
on the dendrites can serve to receive synaptic inputs and at the same time undergo plastic changes
[43]. Here, we consider a model that describes a number of such spines on a single dendritic
branch [44]. The state and strength of these spines are subject to the previously mentioned
calcium-based plasticity rule [21]. We describe the synaptic input to a specific spine via

ICa
spine(x, ti) =

∑
i

I0 · e−(t−ti)/τI ·Θ(t− ti), (13)

which induces an elevated level of calcium at the target spine via monoexponential contribu-
tions with amplitude I0 and time constant τI . However, due to the calcium diffusion dynamics in

13



our system, other unstimulated and inactive spines will also experience changes in their calcium
level. These changes depend on the spine location with respect to the stimulated spine(s) as well
as the temporal characteristics of the stimulation (i.e., frequency, duration, and delay). In our
simulations, pre-synaptic spike events arrive at active spines at times ti as a regular spike train
with a time interval of 10ms. Note that we inject synaptic input at the top point of the spine
heads, so the term ICa

spine(x, ti) is zero for all other regions (in particular, the dendritic shaft).
The calcium diffusion in the dendritic branch and in the spines is then described by the following
equation:

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
− C(x, t)

τC
+ wi · ICa

spine(x, ti), (14)

where C(x, t) is the calcium concentration, D is the diffusion constant, and τC is the calcium
decay time constant. The synaptic strength is computed as outlined below:

dwi(t)

dt
=(1− wi(t)) · γp ·Θ [C(t)− θp]

− wi(t) · γd ·Θ [C(t)− θd] , (15)

where wi is the synaptic weight of spine i, the constants γp and γd quantify the rate of synaptic
strengthening or weakening during potentiation and depression, and θp and θd are the calcium
threshold values for triggering potentiation and depression, respectively.

The dendritic branch in our model includes four spines, each with head segments, as shown
in Fig. 3a. Synaptic inputs are applied to spines 1 and 3, which increases the level of calcium in
these spines. Next, by means of diffusion, the level of calcium in spines 2 and 4 increases as well
(Fig. 3c). This causes the synaptic weight at these spines to change in a manner that depends on
the spatial proximity to the active spines. Fig. 3d shows that spine 2 undergoes heterosynaptic
potentiation as a result of its proximity to the active spines 1 and 3, whereas spine 4 undergoes
heterosynaptic depression due to its remote location and consequently lower levels of calcium.
The Arbor results are cross-validated with a custom stand-alone simulator written in Python
[45].

Although the results from both simulators match very well, there is a specific difference
between the models that should be mentioned. Namely, the two implementations use different
models of the diffusion dynamics with respect to the spine. The custom simulation code utilizes
a diffusion equation for the dendrite based on a model by [50], and a time-dependent ordinary
differential equation for the spine. Thereby, it does not consider spatial diffusion between spine
and dendrite but instead features rate factors that govern calcium exchange between the two
segments. In contrast to that, Arbor considers diffusion throughout the whole morphological
structure, including the spines. The custom code, however, incorporates distinct influx and
outflux coefficients inspired by [50] and [54]. To maintain consistency, we neglected the possibility
of different rates in the custom code and used a unified rate for the diffusion between the dendrite
and the spines. Accordingly, we needed to adjust the amplitude of the injected current in the
custom code to align with Arbor (cf. Table 4).

3.5 Synaptic tagging and capture, in individual synapses and in net-
works of single-compartment neurons

The early and late phase, i.e., the induction and maintenance, of long-term synaptic plasticity are
described by the so-called synaptic tagging and capture (STC) hypothesis [55, 56]. As a next step
for our modeling demonstrations, we reproduce the results of standard protocols eliciting early-

14



Symbol Value Description Refs.

γp 90 Potentiation rate This study

γd 0.01 Depression rate This study

θp 0.11µmol/l Calcium threshold for potentiation This study

θd 0.05µmol/l Calcium threshold for depression This study

rhead 1.0 µm Spine head radius [46]

lhead 1.0 µm Spine head length [46]

rdendrite 1.0 µm Dendrite radius [46]

ldendrite 80.0µm Dendrite length This study

∆lcomp 1.0 µm Length of one compartment This study

τC 100ms Calcium decay time constant [47]

τI 1ms Injection current time constant [48, 49]

γ 0.11 Fraction of current carried by Ca2+ [50]

I0 4.0 pA Injection current (Arbor implementation) [50]

I0 5.5 pA Injection current (stand-alone implemen-
tation)

[50]

D 2.2 · 10−10 m2/s Calcium diffusion constant [51, 52, 50]

Table 4: Parameters for the calcium-based heterosynaptic plasticity model (also cf. Fig. 3). Note that
the injection current amplitude I0 varies across implementations due to the differences mentioned in the
main text.

and late-phase plasticity at a single nerve fiber or single synapse (cf. the experimental results
in [57]). To achieve this, we implemented the complex theoretical model from [22] in Arbor,
requiring all of the new core components that we introduced in section 2. We cross-validated
our Arbor implementation by comparing its results to results from a stand-alone simulator for
synaptic memory consolidation written in C++ [58] that was custom-developed and used in the
scope of several previous studies [22, 59, 60, 61]. Note that since the stand-alone simulator
considers idealized point-neuron dynamics, we also implemented an approximate point neuron
in Arbor, by integration of the current flow over the surface of a very small cylinder (cf. Table
5).

In the following, we provide the mathematical description of the used plasticity model. The
parameter values can be found in Table 5. For the other parts of the model, please refer to
the code or the original studies [22, 61]. Also note that a UML sequence diagram of the model
implementation is provided in Supplementary Fig. S5.

The total synaptic weight
w = h+ h0 · z (16)

consists of two variable contributions, accounting for the two-phase nature of STC mechanisms.
The first contribution is given by the early-phase weight h, while the second one is the late-phase
weight z. The factor h0 is used to normalize z such that it has the same dimension as h. The
early-phase weight is described by the following differential equation:

τh
dh(t)

dt
= 0.1 (h0 − h(t)) + γp · (10mV− h(t)) ·Θ [c(t)− θp]

−γd · h(t) ·Θ [c(t)− θd] + ξ(t), (17)

where τh is a time constant, γp is the potentiation rate, γd is the depression rate, and c(t) is
the calcium concentration at the postsynaptic site. Finally, ξ(t) constitutes a noise term that
depends on the occurrence of potentiation or depression:

15



Arbor
Stand-alone

C
a
lc

iu
m

 c
o
n
ce

n
tr

a
ti

o
n
 (

µ
m

o
l/
l)

Time (ms)

S
y
n
a
p

ti
c 

w
e
ig

h
t 

LTP threshold
LTD threshold

Spine1

Spine2

Dend1

Dend2

1 2 3 4

Dend3

Spine4

Spine3

0
0.1

0.2

0.3

0
0.1

0.2

0.3

0
0.1

0.2

0.3

0
0.1

0.2

0.3

0
0.1

0.2

0.3

0
0.1

0.2

0.3

0
0.1

0.2

0.3

c

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0

Spines:

21 3

Dendritic segments

ba

d

Eqs. 13-15
Calcium-based plasticity

w(t) Δw

tpre
C(t)

Stochastic
solver

Diffusion
solver

Spine4

Time (ms)

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0

Time (ms)

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0

0.0

0.5

1.0

Spine3
0.0

0.5

1.0

Spine2
0.0

0.5

1.0

Spine1
Arbor
Stand-alone

0.0

0.5

1.0

Time (ms)

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0

Time (ms)

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0

Figure 3: Calcium-driven heterosynaptic plasticity in four spines on a dendritic branch.
Calcium is first introduced in spines 1 and 3 through synaptic input. Subsequently, calcium spatially dis-
tributes across the dendrite (according to Eq. 14), which influences synaptic plasticity at other synapses,
promoting either depression or potentiation. (a) Illustration generated using Arbor GUI [53]. Each seg-
ment is represented by a different color, and a segment can consist of multiple compartments. Spines
1–4 are located at x = −1.0, 0.0, 1.0, 3.0µm, respectively. For the purpose of visualization, the morphol-
ogy has been clipped at −10µm and +10 µm, before scaling the dendrite along the x-axis by 2. (b)
Paradigm of synaptic plasticity that depends on a spike-timing- and rate-dependent, diffusive calcium
concentration (cf. [44]). Regular spike trains induce calcium injection in specific spines, eventually lead-
ing to weight changes (results shown in (c–d)). New features of the Arbor core code are highlighted
in italic. (c) The change in the calcium level of each spine, and of the dendritic segments in between,
in response to the stimulation to spines 1 and 3. Quantification of deviation between the simulators
given by (CV,RMSE): spine 1: (0.991, 0.005µmol/l); spine 2: (0.998, 0.002 µmol/l); spine 3: (0.989,
0.005 µmol/l); spine 4: (0.967, 0.004 µmol/l; dendrite location 1: (0.998, 0.002 µmol/l); dendrite loca-
tion 2: (0.998, 0.002 µmol/l); dendrite location 3: (0.998, 0.003 µmol/l)). (d) Synaptic weight changes,
which follow the calcium level of the spines. Spines 1–3 undergo synaptic potentiation (elevated synap-
tic weights), while spine 4 undergoes depression (reduced synaptic weight). Quantification of deviation
between the simulators (CV,RMSE): spine 1: (0.982, 0.015); spine 2: (0.993, 0.014); spine 3: (0.981,
0.016); spine 4: (0.996, 0.003).

16



ξ(t) =
√
τh (Θ [c(t)− θp] + Θ [c(t)− θd]) · σpl · Γ(t) (18)

with scaling factor σpl and Gaussian white noise Γ(t) (which has a mean value of zero and a
variance of 1/dt [41]). Note that this calcium-driven model of early-phase plasticity is based on
the model by Graupner & Brunel [20], which we considered in subsection 3.3. Adaptations by
[62] and [22] have enabled the model to be compatible with synaptic tagging and capture models
(also see [60, 63]). As in the original model (cf. Eq. 12), the calcium concentration depends on
pre- and postsynaptic spikes at times tnpre and tmpost, and is described by the following equation:

dc(t)

dt
= −c(t)

τc
+ cpre ·

∑
n

δ(t− tnpre − tc,delay) + cpost ·
∑
m

δ(t− tmpost), (19)

where τc is a time constant, cpre and cpost are the spike-induced increases in the calcium con-
centration, tc,delay is the delay of the presynaptic contributions, and δ(·) is the Dirac delta
distribution. Note that calcium does not have a particular dimension here since it is only con-
sidered in the point-approximated synapses. The late-phase synaptic weight, which depends on
the early-phase weight h(t), is given by [62]:

τz
dz(t)

dt
= p(t) · fint · (1− z(t)) ·Θ [(h(t)− h0)− θtag]

− p(t) · fint · (z + 0.5) ·Θ [(h0 − h(t))− θtag] , (20)

where τz is a time constant, p(t) is the concentration of plasticity-related products or proteins
(PRPs), fint accounts for the integration of PRPs into the synaptic structure, and θtag is the tag-
ging threshold. The synapse is considered tagged if the change in early-phase weight |h(t)− h0|
exceeds the tagging threshold. Late-phase potentiation or depression occurs when the synapse
is both tagged and PRPs are abundant (p(t) > 0). The synthesis of PRPs depends on another
threshold crossing and is described by [64, 62, 22]:

τp
dp(t)

dt
= −p(t) + pmax ·Θ

[( ∑
synapses

|h(t)− h0|

)
− θpro

]
(21)

with time constant τp, the PRP synthesis threshold θpro, and the PRP synthesis scaling
constant pmax. Note that for a single synapse, the sum in the threshold condition reduces to the
early-phase weight change of that individual synapse only.

As a first step for our model implementation, we considered basic dynamics of a single synapse
with early-phase plasticity, and compared the results from Arbor and from the stand-alone
simulator. The resulting curves match very well, as shown in Fig. 4c,e,g (also see Supplementary
Fig. S2). To rule out any significant deviations that might be caused by the different numerical
methods used by the two simulators, we further checked the validity of both approaches by
comparing to a Brian 2 implementation (see Supplementary Fig. S3; since Brian 2 comes with
a Heun solver, which can solve stochastic differential equations that contain multiplicative noise
with very high precision, it can provide a benchmark for the accuracy of other simulations).

Next, we considered basic dynamics of a single synapse with late-phase plasticity, which is
shown in Fig. 4d,f. Under continuous strong stimulation, the early-phase weight reaches its
maximum after some time, and the late-phase weight subsequently converges to roughly the
same value. Eventually, the early-phase weight decays. Again, we compared the results that
we obtained from our Arbor implementation with the stand-alone simulator, finding the curves

17



to match very well. In addition, we compared to Brian 2 again, which also shows a very good
match (shown in Supplementary Fig. S3).

Following the implementation of the basic dynamics of early- and late-phase synaptic plas-
ticity, we used Arbor to reproduce the outcome of experimental standard protocols for early-
and late-phase plasticity. Again, our results obtained with Arbor are in agreement with the
results from the stand-alone simulator (see Supplementary Fig. S6). In summary, by matching
the aforementioned results, we could prove the validity of our Arbor model implementation (as
well as the validity of the stand-alone and Brian 2 implementations [58, 65]) with respect to the
simulation of early- and late-phase synaptic plasticity.

Next, as a major test for the newly implemented plasticity functionality in Arbor, we employed
a recurrent spiking neural network model comprising plastic synapses (which had before been
used in [22]). The network consists of 2000 single-compartment neurons that exhibit synaptic
connections with a probability of 0.1. A fraction of 1600 of these neurons are excitatory. The
synapses within this excitatory population are plastic and follow the model that we considered
above (Eqs. 16–21). The remaining neurons are inhibitory and connected via static synapses.
See Supplementary Fig. S4 for cross-validation plots of the resulting spike transmission.

Using this network model, we aimed to simulate the ‘10s-recall’ and ‘8h-recall’ paradigms that
had been investigated in [22]. These paradigms comprise the formation of a cell assembly that
retains the memory of a given learning stimulus, and the recall of this memory upon stimulation
of half of the original neurons either 10 s or 8 h later. Here, we chose groups of 100, 150, 200,
or 250 neurons receiving the learning stimulus to form the ‘core’ of the learned cell assembly.
Subsequently, this cell assembly could become consolidated by the synaptic tagging and capture
mechanisms, which we tested via recall stimulation after 8 h. Simulating such long biological
time spans in reasonable compute time required us to implement a ‘fast-forward’ computation
mechanism for phases of slow network dynamics. For this, we first implemented a state-saving
mechanism, which enables to stop the Arbor simulation at an arbitrary point, save the synaptic
weights and PRP concentrations, and then set up a new Arbor recipe with the previous state
(note that Arbor already provides a checkpointing feature, but this does not go as far as to enable
changing parts of the recipe). The simulation is then continued with long timesteps for the slow
network dynamics without considering spiking and calcium dynamics, which results in much
shorter compute time (also cf. runtime results in subsection 3.7 and Supplementary Fig. S13).
Finally, before performing memory recall, the compute mode is switched again to simulate the
network dynamics in full detail. Note that a similar approach had previously been taken with
the stand-alone simulator [22, 63].

For the plasticity dynamics, we followed the formulation presented above (Eqs. 16–21), but
since the considered neurons did now hold multiple synapses, an adaptation of the technical
implementation became necessary to simulate global PRP dynamics. Specifically, we could no
longer compute the PRP dynamics in the NMODL mechanisms of the synapses (cf. the code
in [66] and [67]). Instead, we had to compute the weight change sum from Eq. 21 in the soma.
For this, we needed to model the signaling of the weight changes from the synapses to the soma.
We did this by implementing a putative substance that diffuses across the compartments of the
neuron. We call this substance the ‘signal triggering PRP synthesis’ (SPS). In the case of a
single-compartment neuron, naturally, the SPS reaches the soma instantaneously (the multi-
compartment case is considered in subsection 3.6). In every timestep, the amount of SPS is
compared against the threshold θpro (cf. Eq. 21), letting PRP synthesis take place as long as
the threshold is crossed. Subsequently, produced PRPs diffuse across the neuron to reach the
synapses, where they can give rise to late-phase weight changes.

Finally, to measure the performance in recalling the input pattern defined by the learning
stimulus, we use the following quantity [22]:

18



Q :=
ν̄ans − ν̄ctrl

ν̄as
. (22)

For this, the population of excitatory neurons is divided into three subpopulations: assembly
neurons that are stimulated by both recall and learning stimulus (‘as’), assembly neurons that
are not stimulated by recall but were stimulated by learning stimulus (‘ans’), and control neurons
that are stimulated by neither recall nor learning stimulus (‘ctrl’). The mean firing rates in the
three subpopulations upon 10s- and 8h-recall, computed using time windows of 0.5 s centered
at trecall = 20.1 s and trecall = 28810.1 s, are denoted by ν̄as, ν̄ans, and ν̄ctrl, respectively. Thus,
values of Q > 0 indicate that the pattern is successfully recalled.

The qualitative reproduction of the results from [22] with our Arbor implementation is shown
in Figure 4h (also cf. Supplementary Fig. S10). While we previously found that elementary
dynamics of the used plasticity rule match very well for Arbor, the stand-alone simulator, and
Brian 2 (Fig. 4c–g and Supplementary Figs. S2–S4), the behavior of the full network can not be
reproduced in full detail. We attribute this to three factors: First, the different simulators use
different numerical solving methods. Second, the neurons in the stand-alone simulator and in
Brian 2 are actual point neurons, whereas in Arbor we only consider approximate point neurons,
which are described by a very small but finite-sized cylinder. And finally, the high complexity
of the network dynamics further amplifies the existing differences between the simulators. Thus,
although the qualitative behavior is maintained, not all quantitative deviations can be eliminated.

3.6 Synaptic memory consolidation in networks of morphological neu-
rons

Now, we are finally going to demonstrate how we can exploit Arbor’s capabilities to simulate
networks of multi-compartment neurons with synaptic plasticity. To this end, we extend the size
of the cylindrical compartment considered in the previous subsection, split it into two cylinders,
add to their middle a compartment for PRP synthesis, and use this as the soma (see Fig. 5a,b).
We further add two cylinders to represent dendritic branches – one to account for an apical
dendrite and one to account for basal dendrites. These branches will have synapses at their tips
and are meant to approximate the impact of apical and basal dendritic input onto the soma.
The parameters of the morphology are given in Table 6. For simplification, all compartments
have the same diameter, and we chose the diameter value to yield biologically realistic functional
dynamics (cf. [70, 71]).

The network is structured such that the apical dendrites receive external input, while the basal
dendrites account for the recurrent connectivity of the excitatory neurons within the simulated
network. This is grounded by findings on the neocortical layer structure of the neocortex, where
basal dendrites receive the inputs from within a layer and apical dendrites receive inputs from
other layers [72, 73]. Finally, the inhibitory neurons form connections directly onto the soma. To
account for the propagation of excitatory postsynaptic potentials along the morphology of the
basal dendrites, we introduced a correction factor cmorpho. Note that otherwise, the electrical
properties of the neurons are the same as in the single-compartment case presented in the previous
subsection 3.5.

To implement the plasticity dynamics, as in the previous subsection, we use again a putative
SPS substance that diffuses from the synapses across the whole neuron with the purpose to
signal weight changes to the soma. For the sake of simplicity, we assume that the diffusion
of the SPS towards the soma happens very fast, with a diffusivity of Dsps = 10−11 m2/s. In
every timestep, we compare the concentration of the SPS in the center of the soma against a
PRP synthesis threshold (cf. Eq. 21). PRP synthesis will take place as long as the threshold is

19



Symbol Value Description Refs.

h0 4.20075mV
= 0.5

γp

γp+γd

Baseline value of the
excitatory→excitatory coupling strength

[20, 62, 22]

tc,delay 0.0188 s Delay of postsynaptic calcium influx after
presynaptic spike

[20, 62, 22]

cpre 1.0 (0.6) Presynaptic calcium contribution (in vivo
adjusted)

[20, 62, 68, 22]

cpost 0.2758 (0.1655) Postsynaptic calcium contribution (in vivo
adjusted)

[20, 62, 68, 22]

τc 0.0488 s Calcium time constant [20, 62, 22]

τh 688.4 s Early-phase time constant [20, 62, 22]

τp 60min PRP time constant [64, 62, 22]

τz 60min Late-phase time constant [64, 62, 22]

γp 1645.6 Potentiation rate [20, 62, 22]

γd 313.1 Depression rate [20, 62, 22]

θp 3.0 Calcium threshold for potentiation [62, 22]

θd 1.2 Calcium threshold for depression [62, 22]

σpl 2.90436mV Standard deviation for plasticity fluctua-
tions

[20, 62, 22]

pmax 10.0 µmol/l PRP synthesis scaling constant (equilib-
rium PRP concentration under ongoing
PRP synthesis)

[64, 62, 22]

θpro 2.10037mV
= 0.5h0

PRP synthesis threshold [62, 22]

θtag 0.840149mV
= 0.2h0

Tagging threshold [62, 22]

fint 0.1 l/µmol Late-phase factor accounting for PRP in-
tegration into the synapse

This study

rcomp 1·10−3 µm Radius of the single-compartment cell This study

lcell 2·10−3 µm Length of the single-compartment cell This study

Table 5: Parameters for the model with calcium-based early-phase plasticity and STC-based late-phase
plasticity based on [62] and [22]. The calcium concentration in this model is a dimensionless quantity
since it is only considered in the synapses (see main text). We use parameters for the calcium-based early-
phase model that were fitted on hippocampal slice data [69, 20]. For networks, the calcium contribution
parameters are corrected by a factor of 0.6 to account for in vivo conditions (cf. [68]).

crossed. Howsoever, note that here we compare to the concentration and not to the amount of
SPS. This enables a more efficient NMODL implementation, but requires the renormalization of
the threshold parameter by scaling it with the total volume of the neuron:

θ∗pro =
θpro
Vtot

=
θpro∑
i Vi

, (23)

where Vi are the volumes of the individual compartments (the neurons used here comprise up
to 48 compartments). Also note that unless the diffusion happens instantaneously, in the multi-
compartment case, the SPS concentration measured in the soma will never perfectly reflect the
total amount of SPS in the whole neuron, which constitutes an essential difference to the single-
compartment case.

For the diffusion of PRPs within the simulated neurons, we again use the same mechanism as

20



described in the previous subsection 3.5. However, here we simulate ‘real’ diffusion across a spa-
tial morphology structure (cf. Eq. 5), for which we decided to consider three diffusivity values (see
Fig. 5f–h,j–l). For the fastest considered diffusion (Dp = 10−11 m2/s), the PRPs reach all parts
of the neuron almost instantaneously, such that there is no difference to a single-compartment
model in this respect (cf. the distribution of PRPs in Supplementary Fig. S8). However, al-
though we adjusted the cmorpho parameter for the postsynaptic potentials to match those in the
single-compartment paradigm, the electrical properties of the morphological structure show to
have an impact on the firing rate of the neurons. This is demonstrated by the results for single-
and multi-compartment neurons on memory recall after 10 seconds, which naturally does not
depend on PRPs (Figs. 4h and 5e,i). On the other hand, considering the long-term dynamics
with very slow diffusion (Dp = 10−19 m2/s), the PRPs will not reach the target synapses within
the time window of the synaptic tag and thus cannot elicit late-phase plasticity. For moderate
diffusion values (Dp = 10−15 m2/s), PRPs reach the synapses after a certain time that arises
from a complex interplay between synapses, soma, and dendrites (see the spatial distribution in
Supplementary Fig. S9). These dynamics still enable functional memory recall and can serve
to regulate the late-phase maintenance of synaptic changes. For increased size of the dendrites,
however, the memory recall performance tends to become worse (see Fig. 5f–h,j–l; also cf. the
results for the mutual information in Supplementary Fig. S11). Interestingly, increasing the size
of the neurons (measured by the diameter of the soma and dendrites) has a converse effect: the
memory recall is improved (Fig. 5j–l).

Although our present study has been focused on simulation methods, these last findings may
provide interesting insights into the role of neuronal structure and dynamics for cognitive func-
tionality at the network level. As the presented results show, Arbor enables to seamlessly move
from single- to multi-compartment neurons in a complex network model, leaving the remain-
ing parts of the model unchanged. In the future, the framework that we have developed can
be used as a basis for further investigations on neural networks involving diffusion dynamics in
multi-compartment neurons.

21



Paradigm Symbol Value Description Refs.

(Any) ∆lcomp 1.0 µm Length of one compartment This study

Small cells

rcomp 6.0 µm Effective radius of a compartment (used for
dendrites as well as soma)

[70, 74, 75, 71]

lsoma 12.0 µm Length of the soma [70, 74, 75]

Large cells
rcomp 12.0 µm Effective radius of a compartment (used for

dendrites as well as soma)
[70, 74, 75, 71]

lsoma 24.0 µm Length of the soma [70, 74, 75]

Small den-
drites

ldendriteA 12.5 µm Length of apical dendritic branch [76, 74, 71]
ldendriteB 5.0 µm Length of basal dendritic branch [76, 74, 71]
cmorpho 1.035 Correction factor for the altered impact

of postsynaptic potentials due to the mor-
phology

This study (refer-
ring to model in
[22])

Large den-
drites

ldendriteA 25.0 µm Length of apical dendritic branch [76, 74, 71]
ldendriteB 10.0 µm Length of basal dendritic branch [76, 74, 71]
cmorpho 1.020 Correction factor for the altered impact

of postsynaptic potentials due to the mor-
phology

This study (refer-
ring to model in
[22])

Table 6: Cell morphology parameters for the network simulations of memory formation and consolidation
with morphological neurons (subsection 3.6). We investigated each combination of the cell and dendrite
sizes. The values are chosen to approximate the effective functional dynamics that arise from the
structures of real neurons (essentially, pyramidal cells) in hippocampus or neocortex. See the main
text for more details.

22



Inhibition

Excitation

Input

Single-compartment, close to point, r=1 nm

Cell assembly

c

e

g

104

4

0

1

2

3

C
a
lc

iu
m

 c
o
n
ce

n
tr

a
ti

o
n

(n
o
rm

a
liz

e
d

)

-63.0

-65.0

-64.5

-64.0

-63.5

M
e
m

b
ra

n
e
 

p
o
te

n
ti

a
l 
(m

V
)

0 25 50 75 100 125 150 175 200

Time (ms)

0 25 50 75 100 125 150 175 200
Time (ms)

99

100

101

102

103

E
a
rl

y-
p

h
a
se

sy
n
a
p

ti
c 

w
e
ig

h
t 

(%
)

f

d

a b

h

200

100

140

120

160

180

S
y
n
a
p

ti
c 

w
e
ig

h
t 

(%
)

8

10

0

2

4

6

P
R

P
 c

o
n
ce

n
tr

a
ti

o
n

(µ
m

o
l/
l)

Single spikes Persistent spiking

Network receiving learning & recall stimulation

Arbor
Stand-alone
LTP threshold
LTD threshold

Arbor
Stand-alone

Arbor
Stand-alone Arbor (Early) 

Stand-alone (Early) 

Arbor (Late)

Stand-alone (Late) 

Arbor
Stand-alone

Pa
tt

e
rn

 c
o
m

p
le

ti
o
n

co
e
ffi

ci
e
n
t 

Q

0.00

0.01

0.02

0.03

0.04

0.05

Time (h)
0 1 2 3 4 5 6 7 8

100 150 200 250

Pattern size (#cells)

10s-recall
8h-recall

Δh
c(t),p(t)

Δz

Eqs. 16-21
Two-phase plasticity

Σ

+

w(t)

h(t)

z(t)

tpre Post-event
hook

tpost

Stochastic
solver

Diffusion
solver

Multi-variable
policy

Figure 4: Basic early- and late-phase plasticity with synaptic tagging and capture (STC),
cross-validated with stand-alone simulator, and memory recall performance with single-
compartment model. (a) Paradigm of two-phase synaptic plasticity with calcium-based early phase
and late phase described by synaptic tagging and capture (see [22]). Specific spiking input drives the
weight dynamics, which further depend on stochastic dynamics and diffusion of PRP (results shown in
(c–g)). New features of the Arbor core code are highlighted in italic. (b) Fraction of a neuronal network
consisting of excitatory (blue and dark blue circles) and inhibitory neurons (red circles). Following
external input, the synapses between excitatory neurons undergo plastic changes implemented as detailed
in (a), forming a Hebbian cell assembly (related results in (h)). (c) Averaged noisy early-phase synaptic
weight (cf. Eq. 17). The synapse receives spiking input at pre-defined times (indicated by bold gray
arrows). Goodness of fit between the mean curves: CV = 0.999, RMSE = 0.040mV. (d) Limit cases of
early- and late-phase synaptic weight (cf. Eqs. 17 and 20). The presynaptic neuron is stimulated to spike
at maximal rate (indicated by gray bar). The late-phase weight has been shifted for graphical reasons
(cf. Eq. 20; early phase: CV = 0.201, RMSE = 0.226mV; late phase: CV > 0.999, RMSE = 0.055mV).
(e) Postsynaptic calcium concentration, successively crossing the thresholds for depression (LTD) and
potentiation (LTP) (cf. Eq. 19; CV > 0.999, RMSE = 0.065). (f) The postsynaptic PRP concentration
rises until it reaches its maximum through the continued stimulation (cf. Eq. 21; CV = 0.998, RMSE =
0.107 µmol/l). (g) Membrane potential of the postsynaptic neuron (CV > 0.999, RMSE = 0.151mV).
Basic early-phase plasticity dynamics (c,e,g): average across 10 batches, each consisting of 100 trials.
Baseline levels are represented by fine, dotted lines. Basic late-phase plasticity dynamics (d,f): average
across 10 batches, each consisting of 10 trials. Noise seeds were drawn independently for each trial.
Results of Arbor are represented by continuous lines, results of the stand-alone simulator [58] by darker,
dashed lines. For each curve, error bands represent the standard error of the mean (mostly too small
to be visible). (f) Memory recall in networks of single-compartment neurons simulated with Arbor
(qualitatively reproducing the point-neuron results of [22]). Pattern completion is measured by the
coefficient Q (see Eq. 22) for stimulated patterns of varied size (a varied number of neurons are stimulated
for learning/recall). Average over 100 network realizations; error bars represent the 95% confidence
interval.

23



Apical segment

Soma, including
 PRP synthesis
 compartment

Basal segment

a

Inhibition

Excitation

Input

Multi-compartment, r=6-12 µm

Cell assembly

c d

gf h

Pa
tt

e
rn

 c
o
m

p
le

ti
o
n
 c

o
e
ffi

ci
e
n
t 

Q

Recall after 8 hours,
vanishing diffusivity

Recall after 8 hours,
moderate diffusivity

Recall after 8 hours,
maximum diffusivityRecall after 10 seconds

0.016

0.000

0.004

0.008

0.012

e

Pattern size (#cells) Pattern size (#cells) Pattern size (#cells) Pattern size (#cells)

Small dendrites

Large dendrites

kj li

Pa
tt

e
rn

 c
o
m

p
le

ti
o
n
 c

o
e
ffi

ci
e
n
t 

Q

0.016

0.020

0.024

0.028

0.000

0.004

0.008

0.012

Pattern size (#cells) Pattern size (#cells) Pattern size (#cells) Pattern size (#cells)

Small dendrites

Large dendrites

S
m

a
ll 

ce
lls

La
rg

e
 c

e
lls

100 150 200 250 100 150 200 250 100 150 200 250 100 150 200 250

100 150 200 250 100 150 200 250 100 150 200 250 100 150 200 250

b

Apical segment

Soma, including
 PRP synthesis
 compartment

Basal segment

Δh
c(t),p(t)

Δz

Eqs. 16-21
Two-phase plasticity

Σ

+

w(t)

h(t)

z(t)

tpre Post-event
hook

tpost

Stochastic
solver

Diffusion
solver

Multi-variable
policy

Figure 5: Memory recall in a recurrent network of multi-compartment neurons after learn-
ing and after consolidation. Results obtained with Arbor for networks of different kinds of multi-
compartment neurons, demonstrating the impact of different values of the PRP diffusivity Dp on memory
consolidation. Networks consist of ‘small’ cells (diameter of 6µm) or of ‘large’ cells (diameter of 12 µm),
with either small or large dendrites (in which cases each neuron comprises in total 31 or 48 compart-
ments, respectively). The diameter and length values are given in Table 6. (a,b) Illustrations of used
cell structures, generated using Arbor GUI [53]. Each segment is represented by a different color. A
segment can consist of a multitude of compartments. Overlaid with illustrations of more realistic neuron
structures that would have roughly similar functional properties. (a) a small (left) and a large (right)
cell with small dendrites, (b) the same with large dendrites (cf. Table 6). (c) Paradigm of two-phase
synaptic plasticity with calcium-based early phase and late phase described by synaptic tagging and
capture. The impact of the diffusion of PRPs can be examined using different morphological neuron
structures. New features of the Arbor core code are highlighted in italic. (d) Fraction of a neuronal
network consisting of excitatory multi-compartment (blue and dark blue circles) and inhibitory neurons
(red circles). Following external input, the synapses between excitatory neurons undergo plastic changes
implemented as detailed in (c), forming a Hebbian cell assembly (related results in (e–l)).

24



Figure 5 (previous page): (e-h) Memory recall measured by pattern completion coefficient Q (see
Eq. 22) for a stimulated subset of varied size (a varied pattern of neurons are stimulated for learn-
ing/recall). Value Q > 0 indicates the successful recall of a memory representation. Average over 100
network realizations. Error bars represent the 95% confidence interval. (e) Recall stimulation at 10 s
after learning (technically, Dp = 10−11 m2/s, but late-phase plasticity does not occur on such short
timescales). (f) Recall stimulation at 8 h after learning, Dp = 10−11 m2/s. (g) Recall stimulation at 8 h
after learning, Dp = 10−15 m2/s. (h) Recall stimulation at 8 h after learning, Dp = 10−19 m2/s. (i-l)
Same as (e-h), but for large cells that consist of segments of twice the diameter.

3.7 Runtime and memory benchmarking

As a final step, we measure the resources required by Arbor to simulate networks of single- and
multi-compartment neurons in different computing environments. To this end, we consider the
networks of 2000 single- or multi-compartment neurons with the 10s-recall paradigm that we
used before (subsections 3.5 & 3.6). After running these network models with different Arbor
backends on different hardware systems, we compare their runtime and memory use. In the
single-compartment case, we also compare to Brian 2 with cpp standalone device [77, 4] as well
as to the custom stand-alone simulator [58] considered before.

Fig. 6 shows that the point-neuron simulators (Brian 2 and stand-alone) need shorter run-
times and less memory compared to Arbor. This is to be expected: Since point-neuron simulators
consider neurons without any geometrical structure, they theoretically require much less calcu-
lation steps than Arbor, which accounts for at least one finite-size compartment per neuron.
Furthermore, the custom stand-alone simulator is highly optimized for the particular model, and
can therefore be thought to set an upper bound. Nevertheless, we found that Arbor’s capability
of employing GPU hardware can boost its runtime to be even faster than Brian 2 and the cus-
tom simulator (Fig. 6a; comparing the main memory use with the GPU case is not meaningful
since the GPU has its own memory). Another point to be mentioned is Arbor’s support for
single instruction, multiple data (SIMD) vectorization. As shown in Fig. 6a, switching on SIMD
vectorization provides a small but solid improvement in runtime. This comes without any cost
for the end user, given that they have a CPU that supports SIMD, which has been the industry
standard for many years. The only drawback of SIMD usage in Arbor might be its negative
impact on code readability when developing custom mechanism code in C++, which is rather a
niche case.

Importantly, our results show that Arbor allows to shift from single-compartment neurons to
morphological neurons at almost no cost : both the runtime (Fig. 6a) and the memory consump-
tion (Fig. 6b) only increase slightly when shifting from single-compartment neurons to neurons
with 48 compartments. However, it is important to note that the considered multi-compartment
network in general exhibits fewer spikes than the single-compartment version (Supplementary
Fig. S12b; also cf. subsection 3.6). Thus, given that the number of spikes is a critical factor for
the runtime, we checked if the runtime per spike follows as similar trend, and indeed found that
this measure also exhibits a slight increase only (Supplementary Fig. S12a).

Hence, while Arbor performs well in single-compartment neuron simulations, it excels in
multi-compartment neuron models, providing all the necessary functionality to simulate mor-
phological neurons with electrical cable properties and diffusing particles.

Finally, note that we also benchmarked results for 8h-recall simulations in Arbor (Supplemen-
tary Fig. S13). The runtimes of those simulations are much longer than for 10s-recall (cf. Fig. 6).
As we used the ‘fast-forward’ approximation (see subsection 3.5), there are only 10− 20% more
timesteps than in the 10s-recall paradigm, so only a small fraction of the increase in runtime can

25



be attributed to additional timesteps. Instead, we found the longer runtimes to be essentially due
to a large overhead needed for switching between full and fast-forward computation, specifically,
the setting of a large number of probes to store the state of the whole network. To counter this,
in the future, we plan to augment our framework by introducing new mechanisms that serve to
retain the simulation state.

4 Discussion

In this work, we have aimed to demonstrate the versatility of the extended Arbor simulator
in modeling synaptic plasticity mechanisms within large neuronal networks. Specifically, we
considered Arbor implementations of homosynaptic, homeostatic, and heterosynaptic plasticity
mechanisms in different setups. In subsections 3.1 & 3.2, we presented plasticity rules that can
be considered a basis for further spike-based mechanisms of synaptic plasticity. In subsections
3.3–3.5, we considered three different calcium-based rules in different scenarios. The results in
subsection 3.3 constitute a reproduction of a widely-used calcium model that was directly fitted
to experimental data [20]. The results in subsection 3.4 show how a model of calcium diffusion
along dendrites can be employed to simulate heterosynaptic plasticity (cf. [21, 44]). In subsec-
tion 3.5, we used a calcium model as basis for a more complex model that captures early- and
heterosynaptic late-phase plasticity [62, 22, 63]. Finally, we moved to the network level (subsec-
tions 3.5 & 3.6), where we built on the complex two-phase learning rule introduced before. Here,
we first reproduced previous results on memory recall [22] using single-compartment neurons,
and then extended the neurons by additional morphological segments accounting for dendritic
structure. By this, we could demonstrate how (Plastic) Arbor serves to seamlessly gather com-
putational insights into the impact of morphological neuron structures in large networks. In
particular, our results from the multi-compartment model provide new insights showing that
large dendritic structures can have a deteriorating impact on memory function at the network
level, and that the PRP transport velocity in these structures might only play a minor role
(Fig. 5e–h). Furthermore, a large cell diameter can have a converse effect, yielding enhanced
memory recall (Fig. 5i–l).

In the following, we will briefly discuss the pros and cons of the most prominent neural net-
work simulators, and compare their target use cases with Arbor. With its first version released in
the 1980s and widespread usage, NEURON has significantly advanced the understanding of the
brain by facilitating the computational study of complex neuronal processes [71]. Nevertheless, as
mentioned above, its engine under the hood is outdated when it comes to high-performance com-
puting, especially for network simulations involving detailed neuron models. While CoreNEU-
RON [2, 5] constitutes an approach to address this, it has restricted flexibility and usability
due to its dependence on the NEURON environment, and it lacks support for certain important
features of NMODL [78]. Further, GENESIS (GEneral NEural SImulation System) [79] is a
simulator that has also been used widely for several decades, offering a platform for simulat-
ing both small-scale detailed models and large-scale network simulations. However, the use of
GENESIS with respect to modern hardware backends is very limited. Regarding alternatives
that are more focused on point-neuron simulations, NEST (NEural Simulation Tool) is a widely
used simulator designed for large-scale simulations of spiking neural networks. It is particularly
known for its scalability and efficiency in simulating large-scale networks. However, its lack of
support for multi-compartment neurons has been one of the initial reasons to develop Arbor,
which was originally named ‘NestMC’. Brian 2 is another widely used network simulator that
enables the definition of models directly via differential equations [4]. Furthermore, Brian 2 en-
ables high flexibility by generating an intermediate abstract code, processed by so-called device

26



interfaces. This allows to seamlessly exchange the underlying numerical backend architecture.
While Brian 2 does not yet come with comprehensive support for multi-compartment neurons,
a new extension called Dendrify specifically focuses on detailed dendritic morphology and may
provide a valuable tool for the investigation of dendritic processing [80]. CARLsim [81] is another
framework for the parallelized simulation of large-scale spiking neural networks, but it has been
optimized for real-time simulations and neuromorphic hardware implementation. Accordingly,
the single-compartment Izhikevich neuron is the most biologically realistic neuron model that
is supported by CARLsim. Finally, the recently released simulator EDEN [82] appears to offer
high flexibility by supporting NeuroML model descriptions, however, it still lacks support for
GPU backends. As opposed to that, the equally new simulator NeuronGPU [83] is optimized for
neural network simulations on GPU but does currently not support multi-compartment models.

In summary, each of the existing simulators comes with its own strengths and weaknesses
(also see [84, 85, 86]). The decision to use one specific simulator should depend on the particular
needs of a research project, the available compute resources, as well as the expertise of the
involved researchers. For example, Brian 2 can be considered quite user-friendly for quickly
setting up networks of point neurons, NEST exhibits unique performance for very large network
simulations, and for NEURON there are many existing implementations of morphological neuron
models. Arbor, finally, was designed to easily define networks of morphological neurons, and then
to map the internal modeling primitives to available compute resources in an optimized manner.
This focus makes Arbor an attractive option, particularly, for researchers who rely on high-
performance computing for their simulations with networks of morphologically detailed neurons.

We have cross-validated all of our presented Arbor implementations either with Brian 2 [4]
or with one of multiple stand-alone simulators that were custom-developed for previous studies
[20, 58, 45]. At the single-synapse level, we did not find any significant differences between the
results of the simulators (Figs. 2–4; Supplementary Figs. S1–S3). However, certain differences
in the neuron model and in the numerical methods, as well as complex network effects, give rise
to certain quantitative deviations in memory recall performance at the circuit level, while the
qualitative behavior remained the same (Supplementary Fig. S10; also cf. subsection 3.5 and
Supplementary Fig. S4).

Regarding the use of compute resources for a large network with plastic connections, we found
that Arbor performs well both in terms of runtime and memory use. Compared to optimized
point-neuron simulators, Arbor only uses slightly more resources when computing on CPU,
and can even outperform those simulators by computing on GPU (Fig. 6). However, Arbor
particularly shines when it comes to simulating networks of multi-compartment neurons, which
necessitates almost no additional cost compared to single-compartment neurons (shown by the
runtime per spike, Supplementary Fig. S12). This is not entirely unexpected, since Arbor has
been designed particularly for networks of multi-compartment neurons.

The benchmarking results notwithstanding, there may be several ways to further improve
the performance of Arbor. First, to compute the dynamics of given models, Arbor uses implicit
solving methods, which have the advantage of being stable but come at the cost of runtime
performance. In specific cases, these methods may be replaced by faster explicit algorithms.
Kobayashi et al. [87], for instance, have shown how an explicit method with adaptive time
steps and second-order accuracy can serve to avoid heavy memory access, which can be helpful
particularly when using GPUs. Second, the introduction of exact point neurons may eliminate
the need to simulate a spatial neuron model if this is not needed. Note that meanwhile, a LIF
neuron feature has been added to Arbor, although still being in a test stage.

By the final model simulation results that we have presented in Fig. 5, we could gain first new
insights into the functional interplay between, on the one hand, network parameters such as the
size of a stimulated pattern, and on the other hand, PRP diffusion within neurons. Specifically,

27



the results suggest that the functionality of pattern recall is not very sensitive to the diffusion
speed. Nevertheless, if the diffusion is too slow, as expected, all memory functionality will
vanish, which also occurs if the pattern size is too small. Moreover, if we increase the size of
the dendritic branches, the memory recall capability is impaired (Fig. 5f–h), indicating that
additional mechanisms may be needed to obtain a stable memory system. Somehow in contrast
to that, a larger cell and dendrite diameter improves memory recall (Fig. 5j–l). By targeting the
impact that PRP diffusion within neurons has on the dynamics of large networks, our findings
may complement the picture that other studies have drawn of the functional role of spatial PRP
dynamics within neurons [88, 89, 90, 91, 92].

In the future, most importantly, the extended Arbor simulation framework can enable re-
searchers to conduct studies that examine the interplay between neuron-internal and network
dynamics. Moreover, Arbor allows the implementation of models that include changes in the
connectivity structure of networks. Using this together with the tools that we have presented
here will enable researchers to also study the interactions between structural and functional plas-
ticity processes at the network level (cf. [93]). It should further be noted that by considering
synaptic plasticity processes in neural networks, simulation software contributes essentially to
the understanding of biological mechanisms as well as to the development of artificial intelligence
applications. In this light, further applications of our extended version of Arbor may target, for
example, paradigms of somato-dendritic mismatch error reduction [94], reservoir computing with
heterogeneous networks [95, 96], or prototyping and benchmarking of neuromorphic algorithms
(cf. [85, 97]).

Due to its modern computing architecture and inherent support of multi-compartment neu-
rons, the Arbor simulator constitutes an important tool for the computational modeling of
neuronal networks. Through the newly introduced extensions, enabling to simulate synaptic
plasticity, we have increased the range of Arbor’s use cases substantially. Furthermore, we have
provided a first demonstration of how the extended framework enables to gain new insights into
the functional impact of morphological neuronal structure at the network level. In the future, the
Plastic Arbor framework may power a great variety of studies considering synaptic mechanisms
and their interactions with neuronal dynamics and morphologies, from single synapses to large
networks.

28



a

b

Arbor (standard), HW
S1

Arbor (standard), HW
S1

Arbor (standard), HW
S1

Arbor, with SIM
D, HW

S1

Arbor, with SIM
D, HW

S1

Arbor, with SIM
D, HW

S1

Arbor, with SIM
D, HW

S2

Arbor, with SIM
D, HW

S2

Arbor, with SIM
D, HW

S2

Arbor, with SIM
D, HW

S2

Arbor, with GPU, HW
S2

Stand-alone custom
, HW

S2

Stand-alone custom
, HW

S2

Arbor (standard), HW
S2

Arbor (standard), HW
S2

Arbor (standard), HW
S2

Brian 2 (cpp_...), HW
S2

Brian 2 (cpp_...), HW
S2

Arbor (standard), HW
S1

Arbor, with SIM
D, HW

S1

Arbor, with GPU, HW
S2

Arbor (standard), HW
S2

Multi-comp. neurons

Multi-comp. neurons

Single-comp./point neurons

Single-comp./point neurons

R
u
n
ti

m
e
 (

m
in

)
M

a
in

 m
e
m

o
ry

 u
se

d
 (

M
B

)
60

50

40

30

20

10

300

250

200

150

100

Figure 6: Benchmarking results of runtime and memory use for Arbor and point-neuron
simulators. For 10s-recall paradigm in networks of 2000 neurons. The single-compartment simulations
in Arbor as well the point-neuron simulations in Brian 2 (with cpp standalone device) [77, 4] and in the
custom stand-alone simulator [58] are conducted as described in subsection 3.5; they are represented by
blue data points on the left. The Arbor simulations with multi-compartment/morphological neurons are
conducted as described in subsection 3.6 and represented by orange data points on the right. Results
are given for different hardware systems, HWS1: an older desktop computer (Intel Core i5-6600 CPU
@ 3.30GHz, 1 × 8GB DDR3-RAM, using 1 thread), HWS2: a newer compute server (AMD Ryzen
Threadripper PRO 5995WX CPU, 8×32GB DDR4-RAM, using 1 thread, in specified cases with NVIDIA
T1000 8GB GPU). For Arbor, results are distinguished between standard CPU execution, CPU with
SIMD support, and with GPU support. (a) Total runtime of the simulations. Measurements were
performed using hyperfine in version 1.15. (b) Use of main memory, given by the maximum over time
of the number of ‘dirty’ bytes, including private and shared memory, as returned from pmap. Data points
represent the average over 10 trials; error bars represent the standard deviation.

29



Data availability

All data presented in this study can be reproduced using publicly available simulation code and
analysis scripts, which are listed in the following.

The Arbor framework can be installed as described on https://arbor-sim.org (the code can
be retrieved, e.g., from [7]). Our simulation code for the different subsections is referenced in
Table 7 below. Note that since Arbor is still under development, some parts of our model
implementations may be subject to changes when using later Arbor versions, however, we intend
to keep the model implementations updated along with the Arbor core code.

Due to the ongoing development of the Arbor core code, we ran our extensive simulations
with different Arbor versions. For the simulation results presented in subsections 3.1–3.3 as well
as 3.5–3.6, we used Arbor version 0.9.1-dev-2f4c325 (for instructions on how to install this exact
version, see the README.md file that comes with our model code [67]). For the simulation results of
subsection 3.4, we used the development branch of pull request #2226 with the state of commit
f0e456d due to a necessary fix in the diffusion processing; the branch shall be merged upon
publication of this article (similarly, Arbor still considers diffusion constants in non-standard
units, scaled by a factor of 10−7, which will be corrected as well). For the benchmarking results
in subsection 3.7 we used Arbor version 0.10.0. Note that while the mentioned Arbor versions
are by now slightly outdated, we ensured that our extensive software tests from [67, 98] pass
with these versions as well as with the release version 0.10.0 and the currently latest version
0.10.1-dev-7d1f82e, strongly indicating that the simulation results will remain the same.

The scripts that we used to perform the comparisons across simulators in subsection 3.5 can
be found here: https://github.com/jlubo/simulator comparison.

Sec-
tion

Model description Arbor implementation Reference implementa-
tion(s)

3.1 Spike-timing-dependent plas-
ticity

[99] (subdirectory STDP/) [99]

3.2 Spike-driven homeostatic
plasticity

[99] (subdirectory
spike based homeostasis/)

[99]

3.3 Calcium-based synaptic plas-
ticity

[7] (Arbor main repository,
calcium stdp.py)

[100]

3.4 Heterosynaptic calcium-based
plasticity in dendrites

[45] (Arbor diff.py) [45] (Custom.py)

3.5 Synaptic tagging and cap-
ture, in individual synapses
and in networks of single-
compartment neurons

[66] (reduced code for single
synapses) and [67]

[58]; [65] (reduced code for
single synapses) and [77]

3.6 Synaptic memory consolida-
tion in networks of morpho-
logical neurons

[98] - (novel results)

3.7 Network models from 3.5 and
3.6

[67]; [98] [58]; [77]

Table 7: Overview of the simulation code used to perform the simulations presented in this article.

30

https://arbor-sim.org/
https://github.com/arbor-sim/arbor/commit/2f4c32598d37f9852978c76952b0a09aeb84385b
https://github.com/arbor-sim/arbor/pull/2226/commits/f0e456d631bf818eddee870167828a065dc4afa7
https://github.com/arbor-sim/arbor/releases/tag/v0.10.0
https://github.com/arbor-sim/arbor/releases/tag/v0.10.0
https://github.com/arbor-sim/arbor/commit/7d1f82e2b738080d0c90c65258bd5361a5bbfd01
https://github.com/jlubo/simulator_comparison


Acknowledgments

We would like to thank the other Arbor developers for their support and for their dedication
to continuously improve the software. We would further like to thank Silvio Rizzoli and Arash
Golmohammadi for helpful discussions.

Funding

This work was supported by the German Research Foundation (Deutsche Forschungsgemein-
schaft, DFG) through grants SFB1286 (C01, Z01) and TE 1172/7-1, as well as by the European
Commission H2020 grants no. 899265 (ADOPD) and 945539 (HBP SGA3).

Author contributions

Conceptualization: JL, SS, CT; Data curation: JL, SS, SSK; Formal Analysis: JL, SS, SSK;
Funding acquisition: SS, CT; Investigation: JL, SS, SSK, CT; Methodology: JL, SS, SSK, CT;
Project administration: CT; Resources: TH, CT; Software (Arbor core): JL, SS, TH, FB (with
larger contributions by TH and FB); Software (sections 3.1–3.2): JL, SS; Software (section 3.3):
SS, FB; Software (section 3.4): SSK; Software (sections 3.5–3.7): JL; Supervision: JL, SS, CT;
Validation: JL, SS, SSK, TH, FB; Visualization: JL, SS, SSK, TH; Writing – original draft: JL,
SS, SSK, TH, FB; Writing – review & editing: JL, SS, CT.

31



References

[1] Hines, M. A program for simulation of nerve equations with branching geometries. Inter-
national Journal of Bio-Medical Computing 24, 55–68 (1989).

[2] Kumbhar, P. et al. CoreNEURON: an optimized compute engine for the NEURON simu-
lator. Frontiers in Neuroinformatics 13, 63 (2019).

[3] Gewaltig, M.-O. & Diesmann, M. NEST (NEural Simulation Tool). Scholarpedia 2, 1430
(2007).

[4] Stimberg, M., Brette, R. & Goodman, D. F. Brian 2, an intuitive and efficient neural
simulator. eLife 8, e47314 (2019).

[5] Awile, O. et al. Modernizing the NEURON simulator for sustainability, portability, and
performance. Frontiers in Neuroinformatics 16, 884046 (2022).

[6] Abi Akar, N. et al. Arbor – a morphologically-detailed neural network simulation library for
contemporary high-performance computing architectures. In 2019 27th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-Based Processing (PDP), 274–282
(IEEE, 2019).

[7] Cumming et al. Arbor Library v0.10.0 (2024). URL https://doi.org/10.5281/zenodo.

13284959.

[8] Martin, S. J., Grimwood, P. D. & Morris, R. G. M. Synaptic plasticity and memory: an
evaluation of the hypothesis. Annual Review of Neuroscience 23, 649–711 (2000).

[9] Abraham, W. C., Jones, O. D. & Glanzman, D. L. Is plasticity of synapses the mechanism
of long-term memory storage? NPJ Science of Learning 4, 1–10 (2019).

[10] Smolen, P., Baxter, D. A. & Byrne, J. H. Molecular constraints on synaptic tagging and
maintenance of long-term potentiation: a predictive model. PLOS Computational Biology
8, e1002620 (2012).

[11] Gallimore, A. R., Kim, T., Tanaka-Yamamoto, K. & De Schutter, E. Switching on depres-
sion and potentiation in the cerebellum. Cell Reports 22, 722–733 (2018).

[12] Mäki-Marttunen, T., Iannella, N., Edwards, A. G., Einevoll, G. T. & Blackwell, K. T. A
unified computational model for cortical post-synaptic plasticity. eLife 9, e55714 (2020).

[13] Becker, M. F. P. & Tetzlaff, C. The biophysical basis underlying the maintenance of early
phase long-term potentiation. PLOS Computational Biology 17, e1008813 (2021).

[14] Bonilla-Quintana, M. & Wörgötter, F. Exploring new roles for actin upon LTP induction
in dendritic spines. Scientific Reports 11 (2021).

[15] Berridge, M. J. Dysregulation of neural calcium signaling in alzheimer disease, bipolar
disorder and schizophrenia. Prion 7, 2–13 (2013).

[16] Bonilla-Quintana, M. & Rangamani, P. Can biophysical models of dendritic spines be
used to explore synaptic changes associated with addiction? Physical Biology 19, 041001
(2022).

32

https://doi.org/10.5281/zenodo.13284959
https://doi.org/10.5281/zenodo.13284959


[17] Acharya, J. et al. Dendritic computing: branching deeper into machine learning. Neuro-
science 489, 275–289 (2022).

[18] Pagkalos, M., Makarov, R. & Poirazi, P. Leveraging dendritic properties to advance ma-
chine learning and neuro-inspired computing. Current Opinion in Neurobiology 85, 102853
(2024).

[19] Zheng, H. et al. Temporal dendritic heterogeneity incorporated with spiking neural net-
works for learning multi-timescale dynamics. Nature Communications 15, 277 (2024).

[20] Graupner, M. & Brunel, N. Calcium-based plasticity model explains sensitivity of synaptic
changes to spike pattern, rate, and dendritic location. Proceedings of the National Academy
of Sciences of the USA 109, 3991–3996 (2012).

[21] Hiratani, N. & Fukai, T. Detailed dendritic excitatory/inhibitory balance through het-
erosynaptic spike-timing-dependent plasticity. Journal of Neuroscience 37, 12106–12122
(2017).

[22] Luboeinski, J. & Tetzlaff, C. Memory consolidation and improvement by synaptic tagging
and capture in recurrent neural networks. Communications Biology 4, 275 (2021).

[23] Bi, G.-q. & Poo, M.-m. Synaptic modifications in cultured hippocampal neurons: depen-
dence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuro-
science 18, 10464–10472 (1998).

[24] Song, S., Miller, K. D. & Abbott, L. F. Competitive Hebbian learning through spike-
timing-dependent synaptic plasticity. Nature Neuroscience 3, 919–926 (2000).

[25] Arbor documentation – Selection policy. https://docs.arbor-sim.org/en/latest/

python/cell.html#arbor.selection_policy (2023). Accessed: 8 November 2024.

[26] Kloeden, P. E. & Platen, E. Numerical Solution of Stochastic Differential Equations
(Springer Berlin, Heidelberg, 1992).

[27] Salmon, J. K., Moraes, M. A., Dror, R. O. & Shaw, D. E. Parallel random numbers: as easy
as 1, 2, 3. In Proceedings of 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’11 (Association for Computing Machinery,
New York, NY, USA, 2011).

[28] Salmon, J. K., Morales, M. A. & Fenn, M. Random123: a library of counter-based random
number generators. https://github.com/DEShawResearch/random123 (2010). Accessed:
23 November 2024.

[29] Rall, W. Theory of physiological properties of dendrites. Annals of the New York Academy
of Sciences 96, 1071–1092 (1962).

[30] Yates, S. Analytic solutions to the cable equation. https://github.com/

arbor-sim/arbor/blob/07a9fa2ff3d4ed9173ecfb316a056a723e081de3/doc/math/

cable_equation/cable_equation.tex (2019). Accessed: 23 November 2024.

[31] Sætra, M. J., Einevoll, G. T. & Halnes, G. An electrodiffusive, ion conserving pinsky-rinzel
model with homeostatic mechanisms. PLOS Computational Biology 16, e1007661 (2020).

[32] Gerstner, W., Kempter, R., Van Hemmen, J. L. & Wagner, H. A neuronal learning rule
for sub-millisecond temporal coding. Nature 383, 76–78 (1996).

33

https://docs.arbor-sim.org/en/latest/python/cell.html##arbor.selection_policy
https://docs.arbor-sim.org/en/latest/python/cell.html##arbor.selection_policy
https://github.com/DEShawResearch/random123
https://github.com/arbor-sim/arbor/blob/07a9fa2ff3d4ed9173ecfb316a056a723e081de3/doc/math/cable_equation/cable_equation.tex
https://github.com/arbor-sim/arbor/blob/07a9fa2ff3d4ed9173ecfb316a056a723e081de3/doc/math/cable_equation/cable_equation.tex
https://github.com/arbor-sim/arbor/blob/07a9fa2ff3d4ed9173ecfb316a056a723e081de3/doc/math/cable_equation/cable_equation.tex


[33] Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian
plasticity in hippocampal neurons. Science 275, 209–213 (1997).

[34] Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by
coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

[35] Introduction to Brian part 2: Synapses. https://brian2.readthedocs.io/en/stable/

resources/tutorials/2-intro-to-brian-synapses.html (2021). Accessed: 14 June
2024.

[36] Arbor Tutorial: Spike Timing-dependent Plasticity Curve. https://docs.arbor-sim.

org/en/stable/tutorial/calcium_stdp_curve.html (2023). Accessed: 14 June 2024.

[37] Zenke, F. & Gerstner, W. Hebbian plasticity requires compensatory processes on multiple
timescales. Philosophical Transactions of the Royal Society B 372, 20160259 (2017).

[38] Breitwieser, O. Towards a Neuromorphic Implementation of Spike-based Expectation
Maximization. Master’s thesis, Universität Heidelberg (2015). URL http://www.kip.

uni-heidelberg.de/Veroeffentlichungen/details.php?id=3240.

[39] Brian 2 example: “spike based homeostasis”. https://brian2.readthedocs.io/en/

latest/examples/synapses.spike_based_homeostasis.html (2021). Accessed: 14 June
2024.

[40] Sjöström, P. J., Turrigiano, G. G. & Nelson, S. B. Rate, timing, and cooperativity jointly
determine cortical synaptic plasticity. Neuron 32, 1149–1164 (2001).

[41] Gillespie, D. T. Exact numerical simulation of the Ornstein-Uhlenbeck process and its
integral. Physical Review E 54 (1996).

[42] Lee, K. F., Soares, C., Thivierge, J.-P. & Bé̈ıque, J.-C. Correlated synaptic inputs drive
dendritic calcium amplification and cooperative plasticity during clustered synapse devel-
opment. Neuron 89, 784–799 (2016).

[43] Stuart, G., Spruston, N. & Häusser, M. Dendrites (Oxford University Press, 2016), 3rd
edn. URL https://doi.org/10.1093/acprof:oso/9780198745273.001.0001.

[44] Shafiee Kamalabad, S., Schmitt, S. & Tetzlaff, C. Calcium-based input timing learning.
Preprint at bioRxiv (2024). URL https://doi.org/10.1101/2024.11.14.623617.

[45] Shafiee Kamalabad, S. Arbor simulation of calcium-dependent heterosynaptic plasticity
(2024). URL https://github.com/Shirin1993/Arbor_diffusion. Accessed: 23 Novem-
ber 2024.

[46] Araya, R. Input transformation by dendritic spines of pyramidal neurons. Frontiers in
Neuroanatomy 8, 1–18 (2014).

[47] Yasuda, R. Biophysics of Biochemical Signaling in Dendritic Spines: Implications in Synap-
tic Plasticity (2017).

[48] Häusser, M. & Roth, A. Estimating the time course of the excitatory synaptic conductance
in neocortical pyramidal cells using a novel voltage jump method. Journal of Neuroscience
17, 7606–7625 (1997).

34

https://brian2.readthedocs.io/en/stable/resources/tutorials/2-intro-to-brian-synapses.html
https://brian2.readthedocs.io/en/stable/resources/tutorials/2-intro-to-brian-synapses.html
https://docs.arbor-sim.org/en/stable/tutorial/calcium_stdp_curve.html
https://docs.arbor-sim.org/en/stable/tutorial/calcium_stdp_curve.html
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3240
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3240
https://brian2.readthedocs.io/en/latest/examples/synapses.spike_based_homeostasis.html
https://brian2.readthedocs.io/en/latest/examples/synapses.spike_based_homeostasis.html
https://doi.org/10.1093/acprof:oso/9780198745273.001.0001
https://doi.org/10.1101/2024.11.14.623617
https://github.com/Shirin1993/Arbor_diffusion


[49] Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. Neuronal dynamics: From single
neurons to networks and models of cognition (Cambridge University Press, 2014).

[50] Biess, A., Korkotian, E. & Holcman, D. Barriers to diffusion in dendrites and estimation of
calcium spread following synaptic inputs. PLoS computational biology 7, e1002182 (2011).

[51] Allbritton, N. L., Meyer, T. & Stryer, L. Range of messenger action of calcium ion and
inositol 1,4,5-trisphosphate. Science 258, 1812–1815 (1992).

[52] Means, S. et al. Reaction diffusion modeling of calcium dynamics with realistic ER geom-
etry. Biophysical Journal 91, 537–557 (2006).

[53] Hater, T. et al. Arbor GUI v0.8 (2022). URL https://doi.org/10.5281/zenodo.

7415130.

[54] Schuss, Z., Singer, A. & Holcman, D. The narrow escape problem for diffusion in cellular
microdomains. Proceedings of the National Academy of Sciences 104, 16098–16103 (2007).

[55] Frey, U. & Morris, R. G. M. Synaptic tagging and long-term potentiation. Nature 385,
533–536 (1997).

[56] Redondo, R. L. & Morris, R. G. M. Making memories last: the synaptic tagging and
capture hypothesis. Nature Reviews Neuroscience 12, 17–30 (2011).

[57] Sajikumar, S., Navakkode, S., Sacktor, T. C. & Frey, J. U. Synaptic tagging and cross-
tagging: the role of protein kinase Mζ in maintaining long-term potentiation but not
long-term depression. Journal of Neuroscience 25, 5750–5756 (2005).

[58] Luboeinski, J. & Lehr, A. Simulation code and analysis scripts for memory formation
and consolidation with synaptic tagging and capture in recurrent spiking neural networks
(2024). URL https://doi.org/10.5281/zenodo.4429195.

[59] Luboeinski, J. & Tetzlaff, C. Organization and priming of long-term memory representa-
tions with two-phase plasticity. Cognitive Computation 275 (2022).

[60] Luboeinski, J. The Role of Synaptic Tagging and Capture for Memory Dynamics in Spiking
Neural Networks. Dissertation, University of Göttingen (2021). URL http://doi.org/

10.53846/goediss-463.

[61] Lehr, A. B., Luboeinski, J. & Tetzlaff, C. Neuromodulator-dependent synaptic tagging and
capture retroactively controls neural coding in spiking neural networks. Scientific Reports
12, 17772 (2022).

[62] Li, Y., Kulvicius, T. & Tetzlaff, C. Induction and consolidation of calcium-based homo-
and heterosynaptic potentiation and depression. PLOS One 11, e0161679 (2016).

[63] Luboeinski, J. & Tetzlaff, C. Modeling emergent dynamics arising from synaptic tagging
and capture at the network level. In Sajikumar, S. & Abel, T. (eds.) Synaptic Tagging and
Capture: From Synapses to Behavior, chap. 23, 471–503 (Springer, Cham, Switzerland,
2024), 2nd edn.

[64] Clopath, C., Ziegler, L., Vasilaki, E., Büsing, L. & Gerstner, W. Tag-trigger-consolidation:
a model of early and late long-term potentiation and depression. PLOS Computational
Biology 4, e10000248 (2008).

35

https://doi.org/10.5281/zenodo.7415130
https://doi.org/10.5281/zenodo.7415130
https://doi.org/10.5281/zenodo.4429195
http://doi.org/10.53846/goediss-463
http://doi.org/10.53846/goediss-463


[65] Luboeinski, J. Brian 2 simulation of the induction of early- and late-phase plasticity at a
single synapse (2023). URL https://github.com/jlubo/brian_synaptic_plasticity_

stc. Accessed: 23 November 2024.

[66] Luboeinski, J. Arbor simulation of the induction of early- and late-phase plasticity at
a single synapse (2023). URL https://github.com/jlubo/arbor_2N1S. Accessed: 23
November 2024.

[67] Luboeinski, J. Arbor simulation of memory formation and consolidation in recurrent spik-
ing neural networks with synaptic tagging and capture (2024). URL https://github.

com/jlubo/arbor_network_consolidation. Accessed: 23 November 2024.

[68] Higgins, D., Graupner, M. & Brunel, N. Memory maintenance in synapses with calcium-
based plasticity in the presence of background activity. PLOS Computational Biology 10,
e1003834 (2014).

[69] Wittenberg, G. M. & Wang, S. S.-H. Malleability of spike-timing-dependent plasticity at
the CA3–CA1 synapse. Journal of Neuroscience 26, 6610–6617 (2006).

[70] Jiang, S. et al. Anatomically revealed morphological patterns of pyramidal neurons in layer
5 of the motor cortex. Scientific Reports 10, 7916 (2020).

[71] Carnevale, N. T. & Hines, M. L. The NEURON book (Cambridge University Press, 2006).

[72] Larkman, A. U. Dendritic morphology of pyramidal neurones of the visual cortex of the
rat: Iii. spine distributions. Journal of Comparative Neurology 306, 332–343 (1991).

[73] Gillon, C. J. et al. Responses of pyramidal cell somata and apical dendrites in mouse visual
cortex over multiple days. Scientific Data 10, 287 (2023).

[74] Van Aerde, K. I. & Feldmeyer, D. Morphological and physiological characterization of
pyramidal neuron subtypes in rat medial prefrontal cortex. Cerebral Cortex 25, 788–805
(2015).

[75] Džaja, D., Hladnik, A., Bičanić, I., Baković, M. & Petanjek, Z. Neocortical calretinin
neurons in primates: increase in proportion and microcircuitry structure. Frontiers in
Neuroanatomy 8, 103 (2014).

[76] Carriba, P. & Davies, A. M. CD40 is a major regulator of dendrite growth from developing
excitatory and inhibitory neurons. eLife 6, e30442 (2017).

[77] Luboeinski, J. Brian 2 simulation of memory formation and consolidation in recurrent
spiking neural networks based on synaptic tagging and capture (2024). URL https://

github.com/jlubo/brian_network_plasticity. Accessed: 23 November 2024.

[78] NEURON documentation – CoreNEURON compatibility. https://nrn.readthedocs.io/
en/8.2.2/coreneuron/compatibility.html (2022). Accessed: 8 November 2023.

[79] Bower, J. M. & Beeman, D. The book of GENESIS: exploring realistic neural models with
the GEneral NEural SImulation System (Bower, Beeman, 2003), http://genesis-sim.
org/GENESIS/iBoG/index.html, internet edn.

[80] Pagkalos, M., Chavlis, S. & Poirazi, P. Introducing the dendrify framework for incorporat-
ing dendrites to spiking neural networks. Nature Communications 14, 131 (2023).

36

https://github.com/jlubo/brian_synaptic_plasticity_stc
https://github.com/jlubo/brian_synaptic_plasticity_stc
https://github.com/jlubo/arbor_2N1S
https://github.com/jlubo/arbor_network_consolidation
https://github.com/jlubo/arbor_network_consolidation
https://github.com/jlubo/brian_network_plasticity
https://github.com/jlubo/brian_network_plasticity
https://nrn.readthedocs.io/en/8.2.2/coreneuron/compatibility.html
https://nrn.readthedocs.io/en/8.2.2/coreneuron/compatibility.html
http://genesis-sim.org/GENESIS/iBoG/index.html
http://genesis-sim.org/GENESIS/iBoG/index.html


[81] Niedermeier, L. et al. CARLsim 6: an open source library for large-scale, biologically
detailed spiking neural network simulation. In 2022 International Joint Conference on
Neural Networks (IJCNN), 1–10 (IEEE, 2022).

[82] Panagiotou, S., Sidiropoulos, H., Soudris, D., Negrello, M. & Strydis, C. EDEN: A high-
performance, general-purpose, NeuroML-based neural simulator. Frontiers in Neuroinfor-
matics 16, 724336 (2022).

[83] Golosio, B. et al. Fast simulations of highly-connected spiking cortical models using gpus.
Frontiers in Computational Neuroscience 15, 627620 (2021).

[84] Tikidji-Hamburyan, R. A., Narayana, V., Bozkus, Z. & El-Ghazawi, T. A. Software for
brain network simulations: a comparative study. Frontiers in Neuroinformatics 11, 46
(2017).

[85] Kulkarni, S. R., Parsa, M., Mitchell, J. P. & Schuman, C. D. Benchmarking the per-
formance of neuromorphic and spiking neural network simulators. Neurocomputing 447,
145–160 (2021).

[86] Wang, C. et al. Brainpy, a flexible, integrative, efficient, and extensible framework for
general-purpose brain dynamics programming. eLife 12, e86365 (2023).

[87] Kobayashi, T., Kuriyama, R. & Yamazaki, T. Testing an explicit method for multi-
compartment neuron model simulation on a GPU. Cognitive Computation 1–14 (2021).

[88] Sajikumar, S., Navakkode, S. & Frey, J. U. Identification of compartment- and process-
specific molecules required for ”synaptic tagging” during long-term potentiation and long-
term depression in hippocampal CA1. Journal of Neuroscience 27, 5068–5080 (2007).

[89] O’Donnell, C. & Sejnowski, T. J. Selective memory generalization by spatial patterning of
protein synthesis. Neuron 82, 398–412 (2014).

[90] Kastellakis, G., Silva, A. J. & Poirazi, P. Linking memories across time via neuronal and
dendritic overlaps in model neurons with active dendrites. Cell Reports 17, 1491–1504
(2016).

[91] Fonkeu, Y. et al. How mRNA localization and protein synthesis sites influence dendritic
protein distribution and dynamics. Neuron 103, 1109–1122 (2019).

[92] Sartori, F. et al. Statistical laws of protein motion in neuronal dendritic trees. Cell Reports
33 (2020).

[93] Lu, H., Diaz, S., Lenz, M. & Vlachos, A. Interplay between homeostatic synaptic scaling
and homeostatic structural plasticity maintains the robust firing rate of neural networks.
Reviewed Preprint at eLife (2023). URL https://doi.org/10.7554/eLife.88376.1.

[94] Senn, W. et al. A neuronal least-action principle for real-time learning in cortical circuits.
Reviewed Preprint at eLife (2023). URL https://doi.org/10.7554/elife.89674.1.

[95] Perez-Nieves, N., Leung, V. C., Dragotti, P. L. & Goodman, D. F. Neural heterogeneity
promotes robust learning. Nature Communications 12, 5791 (2021).

[96] Morales, G. B., Mirasso, C. R. & Soriano, M. C. Unveiling the role of plasticity rules in
reservoir computing. Neurocomputing 461, 705–715 (2021).

37

https://doi.org/10.7554/eLife.88376.1
https://doi.org/10.7554/elife.89674.1


[97] Khacef, L. et al. Spike-based local synaptic plasticity: A survey of computational models
and neuromorphic circuits. Neuromorphic Computing and Engineering 3, 042001 (2023).

[98] Luboeinski, J. Arbor simulation of memory formation and consolidation in recurrent net-
works of spiking multi-compartment neurons with synaptic tagging and capture (will be
made available upon publication of the article).

[99] Schmitt, S. & Luboeinski, J. FIPPA project code repository (2024). URL https://

github.com/tetzlab/FIPPA. Accessed: 23 November 2024.

[100] Graupner, M. Code related to: “Calcium-based plasticity model explains
sensitivity of synaptic changes to spike pattern, rate, and dendritic location”
(2020). URL https://github.com/mgraupe/CalciumBasedPlasticityModel/tree/

main/Graupner2012PNAS. Accessed: 23 November 2024.

38

https://github.com/tetzlab/FIPPA
https://github.com/tetzlab/FIPPA
https://github.com/mgraupe/CalciumBasedPlasticityModel/tree/main/Graupner2012PNAS
https://github.com/mgraupe/CalciumBasedPlasticityModel/tree/main/Graupner2012PNAS

	Introduction
	Extensions of the Arbor core code
	Spike-time detection to simplify computation
	Multiple postsynaptic variables depending on pre- and postsynaptic spiking
	Computation with stochastic differential equations
	Diffusion of arbitrary particles

	Computational modeling with synaptic plasticity
	Spike-timing-dependent plasticity
	Spike-driven homeostatic plasticity
	Calcium-based synaptic plasticity
	Heterosynaptic calcium-based plasticity in dendrites
	Synaptic tagging and capture, in individual synapses and in networks of single-compartment neurons
	Synaptic memory consolidation in networks of morphological neurons
	Runtime and memory benchmarking

	Discussion

