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Abstract

Large language models (LLMs) are known to
struggle with complicated reasoning tasks such
as math word problems (MWPs). In this paper,
we present how analogy from similarly struc-
tured questions can improve LLMs’ problem-
solving capabilities for MWPs. Specifically,
we rely on the retrieval of problems with simi-
lar computational graphs to the given question
to serve as exemplars in the prompt, providing
the correct reasoning path for the generation
model to refer to. Empirical results across six
math word problem datasets demonstrate the
effectiveness of our proposed method, which
achieves a significant improvement of up to 6.7
percent on average in absolute value, compared
to baseline methods. These results highlight
our method’s potential in addressing the rea-
soning challenges in current LLMs.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable success across a wide range
of tasks (Achiam et al., 2023; Dubey et al., 2024;
Jiang et al., 2023; Labrak et al., 2024; Lin et al.,
2024b). However, solving math word problems
(MWPs) remains a significant challenge for LLMs
(Ahn et al., 2024; Srivatsa and Kochmar, 2024).
Unlike tasks that primarily rely on linguistic or
general knowledge, MWPs demand a nuanced in-
tegration of language comprehension and mathe-
matical reasoning, posing unique difficulties for
LLMs. Overcoming this challenge is critical, as
proficiency in solving MWPs could expand the
applications of LLMs to education, automated tu-
toring, and complex reasoning tasks.

Human problem-solving for MWPs offers an in-
sightful source of inspiration. People often solve
new problems by analogy, leveraging prior exam-
ples to adapt solutions to novel scenarios. Inspired
by this analogy-driven learning process, recent
research has employed few-shot prompting tech-

niques to enhance MWP performance in LLMs
(Jiang et al., 2023; Melz, 2023; Henkel et al., 2024).
Most existing approaches for selecting few-shot ex-
amples rely either on random selection (Jiang et al.,
2023; Dubey et al., 2024) or retrieval based solely
on semantic similarity (Huang et al., 2023; Melz,
2023; Henkel et al., 2024). Although providing
examples can improve LLM performance, these
methods often fail to ensure that the selected exam-
ples align with the mathematical structure of the
target problem. Specifically, randomly selected ex-
amples lack relevance to the target problem, while
semantic retrieval tends to prioritize superficial lin-
guistic similarity over deep structural alignment.
This mismatch between the provided examples and
the target problem ultimately constrains the effec-
tiveness of LLMs in solving MWPs.

To address this limitation, we propose a novel
computational graph-based retrieval method for
selecting examples that align more closely with
the underlying structure of the target math word
problem. Our approach identifies examples with
computational graphs that are structurally simi-
lar to the target problem and incorporates these
examples into few-shot prompting, providing the
LLM with more relevant problem-solving guid-
ance. Specifically, we design a lightweight retriever
model trained using contrastive learning to identify
structurally analogous examples. Examples with
similar graphs are treated as positive pairs, while
those with dissimilar graphs are treated as negative
pairs. Once trained, the retriever can be seamlessly
integrated into the LLM inference workflow with-
out requiring updates to the LLM’s parameters,
making our approach modular and easily adapt-
able. We evaluate our method on six math word
problem datasets, demonstrating that our compu-
tational graph-based retrieval approach achieves
significant performance improvements over both
semantic-based retrieval and random selection base-
lines. Furthermore, we conduct case studies and
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Apprentice processes 48 parts per hour and 5 hours for 
the apprentice to process the parts that can be 

completed by the master in 4 hours, how many parts will 
the master process per hour?

x=num_a*num_b/num_c=48*5/4

Question

Comp. Graph

Figure 1: An example of a math word problem with its
computational graph.

detailed analyses to highlight the effectiveness of
our method.

Our contributions are summarized as follows:

• Proposing Computational Graph-Based
Retrieval for Few-Shot Prompting. We in-
troduce a computational graph-based retrieval
method specifically tailored for math word
problem-solving. This approach selects ex-
amples with structural similarity to the tar-
get problem, enhancing few-shot prompting
by providing LLMs with examples that align
with the underlying mathematical structure of
the problem.

• Training a Structural Similarity Retriever.
We develop a retriever model trained with con-
trastive learning to identify structural similar-
ity in math word problems. This lightweight
and modular retriever integrates seamlessly
into the LLM inference workflow without re-
quiring parameter updates to the LLM itself.

• Conducting Extensive Evaluation and Anal-
ysis. We conduct comprehensive experiments
on six math word problem datasets, demon-
strating that our approach significantly outper-
forms both semantic-based and random selec-
tion baselines, with average exact matching
(EM) score improvements of up to 6.7% and
19.5% respectively. Additionally, we present
in-depth case studies and analyses to validate
the effectiveness of our method in capturing
structural nuances essential for MWP-solving.
We also provide an automated approach to
construct the training data without any human
labors.

2 Methodology

2.1 Overview of the Proposed Framework

When solving a new reasoning problem, humans
often draw upon known problems with similar rea-
soning paths and address them by analogy. In the

context of math word problems, the reasoning path
corresponds to its computational graph, as illus-
trated in Figure 1. Large language models (LLMs)
are observed to fail to conduct genuine logical rea-
soning (Mirzadeh et al., 2024) and exhibit strong
token biases (Li et al., 2024) when addressing rea-
soning tasks. Therefore, providing LLMs with the
correct reasoning path from analogous problems
can guide them to mimic the problem-solving pro-
cess. This paper aims to develop a math word
problem-solving system comprising a retriever and
a generator. The retriever identifies problems and
solutions with computational graphs similar to the
query problem from a corpus, while the genera-
tor leverages these retrieved exemplars through in-
context learning to enhance problem-solving per-
formance.

2.2 Retriever Model Training

Figure 2 shows the training process of the re-
triever. Given a batch of questions {qi}ni=1 and
their corresponding computational graphs {Gi}ni=1,
we search in the training dataset for positive ex-
amples {q+i }ni=1 where their computational graphs
are the same as those of the query questions:
G+

i = Gi, i = 1, 2, ...n where n is the batch
size.1 Then we forward the {qi, q+i }ni=1 with the
retriever (an encoder model) fθr to get the em-
beddings {fθr(qi), fθr(q+i )}ni=1. By applying in-
foNCE loss (Oord et al., 2018) with the in-batch
negative strategy, the training loss objective L of
the retriever becomes:

L =
1

n

n∑
i=1

− log(esim(fθr(qi),fθr(q
+
i ))/τ/

(
n∑

j=1,j ̸=i

esim(fθr(qi),fθr(qj))/τ+

n∑
j=1

esim(fθr(qi),fθr(q
+
j ))/τ )) (1)

where sim indicates a similarity function and τ is
the temperature. Note that we do not need to train
the generator.

2.3 Inference

Given a trained retriever fθr∗ , a question-solution
pair corpus C and a given question q, the re-
triever select the top-k similar question-solution

1We discard the examples if there’s no positive samples
matched in the training dataset.



“Certain number divided by 
6 equals 7 remainder 3.”

“A 22.4-meter-long 
electrical wire ...... were 

used in total for both times?”
x=num_a*num_b+num_c 

“A 10-meter long copper 
wire is used for 6 meters, 
what percentage is left?”

x=(num_a-num_b)/num_a

Encoder

“A 36-kilometer road is 
under repair ...... has not 

been repaired yet?”

Encoder

...

Encoder Encoder

e1 e1+ en en+

Positive Pairs Positive Pairs

Negative Pairs

...

x=(num_a-num_b)/num_a x=num_a*num_b+num_c 

Question

Comp. Graph

Figure 2: Flowchart of Retriver Training. This figure illustrates the process of training a retriever model (encoder)
with contrastive learning to identify structurally similar math word problems. Each question is encoded into an
embedding based on its text. Positive pairs are formed by pairing examples with matching computational graph
structures, while in-batch negatives serve as contrasting examples with different structures.

pairs {qi, ai}ki=1 based on the similarity score:

{qi, ai}ki=1 = topk(sim(fθr∗(q), fθr∗(qj))) (2)

where qj ∈ C. Then we concatenate the retrieved
question-answer pairs and the given question as
the prompt to the generator fθg to get the output
answer a:

a = fθg(concat(q1, a1, ..., qk, ak, q)) (3)

where concat denotes the concatenation operation.

3 Experiment

3.1 Setup
Implementation Details. In our experiments, we
use BGE-large-en-v1.5 (Xiao et al., 2023) as re-
triever and LLaMA-3 model series (Dubey et al.,
2024) as generator for English datasets (except for
0.5B size experiments, where we use Qwen2.5-
0.5B-Instruct as the generator since no similar
sized LLaMA-3 model is available), and BGE-
large-zh-v1.5 as retriever and Qwen2.5 model se-
ries (Team, 2024) as generator for Chinese datasets,
with bfloat16 precision for all models. We add
an extra pooler (a two-layer MLP module) to the
retriever, following the practice in (Chen et al.,
2020a). We train the retriever on 25% randomly
selected data from Math23k training set2 (Wang
et al., 2017) where the computational graphs are

2Math23k dataset is provided in Chinese, and we use
LLaMA-3.1-70B-Instruct to translate it into English for the
training of English model.

provided, using AdamW (Loshchilov and Hutter,
2019) with a learning rate of 3e-5 for 5 epochs, a
temperature τ of 0.05, and cosine similarity as the
similarity function. We set the batch size equal to
16 for the training process.

Datasets. We evaluate our retrieval-generation
system on the following six math word prob-
lem datasets: Math23k (Wang et al., 2017),
ape210k (Zhao et al., 2020), gsm8k (Cobbe et al.,
2021), math_qa (Amini et al., 2019), Calc-ape210k
(Kadlčík et al., 2023) and aqua_rat (Ling et al.,
2017), as shown in Table 1. For all datasets, we
use the corresponding training set as the retrieval
corpus and evaluate on the test set, and use k = 8
for top-k example retrieval.

Metrics. We report exact match (EM) accuracy
for all datasets. During inference, we require the
generator to generate answers following the same
format of the given exemplars to facilitate the pars-
ing of the solution to obtain the final answer, and
consider the generated solution correct if the parsed
final answer matches the golden answer. We use
string matching for the datasets where the solutions
are provided in text format, and use float number
matching if the solutions are provided in equation
format.

3.2 Main Results
Table 2 presents a detailed summary of our experi-
mental results, highlighting the superiority of our
method across various datasets and model sizes.
Specifically, for the Chinese datasets Math23k and



# Samples (train/val/test) Language Solution type Comp. Graph Options
Math23k 21.2k/1k/1k ZH Equation ✓ ✗

ape210k 200.5k/5k/5k ZH Equation ✗ ✗

gsm8k 7.5k/-/1.3k EN Text ✗ ✗

math_qa 29.8k/4.5k/3.0k EN Text ✗ ✓

Calc-ape210k 195k/1.8k/1.8k EN Equation ✗ ✗

aqua_rat 97.5k/254/254 EN Text ✗ ✓

Table 1: Details of datasets evaluated.“ZH” and “EN” refers to Chinese and English. An example of equation
solution is “x=(5*1000)-2000” where x is the final answer, and an example of text solution is “Natalia sold 48/2
= «48/2=24»24 clips in May. Natalia sold 48+24 = «48+24=72»72 clips altogether in April and May. ####
72.”Options refer to if the candidate answers are provided in the question.

Math23k ape210k gsm8k math_qa Calc-ape210k aqua_rat Avg.
RandomQwen-0.5B 28.9 19.2 17.1 16.5 12.0 18.1 18.6
BGEQwen-0.5B 43.1 39.7 21.2 27.3 17.6 16.9 27.6
OursQwen-0.5B 57.6 49.2 22.7 26.6 30.5 18.9 34.3
RandomLLaMA-1B/Qwen-1.5B 50.3 32.7 38.6 17.2 22.8 14.2 27.6
BGELLaMA-1B/Qwen-1.5B 58.7 50.4 38.7 45.9 20.4 29.9 40.7
OursLLaMA-1B/Qwen-1.5B 66.6 59.2 40.7 47.3 31.3 37.4 47.1
RandomLLaMA-3B/Qwen-3B 68.0 44.3 71.4 52.9 32.6 46.9 52.7
BGELLaMA-3B/Qwen-3B 73.1 54.6 71.5 64.9 31.5 50.0 57.6
OursLLaMA-3B/Qwen-3B 78.3 59.9 71.9 64.3 39.8 50.6 60.8
RandomLLaMA-8B/Qwen-7B 83.9 62.8 80.1 51.3 30.6 49.6 59.7
BGELLaMA-8B/Qwen-7B 87.6 73.8 80.4 66.4 39.5 49.6 66.2
OursLLaMA-8B/Qwen-7B 90.4 76.7 79.2 66.8 46.5 53.1 68.8
RandomLLaMA-70B/Qwen-72B 84.7 68.9 84.7 60.6 39.3 59.8 66.3
BGELLaMA-70B/Qwen-72B 90.9 79.5 86.0 68.5 47.9 64.2 72.8
OursLLaMA-70B/Qwen-72B 92.4 80.9 87.3 68.0 53.5 64.2 74.4

Table 2: Main results of our system. We report exact match (EM) for all tasks. Our approach outperforms the
baselines on most tasks except for math_qa, which is because the semantic similarity and computational graph
similarity are overlapped in this dataset. While our method is effective for generators of all sizes, the performance
gain is larger for smaller models.

ape210k, our approach consistently and signifi-
cantly outperforms both the random and BGE base-
lines. Similarly, strong performance gains are ob-
served across four English datasets, further demon-
strating the effectiveness of our method. The only
exception is the math_qa dataset, where our method
performs comparably to the BGE baseline. This
anomaly arises because, in math_qa, the seman-
tic similarity often coincides with computational
graph similarity. Many example pairs in this dataset
differ only in the numerical values while main-
taining identical semantic structures and compu-
tational graphs (e.g., “The banker’s gain of a cer-
tain sum due 3 years hence at 10% per annum is
Rs. 36. What is the present worth?” and “The

banker’s gain of a certain sum due 2 years hence
at 10% per annum is Rs. 24. What is the present
worth?”). Since these pairs exhibit similar seman-
tics and identical computational graphs at the same
time, the BGE model can effectively retrieve them
by focusing solely on semantic similarity, leaving
little room for improvement through retriever train-
ing. Furthermore, our method demonstrates larger
performance gains when the generator model is
smaller in size. This could be attributed to the
enhanced reasoning capabilities of larger LLMs,
which allow them to solve problems more indepen-
dently, reducing their reliance on retrieving similar
examples.



Ours BGE Upper Bound
Math23k 66.6 58.7 68.2

Table 3: Comparison of our methods with the upper
bound with Qwen2.5 1.5B model. Our approach results
in a large performance gain compared to the original
BGE model and a score close to the upper bound, sug-
gesting the effectiveness of our training process.

3.3 Analysis

3.3.1 The Performance Upper Bound
In this work, we hypothesize that problems with
similar computational graphs can facilitate answer-
ing the given question. Under this assumption,
the upper bound of our method’s performance is
achieved by using computational graphs directly
for retrieval. Since computational graphs are avail-
able only on Math23k dataset, we focus on this
dataset to compare the upper bound performance
with performance of our trained retriever, thereby
evaluating the quality of the retriever training pro-
cess. To measure similarity between computa-
tional graphs for retrieval, we utilize the normalized
Levenshtein Distance, which quantifies the string-
based similarity of computational graph represen-
tations. Table 3 compares the performance of our
method against the hypothesized upper bound. The
results indicate that, compared to the original BGE
model, our trained retriever achieves performance
significantly closer to the upper bound. This high-
lights the effectiveness of our training approach in
improving retrieval quality.

3.3.2 Case Study on Retrieved Data
Next, we present a case study on the retrieved data
from Calc-ape210k using both our trained model
and the BGE model. As shown in Figure 3, for
the query question, “The ‘Scientist’ series is 2.5
yuan/book, and the ‘Inventor’ series is 4 yuan/book.
It costs a total of 22 yuan to buy two sets of books.
There are 4 ‘Scientists’, how many books are there
in the ‘Inventor’ series?”, our trained retriever suc-
cessfully retrieves examples with similar computa-
tional graphs, even though the semantics of these
examples are quite different. In contrast, the origi-
nal BGE model relies primarily on semantic sim-
ilarity for retrieval. As illustrated in the figure,
while all the retrieved questions in the BGE model
relate to “books”, their computational graphs are
entirely different from the query’s graph. Addi-
tionally, we include a scatter plot on the Math23k

dataset, where we analyze the correlation between
computational graph similarity and embedding sim-
ilarity for the top-8 retrieved data points from 100
random samples, as depicted in Figure 4. The re-
sults show that the Pearson correlation coefficient
for our trained model is significantly higher than
that for the BGE model, indicating that our ap-
proach is more effective in retrieving examples
with similar computational graphs based on ques-
tion embeddings.

3.3.3 Performance with Different Amount of
Training Data

We also investigate how much training data is re-
quired to achieve optimal performance, given that
manually labeling computational graphs can be ex-
pensive. To this end, we use 5%, 10%, 25%, 50%,
and 100% of the training data and examine the
downstream performance on the aqua_rat dataset.
Figure 5 illustrates the trend of the exact match
score as a function of the amount of training data
used. We observe that performance stops to boost
when more than 25% of the training data (approx-
imately 5,000 samples) are used. Even with only
10% of the training data (approximately 2,000 sam-
ples), our approach achieves a 4 percent accuracy
gain over the BGE baseline. This indicates that our
method can be effectively applied in scenarios with
limited human-annotated data.

3.3.4 Effect of Corpus Choice

Finally, we investigate whether the choice of re-
trieval corpus affects performance. Specifically,
we explore the case where data with the same dis-
tribution as the query are not available to serve
as the corpus, a scenario that is common in real-
world applications. In this experiment, we use the
SuperCLUE-Math6 dataset (Xu et al., 2024), where
only the test set is available, and select the training
set from ape210k dataset as the retrieval corpus.
The results, shown in Table 4, demonstrate that our
approach remains effective even when the corpus
and the query data do not share the same distri-
bution. This suggests that, despite the different
data distributions, our trained retriever can still find
problems with similar computational graphs in the
large ape210k corpus. This capability indicates that
our method can be applied in a broad and flexible
manner, making it suitable for various real-world
scenarios.



The "Scientist" series is 2.5 yuan/book, and the "Inventor" series is 4 yuan/book. It costs a total of 
22 yuan to buy two sets of books. There are 4 "Scientists", how many books are there in the 

"Inventor" series?

Comp. Graph: x=(num_c-num_a*num_d)/num_b

Query 
question

Retrieved 
questions

French fries are 6.5 yuan per pack, and 
hamburgers are 13.5 yuan each. We bought 

hamburgers and French fries and spent a 
total of 106 yuan. Q: There are 4 hamburgers, 

how many packs of French fries are there?

Ours with BGE

Comp. Graph: x=(num_c-num_b*num_d)/num_a

Weekly newspaper is 1.5 yuan each, and 
evening newspaper is 0.5 yuan each. Uncle 
Tian sold 85 points of weekly newspapers 

and some evening papers yesterday, 
earning a total of 230 yuan. How many 

evening papers did Uncle Tian sell yesterday?

Comp. Graph: x=(num_d-num_a*num_c)/num_b

Uncle Zhang bought 3 kilograms of apples at 
8.2 yuan per kilogram, and another 4 

kilograms of pears, which cost a total of 55.2 
yuan. How much is a kilogram of pears?

Comp. Graph: x=(num_d-num_a*num_b)/num_c

...

Science World" is 87.5 yuan per set, and 
"Up and Down Five Thousand Years" is 62.5 
yuan per set. Teacher Wang bought 4 sets of 
each of these two books. How much is the 

total cost?

Comp. Graph: x=(num_a+num_b)*num_c

The school library is going to buy 5 sets of 
hardcover "Journey to the West", each set is 
286 yuan. How much do you need in total?

Comp. Graph: x=num_a*num_b

A new primary school needs to add two new 
books to the library, and buy 3 sets of each. 

One of them is 125 yuan per set, and the 
other is 18 yuan per set. How much will it 

cost in total?

Comp. Graph: x=num_a*(num_b+num_c)

...

Figure 3: Case study on the retrieved data with our model and BGE respectively. The retrieved data using trained
retriever have similar computational graphs with the query question, while the computational graphs are different
for retrieved data using BGE model.
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Figure 4: The scatter plot of our trained retriever (left) and BGE (right) on 100 random samples from Math23k.
There is a stronger positive correlation between computational graph similarity and embedding similarity for data
with trained retriever than the BGE model.
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Figure 5: The relationship between model performance
on aqua_rat dataset and the amount of data used. The
performance stops to boost when using more than 25%
of training data.

Ours BGE Random
SuperCLUE-Math6 27.2 20.6 18.6

Table 4: Results with Qwen2.5 0.5B model on
SuperCLUE-Math6 test set. Here we use the training
set of ape210k as the retrieval corpus, as the training set
of SuperCLUE-Math6 is not availale.

4 Computational Graph-Free Training
Data Acquisition

Although our method is effective when minimal
human-annotated data is available, we aim to elim-
inate the reliance on expensive human labor. No-
tably, in our training pipeline, we only need data
pairs that contain either the same or different com-
putational graphs, rather than requiring the compu-
tational graphs themselves. This allows us to avoid
the explicit need for computational graph annota-
tions. Instead, we can leverage large language mod-
els (LLMs), such as Claude-3.5 or GPT-4 (OpenAI
et al., 2024), to generate training data.

To do this, we prompt the LLM to rewrite the
questions so that all details, such as numerical val-
ues and entity names, differ from the original ques-
tion, while maintaining the same computational
graph. We use the following prompt of this rewrit-
ting: “Generate a problem with the same com-
putation graph as the input math problem, ensur-
ing that the semantics, numerical values, and sen-
tence structure are as different as possible. Output
only one rewritten example, without any additional
information.” We randomly select 5,000 samples
from the training set of gsm8k and use this ap-
proach to generate 5,000 positive pairs to train the

retriever. The downstream results, shown in Table
5, indicate that while the retriever trained with dis-
tilled data performs slightly below that trained with
labeled data, it consistently outperforms the BGE
baseline, demonstrating the effectiveness of the dis-
tilled data. Examples of this rewriting process are
presented in Figure 6. Empirically, we observe that
the sentence structure before and after rewriting is
more similar than in the labeled data pairs, which
the retriever may rely on to capture similarity be-
tween positive pairs during training, rather than
focusing on the true computational graphs. We
anticipate that more advanced methods will be de-
veloped in future work to construct high-quality
training data without human labor.

5 Related Work

Few-shot Prompting for MWP Solving. Large
Language Models have shown promising results
in tackling math word problems (Toshniwal et al.;
Yang et al., 2024; Yu et al., 2024a; Mirzadeh et al.,
2024; Wei et al., 2022b). To enhance model perfor-
mance on math word problems, few-shot prompt-
ing has become a widely adopted approach (Wei
et al., 2022b; Jiang et al., 2023; Melz, 2023; Henkel
et al., 2024). The choice of examples used in
few-shot prompting is critical to its success. Ex-
isting methods for example selection generally fall
into two categories: semantic similarity-based re-
trieval (Huang et al., 2023; Melz, 2023; Henkel
et al., 2024) and random selection (Wei et al.,
2022b; Jiang et al., 2023; Dubey et al., 2024). By
contrast, our approach leverages a computational
graph-based retrieval strategy. Rather than relying
solely on superficial linguistic features, our method
retrieves examples that match the mathematical
structure of the target problem. This structurally
informed selection enables LLMs to draw from
examples that better align with the mathematical
reasoning required, enhancing the effectiveness of
few-shot prompting for MWP solving.

Retrieval-Augmented Generation. Retrieval-
Augmented Generation (RAG) has recently gained
attention to improve the quality of LLM outputs
by integrating relevant external information during
generation (Lewis et al., 2020; Gao et al., 2023; Fan
et al., 2024). In the context of math word problems,
RAG has been applied to enhance the performance.
Specifically, Henkel et al. (2024) propose a RAG
system by retrieving content from an open-source
math textbook. Similarly, Dixit and Oates (2024)



gsm8k math_qa Calc-ape210k aqua_rat Avg.
BGE 38.7 45.9 20.4 29.9 33.7
Oursw/ labeled data 40.7 47.3 31.3 37.4 39.2
Oursw/ distillation data 39.4 46.4 27.5 35.0 37.1

Table 5: Results with training data distilled from GPT-4o with LLaMA-3.2-1B-Instruct generator. Retriever trained
with distilled data outperforms the BGE baseline while underperforms the model trained with labeled data on all
tasks.

During Spring Festival, Ethan 
passed out 96 traditional 

lanterns to guests, and the 
following month, he 

distributed a quarter of that 
amount. How many lanterns 

did Ethan distribute over 
these two months combined?

Natalia sold clips to 48 of 
her friends in April, and then 
she sold half as many clips 
in May. How many clips did 

Natalia sell altogether in 
April and May?

Rewritten questionOriginal question

Fred had 236 dollars to 
spend on 6 books. After 
buying them, he had 14 

dollars. On average, how 
much did each book cost?

Lisa baked 280 cookies and 
after giving away over 5 days, 
she had 230 left. How many 

cookies did she give away on 
average each day?

Comp. Graph: 
x=num_a+num_a*num_b

Comp. Graph: 
x=(num_a-num_c)/num_b

Figure 6: Some cases of the original and rewritten questions. The entity names, value of numbers and semantics are
different after rewritting, while the computational graphs remain the same.

introduced a schema-based RAG framework for
math word problems, using structured schemas to
guide LLMs in selecting appropriate mathematical
operations, ultimately enhancing reasoning clarity
and problem-solving structure. Our framework can
also be viewed as a RAG system, where the corpus
consists of structurally relevant MWP examples.

Contrastive Learning. Contrastive learning has
been adopted widely in various domains (He et al.,
2020; Chen et al., 2020b; Lin et al., 2024c; Yu et al.,
2022; Iter et al., 2020; Xu et al., 2022). Initially
popularized in computer vision through methods
like SimCLR (Chen et al., 2020b) and MoCo (He
et al., 2020), contrastive learning has since been
extended to other applications, such as text em-
bedding tasks in NLP domains (Wang et al., 2023;
BehnamGhader et al., 2024; Wang et al., 2022; Lin
et al., 2024a). The key idea behind contrastive
learning is to pull together the embeddings of pos-
itive pairs while pushing apart those of negative
pairs. In our work, we apply contrastive learn-
ing to train a retriever model designed for math
word problems. Positive pairs in our approach con-

sist of questions that share the same computational
graph, capturing similar mathematical structures
and reasoning patterns. Negative pairs are selected
from other in-batch examples with different com-
putational graphs. This training approach enables
our retriever to identify structurally relevant exam-
ples during inference, thereby enhancing few-shot
prompting and ultimately improving the perfor-
mance of LLMs on math word problem-solving
tasks.

Reasoning Ability in LLMs. Large language
models (LLMs) have often been criticized for lack-
ing “system 2” thinking ability (Yu et al., 2024b),
which limits their performance on complex rea-
soning tasks. Many prior studies have raised con-
cerns about the “genuine” reasoning capabilities
of current LLMs (Hazra et al., 2024; Wei et al.,
2022a), noting that LLMs struggle to distinguish
between causality and correlation (Ashwani et al.,
2024) and are not strong abstract reasoners (Gen-
dron et al., 2024). These findings suggest that, de-
spite their extensive pretraining on large-scale cor-
pora, current LLMs are essentially pattern match-



ers (Mirzadeh et al., 2024). While reasoning abil-
ity can be partially elicited through prompt engi-
neering techniques like Chain-of-Thought (Wei
et al., 2022b), this paper explores an alternative
approach—providing the LLM with pre-existing
reasoning paths rather than relying on the model to
generate them independently. This approach may
offer a more reliable and stable solution, as self-
generated reasoning can often be fragile and prone
to errors (Mirzadeh et al., 2024; Li et al., 2024).

6 Conclusion

In this work, we have explored computational
graph-based retrieval for solving math word prob-
lems, drawing inspiration from the analogy of rea-
soning paths between similarly structured prob-
lems. Our experiments on both English and Chi-
nese math datasets demonstrate the effectiveness
of our approach across models of different scales,
with performance gains being more pronounced for
smaller models. Additionally, by leveraging LLMs,
we can automatically construct training data with-
out relying on human labor. We hope this paper
inspires future research on tackling a variety of
reasoning tasks, extending beyond math word prob-
lems.
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