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Abstract

Reconstructing training data from trained neural networks is an active area of research with
significant implications for privacy and explainability. Recent advances have demonstrated
the feasibility of this process for several data types. However, reconstructing data from
group-invariant neural networks poses distinct challenges that remain largely unexplored.
This paper addresses this gap by first formulating the problem and discussing some of its
basic properties. We then provide an experimental evaluation demonstrating that conven-
tional reconstruction techniques are inadequate in this scenario. Specifically, we observe
that the resulting data reconstructions gravitate toward symmetric inputs on which the
group acts trivially, leading to poor-quality results. Finally, we propose two novel methods
aiming to improve reconstruction in this setup and present promising preliminary experi-
mental results. Our work sheds light on the complexities of reconstructing data from group
invariant neural networks and offers potential avenues for future research in this domain.

Keywords: Group invariant neural networks, Dataset reconstruction, Privacy attacks

1. Introduction

Figure 1: Visualization of or-
bitope with G = D4

Recent works (Haim et al., 2022; Oz et al., 2024; Loo
et al., 2023) have shown that it is possible to reconstruct
training data from standard neural networks. However,
the reconstruction from group invariant neural networks,
such as networks applied to point clouds (Zaheer et al.,
2017; Qi et al., 2017), graph data (Gilmer et al., 2017) or
images with rotation and reflection symmetries (Cohen
and Welling, 2016), remains largely unexplored.

Unlike the standard case explored in previous works,
reconstructing data from group invariant models faces the
unique challenge of multiple distinct inputs representing
the same data point (namely, the orbit of a data point).
This paper addresses the task of reconstructing data from
group invariant networks, focusing on the limitations of conventional methods and proposing
novel solutions. Our key contributions include:

1. A formal definition of the reconstruction problem for invariant networks, accompanied
by a discussion of its fundamental properties and invariance characteristics.
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2. Empirical evidence demonstrating that conventional reconstruction methods converge
to symmetric inputs (i.e., inputs on which the group acts trivially), producing low-
quality reconstructions. The inset illustrates this phenomenon for G = D4: rather
than recovering an element from a training example’s orbit, conventional methods
often converge to the (symmetric) orbit average.

3. Introduction of two novel techniques that enhance standard methods, enabling them
to go beyond symmetric reconstructions with encouraging initial results.

4. A discussion of potential future research directions.

2. Preliminaries

Invariance and equivariance. Let (V, ρ),(V ′, ρ′) be group representations of a finite
group G. We denote orb(x) as the orbit of a vector x ∈ V under the group action and
Stab(x) as its stabilizer group. The orbitope of a point x (Sanyal et al. (2011)) is defined
as the convex hull of orb(x) as illustrated in Figure 1. We denote the vectors on which the
group acts trivially as V G, formally V G = {v ∈ V |ρ(g)v = v,∀g ∈ G}. The projection of
a vector x on V G, denoted as ḡx, is the average of its orbit, ḡ · x = 1

|G|
∑

g∈G ρ(g) · x. A

function f : V → V ′ is G-invariant if f ◦ ρ(g) = f for any g ∈ G and a function F : V → V ′

is G-equivariant if F ◦ρ(g) = ρ′(g)◦F for any g ∈ G. For simplicity, we denote ρ(g)x = gx.
Data Reconstruction. There are several methods to reconstruct training data from
trained neural networks ϕ(x; θ), where x ∈ Rd is the network’s input, and θ is a vectorization
of its parameters. Here, we focus on two methods: (1) Activation Maximization (AM)
(Fredrikson et al., 2015; Yang et al., 2019), where the goal is to look for the input, which
maximizes the model output for the desired target class. Namely, the objective for class i
is defined as Lrec = maxx∈Rd(ϕ(x; θ))i. (2) KKT-based reconstruction (Haim et al., 2022;
Buzaglo et al., 2023). This method uses the implicit bias of homogeneous neural networks
trained with gradient methods toward margin maximization. Here, the following objective
is optimized: Lrec(x1, . . . ,xm, λ1, . . . , λm) = ∥θ −

∑m
i=1 λiyiϕ(xi; θ)∥, (The y′is denote the

labels.). For a detailed description of the reconstruction methods, see Appendix B.
vspace-10pt

3. Reconstruction from Invariant networks

3.1. Problem definition

Let D = {(xi, yi)}ni=1 ∈ Rd × {±1} be a training dataset and let (Rd, ρ) is an orthogonal
representation of a finite group G. Let ϕ : Rd → R be a pre-trained G-invariant neural
network with weights θ ∈ Rp. We aim to find a set of reconstructions S = {x̂1, . . . , x̂m} ⊂ Rd

such that S is the closest set to D with respect to some evaluation metric.
Evaluation under group symmetries. Since the reconstruction of any element from
the orbit is equally valid, the evaluation metric for invariant data reconstruction problems
should be invariant to these group symmetries to ensure a fair assessment of model perfor-
mance. This can be done, for example, by defining the distance between a reconstruction
x and a training example x′ using the following metric d(x, x′) = ming∈G ∥x − gx′∥. Note
that invariant metrics may be computationally challenging, e.g. when the input is a graph.
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Applying AM and KKT to the invariant case. In most cases the training of (ho-
mogeneous) invariant neural networks is conducted in a way that the conditions of both
methods (AM and KKT-based) are met, so we can apply them to the invariant case.

3.2. Challenges and theoretical observations

Here we present basic theoretical findings and challenges in reconstructing data from in-
variant models, applicable to any orthogonal representation of a finite group. Full proofs
are in the appendix.

(1) Multiple equivalent solutions. When reconstructing data from invariant models, a
critical factor to consider is that each training sample can have multiple equivalent repre-
sentations. These representations form what is known as an orbit under the group action.

Proposition 1 If the model is G-invariant then the objective functions of the methods
mentioned in Section 2 are G-invariant. Formally,

Lrec(x1, . . . ,xm) = Lrec(g1 · x1, . . . , gmxm), ∀(x1, g1), . . . , (xm, gm) ∈ Rd ×G (1)

(2) Optimizing invariant reconstruction objectives using GD. As invariant recon-
struction objectives have multiple optima, both initialization and optimization methods are
crucial in determining the final solution. The following proposition sheds light on GD’s
behavior in this context:

Proposition 2 If the reconstruction objective function Lrec(x; θ) is G-invariant function
then: (i) the GD step xt = xt−1 − ηt∇xLrec(xt−1) is G-equivariant function of xt−1; and
(ii) StabG(xt−1) ⊆ StabG(xt)

First, the above part (i) implies that GD is an equivariant function of the initialization, as
it is a composition of equivariant functions (GD iterations). Therefore, the initialization
determines which element the method converges to. Moreover, it implies that if we use
invariant distribution for the initialization (P (x0) is a G-invariant function) the algorithm
induces an invariant distribution over the reconstructions. Moreover, the nesting of the
stabilizers mentioned in part (ii) of Proposition 2 indicates that as optimization progresses,
the stabilizers of the iterates may become more restrictive, thereby narrowing the explo-
ration of the solution space. As we will see in the following sections, we believe that this
property plays a significant role in the dynamics of optimization and can influence the final
outcomes.

3.3. Ineffectiveness of standard methods in Invariant Reconstruction

This subsection presents experimental evidence demonstrating the ineffectiveness of AM and
KKT-based methods in solving the invariant reconstruction problem. The full experimental
results and description are on the appendix.

Setup and evaluation. We focus on the reconstruction of image data from invariant
models of different groups of reflections and rotations (see Section E). To evaluate the
results we used DSSIM proposed in Baker et al. (2023) for measuring differences between
images (high DSSIM implies high structural dissimilarity).To ensure the invariance of our
metric, we match reconstructions to training samples across all group transformations.
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Results. As illustrated in Figures 4(a) and 4(b), the optimization often converges to in-
variant reconstructions, resulting in a significant loss of information and low-quality recon-
structions. Moreover, our observations reveal that many reconstructions lie on the convex
hull of sample orbits, or orbitopes. To understand the distribution of reconstructions on
the orbitopes we sampled various points on the ground truth orbitopes and identified the
nearest neighbors for each reconstruction. as depicted in Figure 5 the observed distribu-
tion aligns with our predictions in Section 3.2: the reconstructions are concentrated around
the group average that lies in V G with the largest possible stabilizer. Notably, the KKT-
based method outperforms activation maximization, as shown in Figure 3. Furthermore, we
observe that increasing either the group size or the training set size leads to poorer results.

4. Symmetry-aware reconstruction

We propose two methods to improve reconstruction: mitigating GD’s bias towards symme-
try and imposing meaningful input space priors.

Symmetry-Aware Memory-Enhanced Gradient Descent (SAME-GD). Empiri-
cally, we tend to converge to points with nontrivial stabilizers, in particular to points on or
close to V G. We suggest aggregating the current query point with previous points in the op-
timization trajectory in a way that breaks the nesting property proved in Proposition 2. For
simplicity, we used convex aggregation in the form of xt ← αtxt + (1−αt)(xprev − ḡxprev),
see Algorithm 1.

Incorporating Deep Image Prior (DIP). As proposed in Ulyanov et al. (2020), convo-
lutional neural networks can be used as an implicit prior when it comes to inverse problems.
We propose to use the same objective functions of the existing methods, but parameter-
izing the reconstruction variables x1, . . . ,xm as the output of a randomly initialized CNN
instead of optimizing them directly. The motivation is that the natural image prior could
potentially break the symmetry and enhance the quality of the reconstructions.

Preliminary experimental results. We investigated the reconstruction abilities of the
proposed methods under different configurations as listed on Table 4. We extended our
experimental results to include CIFAR-10 images, with binary labels indicating animals
and vehicles. SAME-GD and DIP, when combined with the KKT objective, yield notably
improved reconstructions. These methods show a reduced tendency to converge to group
averages, thus preserving more meaningful data characteristics. Particularly noteworthy
is the KKT with DIP approach (Figure 2), which excels in producing piece-wise smooth
asymmetric reconstructions by exploiting the implicit prior induced by DIP.

Dataset Group size Train set size AM KKT KKT + SAME-GD KKT + DIP

MNIST 2 50 0.482 ± 0.000 0.464 ± 0.000 0.429 ± 0.004 0.285 ± 0.018
MNIST 2 100 0.484 ± 0.000 0.467 ± 0.000 0.450 ± 0.004 0.271 ± 0.000
CIFAR-10 2 50 0.446 ± 0.000 0.346 ± 0.001 0.369 ± 0.000 –
CIFAR-10 2 100 0.463 ± 0.000 0.371 ± 0.001 0.370 ± 0.007 –
MNIST 8 50 0.490 ± 0.002 0.471 ± 0.000 0.465 ± 0.000 0.314 ± 0.021
MNIST 8 100 0.494 ± 0 0.471 ± 0.001 0.469 ± 0.000 0.323 ± 0.025

Table 1: The Mean DSSIM value for different methods across datasets, group sizes, and
training set sizes.

Discussion. Our work highlights the challenges in reconstructing training data from group-
invariant neural networks. The theoretical and experimental foundations laid here raise
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AM

KKT

KKT + SAME-GD

KKT + DIP

Figure 2: Pairs of training samples and their corresponding nearest neighbors reconstruc-
tions on their left, where n = 50, |G| = 2 is the group of right-left reflections.

questions about the behavior of reconstruction methods applied to these networks. Al-
though we provide some insights and novel approaches, It is still unclear why standard
reconstruction methods fail for invariant models. There are many future directions to be
explored, some of them are discussed in more details in Appendix G.
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Appendix A. Previous work

Several methods have been developed to reconstruct training samples from neural net-
works under different settings. Activation-maximization attacks Fredrikson et al. (2015);
Yang et al. (2019) optimize the target output class over the input. Another method is
reconstruction in a federated learning setup Zhu et al. (2019); Hitaj et al. (2017); Geiping
et al. (2020); Huang et al. (2021) where the attacker is assumed to have knowledge of the
sample’s gradient. Several works use the implicit bias of neural networks towards margin
maximization Lyu and Li (2020); Ji and Telgarsky (2020) to devise reconstruction losses,
and thus reconstruct samples that are on the margin Haim et al. (2022); Buzaglo et al.
(2023); Loo et al. (2023); Oz et al. (2024). Some prior studies have explored reconstructing
graph structures from trained networks. The majority of existing research has concentrated
on single-graph learning scenarios. In these cases, known node feature matrices effectively
break symmetries, which simplifies the problem Zhang et al. (2021); Wu et al. (2021).

Appendix B. Current reconstruction methods

This is elaboration of Section 2 in the main text. There are several methods to reconstruct
training data from trained neural networks. In this work we focused on two methods which
allow data reconstruction in a general setting with minimal assumptions on the model’s
architecture.
Activation-Maximization (AM). We are given a trained multi-class classifier ϕ : Rd →
RC with C classes. The predicted class of the classifier is defined as maxi∈[C](ϕ(x))i, namely,
the class with the maximal output. In this reconstruction method, to reconstruct a sample
in class i, we randomly initialize an input x ∼ N

(
0, 1dI

)
and maximize the loss objective

Lrec = maxx∈Rd(ϕ(x))i. This is done by applying a first-order optimization method such
as (Gradient Descent) GD.
KKT-based reconstruction. Lyu and Li (2020); Ji and Telgarsky (2020) show that given
a homogeneous1 neural network ϕ(·, θ), trained with gradient flow using an exponentially
tailed loss (e.g., binary cross entropy) on a binary classification dataset {(xi, yi)}ni=1 ∈
Rd×{±1}, its parameters θ converge to a KKT point of the following margin maximization
problem

min ∥θ∥2 s.t. ∀i = 1, . . . , n, yiϕ(xi, θ) ≥ 1. (2)

In particular, the KKT stationary condition is satisfied, namely there exist λi ≥ 0 for
i = 1, . . . , n such that θ =

∑n
i=1 λiyiϕ(xi, θ). In Haim et al. (2022) the authors use the

stationary condition to construct an objective that reconstructs the training data xi given
the trained weights θ. Namely, they propose optimizing the following loss objective

Lrec(x1, . . . ,xm, λ1, . . . , λm) =

∥∥∥∥∥θ −
m∑
i=1

λiyiϕ(xi, θ)

∥∥∥∥∥ (3)

1. A function f is L homogeneous if for every α > 0 we have f(αx) = αLf(x)
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wherem, the number of reconstruction candidates is chosen to bem≫ n. This optimization
problem in practice is solved by GD or similar optimization methods.

Appendix C. Proof of proposition 1

The activation maximization objective function uses the model output directly. Since the
model is invariant it is trivially implying that the objective loss is also invariant. As the
KKT based method involves first-order derivatives we would start by proving the following
lemma:

Lemma 3 Let f(x; θ) : Rd×Rp → R be G-invariant function w.r.t x. Assume f has a par-
tial gradient by θ at (x0, θ0) . Then f(x; θ) also has partial gradient by θ at {(g · x0, θ0)}g∈G
. Moreover, ∇θf(x0; θ) = ∇θf(g · x0; θ), ∀g ∈ G

Proof Denote {e1, e2, ..., ep} to be the standard basis of Rp. f is G-invariant, therefore
∀i = 1, . . . , p, ∀ϵ ∈ R,∀g ∈ G ,

f(x; θ + ϵei)− f(x; θ)

ϵ
=

f(g · x; θ + ϵei)− f(x; θ)

ϵ
(4)

Since it is given the limit of ϵ → 0 exists for the left side of the equation then the limit of
the right side also exists and is equal to it. If we take the limit of both side, by definition
we get:

∂f(x; θ)

∂θi
=

∂f(g · x; θ)
∂θi

(5)

In other words ∇θf(·, θ) is G-invariant. As the trained model ϕ is invariant, we can say
that ∇θϕ is also invariant and therefore the objective loss in the KKT based method is also
invariant.

Appendix D. Proof of proposition 2

We prove here the extended version of Proposition 2.

Proposition 4 Let L(x; θ) : Rd × Rp → R be G-invariant function w.r.t x. Consider the
following optimization problem

minx∈RdL(x, θ) (6)

solved by the following iterates of GD with some learning rates ηt

xt = xt−1 − ηt∇xL(xt−1, θ), t = 1, 2, . . . , T (7)

Then

1. The gradient step is G-equivariant function of xt−1.

2. StabG(xt−1) ⊆ StabG(xt)

8
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We first start by addressing the equivariance of the gradient by x.

Lemma 5 Let L(x; θ) : Rd × Rp → R be G-invariant function w.r.t x and assume ρ(g) is
an orthogonal matrix for all g ∈ G. If L is derivable by x at (x0, θ0) then L(x; θ) is also
derivable by x at {(g · x0, θ0)}g∈G .
Moreover, ∇xL(g · x; θ) = g∇xL(x; θ),∀g ∈ G.

Proof For convenience, we would write L(·) instead of L(·, θ0)
By definition, for any direction h ∈ Rd, ||h||2 = 1 ,

Dhf(x) =< ∇f(x), h > (8)

Where Dhf(x) is the directional derivative of f at x.
f is G-invariant, therefore:

Dg−1·hL(x) = lim
ϵ→0

L(x+ ϵg−1 · h)− L(x)
ϵ

(9)

= lim
ϵ→0

L(g · x+ ϵg · g−1 · h)− L(g · x)
ϵ

(10)

= limϵ→0
L(g · x+ ϵ · h)− L(g · x)

ϵ
(11)

= DhL(g · x) (12)

On one hand,
Dg−1·hL(x) =< ∇L(x), g−1h > (13)

On the other hand g−1 is orthogonal, then

Dg−1·hL(x) = DhL(g · x) (14)

=< ∇L(g · x), h > (15)

=< g−1∇L(g · x), ·g−1 · h > (16)

(17)

Therefore,
∇L(x) = g−1∇L(g · x) (18)

In other words ∇θL(·, θ) is G-equivariant.
L is G-invariant, then by Lemma 5, for every g ∈ G and for any xt−1 ∈ Rd:

gxt−1 − ηt∇xL(gxt−1, θ) = gxt−1 − gηt∇xL(xt−1), θ) = g · xt (19)

Therefore the gradient step is G-equivariant.
if g ∈ Stab(xt−1), then by definition gxt−1 = xt−1. Therefore:

g · xt = g · (xt−1 − ηt∇L(xt−1, θ)) (20)

= g · xt−1 − ηtg · ∇L(xt−1, θ) (21)

= xt−1 − ηt∇L(g · xt−1, θ) (22)

= xt−1 − ηt∇L(xt−1, θ) (23)

= xt (24)

Therefore g ∈ Stab(xt)

9



(a) KKT (b) AM

Figure 3: The mean DSSIM over MNIST training subsets with varying size and different
groups.

Appendix E. Experimental setting

Setting. We focus on image data and considered 4 groups for our experiments - the
trivial group, group of 2 elements acting as horizontal reflection, the group of 4 elements
acting as horizontal and vertical reflection G4 (Klein four-group), and the Dihedral group
D4 (rotations and reflections). To construct the invariant model we used a ReLU neural
network with two hidden layers of width 1000 each and applied symmetrization 2. Initially
we trained the models on MNIST images with binary labels for odd or even digits. For each
group we trained a neural network with different training set sizes n = {10, 20, 50, 100, 200}
for 100K epochs. All training ended with ∼ 1e − 6 training error and 100% accuracy. For
each method and configuration, we ran 5 experiments of reconstruction with different seeds
and m = 1000 candidates (500 per class).

2. symmetrization is a common practice to project functions on the invariant function space using Reynolds
operator ϕ(x; θ) = 1

|G|
∑

g∈G ϕ̃(gx; θ)

10
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(a) Activation Maximization

(b) Vanilla KKT

(c) KKT with SAME-GD

(d) KKT with Deep Image Prior

Figure 4: Pairs of training samples and their corresponding nearest neighbors reconstruc-
tions on their right , where n = 50, |G| = 2.

(a) (b) (c)

(d) (e) (f )

Figure 5: The empirical distribution of reconstructions across orbitopes using KKT-based
method on MNIST-trained invariant networks. Orbitopes are discretized into
bins, each representing a convex combination of orbit elements. Reconstructions
are assigned to bins based on their nearest neighbor in the discretized orbitope.
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Appendix F. SAME-GD

Algorithm 1: SAME-GD

Input: {ηt, αt, βt}Tt=1, Tsave, Tupdate

Output: xT
Draw x0 ;
xprev ← x0;
for i← 1 to T do

if t%Tupdate ̸= 0 then
xt = xt−1 − ηt∇L(xt−1);

end
else

xt ← αtxt + (1− αt)(xprev − ḡxprev) ;
end
if t%Tsave == 0 then

xprev ← βtxt + (1− βt)∇L(xt)2 ;
end

end

Appendix G. Discussion and future directions

In this section we discuss in details some challenges and future directions that arise from
this work:

• Our work focuses on relatively small groups, containing at most 8 elements, which
contain only rotation and reflection transformations. It would be interesting to further
study reconstruction from models that are invariant to much larger groups.

• Our results indicate that reconstructions from invariant models lie close to the or-
bitope, mostly to the average over group elements. This finding only scratches the
surface regarding how the reconstructions are distributed inside the orbitope, which
may be effected by different factors such as initialization, architecture of the network,
and structure of the group.

• We propose several methods to guide the reconstructions towards specific elements in
the group, and thus to reconstruct the actual training samples (up to group action).
However, it is not clear how well these methods generalize to larger datasets or larger
groups. It will also be interesting to find new methods for this task, for example
methods that take advantage of the geometrical properties of the orbitope, and may
push the reconstructions towards extreme points of the orbitope.

• Our work focuses on image datasets, namely MNIST and CIFAR. It would be in-
teresting to use these methods to reconstruct training samples from different data
modalities, such as graphs or point clouds.

• In this work the models are constructed to be invariant using symmetrization of the
feed-forward model. There are other methods to construct invariant networks, such

12
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as parameter sharing-based techniques, and it would be interesting to study data
reconstruction attacks on such networks.
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