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Abstract
Recent advancements in large language models (LLMs) have led to
significant improvements in various natural language processing
tasks, but it is still challenging for LLMs to perform knowledge-
intensive complex question answering due to LLMs’ inefficacy in
reasoning planning and the hallucination problem. A typical solu-
tion is to employ retrieval-augmented generation (RAG) coupled
with chain-of-thought (CoT) reasoning, which decomposes complex
questions into chain-like sub-questions and applies iterative RAG
at each sub-question. However, prior works exhibit sub-optimal
reasoning planning and overlook dynamic knowledge retrieval
from heterogeneous sources. In this paper, we propose AtomR, a
novel heterogeneous knowledge reasoning framework that con-
ducts multi-source reasoning at the atomic level. Drawing inspi-
ration from the graph modeling of knowledge, AtomR leverages
large language models (LLMs) to decompose complex questions
into combinations of three atomic knowledge operators, significantly
enhancing the reasoning process at both the planning and exe-
cution stages. We also introduce BlendQA, a novel evaluation
benchmark tailored to assess complex heterogeneous knowledge
reasoning. Experiments show that AtomR significantly outperforms
state-of-the-art baselines across three single-source and two multi-
source reasoning benchmarks, with notable performance gains of
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1 Introduction
Knowledge-intensive complex question answering is a challenging
task that requires the ability to reason over vast amounts of knowl-
edge with various reasoning skills, such as multi-hop inference,
comparison and calculation [3, 10, 31, 45]. Although the recent
advancements of Large Language Models (LLMs) [23] have enabled
them to excel in various natural language processing tasks[1, 50], it
is arduous for LLMs to perform knowledge-intensive reasoning due
to their inefficacy in reasoning planning [12] and the hallucination
problem [1, 15], namely the phenomenon that LLMs confidently
make up factually incorrect answers.

In order to address the above issues, a typical solution is to lever-
age retrieval augmentation with chain-of-thought [36] reasoning
techniques. Specifically, most recent works [4, 26, 33, 38] propose
to perform question decomposition on complex questions into sim-
ple questions, then retrieve knowledge facts for sub-question an-
swering, thus alleviating the hallucination. However, there still
exists three main challenges: C1. Sub-optimal reasoning plan-
ning due to the inadequate question decomposition result. Most
1https://github.com/THU-KEG/AtomR.git
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previous works attempt to decompose complex questions into
multiple sub-questions with different structures, such as chain-
structure [26, 27, 33, 38] or tree structure [4, 42]. However, since
they leverage the free-form decomposition, the granularity of the
sub-questions is often insufficient, which frequently leads to sub-
optimal reasoning paths and mistakes; C2. The limited support
for multiple heterogeneous knowledge sources in previous
retrieval systems. Online web pages, local text corpus, and knowl-
edge bases contain rich knowledge that complement each other.
However, most existing work retrieve on a fixed source for all ques-
tions [4, 33, 38]. A few [21] support multiple sources but lacks
in-depth exploration of knowledge sources such as web pages, only
using the top1 snippet from Google; C3. The absence of high
quality test data built on heterogeneous knowledge sources.
Existing benchmarks that are built on multiple knowledge sources
either have a narrow knowledge scope, typically only encompassing
encyclopedic knowledge from Wikipedia and Wikidata [43, 48, 49],
or lack instance-level design, allowing individual questions to be
answered using a single knowledge source without requiring cross-
knowledge source querying and comparison [6, 40].

Inspired by the modular nature of knowledge [29], which means
that knowledge is divisible, diverse, and can be represented by dis-
crete nodes and edges in a graph, in this paper we propose AtomR,
an Atomic operator-empowered Reasoning framework with dy-
namic knowledge retrieval over heterogeneous knowledge sources.
Building on the basic program functions leveraged by previous
knowledge base question answering (KBQA) systems [3, 10, 44] to
facilitate knowledge manipulation on knowledge graphs (KGs), we
refine and summarize a set of atomic operators suitable for various
knowledge sources. The atomic knowledge operators possess the
fundamental properties of indivisibility and orthogonality, meaning
that each one corresponds to a distinct atomic operation without
any functional overlap.

The proposed reasoning framework can effectively address the
above-mentioned challenges. One one hand, by asking LLMs to
decompose the input question to the most fine-grained level, where
each leaf node in the sub-question tree corresponds to one atomic
knowledge operation, AtomR derives an adequately decomposed
reasoning path, thus minimizing the impact of challenge C1 to the
greatest extent. On the other hand, in order to address the challenge
C2, AtomR performs dynamic knowledge retrieval from multiple
heterogeneous knowledge sources at necessary nodes, e.g. the leafs.
Additionally, thanks to the orthogonality of atomic knowledge
operator, AtomR can avoid redundant retrieval in different branches.
As shown in Figure 1, our framework employs a more fine-grained
decomposition and a more subtle retrieval strategy.

To be more specific about the pipeline of the proposed reason-
ing framework, first, AtomR decomposes the input question into a
tree of sub-questions, where each leaf node that requires external
knowledge corresponds to an atomic knowledge operator. Then,
AtomR resolves the question by executing the decomposed reason-
ing tree from the bottom-up in post-order traversal. For the leaf
nodes of atomic knowledge operators, AtomR includes a unique im-
plementation for each operator, enabling knowledge manipulation
across three external sources. For other nodes, the output is either
produced by (1) child aggregation, or (2) direct retrieval-augmented
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Abstract
Recent advancements in large language models (LLMs) have led to
signi�cant improvements in various natural language processing
tasks, but it is still challenging for LLMs to deal with tasks such
as knowledge-intensive complex question answering due to LLMs’
ine�cacy in reasoning planning and the hallucination problem. A
typical solution is to employ retrieval-augmented generation (RAG)
coupled with chain-of-thought (CoT) reasoning, which decomposes
complex questions into chain-like sub-questions and applies itera-
tive RAG at the sub-question level. However, prior works exhibit
sub-optimal reasoning planning and have overlooked dynamic re-
trieval from multiple heterogeneous knowledge sources. In this
paper, we propose A���R, a novel heterogeneous knowledge rea-
soning framework that performs multi-source reasoning at the
atomic level. Inspired by the inherent modular nature of knowl-
edge, A���R leverages LLMs to decompose complex questions into
�ne-grained atomic operators, e�ectively enhancing the reasoning
process at both the planning and execution levels. We also introduce
a novel dataset, BlendQA, tailored to assess complex heterogeneous
knowledge reasoning. Experiments show that A���R signi�cantly
outperforms state-of-the-art baselines across both single-source
and multi-source reasoning benchmarks.
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1 Introduction
Knowledge-intensive complex question answering is a challeng-
ing task that requires the ability to reason over vast amounts of
knowledge with various reasoning skills, such as multi-hop infer-
ence, comparison and calculation [3, 9, 25, 36]. Although the recent
advancements of Large Language Models (LLMs) [19] have enabled
them to excel in various natural language processing tasks[1, 41], it
is arduous for LLMs to perform knowledge-intensive reasoning due
to their ine�cacy in reasoning planning [11] and the hallucination
problem [1, 13], namely the phenomenon that LLMs con�dently
make up factually incorrect answers.

In order to address the above issues, a typical solution is to lever-
age retrieval augmentation with chain-of-thought [29] reasoning
techniques. Speci�cally, most recent works [4, 21, 26, 31] propose to
perform question decomposition on complex questions into simple
questions, then retrieve knowledge facts for sub-question answer-
ing, thus alleviating the hallucination. However, there still exist
three main challenges: (1) The sub-optimal reasoning path due
to the inadequate question decomposition result. Most previous
works attempt to decompose complex questions into multiple sub-
quesitons with di�erent structures, such as chain-structure [21, 22,
26, 31] or tree structure [4, 33]. However, since they leverage the
free-form decomposition, the granularity of the sub-questions is
often insu�cient, which frequently leads to sub-optimal reasoning
paths and mistakes. TODO: example proof by �gure 1 (2) The lim-
ited support for multiple heterogeneous knowledge sources
in previous retrieval system. Online web pages, o�ine text corpus,
and knowledge bases contain rich knowledge that complement
each other. However, most existing work retrieve on a �xed source
for all questions [4, 26, 31]. A few [17] support multiple sources but
lacks in-depth exploration of knowledge sources such as web pages,
only using the top1 snippet from Google; (3) The absence of high
quality test data built on heterogeneous knowledge sources.
Existing benchmarks that built on multiple knowledge sources ei-
ther have a narrow knowledge scope, typically only encompassing
encyclopedic knowledge from Wikipedia and Wikidata. [34, 39, 40],
or lack instance-level design, allowing individual questions to be
answered using a single knowledge source without requiring cross-
knowledge source querying and comparison [6, 32].

Our approach: propose AtomR, an atomic operator-empowered
reasoning framework for heterogeneous knowledge reasoning.

(resolve challenges C-1 to C-3 proposed previously) C-1. Inspired
by KG atomic design philosophy, design three basic atomic func-
tions for retrieval and reasoning De�ne atomiticity: 1. indivisibility:
E�ect: adequate question decomposition and knowledge retrieval
at atomic level 2. orthogonality: E�ect: avoids redundant retrieval,
only retrieves at necessary nodes (atomic leaf node, or at parent
question when fail to obtain answer from child node aggregation)
Example: �gure 1 1 traditional: LLM free-form question decompo-
sition + external retrieval at every node, not indivisible (ine�ective

1

Figure 1: Comparison of AtomR to previous methods. Pre-
vious methods suffer from ineffective decomposition and
redundant retrieval. AtomR employs a more fine-grained
decomposition, and only performs dynamic retrieval at nec-
essary nodes, avoiding redundant retrieved information.

reasoning if child-aggregation fails. The hierarchical execution pro-
cess helps to locate the optimal reasoning path, and enhances the
framework’s robustness, ensuring that if the lower-level nodes fail,
the higher-level nodes still could obtain the answer.

Finally, to address the challenge of lacking high quality test data
built on heterogeneous knowledge sources (C3), we construct an
evaluation benchmark BlendQA across diverse knowledge sources
through a combination of LLM-generated content and manual veri-
fication, covering knowledge graphs, online web pages, and local
text corpora. We adopt a bottom-up construction approach, first
creating sub-questions within different knowledge sources, then
merging them into one through a common bridging entity. For
example, for web pages, we mainly collect recent news articles and
use LLMs to ask questions about relevant entities mentioned in the
articles. It includes various types of questions such as multi-hop,
comparison, true or false, and long answer question. In this way, the
data we constructed covers a wide range of both new and old knowl-
edge, with minimal overlap between different knowledge sources.
Experiments also show that our reasoning framework utilizes the
three knowledge sources at roughly the same rate.

We conduct extensive experiment to evaluate the performance
of AtomR on three Single-Source datasets and two Multi-Source
datasets (including BlendQA). We employ GPT4o as the base LLM,
use full Wikipedia dump as text knowledge source, Google API as
web knowledge source, and Wikidata as KG knowledge source. Ex-
periments show that AtomR yields significant improvements over
SOTA baselines, achieving 5.4%, 9.4%, and 1.2% F1 score improve-
ments on Single-Source datasets, and 9.5%, 6.6% F1 score improve-
ments on multi-source datasets. Our contribution in this paper is
three-fold: (1) Introduce AtomR, an atomic operator-empowered
hybrid reasoning framework; (2) Present evaluation benchmark
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BlendQA built across three heterogeneous knowledge sources; (3)
Assess AtomR with extensive experiments and analysis, yielding
new SOTA results on 3 and 2 multi-source datasets.

2 Related Work
2.1 Knowledge-Intensive Reasoning
Although the language models are capable of generating highly
coherent text and have strong reasoning abilities, the knowledge
required for some tasks exceeds the average knowledge level of
humans and cannot be obtained from the input’s local context. Ex-
ternal knowledge sources are necessary for such tasks, which we
refer to as knowledge-intensive tasks. A wide range of tasks are
knowledge-intensive, such as open-domain question answering [5,
22], knowledge base question answering [10, 44], fact checking [30,
35], knowledgeable open dialogue [7, 47] and so on. Knowledge-
intensive tasks fully reflect a model’s ability to use external world
knowledge to solve real-world problems, and many benchmarks
have been created to facilitate the evaluation [25, 46]. Our work falls
into the category of question answering, and similar to some recent
efforts [8, 19, 21], we focus more on multi-knowledge source reason-
ing rather than relying on a single knowledge source. Furthermore,
we extend previous work by supporting not only commonly used
encyclopedic knowledge like Wikipedia and Wikidata [34], but also
private offline corpora and online web pages.

2.2 Retrieval-Augmented Language Models
It has been validated that retrieval-augmented methods can improve
the performance of language models in various natural language
tasks [11, 14, 16, 37]. For example, early works [20] leverage dense
vector of text to retrieve relevant passage of the input, and recent ad-
vances incorporate trainable retrievers [28] or search engines [26]
to augment the input context. Previous works usually adopt the
one-time retrieval strategy [2, 17], where the retriever is only called
once to solve one question, which may not able to perform refined
retrieval for complex questions. Therefore, A few recent approaches
instead adopt the multi-time retrieval strategy. IRCoT [33] performs
a retrieval action in each step of the CoT reasoning process. ITER-
RETGEN [27] iteratively call the retriever in every turn of the CoT
steps based on the previous turn’s generation result and the origi-
nal question. Self-Ask [26] utilizes LLMs to decompose questions
into sub-questions and performs the retrieval for each sub-question.
ProbTree [4] proposes to decompose a question into a tree struc-
ture, and accordingly perform retrieval at each node of the tree.
Compared to previous methods, AtomR decomposes a complex
question into fine-grained atomic knowledge operators, effectively
improving the success rate of relevant knowledge retrieval at each
node of the reasoning tree.

3 Methodology
In this section, we introduce the design of AtomR. The overall
architecture of AtomR is illustrated in Figure 2. At the core of our
framework are three fundamental Atomic Knowledge Operators
(Section 3.1), which we design to retrieve and manipulate knowl-
edge at the atomic level. These operators then steer the process of
AtomR through two main stages: (1) Atomic Reasoning Planning
(Section 3.2), where the system effectively generates a fine-grained

Table 1: The correspondence of each AtomR atomic knowl-
edge operator to SPARQL and Cypher clauses and KoPL
functions. “[REL]” represents inter-nodal relationship in
Cypher, while “WHERE(n)” and “WHERE(e,r)” represents
using SPARQL’s WHERE clause with the entity name con-
straint and the entity-relation constraint, respectively. We
omit the SPARQL SELECT clause, as it is a fundamental main
clause that is inherently included in all queries.

Function SPARQL Cypher KoPL AtomR

Entity Dis-
ambiguation

WHERE
(n) MATCH Find Search

One-hop
Inference

WHERE
(e,r) [REL]

Relate,
QueryAttr,

QueryRelation
Relate

Entity
Filtering FILTER WHERE

FilterConcept,
FilterStr,

FilterNum,
FilterYear,
FilterDate

Filter

Atomic Reasoning Tree (ART), and (2) Atomic Reasoning Execu-
tion (Section 3.3), where the system performs bottom-up reasoning
across multiple knowledge sources at each atomic node. We first
introduce the design of our three atomic knowledge operators in
Section 3.1, then detail the two main stages of our framework in Sec-
tions 3.2 and 3.3. The LLM prompts used in each step are included
in Appendix B.

3.1 Atomic Knowledge Operators
Knowledge-intensive QA demands accurate knowledge retrieval
and sophisticated knowledge manipulation. Hence, the granularity
at which we operate knowledge is crucial. Previous knowledge
base question answering systems [3] exemplify fine-grained knowl-
edge manipulation by breaking down knowledge into atomic ele-
ments—entities, relations, and attributes. In this light, we aim to
refine the reasoning process of LLMs to an atomic level.

We design three general atomic knowledge operators for LLMs:
Search, Relate, and Filter, which can be applied across various
knowledge sources. These operators distill essential operations
from existing graph query languages. Table 1 illustrates how op-
erations of three widely-used graph query languages, SPARQL,
Cypher, and KoPL [3, 9, 24], can be induced into AtomR’s three
atomic knowledge operators.

Search. The Search operator is designed for entity disambigua-
tion: to accurately retrieve the desired entities from a massive entity
pool, especially when multiple entities share similar names. In graph
knowledge models, Search is analogous to locating the initial en-
tity node(s), which sets the foundation for subsequent inter-nodal
reasoning. AtomR’s Search operator is defined as follows:

𝑙𝑖𝑠𝑡 [𝑒𝑛𝑡𝑖𝑡𝑦] = Search(𝑒𝑛𝑡𝑖𝑡𝑦_𝑛𝑎𝑚𝑒, {𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙}𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 )
It contains two inputs: the entity name and an optional entity de-
scriptor to facilitate disambiguation. For example, Search (“Michael
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Question

(1) Atomic Reasoning Planning

(2) Atomic Reasoning Execution

Root. How many studio albums has Shakira released between 2000 and 2010?

1. What studio albums has Shakira released? 2. Among [1], which albums were released 
between 2000 and 2010?

4. Who is Shakira? 5. What studio albums 
has [4] released?

(“Shakira”, “musician”)
( [4] , “studio albums”)

[DR]
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3. How many albums are in [2]?
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2.2 Retrieval-Augmented Language Models
It has been validated that retrieval-augmented methods can improve
the performance of language models in various natural language
tasks [10, 12, 14, 32]. For example, early works [17] leverage dense
vector of text to retrieve relevant passage of the input, and recent ad-
vances incorporate trainable retrievers [24] or search engines [22]
to augment the input context. Previous works usually adopt the
one-time retrieval strategy [2, 15], where the retriever is only called
once to solve one question, which may not able to perform re�ned
retrieval for complex questions. Therefore, A few recent approaches
instead adopt the multi-time retrieval strategy. IRCoT [28] performs
a retrieval action in each step of the CoT reasoning process. ITER-
RETGEN [23] iteratively call the retriever in every turn of the CoT
steps based on the previous turn’s generation result and the origi-
nal question. Self-Ask [22] utilizes LLMs to decompose questions
into sub-questions and performs the retrieval for each sub-question.
ProbTree [4] proposes to decompose a question into a tree struc-
ture, and accordingly perform retrieval at each node of the tree.
However, existing multi-time retrieval frameworks rely purely on
LLMs to decompose questions in a free-form manner, which often
leads to sub-optimal reasoning planning during question decompo-
sition. This leads to ine�ective or even empty knowledge retrieval
at poorly-planned sub-questions, in turn causing inaccuracies in
reasoning. Compared to previous methods, A���R decomposes a
complex question into �ne-grained atomic knowledge operators, ef-
fectively improving the success rate of relevant knowledge retrieval
at each node of the reasoning tree.

3 Methodology
Leveraging chain-of-thought (CoT) reasoning coupled with retrieval-
augmented-generation (RAG) has become a prevalent approach for
knowledge-intensive question answering (QA). However, existing
methods su�er from (1) sub-optimal reasoning planning and (2)
limited integration of heterogeneous knowledge sources. Motivated
by these shortcomings, we introduce A���R, A���ic Operator-
Empowered Large Language Models for Heterogeneous Knowledge
Reasoning.

The overall architecture of A���R is illustrated in Figure 2. At
the core of our framework are three fundamental Atomic Knowl-
edge Operators (Section 3.1), which we design to retrieve and
manipulate knowledge at the atomic level. These operators then
guide the process of A���R across two main stages: (1) Atomic
Reasoning Planning (Section 3.2), where the system e�ectively
generates a �ne-grained Atomic Reasoning Tree (ART), and (2)
Atomic Reasoning Execution (Section 3.3), where the system
performs bottom-up multi-source knowledge reasoning over each
atomic node. In this section, we �rst introduce the design of our
three atomic knowledge operators in Section 3.1, then detail the
two main stages of our framework in Sections 3.2 and 3.3. The
concrete LLM prompts used in each step are included in Appendix
TODO.

3.1 Atomic Knowledge Operators
Knowledge-intensive QA demands accurate knowledge retrieval
and sophisticated knowledge manipulation. Hence, the granularity

Table 1: The correspondence of each A���R atomic knowl-
edge operator to SPARQL and Cypher clauses and KoPL
functions. "[REL]" represents inter-nodal relationship in
Cypher, while "WHERE(n)" and "WHERE(e,r)" represents
using SPARQL’s WHERE clause with the entity name con-
straint and the entity-relation constraint, respectively. We
omit the SPARQL SELECT clause, as it is a fundamental main
clause that is inherently included in all queries.

Function SPARQL Cypher KoPL A���R

Entity Dis-
ambiguation

WHERE
(n) MATCH Find Search

One-hop
Inference

WHERE
(e,r) [REL]

Relate,
QueryAttr,

QueryRelation
Relate

Entity
Filtering FILTER WHERE

FilterConcept,
FilterStr,

FilterNum,
FilterYear,
FilterDate

Filter

at which we operate knowledge is crucial. Graph knowledge mod-
els [3] exemplify �ne-grained knowledge operation by breaking
down knowledge into atomic components—entities, relations, and
attributes—that are interconnected yet orthogonal. Inspired by such
models, we aim to enhance knowledge-intensive QA by conducting
knowledge operation at the atomic entity level.

Through investigating three most widely used graph query Lan-
guages, SPARQL, Cypher, and KoPL, we observe that all their knowl-
edge operations could be distilled into three fundamental Atomic
Knowledge Operators: Search, Relate, and Filter. Table 1 illus-
trates how operations of the three graph query languages can be
induced into A���R’s three fundamental atomic knowledge opera-
tors.

Search. The Search operator is designed for entity disambigua-
tion: to accurately identify and retrieve the desired entities from a
massive entity pool, especially when multiple entities share sim-
ilar names. In graph knowledge models, Search is analogous to
locating the initial entity node(s), which sets the foundation for sub-
sequent inter-nodal reasoning. A���R’s Search operator is de�ned
as follows:

;8BC [4=C8C~] = Search(4=C8C~_=0<4, {>?C8>=0;}34B2A8?C>A )
It contains two inputs: the entity name and an optional entity de-
scriptor to facilitate disambiguation. For example, Search (“Michael
Jordan”, “footballer”) returns the entity [“Michael Jordan (Ameri-
can football)”], successfully distinguishing the footballer “Michael
Jordan” from other “Michael Jordan”.

During execution, the Search function �rst initiates multi-source
knowledge retrieval using the entity name concatenated with the
optional descriptor “{entity_name} {descriptor}” as the query. Then,
the retrieved knowledge is inputted to an adaptive LLM executor to
conduct entity disambiguation through in-context learning. Finally,
the adaptive LLM executor outputs the disambiguated entity list.
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2.2 Retrieval-Augmented Language Models
It has been validated that retrieval-augmented methods can improve
the performance of language models in various natural language
tasks [10, 12, 14, 32]. For example, early works [17] leverage dense
vector of text to retrieve relevant passage of the input, and recent ad-
vances incorporate trainable retrievers [24] or search engines [22]
to augment the input context. Previous works usually adopt the
one-time retrieval strategy [2, 15], where the retriever is only called
once to solve one question, which may not able to perform re�ned
retrieval for complex questions. Therefore, A few recent approaches
instead adopt the multi-time retrieval strategy. IRCoT [28] performs
a retrieval action in each step of the CoT reasoning process. ITER-
RETGEN [23] iteratively call the retriever in every turn of the CoT
steps based on the previous turn’s generation result and the origi-
nal question. Self-Ask [22] utilizes LLMs to decompose questions
into sub-questions and performs the retrieval for each sub-question.
ProbTree [4] proposes to decompose a question into a tree struc-
ture, and accordingly perform retrieval at each node of the tree.
However, existing multi-time retrieval frameworks rely purely on
LLMs to decompose questions in a free-form manner, which often
leads to sub-optimal reasoning planning during question decompo-
sition. This leads to ine�ective or even empty knowledge retrieval
at poorly-planned sub-questions, in turn causing inaccuracies in
reasoning. Compared to previous methods, A���R decomposes a
complex question into �ne-grained atomic knowledge operators, ef-
fectively improving the success rate of relevant knowledge retrieval
at each node of the reasoning tree.

3 Methodology
Leveraging chain-of-thought (CoT) reasoning coupled with retrieval-
augmented-generation (RAG) has become a prevalent approach for
knowledge-intensive question answering (QA). However, existing
methods su�er from (1) sub-optimal reasoning planning and (2)
limited integration of heterogeneous knowledge sources. Motivated
by these shortcomings, we introduce A���R, A���ic Operator-
Empowered Large Language Models for Heterogeneous Knowledge
Reasoning.

The overall architecture of A���R is illustrated in Figure 2. At
the core of our framework are three fundamental Atomic Knowl-
edge Operators (Section 3.1), which we design to retrieve and
manipulate knowledge at the atomic level. These operators then
guide the process of A���R across two main stages: (1) Atomic
Reasoning Planning (Section 3.2), where the system e�ectively
generates a �ne-grained Atomic Reasoning Tree (ART), and (2)
Atomic Reasoning Execution (Section 3.3), where the system
performs bottom-up multi-source knowledge reasoning over each
atomic node. In this section, we �rst introduce the design of our
three atomic knowledge operators in Section 3.1, then detail the
two main stages of our framework in Sections 3.2 and 3.3. The
concrete LLM prompts used in each step are included in Appendix
TODO.

3.1 Atomic Knowledge Operators
Knowledge-intensive QA demands accurate knowledge retrieval
and sophisticated knowledge manipulation. Hence, the granularity

Table 1: The correspondence of each A���R atomic knowl-
edge operator to SPARQL and Cypher clauses and KoPL
functions. "[REL]" represents inter-nodal relationship in
Cypher, while "WHERE(n)" and "WHERE(e,r)" represents
using SPARQL’s WHERE clause with the entity name con-
straint and the entity-relation constraint, respectively. We
omit the SPARQL SELECT clause, as it is a fundamental main
clause that is inherently included in all queries.

Function SPARQL Cypher KoPL A���R

Entity Dis-
ambiguation

WHERE
(n) MATCH Find Search

One-hop
Inference

WHERE
(e,r) [REL]

Relate,
QueryAttr,

QueryRelation
Relate

Entity
Filtering FILTER WHERE

FilterConcept,
FilterStr,

FilterNum,
FilterYear,
FilterDate

Filter

at which we operate knowledge is crucial. Graph knowledge mod-
els [3] exemplify �ne-grained knowledge operation by breaking
down knowledge into atomic components—entities, relations, and
attributes—that are interconnected yet orthogonal. Inspired by such
models, we aim to enhance knowledge-intensive QA by conducting
knowledge operation at the atomic entity level.

Through investigating three most widely used graph query Lan-
guages, SPARQL, Cypher, and KoPL, we observe that all their knowl-
edge operations could be distilled into three fundamental Atomic
Knowledge Operators: Search, Relate, and Filter. Table 1 illus-
trates how operations of the three graph query languages can be
induced into A���R’s three fundamental atomic knowledge opera-
tors.

Search. The Search operator is designed for entity disambigua-
tion: to accurately identify and retrieve the desired entities from a
massive entity pool, especially when multiple entities share sim-
ilar names. In graph knowledge models, Search is analogous to
locating the initial entity node(s), which sets the foundation for sub-
sequent inter-nodal reasoning. A���R’s Search operator is de�ned
as follows:

;8BC [4=C8C~] = Search(4=C8C~_=0<4, {>?C8>=0;}34B2A8?C>A )
It contains two inputs: the entity name and an optional entity de-
scriptor to facilitate disambiguation. For example, Search (“Michael
Jordan”, “footballer”) returns the entity [“Michael Jordan (Ameri-
can football)”], successfully distinguishing the footballer “Michael
Jordan” from other “Michael Jordan”.

During execution, the Search function �rst initiates multi-source
knowledge retrieval using the entity name concatenated with the
optional descriptor “{entity_name} {descriptor}” as the query. Then,
the retrieved knowledge is inputted to an adaptive LLM executor to
conduct entity disambiguation through in-context learning. Finally,
the adaptive LLM executor outputs the disambiguated entity list.
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2.2 Retrieval-Augmented Language Models
It has been validated that retrieval-augmented methods can improve
the performance of language models in various natural language
tasks [10, 12, 14, 32]. For example, early works [17] leverage dense
vector of text to retrieve relevant passage of the input, and recent ad-
vances incorporate trainable retrievers [24] or search engines [22]
to augment the input context. Previous works usually adopt the
one-time retrieval strategy [2, 15], where the retriever is only called
once to solve one question, which may not able to perform re�ned
retrieval for complex questions. Therefore, A few recent approaches
instead adopt the multi-time retrieval strategy. IRCoT [28] performs
a retrieval action in each step of the CoT reasoning process. ITER-
RETGEN [23] iteratively call the retriever in every turn of the CoT
steps based on the previous turn’s generation result and the origi-
nal question. Self-Ask [22] utilizes LLMs to decompose questions
into sub-questions and performs the retrieval for each sub-question.
ProbTree [4] proposes to decompose a question into a tree struc-
ture, and accordingly perform retrieval at each node of the tree.
However, existing multi-time retrieval frameworks rely purely on
LLMs to decompose questions in a free-form manner, which often
leads to sub-optimal reasoning planning during question decompo-
sition. This leads to ine�ective or even empty knowledge retrieval
at poorly-planned sub-questions, in turn causing inaccuracies in
reasoning. Compared to previous methods, A���R decomposes a
complex question into �ne-grained atomic knowledge operators, ef-
fectively improving the success rate of relevant knowledge retrieval
at each node of the reasoning tree.

3 Methodology
Leveraging chain-of-thought (CoT) reasoning coupled with retrieval-
augmented-generation (RAG) has become a prevalent approach for
knowledge-intensive question answering (QA). However, existing
methods su�er from (1) sub-optimal reasoning planning and (2)
limited integration of heterogeneous knowledge sources. Motivated
by these shortcomings, we introduce A���R, A���ic Operator-
Empowered Large Language Models for Heterogeneous Knowledge
Reasoning.

The overall architecture of A���R is illustrated in Figure 2. At
the core of our framework are three fundamental Atomic Knowl-
edge Operators (Section 3.1), which we design to retrieve and
manipulate knowledge at the atomic level. These operators then
guide the process of A���R across two main stages: (1) Atomic
Reasoning Planning (Section 3.2), where the system e�ectively
generates a �ne-grained Atomic Reasoning Tree (ART), and (2)
Atomic Reasoning Execution (Section 3.3), where the system
performs bottom-up multi-source knowledge reasoning over each
atomic node. In this section, we �rst introduce the design of our
three atomic knowledge operators in Section 3.1, then detail the
two main stages of our framework in Sections 3.2 and 3.3. The
concrete LLM prompts used in each step are included in Appendix
TODO.

3.1 Atomic Knowledge Operators
Knowledge-intensive QA demands accurate knowledge retrieval
and sophisticated knowledge manipulation. Hence, the granularity

Table 1: The correspondence of each A���R atomic knowl-
edge operator to SPARQL and Cypher clauses and KoPL
functions. "[REL]" represents inter-nodal relationship in
Cypher, while "WHERE(n)" and "WHERE(e,r)" represents
using SPARQL’s WHERE clause with the entity name con-
straint and the entity-relation constraint, respectively. We
omit the SPARQL SELECT clause, as it is a fundamental main
clause that is inherently included in all queries.

Function SPARQL Cypher KoPL A���R

Entity Dis-
ambiguation

WHERE
(n) MATCH Find Search

One-hop
Inference

WHERE
(e,r) [REL]

Relate,
QueryAttr,

QueryRelation
Relate

Entity
Filtering FILTER WHERE

FilterConcept,
FilterStr,

FilterNum,
FilterYear,
FilterDate

Filter

at which we operate knowledge is crucial. Graph knowledge mod-
els [3] exemplify �ne-grained knowledge operation by breaking
down knowledge into atomic components—entities, relations, and
attributes—that are interconnected yet orthogonal. Inspired by such
models, we aim to enhance knowledge-intensive QA by conducting
knowledge operation at the atomic entity level.

Through investigating three most widely used graph query Lan-
guages, SPARQL, Cypher, and KoPL, we observe that all their knowl-
edge operations could be distilled into three fundamental Atomic
Knowledge Operators: Search, Relate, and Filter. Table 1 illus-
trates how operations of the three graph query languages can be
induced into A���R’s three fundamental atomic knowledge opera-
tors.

Search. The Search operator is designed for entity disambigua-
tion: to accurately identify and retrieve the desired entities from a
massive entity pool, especially when multiple entities share sim-
ilar names. In graph knowledge models, Search is analogous to
locating the initial entity node(s), which sets the foundation for sub-
sequent inter-nodal reasoning. A���R’s Search operator is de�ned
as follows:

;8BC [4=C8C~] = Search(4=C8C~_=0<4, {>?C8>=0;}34B2A8?C>A )
It contains two inputs: the entity name and an optional entity de-
scriptor to facilitate disambiguation. For example, Search (“Michael
Jordan”, “footballer”) returns the entity [“Michael Jordan (Ameri-
can football)”], successfully distinguishing the footballer “Michael
Jordan” from other “Michael Jordan”.

During execution, the Search function �rst initiates multi-source
knowledge retrieval using the entity name concatenated with the
optional descriptor “{entity_name} {descriptor}” as the query. Then,
the retrieved knowledge is inputted to an adaptive LLM executor to
conduct entity disambiguation through in-context learning. Finally,
the adaptive LLM executor outputs the disambiguated entity list.
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2.2 Retrieval-Augmented Language Models
It has been validated that retrieval-augmented methods can improve
the performance of language models in various natural language
tasks [10, 12, 14, 32]. For example, early works [17] leverage dense
vector of text to retrieve relevant passage of the input, and recent ad-
vances incorporate trainable retrievers [24] or search engines [22]
to augment the input context. Previous works usually adopt the
one-time retrieval strategy [2, 15], where the retriever is only called
once to solve one question, which may not able to perform re�ned
retrieval for complex questions. Therefore, A few recent approaches
instead adopt the multi-time retrieval strategy. IRCoT [28] performs
a retrieval action in each step of the CoT reasoning process. ITER-
RETGEN [23] iteratively call the retriever in every turn of the CoT
steps based on the previous turn’s generation result and the origi-
nal question. Self-Ask [22] utilizes LLMs to decompose questions
into sub-questions and performs the retrieval for each sub-question.
ProbTree [4] proposes to decompose a question into a tree struc-
ture, and accordingly perform retrieval at each node of the tree.
However, existing multi-time retrieval frameworks rely purely on
LLMs to decompose questions in a free-form manner, which often
leads to sub-optimal reasoning planning during question decompo-
sition. This leads to ine�ective or even empty knowledge retrieval
at poorly-planned sub-questions, in turn causing inaccuracies in
reasoning. Compared to previous methods, A���R decomposes a
complex question into �ne-grained atomic knowledge operators, ef-
fectively improving the success rate of relevant knowledge retrieval
at each node of the reasoning tree.

3 Methodology
Leveraging chain-of-thought (CoT) reasoning coupled with retrieval-
augmented-generation (RAG) has become a prevalent approach for
knowledge-intensive question answering (QA). However, existing
methods su�er from (1) sub-optimal reasoning planning and (2)
limited integration of heterogeneous knowledge sources. Motivated
by these shortcomings, we introduce A���R, A���ic Operator-
Empowered Large Language Models for Heterogeneous Knowledge
Reasoning.

The overall architecture of A���R is illustrated in Figure 2. At
the core of our framework are three fundamental Atomic Knowl-
edge Operators (Section 3.1), which we design to retrieve and
manipulate knowledge at the atomic level. These operators then
guide the process of A���R across two main stages: (1) Atomic
Reasoning Planning (Section 3.2), where the system e�ectively
generates a �ne-grained Atomic Reasoning Tree (ART), and (2)
Atomic Reasoning Execution (Section 3.3), where the system
performs bottom-up multi-source knowledge reasoning over each
atomic node. In this section, we �rst introduce the design of our
three atomic knowledge operators in Section 3.1, then detail the
two main stages of our framework in Sections 3.2 and 3.3. The
concrete LLM prompts used in each step are included in Appendix
TODO.

3.1 Atomic Knowledge Operators
Knowledge-intensive QA demands accurate knowledge retrieval
and sophisticated knowledge manipulation. Hence, the granularity

Table 1: The correspondence of each A���R atomic knowl-
edge operator to SPARQL and Cypher clauses and KoPL
functions. "[REL]" represents inter-nodal relationship in
Cypher, while "WHERE(n)" and "WHERE(e,r)" represents
using SPARQL’s WHERE clause with the entity name con-
straint and the entity-relation constraint, respectively. We
omit the SPARQL SELECT clause, as it is a fundamental main
clause that is inherently included in all queries.

Function SPARQL Cypher KoPL A���R

Entity Dis-
ambiguation

WHERE
(n) MATCH Find Search

One-hop
Inference

WHERE
(e,r) [REL]

Relate,
QueryAttr,

QueryRelation
Relate

Entity
Filtering FILTER WHERE

FilterConcept,
FilterStr,

FilterNum,
FilterYear,
FilterDate

Filter

at which we operate knowledge is crucial. Graph knowledge mod-
els [3] exemplify �ne-grained knowledge operation by breaking
down knowledge into atomic components—entities, relations, and
attributes—that are interconnected yet orthogonal. Inspired by such
models, we aim to enhance knowledge-intensive QA by conducting
knowledge operation at the atomic entity level.

Through investigating three most widely used graph query Lan-
guages, SPARQL, Cypher, and KoPL, we observe that all their knowl-
edge operations could be distilled into three fundamental Atomic
Knowledge Operators: Search, Relate, and Filter. Table 1 illus-
trates how operations of the three graph query languages can be
induced into A���R’s three fundamental atomic knowledge opera-
tors.

Search. The Search operator is designed for entity disambigua-
tion: to accurately identify and retrieve the desired entities from a
massive entity pool, especially when multiple entities share sim-
ilar names. In graph knowledge models, Search is analogous to
locating the initial entity node(s), which sets the foundation for sub-
sequent inter-nodal reasoning. A���R’s Search operator is de�ned
as follows:

;8BC [4=C8C~] = Search(4=C8C~_=0<4, {>?C8>=0;}34B2A8?C>A )
It contains two inputs: the entity name and an optional entity de-
scriptor to facilitate disambiguation. For example, Search (“Michael
Jordan”, “footballer”) returns the entity [“Michael Jordan (Ameri-
can football)”], successfully distinguishing the footballer “Michael
Jordan” from other “Michael Jordan”.

During execution, the Search function �rst initiates multi-source
knowledge retrieval using the entity name concatenated with the
optional descriptor “{entity_name} {descriptor}” as the query. Then,
the retrieved knowledge is inputted to an adaptive LLM executor to
conduct entity disambiguation through in-context learning. Finally,
the adaptive LLM executor outputs the disambiguated entity list.
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2.2 Retrieval-Augmented Language Models
It has been validated that retrieval-augmented methods can improve
the performance of language models in various natural language
tasks [10, 12, 14, 32]. For example, early works [17] leverage dense
vector of text to retrieve relevant passage of the input, and recent ad-
vances incorporate trainable retrievers [24] or search engines [22]
to augment the input context. Previous works usually adopt the
one-time retrieval strategy [2, 15], where the retriever is only called
once to solve one question, which may not able to perform re�ned
retrieval for complex questions. Therefore, A few recent approaches
instead adopt the multi-time retrieval strategy. IRCoT [28] performs
a retrieval action in each step of the CoT reasoning process. ITER-
RETGEN [23] iteratively call the retriever in every turn of the CoT
steps based on the previous turn’s generation result and the origi-
nal question. Self-Ask [22] utilizes LLMs to decompose questions
into sub-questions and performs the retrieval for each sub-question.
ProbTree [4] proposes to decompose a question into a tree struc-
ture, and accordingly perform retrieval at each node of the tree.
However, existing multi-time retrieval frameworks rely purely on
LLMs to decompose questions in a free-form manner, which often
leads to sub-optimal reasoning planning during question decompo-
sition. This leads to ine�ective or even empty knowledge retrieval
at poorly-planned sub-questions, in turn causing inaccuracies in
reasoning. Compared to previous methods, A���R decomposes a
complex question into �ne-grained atomic knowledge operators, ef-
fectively improving the success rate of relevant knowledge retrieval
at each node of the reasoning tree.

3 Methodology
Leveraging chain-of-thought (CoT) reasoning coupled with retrieval-
augmented-generation (RAG) has become a prevalent approach for
knowledge-intensive question answering (QA). However, existing
methods su�er from (1) sub-optimal reasoning planning and (2)
limited integration of heterogeneous knowledge sources. Motivated
by these shortcomings, we introduce A���R, A���ic Operator-
Empowered Large Language Models for Heterogeneous Knowledge
Reasoning.

The overall architecture of A���R is illustrated in Figure 2. At
the core of our framework are three fundamental Atomic Knowl-
edge Operators (Section 3.1), which we design to retrieve and
manipulate knowledge at the atomic level. These operators then
guide the process of A���R across two main stages: (1) Atomic
Reasoning Planning (Section 3.2), where the system e�ectively
generates a �ne-grained Atomic Reasoning Tree (ART), and (2)
Atomic Reasoning Execution (Section 3.3), where the system
performs bottom-up multi-source knowledge reasoning over each
atomic node. In this section, we �rst introduce the design of our
three atomic knowledge operators in Section 3.1, then detail the
two main stages of our framework in Sections 3.2 and 3.3. The
concrete LLM prompts used in each step are included in Appendix
TODO.

3.1 Atomic Knowledge Operators
Knowledge-intensive QA demands accurate knowledge retrieval
and sophisticated knowledge manipulation. Hence, the granularity

Table 1: The correspondence of each A���R atomic knowl-
edge operator to SPARQL and Cypher clauses and KoPL
functions. "[REL]" represents inter-nodal relationship in
Cypher, while "WHERE(n)" and "WHERE(e,r)" represents
using SPARQL’s WHERE clause with the entity name con-
straint and the entity-relation constraint, respectively. We
omit the SPARQL SELECT clause, as it is a fundamental main
clause that is inherently included in all queries.

Function SPARQL Cypher KoPL A���R

Entity Dis-
ambiguation

WHERE
(n) MATCH Find Search

One-hop
Inference

WHERE
(e,r) [REL]

Relate,
QueryAttr,

QueryRelation
Relate

Entity
Filtering FILTER WHERE

FilterConcept,
FilterStr,

FilterNum,
FilterYear,
FilterDate

Filter

at which we operate knowledge is crucial. Graph knowledge mod-
els [3] exemplify �ne-grained knowledge operation by breaking
down knowledge into atomic components—entities, relations, and
attributes—that are interconnected yet orthogonal. Inspired by such
models, we aim to enhance knowledge-intensive QA by conducting
knowledge operation at the atomic entity level.

Through investigating three most widely used graph query Lan-
guages, SPARQL, Cypher, and KoPL, we observe that all their knowl-
edge operations could be distilled into three fundamental Atomic
Knowledge Operators: Search, Relate, and Filter. Table 1 illus-
trates how operations of the three graph query languages can be
induced into A���R’s three fundamental atomic knowledge opera-
tors.

Search. The Search operator is designed for entity disambigua-
tion: to accurately identify and retrieve the desired entities from a
massive entity pool, especially when multiple entities share sim-
ilar names. In graph knowledge models, Search is analogous to
locating the initial entity node(s), which sets the foundation for sub-
sequent inter-nodal reasoning. A���R’s Search operator is de�ned
as follows:

;8BC [4=C8C~] = Search(4=C8C~_=0<4, {>?C8>=0;}34B2A8?C>A )
It contains two inputs: the entity name and an optional entity de-
scriptor to facilitate disambiguation. For example, Search (“Michael
Jordan”, “footballer”) returns the entity [“Michael Jordan (Ameri-
can football)”], successfully distinguishing the footballer “Michael
Jordan” from other “Michael Jordan”.

During execution, the Search function �rst initiates multi-source
knowledge retrieval using the entity name concatenated with the
optional descriptor “{entity_name} {descriptor}” as the query. Then,
the retrieved knowledge is inputted to an adaptive LLM executor to
conduct entity disambiguation through in-context learning. Finally,
the adaptive LLM executor outputs the disambiguated entity list.
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2.2 Retrieval-Augmented Language Models
It has been validated that retrieval-augmented methods can improve
the performance of language models in various natural language
tasks [10, 12, 14, 32]. For example, early works [17] leverage dense
vector of text to retrieve relevant passage of the input, and recent ad-
vances incorporate trainable retrievers [24] or search engines [22]
to augment the input context. Previous works usually adopt the
one-time retrieval strategy [2, 15], where the retriever is only called
once to solve one question, which may not able to perform re�ned
retrieval for complex questions. Therefore, A few recent approaches
instead adopt the multi-time retrieval strategy. IRCoT [28] performs
a retrieval action in each step of the CoT reasoning process. ITER-
RETGEN [23] iteratively call the retriever in every turn of the CoT
steps based on the previous turn’s generation result and the origi-
nal question. Self-Ask [22] utilizes LLMs to decompose questions
into sub-questions and performs the retrieval for each sub-question.
ProbTree [4] proposes to decompose a question into a tree struc-
ture, and accordingly perform retrieval at each node of the tree.
However, existing multi-time retrieval frameworks rely purely on
LLMs to decompose questions in a free-form manner, which often
leads to sub-optimal reasoning planning during question decompo-
sition. This leads to ine�ective or even empty knowledge retrieval
at poorly-planned sub-questions, in turn causing inaccuracies in
reasoning. Compared to previous methods, A���R decomposes a
complex question into �ne-grained atomic knowledge operators, ef-
fectively improving the success rate of relevant knowledge retrieval
at each node of the reasoning tree.

3 Methodology
Leveraging chain-of-thought (CoT) reasoning coupled with retrieval-
augmented-generation (RAG) has become a prevalent approach for
knowledge-intensive question answering (QA). However, existing
methods su�er from (1) sub-optimal reasoning planning and (2)
limited integration of heterogeneous knowledge sources. Motivated
by these shortcomings, we introduce A���R, A���ic Operator-
Empowered Large Language Models for Heterogeneous Knowledge
Reasoning.

The overall architecture of A���R is illustrated in Figure 2. At
the core of our framework are three fundamental Atomic Knowl-
edge Operators (Section 3.1), which we design to retrieve and
manipulate knowledge at the atomic level. These operators then
guide the process of A���R across two main stages: (1) Atomic
Reasoning Planning (Section 3.2), where the system e�ectively
generates a �ne-grained Atomic Reasoning Tree (ART), and (2)
Atomic Reasoning Execution (Section 3.3), where the system
performs bottom-up multi-source knowledge reasoning over each
atomic node. In this section, we �rst introduce the design of our
three atomic knowledge operators in Section 3.1, then detail the
two main stages of our framework in Sections 3.2 and 3.3. The
concrete LLM prompts used in each step are included in Appendix
TODO.

3.1 Atomic Knowledge Operators
Knowledge-intensive QA demands accurate knowledge retrieval
and sophisticated knowledge manipulation. Hence, the granularity

Table 1: The correspondence of each A���R atomic knowl-
edge operator to SPARQL and Cypher clauses and KoPL
functions. "[REL]" represents inter-nodal relationship in
Cypher, while "WHERE(n)" and "WHERE(e,r)" represents
using SPARQL’s WHERE clause with the entity name con-
straint and the entity-relation constraint, respectively. We
omit the SPARQL SELECT clause, as it is a fundamental main
clause that is inherently included in all queries.

Function SPARQL Cypher KoPL A���R

Entity Dis-
ambiguation

WHERE
(n) MATCH Find Search

One-hop
Inference

WHERE
(e,r) [REL]

Relate,
QueryAttr,

QueryRelation
Relate

Entity
Filtering FILTER WHERE

FilterConcept,
FilterStr,

FilterNum,
FilterYear,
FilterDate

Filter

at which we operate knowledge is crucial. Graph knowledge mod-
els [3] exemplify �ne-grained knowledge operation by breaking
down knowledge into atomic components—entities, relations, and
attributes—that are interconnected yet orthogonal. Inspired by such
models, we aim to enhance knowledge-intensive QA by conducting
knowledge operation at the atomic entity level.

Through investigating three most widely used graph query Lan-
guages, SPARQL, Cypher, and KoPL, we observe that all their knowl-
edge operations could be distilled into three fundamental Atomic
Knowledge Operators: Search, Relate, and Filter. Table 1 illus-
trates how operations of the three graph query languages can be
induced into A���R’s three fundamental atomic knowledge opera-
tors.

Search. The Search operator is designed for entity disambigua-
tion: to accurately identify and retrieve the desired entities from a
massive entity pool, especially when multiple entities share sim-
ilar names. In graph knowledge models, Search is analogous to
locating the initial entity node(s), which sets the foundation for sub-
sequent inter-nodal reasoning. A���R’s Search operator is de�ned
as follows:

;8BC [4=C8C~] = Search(4=C8C~_=0<4, {>?C8>=0;}34B2A8?C>A )
It contains two inputs: the entity name and an optional entity de-
scriptor to facilitate disambiguation. For example, Search (“Michael
Jordan”, “footballer”) returns the entity [“Michael Jordan (Ameri-
can football)”], successfully distinguishing the footballer “Michael
Jordan” from other “Michael Jordan”.

During execution, the Search function �rst initiates multi-source
knowledge retrieval using the entity name concatenated with the
optional descriptor “{entity_name} {descriptor}” as the query. Then,
the retrieved knowledge is inputted to an adaptive LLM executor to
conduct entity disambiguation through in-context learning. Finally,
the adaptive LLM executor outputs the disambiguated entity list.
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2.2 Retrieval-Augmented Language Models
It has been validated that retrieval-augmented methods can improve
the performance of language models in various natural language
tasks [10, 12, 14, 32]. For example, early works [17] leverage dense
vector of text to retrieve relevant passage of the input, and recent ad-
vances incorporate trainable retrievers [24] or search engines [22]
to augment the input context. Previous works usually adopt the
one-time retrieval strategy [2, 15], where the retriever is only called
once to solve one question, which may not able to perform re�ned
retrieval for complex questions. Therefore, A few recent approaches
instead adopt the multi-time retrieval strategy. IRCoT [28] performs
a retrieval action in each step of the CoT reasoning process. ITER-
RETGEN [23] iteratively call the retriever in every turn of the CoT
steps based on the previous turn’s generation result and the origi-
nal question. Self-Ask [22] utilizes LLMs to decompose questions
into sub-questions and performs the retrieval for each sub-question.
ProbTree [4] proposes to decompose a question into a tree struc-
ture, and accordingly perform retrieval at each node of the tree.
However, existing multi-time retrieval frameworks rely purely on
LLMs to decompose questions in a free-form manner, which often
leads to sub-optimal reasoning planning during question decompo-
sition. This leads to ine�ective or even empty knowledge retrieval
at poorly-planned sub-questions, in turn causing inaccuracies in
reasoning. Compared to previous methods, A���R decomposes a
complex question into �ne-grained atomic knowledge operators, ef-
fectively improving the success rate of relevant knowledge retrieval
at each node of the reasoning tree.

3 Methodology
Leveraging chain-of-thought (CoT) reasoning coupled with retrieval-
augmented-generation (RAG) has become a prevalent approach for
knowledge-intensive question answering (QA). However, existing
methods su�er from (1) sub-optimal reasoning planning and (2)
limited integration of heterogeneous knowledge sources. Motivated
by these shortcomings, we introduce A���R, A���ic Operator-
Empowered Large Language Models for Heterogeneous Knowledge
Reasoning.

The overall architecture of A���R is illustrated in Figure 2. At
the core of our framework are three fundamental Atomic Knowl-
edge Operators (Section 3.1), which we design to retrieve and
manipulate knowledge at the atomic level. These operators then
guide the process of A���R across two main stages: (1) Atomic
Reasoning Planning (Section 3.2), where the system e�ectively
generates a �ne-grained Atomic Reasoning Tree (ART), and (2)
Atomic Reasoning Execution (Section 3.3), where the system
performs bottom-up multi-source knowledge reasoning over each
atomic node. In this section, we �rst introduce the design of our
three atomic knowledge operators in Section 3.1, then detail the
two main stages of our framework in Sections 3.2 and 3.3. The
concrete LLM prompts used in each step are included in Appendix
TODO.

3.1 Atomic Knowledge Operators
Knowledge-intensive QA demands accurate knowledge retrieval
and sophisticated knowledge manipulation. Hence, the granularity

Table 1: The correspondence of each A���R atomic knowl-
edge operator to SPARQL and Cypher clauses and KoPL
functions. "[REL]" represents inter-nodal relationship in
Cypher, while "WHERE(n)" and "WHERE(e,r)" represents
using SPARQL’s WHERE clause with the entity name con-
straint and the entity-relation constraint, respectively. We
omit the SPARQL SELECT clause, as it is a fundamental main
clause that is inherently included in all queries.

Function SPARQL Cypher KoPL A���R

Entity Dis-
ambiguation

WHERE
(n) MATCH Find Search

One-hop
Inference

WHERE
(e,r) [REL]

Relate,
QueryAttr,

QueryRelation
Relate

Entity
Filtering FILTER WHERE

FilterConcept,
FilterStr,

FilterNum,
FilterYear,
FilterDate

Filter

at which we operate knowledge is crucial. Graph knowledge mod-
els [3] exemplify �ne-grained knowledge operation by breaking
down knowledge into atomic components—entities, relations, and
attributes—that are interconnected yet orthogonal. Inspired by such
models, we aim to enhance knowledge-intensive QA by conducting
knowledge operation at the atomic entity level.

Through investigating three most widely used graph query Lan-
guages, SPARQL, Cypher, and KoPL, we observe that all their knowl-
edge operations could be distilled into three fundamental Atomic
Knowledge Operators: Search, Relate, and Filter. Table 1 illus-
trates how operations of the three graph query languages can be
induced into A���R’s three fundamental atomic knowledge opera-
tors.

Search. The Search operator is designed for entity disambigua-
tion: to accurately identify and retrieve the desired entities from a
massive entity pool, especially when multiple entities share sim-
ilar names. In graph knowledge models, Search is analogous to
locating the initial entity node(s), which sets the foundation for sub-
sequent inter-nodal reasoning. A���R’s Search operator is de�ned
as follows:

;8BC [4=C8C~] = Search(4=C8C~_=0<4, {>?C8>=0;}34B2A8?C>A )
It contains two inputs: the entity name and an optional entity de-
scriptor to facilitate disambiguation. For example, Search (“Michael
Jordan”, “footballer”) returns the entity [“Michael Jordan (Ameri-
can football)”], successfully distinguishing the footballer “Michael
Jordan” from other “Michael Jordan”.

During execution, the Search function �rst initiates multi-source
knowledge retrieval using the entity name concatenated with the
optional descriptor “{entity_name} {descriptor}” as the query. Then,
the retrieved knowledge is inputted to an adaptive LLM executor to
conduct entity disambiguation through in-context learning. Finally,
the adaptive LLM executor outputs the disambiguated entity list.

3

Figure 2: The Overall Framework of AtomR.

Jordan”, “scientist”) returns the entity [“Michael I. Jordan”], success-
fully distinguishing the machine learning scientist “Michael Jordan”
from other “Michael Jordan” enities.

During execution, the Search function first initiates multi-source
knowledge retrieval using the entity name concatenated with the
optional descriptor “{entity_name} {descriptor}” as the query. Then,
the retrieved knowledge is inputted to an adaptive LLM executor to
conduct entity disambiguation through in-context learning. Finally,
the LLM executor outputs the disambiguated entity list.

Relate. The Relate operator is designed for one-hop inference.
In graph knowledge models, Relate is analogous to handling knowl-
edge from a head entity node to a tail entity node across a relation
edge. There are three possibilities for one-hop inference: (1) retrieve
tail entities given a head entity and relation, (2) retrieve an attribute
value given an entity and attribute, and (3) retrieve a relation be-
tween a head and tail entity. The three possibilities are depicted in
Equations 1, 2, 3, where 𝑒𝑛𝑡𝑖𝑡𝑦ℎ and 𝑒𝑛𝑡𝑖𝑡𝑦𝑡 denotes head and tail
entity, respectively:

𝑙𝑖𝑠𝑡 [𝑒𝑛𝑡𝑖𝑡𝑦𝑡 ] = Relate(𝑒𝑛𝑡𝑖𝑡𝑦ℎ, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) (1)
𝑣𝑎𝑙𝑢𝑒 = Relate(𝑒𝑛𝑡𝑖𝑡𝑦ℎ, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) (2)

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = Relate(𝑒𝑛𝑡𝑖𝑡𝑦ℎ, 𝑒𝑛𝑡𝑖𝑡𝑦𝑡 ) (3)

An example of case (1) would be Relate(“Barack Obama”, “child”),
which returns the tail entity list [“Malia Obama”, “Sasha Obama”].
Similarly, for case (2), Relate(“Barack Obama”, “date of birth”) returns
the attribute [“August 4th, 1961”]. An example for case (3) would be

to reversely retrieve the relation of Malia Obama to Barack Obama,
where Relate(“Malia Obama”, “Barack Obama”) returns [“child”].

During execution, similar as Search, Relate first initiates multi-
source knowledge retrieval using the concatenated function param-
eters as the query, then inputs the retrieved knowledge into the
adaptive LLM executor with an in-context learning prompt. Finally,
the LLM executor outputs the answer: either an entity list for case
(1), an attribute value for case (2), or a relation for case (3).

Filter. The Filter operator is designed for entity filtering. In
graph knowledge models, Filter is analogous to filtering an entity
subset that satisfies an attributal condition from an initial entity
set. It is defined as follows:

𝑙𝑖𝑠𝑡 [𝑒𝑛𝑡𝑖𝑡𝑦] = Filter(𝑙𝑖𝑠𝑡 [𝑒𝑛𝑡𝑖𝑡𝑦], 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
For example, Filter([“Lionel Messi”, “Steven Jobs”, “Bill Gates”], “born
in 1955”), returns [“Bill Gates”, “Steve Jobs”].

The execution of Filter is slightly more complicated. First,
Filter initiates multi-source knowledge retrieval for every entity
in its input 𝑙𝑖𝑠𝑡 [𝑒𝑛𝑡𝑖𝑡𝑦], where each retrieval query is formulated as
“{entity_name} {condition}”. Subsequently, for each entity 𝑒𝑖 , Filter
concatenates all retrieved passages and calculates the overlapping
coefficient 𝑂𝑖 between the query 𝑞𝑖 “{entity_name} {condition}” and
the concatenated passage 𝑝𝑖 :

𝑂𝑖 (𝑞𝑖 , 𝑝𝑖 ) = |𝑞𝑖 ∩ 𝑝𝑖 |
min( |𝑞𝑖 |, |𝑝𝑖 |)

The overlapping coefficient of each entity is then compared to a
hyperparameter threshold 𝑡 . Entities with 𝑂𝑖 < 𝑡 will be directly
discarded to remove excessive noise from the retrieved knowledge.
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Then, the remaining entities and passages are inputted to the adap-
tive LLM executor to perform entity filtering via in-context learning.
Finally, the LLM executor outputs the filtered entity list.

3.2 Atomic Reasoning Planning
To effectively model the complex reasoning structures of knowledge-
intensive QA, AtomR employs reasoning planning in a tree struc-
ture [4, 42]. Given a complex question, AtomR leverages an LLM
planner to decompose the question into an Atomic Reasoning Tree
(ART), where the root node is the original complex question, while
each non-root node is a decomposed sub-question of its parent.
The decomposition continues until each leaf question is a fine-
grained atomic question, which could be directly answered by either
(a) calling one of the three predefined atomic knowledge opera-
tors—Search, Relate, or Filter, or (b) analyzing answers of pre-
vious sibling sub-questions. Then, for each atomic question of case
(a), the LLM planner appends the question’s corresponding opera-
tor call with parameters as the final set of leaf nodes for the ART.
We generate ARTs using in-context learning, and the prompt is
included in Figure 5 of the Appendix.

Following Cao et al. [4], we index ART nodes in breadth-first
search (BFS) order. To reference intermediate answers, we use ref-
erence placeholders denoted as [𝑖], which will be substituted with
actual answers of sub-question [𝑖] during the reasoning execution
stage. Figure 2(1) illustrates an example ART, where the original
question “How many studio albums has Shakira released between
2000 and 2010?” is decomposed into a reasoning tree of three leaf
atomic knowledge operators, linked to sub-questions 4, 5, and 2,
respectively. The grey [DR] (Direct Reasoning) mark attached to
sub-question 3 “How many albums are in [2]?” indicates that it
does not trigger a leaf operator call but instead formulates an an-
swer by direct LLM reasoning based on the output of its sibling
sub-questions, in this case sub-question 2.

We argue that an ART is atomic because a question is decom-
posed until each sub-question reaches an atomic granularity that
could be handled by a predefined atomic knowledge operator. Al-
though previous efforts have sought to achieve fine-grained ques-
tion decomposition, they often fall short due to the lack of effective
atomic constraints. By explicitly inducing and defining a set of
atomic knowledge operators, AtomR successfully manoeuvres the
LLM’s reasoning planning process at a highly fine-grained level.

3.3 Atomic Reasoning Execution
In this stage, given the decomposed ART, we conduct bottom-up
reasoning over each node via post-order-traversal. Algorithm 1 de-
picts the detailed reasoning procedure, while Figure 2(2) visualizes
the main modules involved.

3.3.1 Leaf Node Reasoning. In an ART, each leaf node is an
atomic knowledge operator. The execution of an atomic knowledge
operator consists of three steps: (1) Dynamic knowledge Source
Selection, (2) Multi-source knowledge retrieval, and (3) Atomic
Operator Reasoning.
Dynamic Knowledge Source Selection. While previous works
retrieve knowledge from a static knowledge source, AtomR employs
dynamic knowledge source selection at each sub-question. This
enables AtomR to flexibly identify the most suitable knowledge

Algorithm 1 Atomic Reasoning Execution
1: Require: Atomic Reasoning Tree 𝐴𝑅𝑇
2: for 𝑛𝑖 in PostOrder(𝐴𝑅𝑇 ) do
3: if 𝑛𝑖 is leaf then
4: prepare 𝑛𝑖 ’s sub-question 𝑞𝑖 , child 𝑐𝑖
5: 𝑠𝑖 ← 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑆𝑜𝑢𝑟𝑐𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑞𝑖 )
6: 𝑘𝑖 ← 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 (𝑐𝑖 , 𝑠𝑖 )
7: try
8: 𝑎𝑖 ← 𝐴𝑡𝑜𝑚𝑖𝑐𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔(𝑞𝑖 , 𝑐𝑖 , 𝑘𝑖 )
9: catch Operator Execution Failure

10: 𝑎𝑖 ← 𝐷𝑖𝑟𝑒𝑐𝑡𝑅𝐴𝐺𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔(𝑞𝑖 , 𝑘𝑖 )
11: end try
12: else
13: prepare 𝑛𝑖 ’s sub-question 𝑞𝑖 , children nodes 𝑐𝑖
14: if 𝑐𝑖 is [𝐷𝑅] then
15: 𝑎𝑖 ← 𝑆𝑖𝑏𝑙𝑖𝑛𝑔𝐴𝑛𝑠𝑤𝑒𝑟𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔(𝑞𝑖 , 𝑠𝑖 )
16: else
17: 𝑎𝑖 ← 𝐶ℎ𝑖𝑙𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔(𝑞𝑖 , 𝑐𝑖 )
18: if 𝑎𝑖 is Unknown then
19: 𝑠𝑖 ← 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑆𝑜𝑢𝑟𝑐𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑞𝑖 )
20: 𝑘𝑖 ← 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 (𝑞𝑖 , 𝑠𝑖 )
21: 𝑎𝑖 ← 𝐷𝑖𝑟𝑒𝑐𝑡𝑅𝐴𝐺𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔(𝑞𝑖 , 𝑘𝑖 )
22: end if
23: end if
24: end if
25: end for
26: return 𝑎𝑅𝑜𝑜𝑡

sources to answer each sub-question. Specifically, we leverage an
LLM as a dynamic knowledge source selector through in-context
learning. The LLM outputs the selected knowledge sources, which
are used in the subsequent multi-source knowledge retrieval step.
Multi-source Knowledge Retrieval. After selecting the appro-
priate knowledge sources for each sub-question, AtomR initiates
knowledge retrieval from each source. The retrieval method varies
by source: Web sources are queried via a search engine API, text
sources through a dense retriever, and knowledge graphs (KG) via
a structured graph query language. For the Web and Text knowl-
edge sources, AtomR retrieves the top 𝑘 passages and articles, re-
spectively, where 𝑘 is a pre-defined hyperparameter. For the KG
knowledge source, the full structured answer list is returned. We
formulate a customized retrieval query for each atomic operator as
detailed in Section 3.1.
Atomic Operator Reasoning. Equipped with the sub-question,
the atomic knowledge operator is now ready for execution. To
ensure flexibility and robustness, we utilize an Adaptive LLM Ex-
ecutor, instead of static symbolic code, for operator execution. We
refer to this process as Atomic Operator Reasoning. The detailed
implementation of each atomic knowledge operator is explained in
Section 3.1. Finally, the output of the adaptive LLM executor serves
as the local answer for the associated sub-question.

3.3.2 Parent Node Reasoning. In an ART, all nodes that don’t
initiate an atomic knowledge operator call are considered parent
nodes. A parent node may go through (1) Child Answer Reasoning,
(2) Sibling Anwer Reasoning, and (3) Direct RAG Reasoning.
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Child Answer Reasoning. Child answer reasoning is the process
of deducing an answer for a parent node by synthesizing answers
of its child nodes, formally:

𝑎𝑖 = 𝐶ℎ𝑖𝑙𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔(𝑞𝑖 , [𝑞𝑐1 , 𝑎𝑐1 , 𝑞𝑐2 , 𝑎𝑐2 , ...])

where 𝑞𝑖 is the sub-question for the current node and [𝑞𝑐1 , 𝑎𝑐1 , ...]
is the list of question-answer pairs for 𝑞𝑖 ’s child nodes. For example,
in Figure 2(1), sub-question 1 can be answered by synthesizing
the answers of its child nodes 4 and 5. Child answer reasoning is
achieved through in-context learning, where the LLM is provided
with the child question-answer pairs along with an instruction
prompt.
Sibling Answer Reasoning. Similar to child answer reasoning,
sibling answer reasoning targets [DR] nodes that are answered by
analyzing answers of its previous sibling nodes, formally:

𝑎𝑖 = 𝑆𝑖𝑏𝑙𝑖𝑛𝑔𝐴𝑛𝑠𝑤𝑒𝑟𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔(𝑞𝑖 , [𝑞𝑠1 , 𝑎𝑠1 , 𝑞𝑠2 , 𝑎𝑠2 , ...])

where [𝑞𝑠1 , 𝑎𝑠1 , ...] is the list of question-answer pairs for𝑞𝑖 ’s sibling
nodes that are referenced in the current question 𝑞𝑖 . For example, in
Figure 2(1), sub-question 3 can be answered by analyzing answers
of its referenced sibling node 2. Sibling answer reasoning is also
achieved through LLM in-context learning.
Direct RAG Reasoning. Each parent node is primarily resolved
through either child answer reasoning or sibling answer reasoning.
However, if a parent node fails to obtain an answer, direct RAG
reasoning is employed. Parallel to leaf node reasoning, direct rag
reasoning first performs dynamic knowledge source selection for
the current sub-question 𝑞𝑖 , then initiates multi-source knowledge
retrieval with 𝑞𝑖 as the query. Finally, given 𝑞𝑖 and the retrieved
knowledge, an LLM is employed to conduct standard RAG through
in context learning. This design ensures that while AtomR primarily
focuses on knowledge retrieval at the leaf nodes, it can also flexibly
access external knowledge at inner nodes when necessary.

4 Experiments
4.1 Experimental Setup
4.1.1 Datasets and Evaluation Metrics. To conduct a compre-
hensive assessment of AtomR, we conduct experiments in both
single-source and multi-source settings. In the single-source set-
ting, we evaluate AtomR on three Wikipedia-based multi-hop QA
benchmarks: HotpotQA [41], 2WikiMultiHop [13], and Musique
[32]. We adopt the test and development sets released by IRCoT
[33], which include a 500-entry test set and a 100-entry develop-
ment set sampled from the original development set. In the multi-
source setting, we evaluate AtomR on two recent datasets: CRAG
[39] by Meta and BlendQA, our original dataset. Both CRAG and
BlendQA are constructed based on three heterogeneous knowledge
sources—the Wikidata knowledge base, the Wikipedia text corpus,
and the Google Web search engine. We will provide a more thor-
ough introduction of BlendQA in the next section. For BlendQA,
we evaluate AtomR on the full dataset; for CRAG, we only consider
static questions and sample a 500-entry test set with a 100-entry de-
velopment set. Following IRCoT and ProbTree, we adopt token-level
F1 as the evaluation metric.

4.1.2 BlendQA. The evaluation benchmark BlendQA is designed
to evaluate models’ reasoning capabilities across three heteroge-
neous knowledge sources. In practice, we use the Wikidata and
Wikipedia as the knowledge graph and text corpus, respectively.
The LLM used for construction is gpt-4o-2024-08-06. The general
process is to construct two sub-questions 𝑠𝑢𝑏-𝑞1 and 𝑠𝑢𝑏-𝑞2 in two
different sources that shares a common bridging entity, and merge
them to form a cohesive query. Based on the knowledge source used,
there are three types of questions: the KG-Text, KG-Web, Text-Web.
KG-Text: In the construction of KG-Text category, the 𝑠𝑢𝑏-𝑞1 is sam-
pled from Natural Questions (NQ) [18], which is built on Wikipedia.
We identify the topic entity of it as the bridging entity. Then we
sample several triples of the entity in the KG, using them generate
the second 𝑠𝑢𝑏-𝑞2.
KG-Web: In KG-Web, there are two sub-types depending on the
anchor of the construction. (1) The first kg2web is anchored in KG,
where we randomly sample entities from KG as bridging entities,
sample their triples in KG to generate 𝑠𝑢𝑏-𝑞1, and search the bridg-
ing entity for relevant news to generate 𝑠𝑢𝑏-𝑞2. (2) The second
web2kg is anchored in web, where we collect a large number of
news articles in various domains (politics, business, etc.), asking the
LLM to identify an bridging entity in an article and ask a question
about it as 𝑠𝑢𝑏-𝑞1. The 𝑠𝑢𝑏-𝑞2 is generated in KG with the same
procedure described in (1).
Text-Web: There are also two sub-types in Text-Web. (1)The web2text
is anchored in web, where we identify the topic entity as bridging
entity in the sampled 𝑠𝑢𝑏-𝑞1 from NQ, then search the entity on
the web (exclude wikipedia) to collect its descriptions. Using these
descriptions, we leverage the LLM to generate a unique tag of the
entity as 𝑠𝑢𝑏-𝑞2, e.g. “Neil Armstrong” - “first man to walk on the
moon”. (2) The second text2web is anchored in web, where we sam-
ple 𝑠𝑢𝑏-𝑞1 from NQ, and use the answer of it as the bridging entity
(if valid). Finally we search entity for news to generate 𝑠𝑢𝑏-𝑞2.

4.1.3 Baselines.
Single-source Baselines. We evaluate both Closebook and Open-
book baselines. For the Closebook setting, we evaluate Standard
Prompting and CoT using two-shot prompts. For the Openbook
setting, we first evaluate Standard RAG with one-time retrieval,
then evaluate three state-of-the-art reasoning frameworks: two
chain-structured frameworks IRCoT [33] and SearChain [38], and
one tree-structured framework ProbTree [4].
Multi-source Baselines. We evaluate both Closebook and Open-
book approaches using Standard Prompting, CoT, and Standard
RAG with two-shot prompts. We also assess three established frame-
works: Self-Ask [26], which integrates only a Google search engine;
ProbTree [4], which combines a Google engine with a Wikipedia
corpus; and Chain-of-Knowledge (CoK) [21], which supports all
three knowledge sources—Google, Wikipedia, and Wikidata.

4.1.4 Implementation Details. For all experiments, we use gpt-
4o-2024-08-06 as our base LLM. For web knowledge retrieval, we use
SERPAPI to obtain the most up-to-date results from Google. For text
knowledge retrieval, we use ColBERTv2 as our dense retriever to
retrieve passages from a local Wikipedia corpus. We use HotpotQA’s
official Wikipedia abstract dump from October 2017 to evaluate
HotpotQA, and the Dec 2021 full Wikipedia dump (following Atlas)
to evaluate the other four datasets. For KB knowledge retrieval, we
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Table 2: Results for Single-Source Reasoning. Token-level F1 is reported, with the best results in bold and the second best results
underlined. (↑) indicates the overall gain of AtomR compared to the second-best baseline for each dataset.

HotpotQA 2Wikimultihop Musique
Overall Bridge Comp. Overall Bridge Infer. Comp. B.C. Overall 2hop 3hop 4hop

Without Retrieval (Closebook)

Standard Prompting 50.02 45.22 72.50 41.09 14.44 32.24 71.63 63.13 19.31 21.84 16.03 17.81
CoT 58.38 55.48 71.91 58.32 38.24 54.83 77.27 77.17 29.03 36.26 24.07 17.38
With Retrieval (Wikipedia)

Standard RAG 60.31 61.88 52.97 47.94 34.96 54.32 56.96 57.27 22.07 28.51 15.81 14.77
IRCoT 60.20 58.00 69.40 63.80 46.20 45.50 91.60 79.00 34.20 44.20 26.30 20.10
SearChain 59.04 69.73 51.12 63.10 48.85 50.38 81.41 84.21 31.68 38.89 28.38 17.28
ProbTree 65.91 65.50 67.81 69.32 52.45 64.08 88.17 90.00 34.92 42.52 30.38 21.53

AtomR (ours) 71.27(↑ 5.4) 68.96 82.07 78.72(↑ 9.4) 59.07 80.04 97.48 93.33 36.11(↑ 1.2) 45.63 29.94 20.15

Table 3: Results for Multi-Source Reasoning. Token-level F1 is reported. Web, Text, and KG denote the integration of knowledge
from Google, the Wikipedia corpus, and the Wikidata knowledge base, respectively.

Web Text KG BlendQA CRAG
Overall KG-Web KG-Text Text-Web Overall Simple S.C. Comp. M.H.

Without Retrieval (Closebook)

Standard Prompting - - - 23.26 16.49 24.71 27.64 59.18 56.46 53.87 70.52 55.86
CoT - - - 30.61 18.30 34.37 37.24 63.59 63.22 60.09 69.53 61.40
With Retrieval (Multi-Source)

Standard RAG ✓ ✓ ✓ 33.78 26.62 32.76 41.21 59.27 66.23 56.70 56.67 56.98
Self-Ask ✓ - - 26.25 20.69 27.59 29.68 48.40 47.52 43.22 60.27 42.30
ProbTree ✓ ✓ - 33.85 24.48 38.81 36.70 58.78 58.95 49.00 67.90 59.28
Chain-of-Knowledge ✓ ✓ ✓ 33.08 22.66 37.55 37.38 64.75 57.82 62.15 74.04 65.40

AtomR (ours) ✓ ✓ ✓ 43.32(↑ 9.5) 45.63 39.69 45.22 71.39(↑ 6.6) 70.10 68.51 81.71 64.95

use KoPL as the query language and KQA Pro’s Wikidata dump as
the knowledge base. We only retrieve text knowledge for single-
source datasets, and retrieve knowledge from as many sources as
supported for each baseline on multi-source datasets. We retrieve
knowledge from all three sources for multi-source Standard RAG.
For AtomR, we set 𝑘 = 3 to retrieve the top 3 web and text results,
and set 𝑡 = 0.5 for the Filter function. The results for IRCoT are
from Cao et al. [4], while all other baselines are reproduced by
ourselves using the above settings.

4.2 Main Results
4.2.1 Single-source Results. As shown in Table 2, AtomR sur-
passes all baselines across all three datasets. Compared to the pre-
vious SOTA ProbTree, AtomR achieves F1 improvements by 5.4%,
9.4%, and 1.2% on HotpotQA, 2WikiMultiHop, and Musique, respec-
tively. AtomR also demonstrates outstanding performance on all
types of questions, notably achieving F1 scores as high as 97.48% and
93.33% on the Comparison and Bridge Comparison question types.
Such improvements demonstrate the effectiveness of AtomR’s fine-
grained reasoning planning and atomic knowledge operator design.

While AtomR achieves the best overall performance on Musique,
it yields slightly lower results on Musique’s 3-hop and 4-hop ques-
tions. Upon closer investigation of the dataset and our test outputs,
we find that the sub-questions defined in the Musique dataset are
relatively coarse-grained and can usually be broken down into two
to three operators by AtomR. As a result, 3-hop and 4-hop reason-
ing often involve a large number of sub-questions, which easily
leads to error propagation.

4.2.2 Multi-source Results. AtomR achieves the best results on
both BlendQA and CRAG, with overall F1 improvements of 9.5%
and 6.6%, respectively. On BlendQA, AtomR outperforms all base-
lines consistently over each knowledge-source setting, demonstrat-
ing the effectiveness of our dynamic knowledge selection process.
We also observe that compared to AtomR, the two previous SOTA
frameworks ProbTree and Chain-of-Knowledge are more prone to
LLM hallucination because they rely heavily on the LLM’s memo-
rized factual knowledge during the reasoning process. In contrast,
AtomR prioritizes reasoning with accurately retrieved fine-grained
knowledge, leading to more trustworthy results. Furthermore, com-
paring to ProbTree, AtomR achieves more superior results with
fewer LLM and retriever calls, which is detailed in Section 4.3.3.
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Table 4: Ablating the integration of knowledge sources.

Knowledge Sources BlendQA CRAG
Text, Web, KG 46.97 70.23

w/o KG 46.52(↓ 0.5) 68.88(↓ 1.4)
w/o Text 43.34(↓ 3.6) 67.03(↓ 3.2)
w/o Web 30.30(↓ 16.7) 58.27(↓ 12.0)

4.3 Analysis
4.3.1 Case study: How does AtomR outperform previous

methods? We present a real example from CRAG to showcase
three advantages of AtomR comparing to two SOTA frameworks -
ProbTree and CoK.
(1) Effective Reasoning Planning. In this test case, CoK decom-
poses the question into two sequential rationales, each recalling
only a few of Shakira’s studio albums, which leads to an incom-
plete answer. ProbTree decomposes the input into two overlapping
complex question, resulting in serious redundancy and low accu-
racy results. In contrast, AtomR, achieves fine-grained reasoning
planning with three atomic knowledge operators, each designed to
fulfill a unique, orthogonal function.
(2) Accurate Knowledge Retrieval. The sub-optimal reasoning
planning of CoK and ProbTree directly leads to inefficiencies in
knowledge retrieval. CoK only retrieves information of the albums
mentioned in each rationale, capturing just a subset of the required
answer set. ProbTree’s compositional sub-questions result in noisy
and inaccurate retrievals. In contrast, AtomR’s atomic reasoning
planning ensures fine-grained and precise knowledge retrieval.
(3) Preventing LLM hallucination. Both CoK and ProbTree rely
heavily on LLM parametric knowledge. CoK employs LLM-generated
factual rationales, while ProbTree uses close-book answers of LLMs.
Such characteristics make both frameworks susceptible to LLM hal-
lucination. For instance, ProbTree’s close-book answer for q-1 con-
tains four factual errors. In contrast, AtomR primarily uses LLMs
as reasoning agents over retrieved knowledge, only tapping into
LLM’s parametric knowledge when external sources are lacking,
thereby enhancing answer accuracy and reliability.

4.3.2 Effect of Incorporating Multi-Source Knowledge. We
conduct an ablation study to assess the impact of multi-source
knowledge integration by sampling 80 entries each from BlendQA
and CRAG. The results, detailed in Table 4, indicate that removing
any knowledge source reduces AtomR’s performance, with Web
knowledge having the most significant impact and KG the least.
Removing the Text source results in a noticeable decline of over
3%, highlighting that Wikipedia corpus retrieval is necessary and
cannot be fully substituted by Web searches. We also report the dis-
tribution of selected knowledge sources in Figure 4 of the Appendix,
which demonstrates that the Web knowledge source is the most
generally selected knowledge source, while the other two sources
also contribute adequately to AtomR’s performance.

4.3.3 Comparative Cost Analysis. While both AtomR and Prob-
Tree emloy tree reasoning structures, we design AtomR to be
more accurate while also more cost-efficient. Table 5 illustrates that
AtomR requires fewer LLM and knowledge retriever calls compared

Table 5: Comparing AtomR’s API consumption with the pre-
vious SOTA ProbTree.

Single-source
HotpotQA 2Wiki Musique

LLM Text LLM Text LLM Text
ProbTree 4049 1875 5127 3863 4620 3683
AtomR 3629 1978 4996 2573 4120 2734

Multi-source
BlendQA CRAG

LLM Text Web LLM Text Web
ProbTree 3683 1854 1854 3917 1694 1694
AtomR 3465 1158 1504 2880 946 1236

to ProbTree. ProbTree necessitates two basic LLM calls per tree
node—one for close-book answering and another for open-book
answering—whereas AtomR demands just one LLM call, whether
for atomic operator reasoning at a leaf node or for child-or-sibling
Answer Reasoning at a parent node. Similarly, while ProbTree initi-
ates a knowledge retriever call at every node, AtomR only initiates
retriever calls when external knowledge is needed–either at an
atomic leaf node, or at a parent node that fails to formulate an
answer with child answer reasoning. This is made possible by the
atomic nature of our method: AtomR decomposes complex ques-
tions into a highly fine-grained reasoning tree, which generally
requires retrieval only at leaf nodes.

5 Conclusion
In this paper, we propose AtomR, an atomic operator-empowered
large language models reasoning framework for heterogeneous
knowledge sources. AtomR breaks down the reasoning process
to the atomic level of knowledge, outperforming previous SoTA
reasoning systems across three single-source and two multi-source
datasets by large margins. Ablation studies further validate the
effectiveness of the proposed atomic knowledge operators, which
guide the model in effective reasoning planning and precise knowl-
edge retrieval, enhancing accuracy while reducing the overhead.
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Question: How many albums has Shakira released between 2000 and 2010? (Gold Answer: 5)
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Abstract
Recent advancements in large language models (LLMs) have led to
signi�cant improvements in various natural language processing
tasks, but it is still challenging for LLMs to deal with tasks such
as knowledge-intensive complex question answering due to LLMs’
ine�cacy in reasoning planning and the hallucination problem. A
typical solution is to employ retrieval-augmented generation (RAG)
coupled with chain-of-thought (CoT) reasoning, which decomposes
complex questions into chain-like sub-questions and applies itera-
tive RAG at the sub-question level. However, prior works exhibit
sub-optimal reasoning planning and have overlooked dynamic re-
trieval from multiple heterogeneous knowledge sources. In this
paper, we propose A���R, a novel heterogeneous knowledge rea-
soning framework that performs multi-source reasoning at the
atomic level. Inspired by the inherent modular nature of knowl-
edge, A���R leverages LLMs to decompose complex questions into
�ne-grained atomic operators, e�ectively enhancing the reasoning
process at both the planning and execution levels. We also introduce
a novel dataset, BlendQA, tailored to assess complex heterogeneous
knowledge reasoning. Experiments show that A���R signi�cantly
outperforms state-of-the-art baselines across both single-source
and multi-source reasoning benchmarks.
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1 Introduction
Knowledge-intensive complex question answering is a challeng-
ing task that requires the ability to reason over vast amounts of
knowledge with various reasoning skills, such as multi-hop infer-
ence, comparison and calculation [3, 9, 25, 36]. Although the recent
advancements of Large Language Models (LLMs) [19] have enabled
them to excel in various natural language processing tasks[1, 41], it
is arduous for LLMs to perform knowledge-intensive reasoning due
to their ine�cacy in reasoning planning [11] and the hallucination
problem [1, 13], namely the phenomenon that LLMs con�dently
make up factually incorrect answers.

In order to address the above issues, a typical solution is to lever-
age retrieval augmentation with chain-of-thought [29] reasoning
techniques. Speci�cally, most recent works [4, 21, 26, 31] propose to
perform question decomposition on complex questions into simple
questions, then retrieve knowledge facts for sub-question answer-
ing, thus alleviating the hallucination. However, there still exist
three main challenges: (1) The sub-optimal reasoning path due
to the inadequate question decomposition result. Most previous
works attempt to decompose complex questions into multiple sub-
quesitons with di�erent structures, such as chain-structure [21, 22,
26, 31] or tree structure [4, 33]. However, since they leverage the
free-form decomposition, the granularity of the sub-questions is
often insu�cient, which frequently leads to sub-optimal reasoning
paths and mistakes. TODO: example proof by �gure 1 (2) The lim-
ited support for multiple heterogeneous knowledge sources
in previous retrieval system. Online web pages, o�ine text corpus,
and knowledge bases contain rich knowledge that complement
each other. However, most existing work retrieve on a �xed source
for all questions [4, 26, 31]. A few [17] support multiple sources but
lacks in-depth exploration of knowledge sources such as web pages,
only using the top1 snippet from Google; (3) The absence of high
quality test data built on heterogeneous knowledge sources.
Existing benchmarks that built on multiple knowledge sources ei-
ther have a narrow knowledge scope, typically only encompassing
encyclopedic knowledge from Wikipedia and Wikidata. [34, 39, 40],
or lack instance-level design, allowing individual questions to be
answered using a single knowledge source without requiring cross-
knowledge source querying and comparison [6, 32].

Our approach: propose AtomR, an atomic operator-empowered
reasoning framework for heterogeneous knowledge reasoning.

(resolve challenges C-1 to C-3 proposed previously) C-1. Inspired
by KG atomic design philosophy, design three basic atomic func-
tions for retrieval and reasoning De�ne atomiticity: 1. indivisibility:
E�ect: adequate question decomposition and knowledge retrieval
at atomic level 2. orthogonality: E�ect: avoids redundant retrieval,
only retrieves at necessary nodes (atomic leaf node, or at parent
question when fail to obtain answer from child node aggregation)
Example: �gure 1 1 traditional: LLM free-form question decompo-
sition + external retrieval at every node, not indivisible (ine�ective

1

Stage 1: Atomic Reasoning Planning
(Full JSON ART omitted due to length)
Stage 2: Atomic Reasoning Execution
q-4: Who is Shakira?
<Search(“Shakira”, “musician”)>
Retrieved Knowledge: Shakira (Columbian singer) …
q-4 Answer: Shakira (Columbian singer)
q-5: What studio albums has [4] released?
<Relate([4], “studio albums”)>
Retrieved Knowledge: List of Albums for Shakira…
q-5 Answer: Magia, Peligro, Laundry Service …
q-1: What studio albums has Shakira released?
<Child-Answer Reasoning based on q-4 and q-5>
q-1 Answer: Magia, Peligro, Laundry Service …
q-2: Among [1], which studio albums were released between 
2000 and 2010?
<Filter([1], “released between 2000 and 2010”)>
Retrieved Knowledge: {release date for each album from [1]}
q-2 Answer: Laundry Service, Fijación Oral, Vol. 1, Oral 
Fixation, Vol. 2, She Wolf, Sale el Sol.
q-3: How many albums are in [2]?
<Sibling-Answer Reasoning based on q-2>
q-3 Answer: 5.
Final Answer: 5.

Stage 1: Close-book CoT-SC
Answer 1: First, Shakira released the studio album "Laundry 
Service" in 2001. Second, she released "Fijación Oral, Vol. 
1" in 2005 and "Oral Fixation, Vol. 2" shortly after in the 
same year, and "She Wolf" in 2009. So the answer is 4.
Stage 2: Rationale Correction
Rationale 1: First, Shakira released the studio album 
"Laundry Service" in 2001. 
Retrieved Knowledge: {knowledge about “Laundry Service”}
Corrected Rationale 1: First, Shakira released the studio 
album "Laundry Service" in 2001.
Rationale 2: Second, she released "Fijación Oral, Vol. 1" in 
2005 and "Oral Fixation, Vol. 2" shortly after in the same year, 
and "She Wolf" in 2009. 
Retrieved Knowledge: {knowledge about “Fijación Oral, Vol. 
1”}
Corrected Rationale 2: Second, Shakira released the studio 
album "Fijación Oral, Vol. 1" in 2005.
Stage 3: Answer Consolidation
Final Answer: First, Shakira released the studio album 
"Laundry Service" in 2001. Second, Shakira released  
"Fijación Oral, Vol. 1" in 2005. So the answer is 2.

Stage 1: Question Decomposition
q-1. Which studio albums did Shakira release in each 
year from 2000 to 2010?
q-2. How many studio albums are there in total from 
2000 to 2010?
Stage 2: Probabilistic Reasoning
q-1: 
Close-book Answer: 1 in 2001, 1 in 2002, 1 in 2003, 0 
in 2004, 1 in 2005, 1 in 2006, 0 in 2007, 0 in 2008, 1 in 
2009, 1 in 2010 (high confidence)
Open-book Retrieved Knowledge: {noisy knowledge 
about Shakira’s albums}
Open-book Answer (low confidence): 0 in 2001, 0 in 
2002, 0 in 2003, 0 in 2004, 2 in 2005, 0 n 2006, 0 in 
2007, 0 in 2008, 1 in 2009, 1 in 2010 (low confidence)
q-2:
Close-book Answer: Unknown. (low confidence)
Open-book Retrieved Knowledge: {knowledge about 
all albums released between 2000 to 2010, not just 
Shakira’s}
Open-book Answer: There were many albums 
released in this period… (low confidence)
Final Answer: 7.
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A Distribution of Selected Knowledge Sources
In this section, we display the actual selection rate distribution of
the three knowledge sources in the reasoning process of AtomR in
Figure 4
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Figure 4: Distribution of selected knowledge sources.

B In-context Learning Prompts
All prompts for the different operators in AtomR are shown in
Figures 5 to 11.

You are given 3 atomic functions to help you retrieve and operate knowledge 
from Google, Wikipedia, or Wikidata:
1. Search(). Input: (name, [optional] descriptor). Output: list[entities]. This function 
helps you find and disambiguate an entity given its name and optional descriptor. 
If no descriptor is provided, the most popular entity will be returned. 
2. Relate(). Input: there are 2 input possibilities, (head_entity, relation), or 
(head_entity, tail_entity). Output: list[tail_entities], or list[relations]. This function 
helps you find the tail_entities given a head_entity and relation, or relations given 
a head_entity and tail_entity. You may also search attribute relations using 
Relate() by treating attributes as tail entities. 
3. Filter(). Input: (list[entities], condition). Output: list[entities]. This function helps 
you filter out entities that satisfy a factual attribute condition. 
Construct a hierarchical question decomposition tree in JSON format for the 
following complex question: "{question}". The tree starts with the original complex 
question as the root node, and each non-root node is a sub-question of its parent. 
Continue decomposing until a sub-question cannot be further decomposed and 
could either be: (1) directly answered by calling one of the three atomic functions 
Search(), Relate(), Filter(), or (2) directly answered by analyzing the answers of 
previously answered sibling questions, such as comparing, judging, intersecting, 
counting, etc. In case (1), write this sub-question with its corresponding function 
call as a leaf node. In case (2), write this sub-question with a [SIB] mark as a leaf 
node. 
{Examples}
Question: {question}
Decomposition Tree: 

Figure 5: Prompt for Atomic Reasoning Tree generation
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Using the retrieved knowledge from Google, Wikipedia, or Wikidata, please answer the 
following entity disambiguation question "{question}". Answer the question with (1) a 
Paraphrase Answer that repeats the question, and (2) an Answer List that is a clean entity 
list. You may not answer with an empty entity list: if the provided information is not enough 
to answer the question, answer based on your own knowledge. Strictly follow the format 
of the examples below, ending your answer with "So the answer is: (1) Paraphrase 
Answer: {{paraphrase_answer}}; (2) Answer List: [entity_list]"
Examples.
Retrieved Knowledge: 
Wikipedia Passages: [1] Kuhle Wampe | Kuhle Wampe is a 1932 German feature film 
about unemployment, homelessness and left wing politics in the Weimar Republic 
produced by Prometheus Film.
Google Results: [1] To Whom Does the World Belong? | Anni Bönike has a badly paid job 
in a factory ... [2] Kuhle Wampe | Kuhle Wampe is a 1932 German feature film about 
unemployment, homelessness and left wing politics in the Weimar Republic produced by 
Prometheus Film. 
Question: What is Kuhle Wampe?
Answer: Kuhle Wampe is a 1932 German feature film. So the answer is: (1) Paraphrase 
Answer: Kuhle Wampe is a 1932 German feature film; (2) Answer List: ["Kuhle Wampe
(German film)"]
{more examples}

Your Question.
Retrieved Knowledge: {retrieved knowledge}
Question: {question}
Answer: 

Figure 8: Prompt for the Search operator

Please answer the question "{question}" using the retrieved knowledge from Wikipedia, 
Google, or Wikidata. Answer the question with (1) a Paraphrase Answer that repeats the 
question, and (2) a clean python Answer List. When answering long lists such as album 
titles, directly write the list in your answer formulation. If the provided information is not 
enough to answer the question, answer based on your own knowledge. If neither the 
provided knowledge nor your own knowledge can answer the question, end your answer 
with (1) Paraphrase Answer: Unknown; (2) Answer List: []. When answering with numbers, 
always use arabic numbers i.e. 1,2,3. When answering to "Yes" or "No" questions, simply 
formulate your Answer list as ["Yes"] or ["No"]. Strictly follow the format of the examples 
below, ending your answer with "So the answer is: (1) Paraphrase Answer: 
{{paraphrase_answer}}; (2) Answer List: [answer_list]"
Examples.
Retrieved Knowledge: 
Wikipedia Passages: [1] Daniel Pudil | Daniel Pudil (born 27 September 1985) is a Czech 
professional footballer who plays for Viktoria Žižkov and the Czech Republic national 
team as a left back or left winger.
Google Results: [1] ... 'personal_information': {{'place_of_birth': 'Prague, Czechoslovakia', 
'height': '1.83 m (6 ft 0 in)', 'position_s': 'Left back, left winger'}} [2] Daniel Pudil - Wikidata | 
Daniel Pudil (2014) (Czech). 1 reference. imported from Wikimedia project ... place of 
birth · Prague. 1 reference. stated in ...
Question: In what region of the Czech was Daniel Pudil born?
Answer: Daniel Pudil was born in Prague. So the answer is: (1) Paraphrase Answer: 
Daniel Pudil was born in Prague; (2) Answer List: ["Prague"]
{more examples}

Your Question.
Retrieved Knowledge: {retrieved knowledge}
Question: {question}
Answer: 

Figure 9: Prompt for the Relate operator

Using the retrieved knowledge from Wikipedia, Google, or Wikidata, please answer the 
following filter question "{question}". Formulate a list of entities as your final answer. If the 
provided passages does not provide helpful information, answer based on your own 
knowledge. Answer the question with (1) a Paraphrase Answer that repeats the question's 
filter condition "{condition}", and (2) a clean python Answer List. Strictly follow the format 
of the examples below, ending your answer with "So the answer is: (1) Paraphrase 
Answer: {{paraphrase_answer}}; (2) Answer List: [answer_list]"
Examples.
Retrieved Knowledge: 
Wikipedia Passages: [1] Pulitzer Prize for Music | History: guidelines and jury membership 
will serve that end.” Subsequently, in 2006, a posthumous "Special Citation" was given to 
jazz composer Thelonious Monk, and in 2007 the prize went to Ornette Coleman, a free 
jazz composer, who won the prize for his disc Sound Grammar, a recording of a 2005 
concert, making it the first time a recording won the music Pulitzer, and a first for purely 
improvised music. In 2018, rapper Kendrick Lamar won the award for his 2017 hip hop 
album Damn. The recording was the first musical work not in the jazz or classical genres 
to win the prize. ... [2] Collected Poems of Robert Frost | Reception: Frost received a 
Pulitzer prize in 1931 for the collection. One of the books in the collection, New 
Hampshire, had received the Pulitzer Prize in 1924...
Question: Which of Damn, Damn. Collector's Edition won the Pulitzer Prize?
Answer: Wikipedia passage [1] suggests that "in 2018, rapper Kendrick Lamar won the 
award for his 2017 hip hop album Damn", so the album Damn won the Pulitzer Prize. So 
the answer is: (1) Paraphrase Answer: Damn won the Pulitzer Prize; (2) Answer List: 
["Damn"]

Your Question.
Retrieved Knowledge: {retrieved knowledge}
Question: {question}
Answer:

Figure 10: Prompt for the Filter operator

The complex question "{question}" has been divided into child questions. Based on the 
child questions and answers, answer the complex question. Answer the question with (1) 
a Paraphrase Answer that repeats the question, and (2) a clean python Answer List. If the 
provided information is not enough to answer the question, answer based on your own 
knowledge. If neither the provided knowledge nor your own knowledge can answer the 
question, end your answer with (1) Paraphrase Answer: Unknown; (2) Answer List: []. 
When answering with numbers, always use arabic numbers i.e. 1,2,3. When answering to 
"Yes" or "No" questions, simply formulate your Answer list as ["Yes"] or ["No"]. Strictly 
follow the format of the examples below, ending your answer with "So the answer is: (1) 
Paraphrase Answer: {{paraphrase_answer}}; (2) Answer List: [answer_list]"
Examples.
Child questions and answers: 
Q: 1. What is the television series that is a notable work of Christian Lee Navarro? A: ["13 
Reasons Why"]
Q: 2. Who has 2 tapes in [1]? A: Justin Foley has 2 tapes in 13 Reasons Why. ["Justin 
Foley"]
Question: Who has 2 tapes in the television series that is a notable work of Christian Lee 
Navarro?
Answer: Justin Foley has 2 tapes in the television series that is a notable work of Christian 
Lee Navarro, 13 Reasons Why. So the answer is: (1) Paraphrase Answer: Justin Foley 
has 2 tapes in the television series that is a notable work of Christian Lee Navarro, 13 
Reasons Why; (2) Answer List: ["Justin Foley"]
{more examples}

Your Question.
Retrieved Knowledge: {retrieved knowledge}
Question: {question}
Answer:

Figure 11: Prompt for Child and Sibling Answer Reasoning
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