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Abstract

Shape-morphing solutions (also known as evolutional deep neural networks, reduced-order
nonlinear solutions, and neural Galerkin schemes) are a new class of methods for approximat-
ing the solution of time-dependent partial differential equations (PDEs). Here, we introduce a
sequential data assimilation method for incorporating observational data in a shape-morphing
solution (SMS). Our method takes the form of a predictor-corrector scheme, where the ob-
servations are used to correct the SMS parameters using Newton-like iterations. Between
observation points, the SMS equations—a set of ordinary differential equations— are used
to evolve the solution forward in time. We prove that, under certain conditions, the data
assimilated SMS (DA-SMS) converges uniformly towards the true state of the system. We
demonstrate the efficacy of DA-SMS on three examples: the nonlinear Schrödinger equation,
the Kuramoto–Sivashinsky equation, and a two-dimensional advection-diffusion equation. Our
numerical results suggest that DA-SMS converges with relatively sparse observations and a
single iteration of the Newton-like method.

1 Introduction

Shape-morphing solutions (SMS) are a new class of approximate solutions to spatiotemporal
partial differential equations (PDEs). A distinguishing feature of SMS is that they depend non-
linearly on a set of time-dependent parameters. In their simplest form, SMS can be expressed
as

û(x,θ(t)) =

N∑

i=1

ai(t)ϕi(x,βi(t)), (1)

where the parameters θ(t) = {ai(t),βi(t)}Ni=1 comprise the amplitudes ai and the shape parameters
βi. Equation (1) can be viewed as a spectral method with the basis functions ϕi [1, 3]. Unlike
classical spectral methods where the basis functions are static, shape-morphing solutions allow the
basis to change over time via their dependence on the shape parameters βi(t). As such, shape-
morphing solutions can more easily adapt to the true solution of the PDE.
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An alternative interpretation is to veiw equation (1) as a shallow neural network with time-
dependent parameters. In this case, ϕi is the activation function of the i-th node, βi are the
weights and biases of the node, and ai is the corresponding output weight. This interpretation can
be easily extended to deep neural networks with time-dependent parameters [15].

Given a shape-morphing solution û(x,θ(t)), the evolution of its parameters θ(t) are determined
by a set of ordinary differential equations (ODEs), ensuring that the SMS closely approximates
the true solution of the PDE. As we review in Section 1.1, the theory of shape-morphing solutions
has been developing rapidly over the past few years. In the literature, the approximate solution
û(x,θ(t)) is referred to by various names, such as evolutional deep neural networks [15], reduced-
order nonlinear solutions [1], and neural Galerkin schemes [9]. Here, with hopes of establishing a
unifying terminology, we refer to them as shape-morphing solutions or SMS, for short. We refer to
the ODEs that govern the evolution of the parameters θ(t) as the shape-morphing equation or the
SMS equation.

The purpose of the present work is to introduce a data assimilation method which uses observa-
tional data from the system to steer the shape-morphing solution closer to the true dynamics of the
system. As with any other numerical method, data assimilation is needed to correct for modeling
error, truncation error, and uncertainties in the initial condition [31]. Our method takes the form of
a predictor-corrector scheme, where the shape-morphing equations are used to evolve the solution
between observation points. At time instances where observational data are available, they are uti-
lized to correct for errors using Newton-like iterations. We prove that, if enough observations are
available, the data assimilated SMS converges uniformly towards the true solution of the system.
We demonstrate the efficacy of our method on three numerical examples.

1.1 Related Work

Shape-morphing solutions were first developed by Du and Zaki [15] in the context of deep
neural networks and simultaneously by Anderson and Farazmand [1] in the context of model order
reduction. Du and Zaki [15] approximate the solution of a PDE using a deep neural network whose
weights and biases are time-dependent, hence referring to the resulting method as the evolutional
deep neural network (EDNN). They derive a set of ordinary differential equations for evolving the
parameters of the network, eliminating the need for a training process. Anderson and Farazmand [1]
independently arrived at the same set of equations where they considered reduced-order models
whose modes depend nonlinearly on a set of time-dependent parameters, thus allowing for the
modes to adapt to the solution of the PDE. The resulting method is referred to as reduced-order
nonlinear solutions (RONS).

Ever since these original papers, there has been a rapidly growing body of work addressing
various theoretical and computational aspects of shape-morphing solutions. For instance, Bruna
et al. [9] introduced an adaptive sampling strategy to reduce the computational cost of the Monte
Carlo sampling required by EDNN. Coining yet another terminology, they refer to their method as
neural Galerkin schemes.

Anderson and Farazmand [3] develop a number of methods to address the computational cost
of SMS: (i) They developed a symbolic computing approach to reduce the computational cost
of forming the SMS equations. (ii) When symbolic computing is not feasible, they introduced a
collocation point method as an alternative and uncovered its relation to the Monte Carlo sampling
method of [15]. (iii) They also introduced a regularization to the SMS equations which speeds
up their time integration. We also refer to Ref. [19] which addresses similar computational issues.
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Anderson and Farazmand [4] applied these computational advances to solve the Fokker–Planck
equation in higher dimensions and discovered that the metric tensor in SMS coincides with the
Fisher information metric.

Shape-morphing solutions may over-parameterize the solution of the PDE, leading to redun-
dant parameters. Berman and Peherstorfer [8] introduced a randomized projection method for
eliminating such redundant parameters.

Enforcing the PDE’s boundary conditions in shape-morphing solutions, and in particular evo-
lutional neural networks, can be challenging [15, 44]. Kast and Hesthaven [26] use embedding
methods to ensure that the boundary conditions of the PDE are enforced directly into the neural
network architecture.

Anderson and Farazmand [1] had already derived a set of SMS equations which enforce nonlinear
constraints such as conservation of mass, energy, and other first integrals. As mentioned by Hilliard
and Farazmand [22], these equations conserve the first integrals in continuous-time, necessitating
a special time stepping scheme to ensure their conservation after discretization. To address this
issue, Schwerdtner et al. [41] propose a discrete-in-time version of conservative SMS.

Shape-morphing solutions can be viewed as the flow of a vector field on a manifold embedded
in the function space of the PDE [1]. Often this vector field is evaluated pointwise during the time
integration process. Gaby et al. [20] propose to learn the vector field on the SMS manifold as a
neural network. They subsequently evolve the SMS equations by replacing the vector field with its
neural net representation.

Following Ref. [15], Kim and Zaki [28] developed a multi-network approach to shape-morphing
solutions so that each state variable is represented by a separate EDNN. In addition, they partition
the spatial domain into subsets so that the PDE is solved on each subset with its own corresponding
EDNN.

In spite of the fast growing body of work on this topic, assimilating observational data in shape-
morphing solutions has remained unaddressed. The purpose of the present paper is to introduce
a data assimilation (DA) method for SMS approximation of PDEs. To this end, standard data
assimilation methods, such as extended Kalman filters [23, 24, 33, 40], variational DA [5, 12, 35] and
Bayesian DA [6, 37], can in principle be used. However, compared to our proposed method, Kalman
filtering and variational methods are computationally more expensive as they require multiple
solves of the underlying PDE and/or the corresponding adjoint equation [45]. Furthermore, the
nonlinear dependence of SMS û(x,θ(t)) on its parameters θ inhibits straightforward implementation
of classical DA methods. In contrast, our proposed predictor-corrector DA scheme is easy to
implement and avoids repeated solves of the PDE.

1.2 Main Contributions

The main contributions of this paper can be summarized as follows.

1. Discrete-time data assimilated SMS (DA-SMS): We introduce a sequential data assimilation
algorithm that propagates the solution forwards in time and incorporates observational data
into the solution as they becomes available at discrete times.

2. Convergence result: We prove that, if enough observational data is available, the DA-SMS
method converges towards the true solution of the system.

3. Continuous-time data assimilation: We also present a DA method for SMS in case the obser-
vational data is measured with high temporal frequency.
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4. As a byproduct of our work, we introduce a new method for directly encoding mixed Dirichlet–
Neumann boundary conditions in the architecture of a neural network.

5. We demonstrate the application of our method on three examples with one and two spatial
dimensions.

1.3 Outline

The remainder of the paper is organized in the following manner. In Section 2, we review the
method of shape-morphing solutions and how we evolve the solutions forwards in time. In Section 3,
we introduce our main results for sequential data-assimilation. We discuss both discrete DA-SMS
algorithm and its continuous-time version. In Section 4, we present three numerical examples: the
nonlinear Schödinger (NLS) equation in Section 4.1, the Kuramoto–Sivashinsky (KS) equation in
Section 4.2, and the two-dimensional advection-diffusion (AD) equation in Section 4.3. We present
our concluding remarks in Section 5.

2 Mathematical Preliminaries

In this section, we summarize the theory of shape-morphing modes to obtain numerical solutions
to PDEs [1, 3, 4, 2]. Consider a PDE of the form,

∂u

∂t
= F (u), u(x, 0) = u0(x), (2)

where F is a differential operator and u : Ω × R+ → R denotes the solution, where Ω ⊂ Rd is the
spatial domain of the PDE. For any time t, the solution u(·, t) belongs to an appropriate Hilbert
space H with associated inner product ⟨·, ·⟩H and induced norm ∥ · ∥H. For the purposes of this
exposition, we assume that the solution u(x, t) is scalar-valued. However, this framework can easily
be extended to vector-valued systems of PDEs as discussed in Ref. [22]. Additionally, here we only
consider real-valued PDEs, but the extension to complex-valued PDEs is straightforward and can
be found in Refs. [2, 22].

Next, we introduce the approximate shape-morphing solution,

û (x,θ(t)) =

N∑

i=1

ai(t)ϕi(x,βi(t)), (3)

with the shape-morphing modes ϕi, the corresponding amplitudes ai, and the vector of shape pa-
rameters βi ∈ Rp−1. We denote the full set of parameters by θ(t) = {ai(t),βi(t)}Ni=1 ∈ RpN , where
each term in (3) contains p parameters. The choice of the shape-morphing modes depends on the
PDE. For instance, one can take a Gaussian mixture model where the shape-morphing modes are
Gaussians and the shape parameters are the mean and the variance [2, 4]. A more general choice is
an artificial neural network (ANN), where ϕi is the activation function, and the shape parameters
are the corresponding weights and biases of the network [3, 15]. For example, a shallow neural
network with a hyperbolic tangent activation function coincides with the shape-morphing solution,

û (x,θ(t)) =

N∑

i=1

ai(t) tanh (wi(t)x+ bi(t)) , (4)
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whose shape-parameters are theN amplitudes ai, weights wi, and biases bi, so that θ = {ai, wi, bi}Ni=1 ∈
R3N .

In the conventional approach to ANNs for PDEs, the parameters are determined by minimizing
a loss function [25, 29, 32]. The crucial difference in our approach is that SMS eliminates the need
for this training step by evolving the time-dependent parameters θ(t) through an explicit set of
ordinary differential equations (ODEs).

To derive the ODEs governing the evolution of parameters, we introduce the residual function,

R(x,θ, θ̇) := ût − F (û) =

pN∑

j=1

∂û

∂θj
θ̇j − F (û). (5)

which measures the discrepancy between the rate of change of the approximate shape-morphing
solution and the dynamics governed by the PDE. To derive the corresponding system of ODEs, we
seek θ̇ which minimizes the instantaneous error,

min
θ̇∈RpN

1

2
∥R(·,θ, θ̇)∥2H. (6)

The solution to this minimization problem is given explicitly in terms of the shape-morphing equa-
tion [1, 15],

M(θ)θ̇ = f(θ), (7)

where M ∈ RpN×pN is the metric tensor,

Mij(θ) =

〈
∂û

∂θi
,
∂û

∂θj

〉

H
, (8)

and the components of the vector field f : RpN → RpN are given by

fi(θ) =

〈
∂û

∂θi
, F (û)

〉

H
. (9)

This set up is especially useful in the event that one can symbolically compute the integrals in
Hilbert inner products for M and f . In this case, one can exploit the structure of the metric tensor
and the vector f to make the implementation of symbolic computations more efficient. We refer to
Ref. [3] for further detail regarding these computational aspects.

When symbolic computations of M and f are not feasible, we instead opt for the collocation
point method which was originally derived in Ref. [3]. In this case, we specify the Nc collocation
points {x1, . . . ,xNc

} ⊂ Ω, and require that the residual function vanishes at these points, i.e.

R(xi,θ, θ̇) =

pN∑

j=1

∂û

∂θj
(xi,θ)θ̇j − F (û)

∣∣∣∣
x=xi

= 0, i = 1, . . . , Nc. (10)

We can more conveniently express (10) in one equation by defining the collocation metric tensor
M̃(θ) ∈ RNc×pN whose elements are give by

M̃ij(θ) =
∂û

∂θj
(xi,θ), (11)
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and the vector field f̃ ∈ RNc such that

f̃i(θ) = F (û(·,θ))
∣∣∣∣
x=xi

. (12)

With these definitions, we can express (10) as

M̃(θ)θ̇ = f̃(θ). (13)

Note that no integration is required in the construction of the collocation metric tensor M̃ or the
vector field f̃ .

The collocation metric tensor M̃ is rectangular which means that the system (13) can be either
overdetermined or underdetermined. In such case, we obtain θ̇ by solving the linear least squares
problem,

min
θ̇∈RpN

1

2
∥M̃(θ)θ̇ − f̃(θ)∥22, (14)

which is equivalent to minimizing
∑

i |R(xi,θ, θ̇)|2. Here, ∥ · ∥2 denotes the Euclidean norm. The
resulting collocation shape-morphing equation is

θ̇ = M̃+(θ)f̃(θ), (15)

in terms of the Moore–Penrose pseudo-inverse M̃+.
Lastly, in either the shape-morphing equation (7) or the collocation shape-morphing equation

(13), the metric tensors can be ill-conditioned which leads to stiffness in the corresponding ODEs. In
order to alleviate this issue, Anderson and Farazmand [3] regularize the optimization problems (6)
and (14) using Tikhonov regularization. Introducing the regularization parameter γ, the regularized
optimization problem (6) reads

min
θ̇∈RpN

1

2
∥R(x,θ, θ̇)∥2H +

γ

2
∥θ̇∥22, (16)

whose solution is given by
(M(θ) + γI) θ̇ = f(θ), (17)

where I denotes the pN×pN identity matrix. We similarly regularize the least squares problem (14)
and solve

min
θ̇∈RpN

1

2
∥M̃(θ)θ̇ − f̃(θ)∥22 +

γ

2
∥θ̇∥22. (18)

The resulting regularized collocation shape-morphing equation reads

(
M̃⊤(θ)M̃(θ) + γI

)
θ̇ = M̃⊤(θ)f̃(θ). (19)

To evolve the parameters θ in time, we solve the ODEs (17) or (19) using standard numerical time
integrators such as explicit Runge–Kutta schemes.

Lastly, we emphasize that the metric tensors M and M̃ as well as the vectors f and f̃ are
functions of the parameters θ; but for the remainder of this manuscript we omit their dependence
on θ for notational simplicity.
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3 Data Assimilation

In this section, we introduce our sequential data assimilated shape-morphing solutions algo-
rithms. More specifically, in Section 3.1 we present the main result of our paper: a discrete sequen-
tial data assimilation algorithm used in conjunction with the shape-morphing solutions. We refer
to this methodology as data-assimilated SMS or DA-SMS for short. In Section 3.2, we derive a
convergence guarantees for DA-SMS. Lastly, in Section 3.3, we introduce a continuous time version
of DA-SMS that instead uses the time derivative of the observational data.

3.1 Discrete Sequential Data Assimilation: DA-SMS

Consider a system described by PDE (2) with the initial condition u0. Any method for ap-
proximating the system’s evolution needs to contend with various sources of error: modeling error
resulting from simplifying assumptions in deriving the PDE, uncertainties in the initial condition,
truncation error from representing the solution with a finite-dimensional approximation, and time
integration error. Data assimilation seeks to remedy these errors by incorporating direct obser-
vational data from the system into the numerical solution. Here, we develop data assimilation
methods that are applicable when the approximate solution is obtained as a shape-morphing solu-
tion û(·,θ(t)) with nonlinear dependence on the parameters θ.

To begin, we assume that we have access to r sensors which take measurements of observable
quantities associated with the system. We denote these observables by yj(t) for j ∈ {1, . . . , r}.
These measurements are collected at m discrete points in time: t1 < t2 < . . . < tm. We refer
to the time interval between the initial time t0 and the final observation time tm as the data-
assimilation (DA) time window, TDA = [t0, tm]. At each ti, we collect the r measurements into a
vector y(ti) ∈ Rr whose components we denote by,

yj(ti) = Cj(u(·, ti)) + η, j = 1, . . . , r, (20)

where Cj : H → R is the associated observation operator and η is the observational error or noise.
The observables can be pointwise observations of the state of the system, i.e. yj(ti) = u(xj , ti), or
they could be a nonlinear operator applied to the state of the system such as the modulus of the
solution to the nonlinear Schrödinger equation as discussed later in Section 4.1.

Figure 1 illustrates the overall DA-SMS algorithm. Our goal is to use the data to correct for the
errors introduced by the approximations. Our algorithm achieves this objective in two main steps.
The first is the prediction step where we use the SMS equations derived in Section 2 to evolve the
approximate solution from time ti−1 to ti. In Figure 1, this step is represented by the black curves.
The second piece of the DA-SMS algorithm, is the correction step, depicted by the red dashed lines
in Figure 1. At time ti, we freeze time and make a correction to the parameters θ(ti), using the
true observational data y(ti).

More specifically, during the correction step, we compute the SMS estimated observations de-
fined by,

ŷj(ti) = Cj [û(·,θ(ti))], j = 1, . . . , r. (21)

For notational simplicity, we often write Cj(θ(ti)) instead of Cj [û(·,θ(ti))]. In the DA step of our
algorithm, we seek a correction to the parameters θ(ti) that minimizes the discrepancy between
the true data y(ti) of the system and the predicted data ŷ(ti). To this end, we solve the nonlinear
equation,

C(θ(ti) + δθ) = y(ti), (22)
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Figure 1: Schematic illustration of the DA-SMS algorithm.

Symbol Description

θ
(k)
i Parameters at time ti and the k-th Newton iteration: θ

(k)
i = θ(k)(ti)

ŷ
(k)
i SMS estimated observations at time ti and k-th iteration: ŷ

(k)
i =

C[û(·,θ(k)
i )]

yi True observational data at time ti: yi = y(ti)

Table 1: The quantities used in the DA-SMS algorithm for notational simplicity.

where δθ is the correction step and C = [C1(·), C2(·), . . . , Cr(·)]⊤. Note that even if the observation
operator is linear, C(θ(ti)) is a nonlinear function of θ(ti) due to the nonlinear dependence of the
shape-morphing solution û(·,θ) on its parameters.

To solve the nonlinear equation (22), we introduce the Newton-like iterations,

θ(k+1)(ti) = θ(k)(ti) +
[
∇θC

(
θ(k)(ti)

)]+ [
y(ti)−C

(
θ(k)(ti)

)]
, (23)

where the superscript on θ denotes the k-th iteration.
To further simplify the notation, we introduce the following. We denote the parameters at time ti

and the k-th Newton iteration by θ
(k)
i = θ(k)(ti), the true observational data at time ti by yi = y(ti),

and the SMS estimated data at time ti and the k-th Newton iteration by ŷ
(k)
i = C[û(·,θ(k)(ti))].

In each of these, the subscript denotes the i-th time instance, and the superscript denotes the k-th
Newton iteration. We summarize this notation in Table 1. Lastly, we introduce the Jacobian matrix
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Jr(θ) = ∇θC(θ) ∈ Rr×pN , so that

Jr (θ) =




— [∇θC1 (θ)]
⊤

—

— [∇θC2 (θ)]
⊤

—
...

— [∇θCr (θ)]
⊤

—



. (24)

Using this notation, the iterates in (23) read

θ
(k+1)
i = θ

(k)
i +

[
Jr

(
θ
(k)
i

)]+ (
yi − ŷ

(k)
i

)
. (25)

We stop the iterations once the relative error between the true observations, yi, and the SMS

estimated observations ŷ
(k)
i falls below a user-defined tolerance δ,

∥ŷ(k)
i − yi∥2
∥yi∥2

< δ. (26)

The tolerance δ should be no less than the amount of observational noise in the data to avoid
overfitting to noisy data. In addition, we also specify a maximum number of iterations at each data
assimilation step to avoid infinite iterations. However, as we will see in Section 4, often only one
Newton iteration is sufficient in practice.

In practice, the number of sensors or data points r is much smaller than the total number
of parameters pN . As such, the nonlinear problem in (22) is underdetermined, and therefore its
solution is not necessarily unique. Nonetheless, under certain conditions, underdetermined Newton
iterations are guaranteed to converge to a solution [11, 27]. In particular, underdetermined Newton-
like iterations (25) converge to a solution θ∗

i under the following assumptions:

1. The observation operator C(θ) is Lipschitz continuous in a neighborhood around θ∗
i , and

2. The Jacobian matrix Jr(θ
∗
i ) has full row rank, i.e., rank(Jr(θ

∗
i )) = r,

as long as the initial guess θ
(0)
i is close enough to a solution θ∗

i ; see Theorem 2.4.2 of Ref. [27].
If the Jacobian matrix Jr is ill-conditioned, the Newton-like iterations (25) will amplify the

observational noise. To address this issue, we use a regularized version of the Newton-like itera-
tions [34, 38]. Letting γ̃ be the regularization parameter, the iterates in (25) become,

θ
(k+1)
i = θ

(k)
i + Jr

(
θ
(k)
i

)⊤
(
Jr

(
θ
(k)
i

)
Jr

(
θ
(k)
i

)⊤
+ γ̃I

)−1 (
yi − ŷ

(k)
i

)

= θ
(k)
i + J̃r

(
θ
(k)
i

)+ (
yi − ŷ

(k)
i

)
,

(27)

where J̃r

(
θ
(k)
i

)+

= Jr

(
θ
(k)
i

)⊤
(
Jr

(
θ
(k)
i

)
Jr

(
θ
(k)
i

)⊤
+ γ̃I

)−1

is the regularized pseudo-inverse of

Jr

(
θ
(k)
i

)
.

At time tm, the last time where observational data is available, we obtain a final set of corrected
parameters θm. Since no more data is available, we use the shape-morphing equations to evolve
from tm to the final time tf . We refer to this time interval as the forecast window Tf = [tm, tf ]. At
time tf , we use the set of parameters θf to reconstruct the final forecast of the system û(·,θf ). We
summarize the DA-SMS method in Algorithm 1.
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Algorithm 1: Data assimilated shape-morphing solutions (DA-SMS) algorithm.

Inputs: Initial parameter values θ0, Observation times t1 < t2 < . . . < tm, Observations
{y1, . . . ,ym}, Maximum Newton iterations (maxits), Newton iteration tolerance
δ, Final forecast time tf

for i = 1, 2, . . . ,m do

θ
(0)
i = evolve(θi−1, [ti−1, ti]) ; ▷ Use SMS to predict from time ti−1 to ti

ŷ
(0)
i = C(θ

(0)
i );

error = ∥yi − ŷ
(0)
i ∥2/∥yi∥2;

k = 0;
while (error ≥ δ and k ≤ maxits) do

Jr = ∇θC(θ
(k)
i+1);

θ
(k+1)
i = θ

(k)
i + J̃r

(
θ
(k)
i

)+

(yi − ŷ
(k)
i ) ; ▷ Regularized Newton iteration

ŷ
(k+1)
i = C(θ

(k+1)
i );

error = ∥yi − ŷ
(k+1)
i ∥2/∥yi∥2;

k = k + 1;

end

θi = θ
(k)
i ;

end
θf = evolve(θm, [tm, tf ]) ; ▷ Use SMS to forecast to final time tf
Output: DA-SMS forecasted parameters θf

3.2 Convergence Analysis

Consider pointwise observations where Cj [u(·, ti)] = u(xj , ti) with xj being a sensor location.
Convergence of the Newton iterations in Algorithm 1 ensures that the shape-morphing solution
û(·,θi) converges to the true solution u(·, ti) at the sensor locations. However, this does not im-
mediately guarantee convergence to the true solution at other points x ∈ Ω where no sensors are
available. In this section, we prove that, under certain conditions, the shape-morphing solution in
fact converges uniformly to the true solution throughout the spatial domain Ω.

Sine time is frozen during the Newton iterations, we omit the dependence of the true solution
u(x, ti) on time and simply write u(x) throughout this section. In addition, we assume that Ω ⊂ Rn

is bounded. Consider r sensors which are located at {x1, . . . ,xr} ⊂ Ω, so that u(xj) is known for
all j ∈ {1, 2, . . . , r}. We define

∆ = sup
x∈Ω

inf
1≤j≤r

∥x− xj∥, (28)

which quantifies the maximum distance between any point in Ω and its closest sensor. More
specifically, for any x ∈ Ω, the ball B∆(x), with radius ∆ centered at x, contains at least one
sensor.

Assumption 1. We assume that the true solution u and the shape-morphing approximation û
have the following properties.

1. Both u and û are Lipschitz continuous with respect to x. We denote their smallest Lipschitz
constants by Lu and Lû respectively.
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2. There exists a sequence of parameters {θ(1),θ(2), . . .} such that

lim
k→∞

∣∣û(xj ,θ
(k))− u(xj)

∣∣ = 0, ∀j ∈ {1, . . . , r}. (29)

These assumptions are not necessarily strong constraints on our approximate solution û. Many
choices of shape morphing solutions, such as Gaussian mixture models or neural networks, are
Lipschitz continuous [21, 46]. Additionally, the second assumption simply ensures that our approx-
imate solution û is capable of approximating the unknown function u at the sensor locations. This
assumption can be easily satisfied by choosing shape-morphing modes which satisfy the universal
approximation theorem. In equation (29), we used an arbitrary convergent sequence of param-
eters θ(k). Although in this paper we obtain this sequence through Newton-like iterations (25),
alternative methods can also be used.

The following lemma provides an upper bound for the pointwise error between the true solution
u and the shape-morphing approximation û.

Lemma 1. Let Assumption 1 hold. For any x ∈ Ω, let ĵ denote the integer such that xĵ is the
closest sensor to point x. Then for any parameter θ, we have

|û(x,θ)− u(x)| ≤ (Lu + Lû)∆ + |û(xĵ ,θ)− u(xĵ))|. (30)

Proof. Using the triangle inequality, we have

|û(x,θ)− u(x)| = |û(x,θ)− û(xĵ ,θ) + û(xĵ ,θ)− u(xĵ) + u(xĵ)− u(x)|,
≤ |û(x,θ)− û(xĵ ,θ)|+ |û(xĵ ,θ)− u(xĵ)|+ |u(xĵ)− u(x)|,
≤ (Lu + Lû)∥x− xĵ∥+ |û(xĵ ,θ)− u(xĵ)|,

where we used the Lipschitz continuity of the functions for the last inequality. Since xĵ is the
closest sensor to x, we have that ∥x− xĵ∥ ≤ ∆, which concludes the proof.

We now state our main result which shows that, if enough sensors are provided, the shape-
morphing approximation û becomes arbitrarily close to the true solution u in the uniform norm.

Theorem 1. Let Assumption 1 hold. Furthermore, for any ϵ > 0, assume that there are enough
sensors distributed such that ∆ < ϵ/2(Lu+Lû). Then there exists K ∈ N such that for any k > K,

sup
x∈Ω

|û(x,θ(k))− u(x)| < ϵ. (31)

Proof. Consider the upper bound in Lemma 1. Equation (29) in Assumption 1 implies that
limk→∞ |û(xĵ ,θ

(k)) − u(xĵ)| = 0. Therefore, there exists K ∈ N, such that for any k > K we

have |û(xĵ ,θ
(k)) − u(xĵ)| < ϵ/2. Moreover, since Lemma 1 holds for any θ, it also holds for the

sequence {θ(k)}k≥1. Using this fact, Lemma 1, and the fact that ∆ < ϵ/2(Lu + Lû), we have

|û(x,θ(k))− u(x)| < ϵ, (32)

for any x ∈ Ω and k > K.

This result yields both an indication of the number of required sensors as well as their distribution
throughout the domain Ω. However, it is important to note that these bounds are rather pessimistic.
As we show in Section 4, a relatively smaller number of sensors, uniformly distributed over the
spatial domain, is often sufficient in practice.
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3.3 Continuous-time Data Assimilation

The algorithm developed in Section 3.1 considers data obtained at discrete time instances,
which is the situation one encounters in practice. Here, for completeness, we also introduce a
data assimilation method for shape-morphing modes in case observational data are available in
continuous time. To begin, we consider the instantaneous optimization problem (6) from which
we derived the shape-morphing equation (7). The extension of our framework to the collocation
shape-morphing equation (15) is straightforward, as shown in Appendix A.

Recall from Section 2 that we seek to minimize the residual function R(·,θ, θ̇) which quantifies
the discrepancy between the rate of change ût of the approximate solution and the right-hand side
of the PDE F (û). In this case we assume that we have access to a continuum of data y(t), and that
we can compute its time derivative ẏ. To assimilate this data, we require that the time derivative of
the SMS estimated observations ˙̂y are equal to ẏ, i.e. ˙̂y = ẏ. In terms of the observation operators
Cj , we require,

˙̂yj =
d

dt
Cj(θ) =

〈
∇θ[Cj(θ)], θ̇

〉
= ẏj , ∀j ∈ {1, . . . , r}, (33)

where ⟨·, ·⟩ denotes the Euclidean inner product and we used the fact that the observation operator
Cj has no explicit time dependence. Using the definition of Jr from (24), we write equation (33)
more compactly as

Jr(θ)θ̇ = ẏ. (34)

To arrive at the continuous-time DA-SMS equation, we constrain the optimization problem (6)
so that (34) is satisfied. Namely, we seek the solution to the constrained optimization problem,

min
θ̇

1

2
∥R(·,θ, θ̇)∥2H,

s.t. Jr(θ)θ̇ = ẏ.

(35)

As we show in Appendix A, if the metric tensor M is non-singular and Jr is full-rank, the solution
to the constrained optimization problem (35) is given by

M θ̇ =
(
I − J⊤

r

(
JrM

−1J⊤
r

)−1
JrM

−1
)
f + J⊤

r

(
JrM

−1J⊤
r

)−1
ẏ, (36)

where we have suppressed the dependence of M , f , and Jr on θ. The solution to the system of
ODEs in (36) ensures that ˙̂y(t) = ẏ(t) for all times t.

We emphasize that, although this methodology can be useful theoretically, it is not necessarily
suited for practical applications. First, all real-world observational data are polluted by noise;
numerical computations of the time derivative will amplify this noise. In addition, if there is an
initial difference in the SMS approximate observations, ŷ(0) = y(0) + c, then this difference will
persist in the solution of (36). Due to these issues, we do not recommend this methodology for
most practical applications, and instead suggest using the discrete DA-SMS algorithm presented in
Section 3.1.

4 Numerical Results

We present three numerical examples: the nonlinear Schrödinger (NLS) equation, the Kuramoto–
Sivashinsky (KS) equation, and the advection-diffusion (AD) equation. For each example, we com-
pare direct numerical simulations (DNS) to approximate solutions obtained from SMS (without data
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assimilation) and data assimilated SMS. For NLS, we take a reduced-order modeling approach, us-
ing one Gaussian mode to approximate the dynamics of the PDE. We incorporate measurements
of the envelope of the solution of NLS into the DA-SMS solution. For KS and AD equations, we
use shallow neural networks as our approximate solution and take pointwise measurements of the
state of the system for DA-SMS. In each case, we add 5% noise to the data to mimic real-world
application where observational data is noisy.

4.1 Nonlinear Schrödinger Equation

For our first example, we consider the nonlinear Schrödinger equation. NLS models unidirec-
tional, slowly modulating surface waves in deep fluids [2, 13, 18, 47]. Denoting the surface elevation
by η̃(x̃, t̃), we consider perturbations of a sinusoidal carrier wave,

η̃(x̃, t̃) = Re
{
ũ
(
x̃, t̃

)
exp

[
îk0x̃− ω0t̃

]}
, (37)

where î =
√
−1, ũ

(
x̃, t̃

)
∈ C is the wave envelope, k0 is the wave number of the carrier wave, and

ω0 is its angular frequency. In dimensional variables, NLS reads [47]

∂ũ

∂t̃
= −î

w0

8k20

∂2ũ

∂x̃2
− î

ω0k
2
0

2
|ũ|2ũ, ũ(x, 0) = ũ0(x). (38)

We introduce the non-dimensional variables x = 2
√
2k0x̃, t = −ω0t̃, and u = (k0/

√
2)ũ as in [1], so

that Eq. (38) becomes
∂u

∂t
= î

∂2u

∂x2
+ î|u|2u, u(x, 0) = u0(x). (39)

The associated boundary conditions for NLS are that the solution vanishes as |x| approaches infinity.
We solve (39) using a Fourier pseudo-spectral truncation in space. In addition, we use an

exponential time-differencing scheme as described in Ref. [14] with a time step of ∆t = 0.025 as in
Refs. [2, 13]. We discretize the spatial domain Ω = [−L/2, L/2] with length L = 256

√
2π, using 211

Fourier modes with periodic boundary conditions. Our solutions are localized around x = 0 and
the domain is large enough to mimic the infinite domain size in NLS.

For SMS, our approximate solution takes the form,

û(x,θ(t)) = A(t) exp

[
− x2

L2(t)
+ î

V (t)

L(t)
x2 + îφ(t)

]
, (40)

in accordance with Refs. [1, 2, 39]. The corresponding shape parameters are given by θ(t) =
{A(t), L(t), V (t), φ(t)}, which control the amplitude A, length scale L, speed V and phase φ of the
SMS solution. We evolve these parameters according to the SMS equation (7) which reads

Ȧ = −2AV

L
, L̇ = 4V, V̇ =

4

L3
− A2

√
2L

, φ̇ =
5A2

4
√
2
− 2

L2
. (41)

These equations are integrated in time using Matlab’s fourth-order Runge–Kutta scheme ode45.
At the initial time, the parameters are A0 = 0.2, L0 = 20, V0 = 0, and φ0 = 0. For DNS we pick
u0(x, 0) = û(x,θ(0)), so that SMS and DNS solutions coincide initially.

For DA-SMS, at every ∆t = 0.5 time units, we take pointwise measurements of the modulus
of the envelope of the DNS solution at three sensor locations, x1 = 0, x2 = 5, and x3 = −10. In
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Forecast

Figure 2: Here we compare the modulus of the envelope u(x, t) over the time interval [0, 150] using
the initial parameters A0 = 0.2, L0 = 20, V0 = 0, ϕ0 = 0. We show (a.) DNS, (b.) SMS, (c.)
DA-SMS. In (d.) we compare the envelopes of the three solutions at x = 0, where DNS corresponds
to the dashed red line, DA-SMS is the solid grey line, and SMS is the dot dashed blue line. The
shaded red region denotes one standard deviation (5%) away from the DNS solution.

other words, we have three pointwise observations yj(ti) = |u(xj , ti)| at times ti ∈ {0.5, 1, 1.5, · · · }.
Since the solution is symmetric around x = 0, the second and third sensor locations, {x2, x3}, are
chosen asymmetrically to avoid redundant data. The data-assimilation window is TDA = [0, 35],
and the forecast window is Tf = [35, 150]. We incorporate this data into the DA-SMS solution
using Algorithm 1.

Figure 2 compares the solutions for DNS, DA-SMS, and SMS, as well as the amplitudes of the
solutions at x = 0. For the chosen combination of initial amplitude A0 and length scale L0, we
know that this wave exhibits a focusing behavior, meaning it increases in amplitude and decreases
in width [13]. This focusing behavior is often used to model rogue waves on the ocean surface [10].

As shown in Figure 2(b,d), SMS correctly predicts that the wave will focus, but it overestimates
the maximum amplitude. In addition, the maximum occurs with a time delay compared to the
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true DNS solution. In contrast, DA-SMS not only predicts the focusing of the wave, it also more
accurately predicts the maximum amplitude. Moreover, DA-SMS correctly predicts the time at
which the maximum wave height is attained; see Figure 2(c,d). We note that the DA-SMS solution
over the DA time window, TDA = [0, 35], appears jagged because of the 5% noise added to the
observational data.

4.2 Kuramoto–Sivashinsky Equation

For our second example, we consider the Kuramoto–Sivashinsky (KS) equation which models
thermal instabilities in laminar flame fronts [30, 43]. Here we approximate the solution to KS
using a shallow neural network as the shape-morphing solution and compare the results to the DNS
solution obtained from a Fourier pseudo-spectral method. KS equation is a fourth-order PDE,

∂u

∂t
= −u

∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4
, u(x, 0) = u0(x), (42)

with periodic boundary conditions on the domain Ω = [−L/2, L/2]. Under certain conditions KS
is known to exhibit chaotic behavior [30, 43]. For our study, we choose L = 22 and define the
function,

u∗
0(x) = sin

(
2π

L
x

)
+

4∑

i=2

sin

(
2iπ

L
x

)
+ cos

(
2iπ

L
x

)
. (43)

To ensure a reasonable, initial maximum amplitude, we rescale u∗
0 and define the initial condition,

u0(x) =
u∗
0(x)

maxx∈Ω |u∗
0(x)|

. (44)

For DNS, we use a Fourier pseudo-spectral truncation using 27 Fourier modes. We integrate in time
using Matlab’s fourth-order Runge–Kutta scheme ode45.

On the other hand, for SMS we use a shallow neural network with a hyperbolic-tangent activation
function in keeping with Anderson and Farazmand [3]. To enforce periodic boundary conditions,
we use the methodology outlined in Ref. [15], where the shape-morphing solution is given by

û(x,θ(t)) =

N∑

i=1

ai(t) tanh (wi(t)si(x, ci(t)) + bi(t)) ,

si(x, ci(t)) = sin

(
2π

L
x+ ci(t)

)
.

(45)

In this case, the shape parameters, θ(t), are the N amplitudes ai(t), weights wi(t), and biases
{bi(t), ci(t)}, so that θ = {ai(t), wi(t), bi(t), ci(t)}Ni=1. Since symbolic computation is not possible
in this case, we use the collocation method outlined in Section 2 to evolve the parameters in time.
We use 27 equidistant collocation points and a Tikhonov regularization parameter γ = 10−3 to
counter the stiffness of the metric tensor. For the time stepping of the SMS equation, we again use
Matlab’s ode45. To find the initial parameters θ0, we solve the nonlinear least squares problem,

min
θ0∈R4N

∥û(·,θ0)− u0∥2L2 , (46)
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using midpoint quadrature to discretize the integral in the L2 norm. For our study, we chose N =
10 modes, and found initial parameters θ0 which correspond to an initial relative error less than
0.1%.

For DA-SMS, we take pointwise measurements of the state of the system at r = 10 locations as
our observational data: yj(t) = u(xj , t) for j = 1, 2, . . . , r. The sensors are equispaced throughout
the domain, so that xj = −L

2 +(j−1)Lr . We incorporate the data into the shape-morphing solution
at every ∆t = 2.0 time units, using the DA-SMS algorithm presented in Section 3.1. We assume
we have data for the first 30 time units, so that TDA = [0, 30]. We then forecast over the interval
Tf = [30, 100]. For KS, we set the Tikhonov regularization parameter γ̃ = 10−3 for DA, which is the
same as the regularization parameter used in the collocation shape-morphing equation. We noticed
that excellent agreement with observations are achieved with even a single Newton-like iteration.
Therefore, to achieve computational speed up, we only take one Newton-like iteration in each step
of Algorithm 1.

Figure 3 compares DA-SMS results to both DNS and SMS without data assimilation. For
DA-SMS, we consider two types of observational data: measurements without noise and noisy
measurements where 5% Gaussian noise is added to the observations yj . As shown in Figure 3
(d,g), during the first 20 time units, the SMS solution closely matches the overall dynamics of
the DNS solution. Soon after, however, the errors incurred by SMS move the trajectory of the
approximate solution away from the true solution. More specifically, without data assimilation, the
errors for SMS steadily grow from their minimum around 10−3, reach approximately one around
t = 20, and steadily grow for the remainder of the simulation. This growth of errors over time is
expected in a chaotic system.

On the other hand, DA-SMS which incorporates data over the DA time window t ∈ [0, 30] keeps
the approximate solution closer to the the truth for a longer period of time. When there is no
noise in the data, as shown in figure 3(b,e), the errors over both DA time window and the forecast
window remain near zero. Even when 5% error is added to observations (panels c and f), the error
remains low for up to t = 75. Eventually, as expected for a chaotic system, those errors also grow
over the forecast time window where no data is available. However, compared to SMS without data
assimilation, DA-SMS significantly extends the predictability horizon.

4.3 Advection-Diffusion Equation

For our final example, we consider the passive advection-diffusion of temperature in a time-
dependent fluid flow. Consider the temperature T̃ (x̃, z̃, t̃) of the fluid in a rectangular domain
Ω = [0, L] × [0, H]; see figure 4. At the horizontal boundaries, z = 0 and z = H, the temperature
is kept constant, so that T̃ (x̃, 0, t̃) = T̃bottom and T̃ (x̃, H, t̃) = T̃top, where T̃bottom > T̃top. For the
left and right sides of the domain, the box is perfectly insulated so that no heat can escape in the
x direction, leading to the boundary conditions ∂x̃T̃ (0, z̃, t̃) = 0 = ∂x̃T̃ (L, z̃, t̃). The fluid is driven
by a prescribed velocity field ṽ(x̃, z̃, t̃). We denote the horizontal and vertical components of the
velocity by ṽ1

(
x̃, z̃, t̃

)
and ṽ2

(
x̃, z̃, t̃

)
, respectively.

In dimensional variables, the temperature evolves according to the advection-diffusion equation,

∂T̃

∂t̃
+ ṽ · ∇T̃ = κ̃∆T̃ , (47)

where κ̃ is the thermal diffusivity of the fluid. If the fluid velocity is zero, ṽ ≡ 0, heat transfer
occurs only by conduction, and the temperature profile of the system varies linearly with respect
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(g)

Figure 3: Comparisons of the state of the system over the entire spatial domain Ω = [−11, 11]
and the entire duration of the simulation t ∈ [0, 100]. The column on the left shows the results for:
(a) DNS, (b) DA-SMS with clean (0% noise) data, (c) DA-SMS with 5% noise in the data, and
(d) SMS with no data assimilation. In the column on the right we present the corresponding error
defined by: uDNS(x, t)− û(x, t) for (e) DA-SMS with clean data, (f) DA-SMS with noisy data, (g)
SMS without data assimilation.

to z̃. More specifically, the conductive temperature profile T̃c is given by,

T̃c (z̃) = T̃bottom − ∆T̃

H
z̃, (48)

where ∆T̃ = T̃bottom − T̃top. If the fluid velocity is nonzero, the temperature will fluctuate away

from the linear profile T̃c. Thus it is convenient to instead study the evolution of the fluctuations
ũ
(
x̃, z̃, t̃

)
= T̃

(
x̃, z̃, t̃

)
− T̃c (z̃). Substituting this expression into (47), we obtain the following PDE

for the fluctuations ũ(x̃, z̃, t̃),

∂ũ

∂t̃
+ ṽ · ∇ũ =

∆T̃

H
ṽ2 + κ̃∆ũ. (49)
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Figure 4: Schematic illustration of the boundary conditions for the advection-diffusion equation
in dimensionless variables. The domain size is [0, 4] × [0, 1]. The white dots indicate the sensor
locations for DA-SMS.

We introduce the dimensionless variables,

x =
x̃

H
, T =

T̃

∆T̃
, t =

t̃vf
H

, and ṽ =
v

vf
, (50)

where x = (x, z), and vf is the free-fall velocity given by vf =

√
βg∆T̃H where β and g are the ther-

mal expansion of the fluid and the gravitational acceleration, respectively. In these dimensionless
variables, the governing equation for the temperature fluctuation is given by

∂u

∂t
+ v · ∇u = v2 + κ∆u, (51)

where κ = κ̃/ (Hvf ). The corresponding boundary conditions for (51) are homogeneous Neumann
in x and homogeneous Dirichlet in z, as shown in figure 4.

Next, we specify the fluid velocity field. In order to be physically consistent, we must ensure that
the velocity satisfies the appropriate boundary conditions. Namely, we require that there are no slip
conditions on the horizontal component, v1, at the left and right boundaries and no-flux conditions
in the z direction on the top and bottom. Additionally, the vertical component of the velocity v2
should have no slip conditions on the top and bottom of the domain, and no-flux conditions in the
x direction on the left and right of the domain. In summary, the fluid velocity field must satisfy
the following boundary conditions,

v1(x, z, t)

∣∣∣∣
x=0,L

= 0,
∂v1
∂z

∣∣∣∣
z=0,H

= 0,

v2(x, z, t)

∣∣∣∣
z=0,H

= 0,
∂v2
∂x

∣∣∣∣
x=0,L

= 0.

(52)

We summarize the boundary conditions for the temperature fluctuations u and the fluid velocity v
in figure 4. Furthermore, we require ∇ · v = 0, ensuring that the fluid flow is incompressible.
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To attain these requirements on v, we define the velocity field,

v(x, z, t) = πA

(
− sin(πf(x, t)) cos(πz)

cos(πf(x, t)) sin(πz)∂f∂x

)
(53)

where

f(x, t) = m
x

L
+ ϵL4 sin(ωt)

[
x

L
− 2

( x

L

)3

+
( x

L

)4
]
. (54)

This velocity field, which satisfies the boundary conditions (52), is a modified version of double gyre
flow that is often used in oceanography [17, 42]. The parameter m roughly determines the number
of gyres (or vortices) in the x direction. The parameter ω is the frequency of gyre oscillations and
the small parameter ϵ determines the amplitude of these oscillations. For our simulations we set
m = 2, A = 0.1, ϵ = 0.025, and ω = π. For the spatial domain, we set the dimensionless width
of the domain L = 4 and the height H = 1. We set the temperatures at the bottom and top of
the domain as Tbottom = 1 and Ttop = 0, respectively, and we set κ = 10−3 for the dimensionless
thermal diffusivity. Lastly, we choose the initial condition,

u0(x, z) = 10−1 sin
(π

L
x
)
cos

( π

H
z
)
.

For DNS, we use a Fourier pseudo-spectral method to solve equation (51), using 28 modes in
the x direction, and 26 modes in the z direction. The DNS solution is shown in figure 5(a). In order
to visualize the space-time evolution of the solution, we only show the horizontal slice at z = 0.9.

For the shape-morphing solution û, we use a shallow neural network of width N = 100 as
described in Appendix B. In solving PDEs with neural networks, the boundary conditions are
often approximately enforced by adding them to the loss function as a penalty term [36]. Here, in
contrast, we construct our neural network such that the boundary conditions are explicitly built
into the network and therefore are exactly satisfied for any set of network parameters θ. The details
of our construction can be found in Appendix B.

The evolution of network parameters θ(t) is determined by solving the SMS equation (19)
with Tikhonov regularization parameter γ = 5 × 10−2 and using 26 × 24 collocation points evenly
spaced throughout the domain [0, 4]× [0, 1]. To initialize the SMS equation, we solve the nonlinear
optimization problem, minθ0∈R6N ∥û(·,θ0)−u0∥2L2 , to obtain the initial condition θ0. The resulting
approximate initial condition û(·,θ0) matches the true initial condition u0 within 0.1% error. Lastly,
the temporal integration of the SMS equation is carried out using ode45. The resulting SMS solution
without data assimilation is shown in figure 5 (d,h).

Now we turn our attention to DA-SMS, where the observables are pointwise measurements
yi(t) = u(xi, zi, t). We place r = 46 sensors on a scattered grid as shown in figure 4. The observa-
tions are gathered every ∆t = 0.5 time units over the data assimilation window TDA = [0, 25]. The
forecast window is Tf = [25, 45]. For the Newton iterations, we set the Tikhonov regularization
parameter to γ̃ = 5× 10−2, which is equal to the Tikhonov regularization parameter for SMS. Sim-
ilar to the KS equation, we observed that even one Newton iteration suffices to obtain satisfactory
agreement with observations.

Figure 5 compares the results of DA-SMS and SMS without data assimilation . Panel (e) shows
the relative L2 error,

E(t) = ∥u(·, t)− û(·,θ(t))∥L2

∥u(·, t)∥L2

, (55)
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<latexit sha1_base64="H0+vPkOYIB9WILVirvWzNP/lO+0=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BItQL2VXinosevFY0X5Au5RsNtuGZrNLkhXK0p/gxYMiXv1F3vw3pu0etPXBwOO9GWbm+Yng2jjONyqsrW9sbhW3Szu7e/sH5cOjto5TRVmLxiJWXZ9oJrhkLcONYN1EMRL5gnX88e3M7zwxpXksH80kYV5EhpKHnBJjpYdqcD4oV5yaMwdeJW5OKpCjOSh/9YOYphGThgqidc91EuNlRBlOBZuW+qlmCaFjMmQ9SyWJmPay+alTfGaVAIexsiUNnqu/JzISaT2JfNsZETPSy95M/M/rpSa89jIuk9QwSReLwlRgE+PZ3zjgilEjJpYQqri9FdMRUYQam07JhuAuv7xK2hc197JWv69XGjd5HEU4gVOoggtX0IA7aEILKAzhGV7hDQn0gt7Rx6K1gPKZY/gD9PkDkCiNVg==</latexit>

(d)
<latexit sha1_base64="Bl9HLHb84boj4HfUle3DjNNKwyo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXJHoMevEY0TwgWcLspJMMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glhwbVz328mtrW9sbuW3Czu7e/sHxcOjpo4SxbDBIhGpdkA1Ci6xYbgR2I4V0jAQ2ArGtzO/9YRK80g+mkmMfkiHkg84o8ZKD+XRea9YcivuHGSVeBkpQYZ6r/jV7UcsCVEaJqjWHc+NjZ9SZTgTOC10E40xZWM6xI6lkoao/XR+6pScWaVPBpGyJQ2Zq78nUhpqPQkD2xlSM9LL3kz8z+skZnDtp1zGiUHJFosGiSAmIrO/SZ8rZEZMLKFMcXsrYSOqKDM2nYINwVt+eZU0LypetVK9vyzVbrI48nACp1AGD66gBndQhwYwGMIzvMKbI5wX5935WLTmnGzmGP7A+fwBluCNXA==</latexit>
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(f)

Figure 5: Space-time plots of the solutions to ADE (51) where we have taken one slice in space
located at z = 0.9 at every time instance over the interval [0, 45]. The left column shows the results
obtained from (a) DNS, (b) DA-SMS with 0% noise in the data, (c) DA-SMS with 5% noise in
the data, and (d) SMS without data assimilation. Panels (f,g,h) show the corresponding difference
uDNS(x, 0.9, t)− û(x, 0.9,θ(t)). Panel (e) shows the total relative errors.

for each simulation. Although the SMS solution captures the overall dynamics, its relative error
increases to about 12% over time. Recall that the boundary conditions are exactly enforced in the
construction of our neural network, so that the error is exactly zero at the boundary. However,
immediately near the boundary we observe a large accumulation of error for the SMS solution.
This is particularly pronounced near x = 4. On the other hand, the DA-SMS is able to suppress
these errors significantly. For DA-SMS with clean data (no noise added to the observations), the
total relative error is at most 5%. When noise is added to the observational data, the DA-SMS
error increases slightly to at most 7%. However, this error is still smaller than the SMS simulations
without data assimilation.
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5 Conclusions

Shape-morphing solutions are a computational method for obtaining numerical solutions to
PDEs. In spite of the rapidly growing literature on this subject, data assimilation with SMS had
remained unaddressed. Here, we developed two data assimilation methods for shape-morphing
solutions: (i) Discrete-time data assimilated SMS and (ii) Continuous-time data assimilated SMS.
Both methods seek to use observations to correct for modeling error, approximation error, and
uncertainties in the initial condition.

Our discrete method takes the form of a predictor-corrector scheme. During the prediction
phase, the SMS equations are used to evolve the solution between consecutive observation points.
At time instances where observations are available, a Newton-like iteration is used to correct for the
discrepancy between the SMS and the observational data. We proved that, under certain conditions,
the DA-SMS method converges uniformly to the true solution.

Our continuous-time method takes a different approach. It treats the observational data as
constraints to the optimization problem underlying SMS equations. The resulting constrained SMS
equation ensures that the solution agrees with the observational data up to a constant which is
independent of time.

Several open questions remain to be addressed. These include:
(i) Better convergence analysis: Our theoretical results concerning the convergence of the

discrete-time DA-SMS are rather pessimistic. They indicate that a dense set of observational data
is required for the method to converge. In contrast, our numerical results indicate that the method
works with relatively few observations and a single Newton-like iteration. Thus, our numerical
results suggest that tighter error bounds for the DA-SMS error are feasible.

(ii) Sensor placement: It is well-known that the quality of data assimilation methods depend
significantly on the location of the sensors which gather the data [7, 16]. Here, we placed our sensors
in an ad hoc manner. Specialized sensor placement methods, tailored for use with shape-morphing
solutions, are desirable.

(iii) Other data assimilation techniques: Classical data assimilation methods, such as extended
Kalman filtering and variational data assimilation, can in principle be used with SMS. However, the
nonlinear dependence of SMS on its parameters θ(t) complicates a straightforward implementation
of these methods. Future work should explore the necessary modifications to existing DA methods
for use with SMS. Furthermore, the nonlinearities necessitate a separate convergence analysis for
existing DA methods used in conjunction with SMS.
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A Derivation of Continuous-time Data Assimilation Equa-
tions

Here we present a detailed derivation of the results presented in Section 3.3 for both types of
shape-morphing equation. To begin, we consider the optimization problem

min
θ̇

1

2
∥R(x,θ, θ̇)∥2H +

γ

2
∥θ̇∥22

s.t. Jrθ̇ = ẏ.

To solve the constrained optimization problem we introduce the Lagrange multipliers λ ∈ Rr. To
this end, we construct the constrained cost functional

Jc(θ; θ̇,λ) =
1

2
∥R(x,θ, θ̇)∥2H + λ⊤(Jrθ̇ − ẏ) +

γ

2
∥θ̇|22 (56)

Next, we expand the Hilbert norm in terms of the Hilbert inner product, which yields

Jc(θ; θ̇,λ) =
1

2

〈
N∑

i=1

∂û

∂θi
θ̇i,

N∑

j=1

∂û

∂θj
θ̇j

〉

H

−

〈
N∑

i=1

∂û

∂θi
θ̇i, F (û)

〉

H

− 1

2
∥F (û)∥2H + λ⊤(Jrθ̇ − ẏ) +

γ

2
∥θ̇∥22.

(57)

Next, following Ref. [1], we introduce the metric tensor M and the vector f which we describe in
Section 2, so we can re-express (57) as

Jc(θ; θ̇,λ) =
1

2
θ̇⊤M θ̇ − θ̇⊤f + ∥F (û)∥2H + λ⊤(Jrθ̇ − ẏ). (58)

To follow, we compute the gradient with respect to θ and set equal it to zero to solve for θ̇.

∇θJc = (M + γI)θ̇ − f + J⊤
r λ (59)

By construction M is symmetric positive semidefinite; because γ > 0, (M + γI) is invertible, thus

θ̇ = (M + γI)
−1 (

f − J⊤
r λ

)
. (60)

Next, we take the gradient with respect to λ and substitute the expression found in (60) to solve
for λ. Letting Mγ = M + γI we have,

Jr
(
M−1

γ f −M−1
γ J⊤

r λ
)
= ẏ (61)

Isolating λ we find
JrM

−1
γ J⊤

r λ = JrM
−1
γ f − ẏ (62)

In most cases r ≪ kN , so Jr is a short-fat matrix. Thus if Jr is full rank, then JrM
−1
γ J⊤

r is
symmetric positive definite. Hence

λ =
(
JrM

−1
γ J⊤

r

)−1
JrM

−1
γ f −

(
JrM

−1
γ J⊤

r

)−1
ẏ (63)
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Lastly, we use this expression for λ in Eq. (60), and we arrive at

θ̇ =
[
I −M−1

γ J⊤
r

(
JrM

−1
γ J⊤

r

)−1
Jr

]
M−1

γ f +M−1
γ J⊤

r

(
JrM

−1
γ J⊤

r

)−1
ẏ. (64)

Next, we turn our attention to the collocation shape-morphing equation. To begin we amend
the collocation optimization problem in Section 2 by adding the same constraint as above. In this
case we have

min
˙θ∈RNk

1

2
∥M̃ θ̇ − f̃∥22 +

γ

2
∥θ̇∥22,

s.t. Jrθ̇ = ẏ

(65)

To find the solution we follow the same procedure as above, first introducing the Lagrange multi-
pliers λ ∈ Rr and constructing the constrained cost function,

J̃c(θ; θ̇,λ) =
1

2
∥M̃ θ̇ − f̃∥22 +

γ

2
∥θ̇∥22 + λ⊤

(
Jrθ̇ − ẏ

)
. (66)

Next we expand the cost function, compute the derivative with respect to θ̇,

∇θ̇J̃c =
(
M̃⊤M̃ + γI

)
θ̇ − M̃⊤f̃ + J⊤

r λ (67)

To find the critical point, we set this expression to zero and solve for θ̇. Since γ > 0 we have that
M̃γ = M̃⊤M̃ + γI is invertible, so

θ̇ = M̃−1
γ M̃⊤f̃ − M̃−1

γ J⊤
r λ (68)

Next, we compute the gradient with respect to λ, which recovers the constraint, and then substitute
our expression for θ̇. If Jr is full rank, then JrM̃

−1
γ Jr is invertible, and we find that

λ =
(
JrM̃

−1
γ Jr

)−1 (
JrM̃

−1
γ M̃⊤f̃ − ẏ

)
. (69)

Combining these expressions and simplifying, we find that the continuous data assimilation algo-
rithm for the collocation method is given by

θ̇ =

[
I − M̃−1

γ J⊤
r

(
JrM̃

−1
γ J⊤

r

)−1
]
M̃−1

γ M̃⊤f̃

+ M̃−1
γ J⊤

r

(
JrM̃

−1
γ J⊤

r

)−1

ẏ

(70)

B Neural Network Construction for Mixed Dirichlet-Neumann
Boundary Conditions

In this section we discus the construction of the neural network used for the advection diffusion
equation in Section 4.3. This neural network is designed such that the mixed Dirichlet-Neumann
boundary conditions of the AD equation are automatically satisfied by the network. This objective
is achieved in three steps:
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1. First, we define an extended computational domain Ωe using copies of the physical rectangular
domain Ω.

2. We then enforce periodic boundary conditions on the extended domain Ωe.

3. Finally, we enforce odd and even symmetries into the network to ensure the mixed Dirichlet-
Neumann boundary conditions are satisfied on the physical domain Ω.

Consider a general neural network N(x,θ), which may be deep or shallow. The neural network
is defined on the physical spatial domain x ∈ Ω = [0, L]× [0, H]. Recall that the AD equation has
homogeneous Dirichlet boundary conditions in z and homogeneous Neumann boundary conditions
in x. First, we define the extended computational domain Ωe = [−L,L] × [−H,H]. We impose
periodic boundary conditions over the entire computational domain Ωe using the methodology
presented in Ref. [15]. Namely, in each node of the network N(x,θ), we apply a change of variables
through the function,

si(x) =
[
sin

(π

L
x+ cxi

)
, sin

( π

H
z + czi

)]⊤
. (71)

For example, in AD equation where we consider a shallow neural network with a hyperbolic tangent
activation function, we have

Np(x,θ) =

N∑

i=1

ai tanh(wi · si(x) + bi). (72)

This neural network has periodic boundary conditions on the extended domain Ωe.
To enforce the mixed Dirichlet-Neumann boundary conditions on the physical domain Ω, we

exploit the inherent symmetries of even and odd functions. For a continuous odd function, f(−x) =
−f(x), we have f(0) = 0. Additionally, for a continuously differentiable even function, f(−x) =
f(x), its derivative must be odd, and therefore, f ′(0) = 0. As a result, if the construction of the
neural network is odd with respect to z and even with respect to x, then it satisfies the correct
boundary conditions of the AD equation.

Finally, we introduce these symmetries by using the neural network Np(x,θ) to define the SMS
solution,

û(x,θ) = Np(x, z,θ)−Np(x,−z,θ) +Np(−x, z,θ)−Np(−x,−z,θ). (73)

It is straightforward to verify that û is odd with respect to z and even with respect to x. This,
together with periodicity û on the extended computational domain Ωe, ensures that the SMS
solution û satisfies the mixed homogeneous Dirichlet-Neumann boundary conditions on the physical
domain Ω.
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