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Abstract
Non-pharmaceutical interventions (NPIs) aimed at limiting human mobility have demonstrated

success in curbing the transmission of airborne diseases. However, their effectiveness in managing

vector-borne diseases remains less clear. In this study, we introduce a framework that integrates

mobility data with vulnerability matrices to evaluate the differential impacts of mobility-based

NPIs on both airborne and vector-borne pathogens. Focusing on the city of Santiago de Cali in

Colombia, our analysis illustrates how mobility-based policies previously proposed to contain

airborne disease can make cities more prone to the spread of vector-borne diseases. By proposing a

simplified synthetic model, we explain the limitations of the latter policies and exploit the synergies

between both types of diseases to find new interventions reshaping the mobility network for their

simultaneous control. Our results thus offer valuable insights into the epidemiological trade-offs of

concurrent disease management, providing a foundation for the design and assessment of targeted

interventions that reshape human mobility.
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I. INTRODUCTION

The role of mobility in the propagation of epidemics is well-established [1]. On the

one hand, the rapid expansion of global mobility networks has dramatically increased

the level of inter-connectivity between regions, accelerating the transmission of infectious

diseases [2–4]. On the other hand, the ongoing trends in urbanization and the transition

toward more densely populated urban environments further exacerbate the potential

for localized disease outbreaks to escalate into epidemics [5–7]. Accurately predicting

and mitigating these outbreaks requires a comprehensive understanding of epidemic

vulnerability, encompassing factors such as mobility patterns, population susceptibility,

healthcare infrastructure, and environmental conditions [8–16].

In the absence of universally effective vaccines and therapeutics, non-pharmaceutical

interventions (NPIs) have become a critical tool in mitigating the spread of epidemics [17–

19]. Nonetheless, the suitability of NPIs as optimal responses to epidemic threats hinges

on the balance between their expected health benefits and the collateral effects derived

from their implementation [20–22]. For instance, policies shaping human mobility during

the COVID-19 pandemic were efficient in controlling the exponential growth of cases yet

introduced significant socioeconomic challenges [23–26].

Beyond their associated socioeconomic cost, the implementation of NPIs tailored to

mitigate a specific epidemic scenario affects the epidemic trajectories of other diseases

circulating in the same population. Such effects are always synergistic when both diseases

share the same transmission mechanisms, as proven by the reduced prevalence of airborne

diseases (ABDs) in the population resulting from the implementation of NPIs designed to

contain COVID-19 cases [27–29]. Conversely, quantifying the impact of such policies on

other circulating pathogens with different transmission mechanisms, such as vector-borne

diseases (VBDs), represents a more intricate problem. Indeed, several empirical studies

have reported disparate results of these interventions ranging from potential benefits to

negligible effects or even unintended drawbacks [30–40].

Numerous theoretical studies have investigated the impact of local mobility on the

global transmission of both ABDs and VBDs [2, 12, 41–46]. However, a holistic understand-

ing of the combined spatial and temporal dynamics of mobility on disease spread remains

incomplete [42, 44, 47–54]. In this study, we present a novel and unified framework for
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analyzing both vector-borne diseases (VBDs) and airborne diseases (ABDs) at a large

scale. Our approach is grounded in a metapopulation model [42, 45, 55, 56] designed to

capture the complexity of multi-patch systems. This model incorporates a matrix-based

representation of epidemic vulnerability, with each row representing the overall vulnera-

bility of a particular patch. Utilizing the LouBar method [57, 58], we classify regions into

high-vulnerability zones ("hotspots") and low-vulnerability zones ("suburbs") based on

their population densities. This allows us to identify key areas and relevant mobility flows

that shape cities’ vulnerabilities to both types of diseases.

Using this framework and real data from the city of Cali in Colombia, we first demon-

strate that interventions proven successful in reducing ABD transmission do not yield

comparable outcomes for VBDs. We explain this disparity, by exploring the contagion

dynamics of both disease types on a simplifed one-hub-one-leaf mobility network, dis-

entangling the temporal and spatiotemporal components. This approach enables the

identification of optimal conditions for the simultaneous control of both ABDs and VBDs

in a region. Leveraging this information, we redesign the interventions on the mobility

network of the city of Cali, showing that model-informed policies are efficient in contain-

ing ABDs while not hampering the control of VBDs. The successful implementation of

these strategies using real-world metapopulation data underscores the potential of the

model to inform public health interventions for both airborne and vector-borne diseases.

II. METHODS

A. Data

As a primary illustration, we examine the spread of vector-borne diseases (VBDs) and

airborne diseases (ABDs) within Cali, Colombia. This metropolitan area, with a population

exceeding 2 million, provides an ideal test case due to its documented history of severe

VBD outbreaks. To assess the impact of mobility patterns on disease transmission within

Cali, a detailed reconstruction of the city’s resident mobility network was conducted. This

reconstruction involved dividing the city into 22 designated administrative districts, or

"comunas." Demographic information on population distribution across these comunas

was sourced from the local municipality’s census records. Subsequently, mobility flows
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Count Mean SD Min Max

22 1.38 0.52 0.6 2.7

TABLE I. Summary statistic for the recipient index distribution in Cali. This quantifies the percent-
age of recipients found with larvae and pupae across the city of Cali. The number of mosquitoes in
each area is computed assuming that the ratio of vectors to humans within each patch is propor-
tional to this index.

between these districts were derived from established urban commuting surveys [59],

resulting in the collection of over 105 individual travel trajectories, which offer a substantial

representation of commuting patterns within Cali. This dataset was then used to construct

an origin-destination matrix, R whose elements correspond to Rij = Tij/ ∑j Tij, where

Tij encodes the population outflows from comuna i to j. The elements of R can thus be

interpreted as the probability of moving from i to j. In Fig. S1a we show the resulting

mobility matrix R and in Fig. S1b we show the mobility flows on the map of Cali.

To model the vector distribution (mosquito populations) across comunas, we consider

the recipient index, encoding the probability of finding a mosquito in different recipients

distributed across the city. We thus assume that a high recipient index corresponds with

a large concentration of vectors in this area. Following this rationale, we assume that

the ratio between the number of vectors and humans inside each patch in our model is

directly proportional to its recipient index, which is extracted from entomological data of

the year 2015 [60]. Table I presents summary statistics for entomological indices in the 22

communas of Cali, Colombia.

B. Hotspot classification

Hotspots are identified using the LouBar method, where hotspots are determined by

setting a threshold based on population densities. First, patches are arranged in ascending

order of density. A Lorenz curve is then plotted, with the cumulative density of patches

on the Y-axis and corresponding patch numbers on the X-axis. The derivative of the curve

at its peak point (patch with maximum cumulative density) is extrapolated to intersect

the X-axis, determining the threshold patch beyond which all patches are considered

hotspots. A patch i qualifies as a hotspot if ρi > ρLouBar, where ρi is the density of patch

i and ρLouBar is the threshold density obtained via the LouBar method. All remaining
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patches are referred to as suburbs. For further details on this method, see Fig. S2 where we

plot the hotspots in terms of the population density (upper-panel) as well as the effective

density (ratio of mosquitoes to human population in a given comune).

C. Epidemic vulnerability

The concept of an epidemic threshold τc is frequently used to determine the minimum

level of infectiousness necessary for a pathogen to establish within a population. A

higher epidemic threshold signifies increased resistance to disease transmission, whereas

a lower threshold suggests heightened vulnerability. In this study, we define epidemic

vulnerability as the inverse of the epidemic threshold. Thus, a lower epidemic threshold,

indicative of greater susceptibility to disease transmission, equates to a higher level

of epidemic vulnerability. Consequently, the epidemic vulnerability, ν = τ−1
c , for a

given geographic area (referred to as a "patch") is defined as the expected number of

contagions the population within that area encounters over time, primarily influenced by

the population’s recurrent mobility patterns.

To assess the city’s susceptibility to airborne diseases (ABDs) and vector-borne dis-

eases (VBDs) independently, we employ a metapopulation framework. Building on

established models for ABDs [55] and VBDs [45], we adapt these frameworks to suit the

specific context of this study. The dynamics of ABDs are represented using a generalized

Susceptible-Infected-Recovered (SIR) model, while the Ross-Macdonald (RM) model is

applied to describe VBD transmission [61]. Both models incorporate spatial distributions

and mobility patterns, fundamental components of metapopulation theory. In this frame-

work, a metapopulation is conceptualized as a network where nodes represent geographic

locations (patches) and edges denote population movement between these patches.

Each patch i is characterized by its population size ni, area ai, and vector population mi.

These attributes vary across patches, reflecting differences in demographic distribution

and vector prevalence. Human and vector populations are assigned to specific patches

based on their residence locations, with ni and mi representing the number of humans

and vectors residing in patch i. The patches are interconnected, forming a directed, and

weighted network encoded in the mobility matrix R. This matrix governs the movement

of the human population across the system, while mosquitoes are assumed to remain
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Parameter table

Definition

α Ratio of human population in the leaf to human population in the hub.

β Ratio of mosquito population in the leaf to mosquito population in the hub.

γ Ratio of area of the leaf to area of the hub .

κ Fraction of population moving within hub.

1 − κ Fraction of population moving from hub to leaf.

δ Fraction of population moving within leaf.

1 − δ Fraction of population moving from leaf to hub.

TABLE II. Definitions of the parameters used in this paper.

confined to their respective patches due to their limited dispersal range [62]. For further

details on the model, refer to Supplementary Section S3, and see Table II for a list of key

parameters.

III. RESULTS

A. Effect of NPIs in Cali, Colombia

In Fig.1a, we present a map of Cali, highlighting hotspot comunas in red. For reference,

the population density distribution across comunas is provided in Fig. S2. One effective

(albeit somewhat idealized) NPI for reducing regional vulnerability to ABDs, as proposed

in[55], involves rerouting mobility flows from hotspots to neighboring suburban areas

while maintaining the total outflow from each hotspot. For each realization of this modified

flow structure, we compute the resulting vulnerability, vmod. In Fig. 1b, we show the

distribution of the ratio of modified vulnerability (across 1,000 iterations) to the baseline

vulnerability calculated from Cali’s empirical mobility network. As anticipated, this

intervention achieves an average reduction in regional vulnerability of approximately

20%. This positive effect is attributed to the population density asymmetry within cities;

by diverting mobility from dense hotspots to lower-density suburbs, the intervention

raises the epidemic threshold through a dilution effect, reducing potential contacts within

hotspots and distributing potentially infectious individuals to areas where their impact is
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FIG. 1. Effect of NPIs in Cali and a Simplified Metapopulation Model. (a) Map of Cali showing
the spatial distribution of identified population density hotspots (navy) and suburbs (light blue),
along with the mobility network, where edge weights are represented using a gradient red color
scale. (b) Illustration of a Non-Pharmaceutical Intervention (NPI) involving the redistribution of
mobility flows from hotspots to neighboring suburbs. The effect of the intervention on epidemic
vulnerability is quantified by the ratio νMod

ν , where νMod represents the vulnerability recalculated
post-intervention. Values below 1 indicate a beneficial intervention, reducing vulnerability, while
values above 1 signify a detrimental effect, increasing vulnerability. (c) Schematic of the simplified
one hub-leaf metapopulation model. The hub aggregates all hotspots and is defined by its human
population (nh), mosquito population (mh), and area (ah). The leaf, encompassing all non-hotspot
regions (suburbs), is characterized by its human population (nl = αnh), mosquito population
(ml = βmh), and area (al = γah), with α, β, and γ acting as scaling parameters that adjust the
relative sizes of the hub and leaf.

minimized.

Conversely, this approach has the unintended consequence of worsening conditions

for VBDs. The hotspots defined by vector densities (e.g., mosquito populations) generally

differ from those based on human population densities, although a positive correlation

exists between the two (Spearman correlation coefficient of 0.74; see Fig. S2). When

computing modified vulnerabilities for VBDs under the same intervention, we observe a

near doubling of vulnerability. The fact that an NPI strategy effective for ABDs may not
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yield similar results for VBDs emphasizes the necessity of tailoring epidemic preparedness

strategies to the specific characteristics of each disease.

B. Synthetic hub-leaf metapopulation

Our finding—that an intervention effective for one disease type may exacerbate the

vulnerability of another within the same region—emphasizes the necessity of thoroughly

examining the contagion dynamics of ABDs and VBDs and their interactions with popula-

tion density and mobility flows. In the case of Santiago de Cali, this interplay could be

further investigated by analyzing the relationship between epidemic vulnerability and

the structural architecture of its mobility network. However, the inherent complexity of

human mobility patterns poses challenges, specifically: (i) extracting actionable insights

directly from mobility network analyses, and (ii) generalizing these findings to inform

disease control strategies in other urban settings.

To address these challenges, we adopt an alternative approach by focusing on universal

factors that constrain the effectiveness of control policies, using a simplified synthetic

model. This model reduces the complexity of mobility networks by coarse-graining them

into a two-patch metapopulation, consisting of a single hub and a single leaf. The sim-

plification assumes that all nodes classified within the same category—either hotspots or

suburbs, as identified by the LouBar method—are equivalent in terms of their underlying

contagion dynamics (See Figure S3 for a schematic of the formalism).

The primary features of the one hub-leaf metapopulation are illustrated in Fig. 1c. The

hub is characterized by its resident population nh, area ah, and vector population mh.

Similarly, the leaf is defined by three corresponding parameters: nl, al , and ml . To facilitate

the analysis, we relate the parameters of the leaf to those of the hub using the relationships

nl = αnh, al = γah, and ml = βmh, where α, γ, and β are scaling factors that adjust the

ratios of human population, area, and mosquito population, respectively, between the two

patches.

Mobility dynamics in this model are governed by probabilistic movement: individuals

from the hub move to the leaf with probability κ or remain in the hub with probability

1 − κ, while individuals from the leaf move to the hub with probability δ or remain

in the leaf with probability 1 − δ. This framework allows us to systematically explore
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the dependence of urban vulnerability on the parameter space defined by (α, γ, β, κ, δ),

facilitating the identification of universal policies that minimize vulnerability across

diverse urban environments.

C. Contagion dynamics in ABDs

We begin by analyzing the well-established mechanisms governing airborne disease

transmission assuming recurrent mobility in our synthetic model. Building on this frame-

work (see Supplementary Sections S3-S4 for further details), the vulnerability ν of a

simplified one-hub-leaf model for ABDs can be expressed as

νABD =
Θh(κ, δ) + Θl(κ,δ)

γ +

√(
Θh(κ, δ) + Θl(κ,δ)

γ

)2
− α

γ (Θhl(κ, δ))2

2
, (1)

where Θh(κ, δ), Θl(κ, δ) and Θhl(κ, δ) can be interpreted as hub-, leaf- and cross-vulnerabilities

respectively. Their precise mathematical forms are provided in Supplementary Materials

Eq. S26. It is straightfoward to show that νABD is minimized when κ ≈ 1
γ+1 and δ ≈ γ

γ+1 .

For our analysis, we simplify the model by fixing γ = 1, ensuring that the hub and

leaf regions have equal areas. This approach eliminates the confounding effects of spatial

heterogeneity, allowing us to focus on the contagion dynamics. Under this configuration, a

homogeneous distribution of the population across the hub and leaf is optimal. Achieving

such a distribution requires selecting mobility parameters that promote an even population

spread between the regions. Crucially, the initial population ratio between the leaf and

hub, represented by α, emerges as a key determinant in this process. (For a detailed

analysis of this limiting case and a breakdown of each term in Eq. (1), cf. Suplementary

material Secs. S4, S5.)

In Fig. 2a, we illustrate the vulnerability dynamics for a scenario where α is set to a

small value, representing a relatively low population in the leaf compared to the hub.

In this regime, the hub exhibits the highest vulnerability, and the system’s behavior is

predominantly governed by the mobility parameter κ. For low leaf populations, migration

from the hub to the leaf is critical to achieving a more balanced distribution. As κ increases,

a greater proportion of the hub’s population migrates to the leaf, reducing vulnerability
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(a) (b)

FIG. 2. Epidemic vulnerability in ABDs. (a) and (b): Contour plots illustrating the dynamics of
vulnerability in airborne disease (ABD) for different values of the parameter α. The blue dotted
contour line indicates the threshold where vulnerability equals 1. In both plots, γ = 1.

within the hub. When κ ≈ 0.5, roughly half of the hub population has moved to the leaf,

resulting in a near-homogeneous distribution across the two regions. However, as κ → 1,

nearly the entire hub population migrates to the leaf, significantly increasing the leaf’s

vulnerability and establishing it as the new hotspot.

In epidemiological models, dilution refers to the process of homogenizing population

distribution by redistributing individuals across regions. In the context of our ABD model,

larger values of α, which correspond to larger leaf populations, reduces the extent of

dilution. This reduced dilution elevates overall vulnerability, as reflected by the more

intense red hue in the color scale of Fig. 2b. When the leaf-to-hub population ratio

approaches 1, both the leaf and hub exhibit equal susceptibility to vulnerability. In this

case, any migration from the hub to the leaf requires a proportional counterflow from the

leaf to the hub to achieve optimal population homogenization across the two regions.

In Fig. 2b, vulnerability is minimized along the upward diagonal, where κ ≈ δ. This

configuration represents a balanced migration regime, where the movement of individuals

from the hub to the leaf is counterbalanced by an equivalent flow from the leaf to the

hub. Deviations from this equilibrium lead to imbalanced population distributions and

increased vulnerability. Specifically, lower κ and higher δ result in an accumulation of

individuals in the leaf, causing a sharp increase in its vulnerability. Conversely, higher

κ and lower δ lead to a concentration of individuals in the hub, similarly raising its
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(a) (b)

FIG. 3. Epidemic vulnerability in VBDs (a) and (b): Contour plots illustrating the dynamics of
vulnerability in vector-borne disease (VBD) for different values of the parameter α. The blue dotted
contour line indicates the threshold where vulnerability equals 1. In both plots, β = 0.01.

vulnerability. Thus, extreme values of mobility in either direction result in higher overall

system vulnerability. In Supplementary Materials, Fig. S4, we plot the analog of Fig.2 for

other intermediate values in the range 0 ≤ α ≤ 1 mirroring the trends described here.

D. Contagion dynamics in VBDs

Next, we analyze the dynamics specific to VBDs. In this context, the vulnerability

νVBD represents the average number of indirect contacts an individual has with the rest of

the population, mediated by vectors. The corresponding equation for the vulnerability

(Details in Supplementary Sections S1 and S2), is:

νVBD =

√√√√ Θ̃h(κ, δ) + βΘ̃l(κ, δ) +
√(

Θ̃h(κ, δ) + βΘ̃l(κ, δ)
)2 − αβ

(
Θ̃hl(κ, δ)

)2

2
, (2)

where once again the terms retain their interpretation as in ABDs, with their precise

mathematical forms shown in Supplementary Materials Eq. S30. We note now the

appearance of the term β which quantifies the relative population of mosquitoes in the leaf

as compared to the hub ml/mh. The term βmi represents the total number of interactions

occurring within patch i, independent of the number of individuals occupying the patch.
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However, larger effective populations reduce the likelihood of any specific individual

being bitten during these interactions, which explains the presence of effective populations

in the denominator of the associated expressions. For our subsequent analysis, motivated

by the observed correspondence of mosquito- and population density hubs in Fig. S2,

we simplify the model by fixing β = 0.01, ensuring a higher mosquito population in

the hub region, which designates it as a potential hotspot. This configuration allows

for an apples-to-apples comparison with the ABD model, where hotspots are similarly

characterized by higher densities in their respective critical factors.

In the VBD model, smaller values of α, corresponding to lower leaf populations, reduce

the scale of dilution, thereby increasing overall vulnerability. This is reflected by the more

intense red hue in the color scale of Fig. 3a. In this regime, the hub and leaf exhibit similar

vulnerabilities in the absence of mobility, i.e., when (δ, κ) = (1, 1). As with ABDs, starting

from this scenario and reducing κ increases the hub’s vulnerability, as emptying the hub

heightens its local exposure. However, mobility also allows hub residents to leave the area,

which offsets the increase in local vulnerability, resulting in an approximately constant

value of ν = 1 along this axis. Similarly, altering δ to increase the movement of individuals

from the leaf reduces the time residents spend in the leaf while increasing its role as a

center of transmission. Conversely, when κ approaches 0 and δ is low, the absence of hub

residents in the hub amplifies the risk of exposure for the smaller incoming leaf population,

leading to heightened overall vulnerability.

For higher values of α, the vulnerabilities of the hub and the leaf in the absence of

mobility differ significantly, as β/α ≪ 1. This discrepancy makes the beneficial effects of

mobility, primarily through the dilution of hub vulnerability, more pronounced. Specif-

ically, reducing hub vulnerability requires a careful balance between evacuation and

dilution strategies. Evacuation involves decreasing κ to promote outflow from the hub

and increasing δ to limit inflow from the leaf. In contrast, dilution involves increasing

κ to retain the hub population and decreasing δ to encourage migration from the leaf to

the hub. Minimizing hub vulnerability necessitates an optimal trade-off between these

competing strategies.

Figure 3b illustrates that the optimal balance between evacuation and dilution strategies

occurs along the downward diagonal, where κ ≈ 1 − δ. This result can also be derived

from Eq. (2), assuming β ≪ 1. Deviations from this equilibrium, such as lower κ and
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(a) (b)Strategy-I:  Beneficial only to VBD Strategy-II: Beneficial to both ABD and VBD

FIG. 4. NPI strategies to mitigate the epidemic vulnerability. (a) Violin plot showing the impact
of reshuffling strategy I, which adjusts mobility parameters within the constrained range δ = 1 − κ,
on epidemic vulnerability for ABDs and VBDs. (b) Violin plot illustrating the effect of reshuffling
strategy II, where mobility parameters are set to specific values κ = 1

γ+1 and δ = γ
γ+1 , on epidemic

vulnerability for ABDs and VBDs. In both panels, the numerator (νMod) represents the recomputed
epidemic vulnerability after reshuffling. The lower zone (values below 1) indicates a beneficial
effect, while the upper zone (values above 1) signifies a detrimental effect. All parameters, except
for those involved in the reshuffling, are sampled randomly from a uniform distribution.

lower δ, lead to increased exposure of the incoming leaf population in the hub due to the

reduced size of the hub population. Conversely, higher κ and higher δ result in the hub

population being permanently exposed to the disease without adequate dilution from the

leaf population. (Refer to Supplementary Materials Fig. S5 for other intermediate values

in the range 0 ≤ α ≤ 1.)

E. Non-pharmaceutical intervention (NPI) strategies to mitigate the vulnerability

In the absence of universally effective vaccines and therapeutics, non-pharmaceutical

interventions (NPIs) play a critical role in controlling epidemics. These interventions often

involve regulating travel behavior and mobility flows within populations. By studying

the contagion dynamics of various diseases, we have uncovered important relationships

between epidemic vulnerability and mobility patterns. While strict lockdowns are effective

in curbing outbreaks, they come with significant socioeconomic costs. Previous analyses

of Fig. 1b demonstrated that redistributing mobility—rather than enforcing complete

lockdowns—by shifting flows from hotspots to neighboring suburban regions can aid in
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controlling ABDs in Cali, though it may exacerbate the spread of VBDs. Building on this

understanding, this section examines the potential benefits of reshuffling mobility flows

as an NPI strategy for managing both ABDs and VBDs. Based on the derived vulnerability

equations, ABD vulnerability, Eq. (1), is minimized at specific mobility parameter values:

κ ≈ 1
γ+1 and δ ≈ γ

γ+1 . In contrast, VBD vulnerability, Eq. (2), can be reduced over a broader

range of mobility parameter values, including δ = 1 − κ, irrespective of population size.

These findings are consistent with the contagion dynamics analysis for both disease types

across various values of α. Notably, the optimal mobility parameter setting for ABDs is a

subset of the broader δ = 1 − κ range identified for VBDs.

Next, we investigate two reshuffling strategies: (1) tuning mobility parameters to the

specific values κ = 1
γ+1 and δ = γ

γ+1 , and (2) adjusting mobility parameters within the

constrained range δ = 1 − κ, to determine whether either strategy is beneficial for both

ABDs and VBDs. To evaluate the effectiveness of these strategies, we generate multiple

synthetic networks by exploring the parameter space defined by (α, γ, β, δ, κ). For each

network, we calculate the vulnerability ν before and after the intervention, denoted as

νMod. By analyzing the resulting histogram of vulnerability ratios, we assess whether the

reshuffling strategy is beneficial or detrimental based on the frequency of values less than

or greater than 1.

1. Strategy-I: Constraining mobility parameters to the range δ = 1 − κ

Strategy I involves modifying the mobility flows from the leaf such that δ = 1 − κ.

Based on our earlier analysis, this intervention is anticipated to reduce vulnerability for

VBDs; however, its effectiveness for ABDs is less certain. By performing multiple random

iterations across synthetic networks, we observe that for VBDs, the majority of outcomes

fall within the beneficial region of Fig. 4a, confirming the expected positive impact of

this strategy. In contrast, the results for ABDs are more variable. Approximately half of

the computed values lie within the beneficial region, while the remaining half fall in the

detrimental region. This mixed outcome underscores the limitations of Strategy I for ABDs,

as the precise tuning required to minimize their vulnerability is not consistently achieved.

This discrepancy is likely due to the narrower optimal parameter range for ABDs (κ ≈ 1
γ+1

and δ ≈ γ
γ+1 ), which Strategy I does not explicitly satisfy. These findings suggest that while
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Strategy I is a robust approach for reducing vulnerability in VBDs, its application to ABDs

is less reliable and may require additional adjustments or complementary interventions to

ensure its effectiveness.

2. Strategy-II: Fixing mobility parameters to κ = 1
γ+1 & δ = γ

γ+1

Our analysis of contagion dynamics reveals that vulnerability to ABDs is minimized

at specific mobility parameter values: κ = 1
γ+1 and δ = γ

γ+1 . Notably, these optimal

parameters for ABDs fall within the constrained range δ = 1 − κ, where vulnerability

to VBDs is also minimized. Consequently, setting these specific mobility parameters is

expected to reduce vulnerability for both ABDs and VBDs. This expectation is confirmed

by Fig. 4(b), where the majority of vulnerability ratios (νMod/ν) fall below 1, indicating

that this intervention—referred to as Strategy II—is effective in reducing vulnerability for

both disease types.

These findings highlight a direct relationship between vulnerability and the spatial

scale (relative area) of the leaf compared to the hub, characterized by the parameter

γ. Optimizing mobility based on this ratio emerges as a beneficial policy. Specifically,

within-hub mobility (κ) should be adjusted inversely proportional to the relative size of

the leaf. For instance, if the leaf area is significantly larger than the hub area (γ ≫ 1),

reducing within-hub mobility by migrating the majority of the hub population to the leaf

(κ ≈ 0) can decrease disease vulnerability. The larger area of the leaf disperses individuals,

reducing contact rates and, consequently, exposure to airborne pathogens compared to the

denser hub. Additionally, implementing an outward lockdown in the leaf region (δ = 1)

can further minimize vulnerability by preventing the movement of infected individuals

back to the hub. This approach ensures that individuals remain in the lower-density

environment of the leaf, reducing opportunities for disease transmission. However, when

the leaf and hub areas are comparable (γ ≈ 1), complete migration of the hub population

and a full outward restriction of the leaf population may not be optimal. In such cases,

evenly distributing the population between both patches can yield the best outcome by

optimizing the spread of the population and minimizing disease contact rates.
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(a) (b)Application of Strategy-I to Cali Application of Strategy-II to Cali

FIG. 5. Application of NPI strategies to to Cali, Colombia. Violin plots illustrating the impact of
reshuffling flows using Strategy-I (a) and Strategy-II (b) on the epidemic vulnerability of Cali.

F. Application of NPI Strategies to Cali

We now apply the strategies developed for the simplified one-hub-leaf model to the

complex mobility network of Cali, demonstrating the practicality and effectiveness of

our approach in real-world scenarios. As shown in Fig. 1b, a previously proposed NPI

strategy—redistributing mobility between hotspots and suburbs while maintaining total

flow volume—proved effective for mitigating ABDs but was detrimental for VBDs in Cali.

In the synthetic model, this strategy corresponds to setting κ = 0.

In Fig. 5a, we evaluate the application of Strategy I (described in Section S8 of the

Supplementary Material) to Cali’s complex mobility network. While Strategy I was less

effective for ABDs in the one-hub-leaf model, its application to Cali produced predomi-

nantly beneficial results, with only a small number of detrimental outcomes. For VBDs, the

one-hub-leaf model showed mostly beneficial results, and the application to Cali yielded

even more robust outcomes, with all results falling within the beneficial region.

We then applied Strategy II to the complex mobility network of Cali. Strategy II involves

setting the mobility parameters κ = 1
γ+1 and δ = γ

γ+1 . To implement this approach, we

first calculated the value of γ for Cali’s network. Extending the definitions of α, β, and γ

from the one-hub-leaf model to the complex network, we defined these parameters as the

ratios of aggregated values in suburban and hotspot regions. Specifically, γ was calculated

as the ratio of the total suburban area to the total hotspot area. For Cali, γ was determined
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to be 1.2. The application of this strategy is shown in Fig. 5b, with detailed implementation

provided in Section S8 of the Supplementary Material. The results demonstrate that, for

both ABDs and VBDs, the vulnerability ratios (νMod

ν ) fall entirely within the beneficial

zone. This outcome aligns closely with the results from the one-hub-leaf model, where

the majority of vulnerability ratios were below 1, indicating a consistent reduction in

vulnerability.

This agreement between theoretical predictions and real-world data suggests that,

given the observed commuting patterns, spatial distribution of vectors, and population

demographics in Cali, the proposed mitigation strategies can effectively minimize the

impact of potential outbreaks of both airborne and vector-borne diseases. Notably, these

results hold true not just for a specific set of mobility parameter values but across a wide

range of parameter combinations, highlighting the robustness and generalizability of our

findings.

IV. DISCUSSION

This study introduces a unified framework for analyzing the dynamics of airborne

diseases (ABDs) and vector-borne diseases (VBDs), integrating theoretical modeling with

real-world data to explore the interplay between population distribution, mobility patterns,

and epidemic vulnerability. By examining both disease types, we demonstrated how non-

pharmaceutical interventions (NPIs) can be effectively tailored to mitigate disease spread

while accounting for their distinct transmission dynamics.

Our findings emphasize the importance of spatial heterogeneity and mobility dynamics

in shaping vulnerability. The simplified one-hub-leaf metapopulation model identified

specific mobility parameters (κ = 1
γ+1 and δ = γ

γ+1 ) as optimal for reducing ABD vulnera-

bility, balancing population redistribution and localized exposure. For VBDs, a broader

parameter range, including δ = 1 − κ, was effective, allowing greater flexibility in inter-

vention design. The overlap in these optimal ranges suggests the feasibility of unified

strategies addressing both disease types.

Applying this framework to the complex mobility network of Santiago de Cali, Colom-

bia, validated the model’s findings. Strategy II, involving fine-tuned mobility adjustments,

consistently reduced vulnerabilities for both ABDs and VBDs, proving its robustness and
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practicality as a non-pharmaceutical intervention. While Strategy I, which redistributes

flows based on a specific constraint, also yielded beneficial outcomes, its effectiveness for

ABDs was less consistent, reinforcing the need for disease-specific adaptations.

The implications for public health policy are significant. For ABDs, interventions should

prioritize targeted mobility adjustments that promote population homogeneity and reduce

susceptibility in hotspots. For VBDs, strategies must incorporate environmental and

vector-related factors alongside mobility interventions. The framework’s ability to distill

complex mobility networks into hub-leaf structures offers a practical tool for identifying

critical regions and optimizing resource allocation. Its adaptability to varying parameter

combinations underscores its potential application in other urban settings with similar

dynamics.

Nonetheless, the study has limitations. The one-hub-leaf model, while valuable for

theoretical insights, simplifies urban networks and may omit important spatial and demo-

graphic complexities. Extending the framework to account for multiple hubs, hierarchical

mobility patterns, and dynamic factors such as seasonal changes, socio-economic disrup-

tions, and healthcare accessibility could enhance its applicability [58, 63]. Incorporating

additional data, such as vector ecology (e.g., breeding site distributions) [62], could fur-

ther refine vulnerability assessments, particularly for VBDs. Focusing on Cali provided

a strong validation of the model but limits its generalizability. Future research should

apply this framework across diverse urban contexts to assess its broader applicability

and improve its predictive power. Expanding data integration, including socio-economic

disparities, healthcare infrastructure, and cultural mobility patterns, could further enhance

the framework’s real-world utility.

This work bridges theoretical modeling and practical application, offering an evidence-

based approach for designing NPIs. By addressing the distinct dynamics of ABDs and

VBDs, it lays a foundation for more targeted, effective mitigation strategies. Collaborative

efforts among researchers, public health officials, and policymakers are essential to ensure

interventions are equitable, context-sensitive, and impactful. While this study advances

understanding, addressing the multifaceted challenges of epidemic vulnerability requires

continued research and coordinated public health efforts to develop comprehensive and

adaptive responses.
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S1. MOBILITY MATRIX
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FIG. S1. Mobility in Cali. (a) Weighted mobility matrix (R) displaying the normalized flow of

individuals between patches. The matrix is normalized such that the total outgoing flows from

each patch sum to 1. (b) Map of Cali illustrating the spatial distribution of patches alongside the

associated mobility flows.
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S2. HOTSPOT CLASSIFICATION
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Popn. density

Eff. density

FIG. S2. Hotspot Classification using LouBar Method in Cali. (a) Map of Cali depicting the

spatial distribution of population density (in units of 10−4, km−2). (b) Lorenz curve representing

the distribution of population density across patches, with the x-axis showing patches arranged

in ascending order of population density and the y-axis indicating the cumulative population

density. The intersection of the tangent line with the x-axis determines the threshold for hotspot

classification. (c) Map of Cali illustrating the spatial distribution of effective density (mosquito-

to-human ratio). (d) Lorenz curve showing the distribution of effective density across patches.

The Spearman rank correlation coefficient between population density and effective density is

0.74, reflecting a strong positive correlation and indicating significant overlap between hotspots

identified using these two metrics.
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S3. CRITICAL MATRICES

S3.1. ABD

Assuming a negligible initial infectious seed size (ϵ ≪ 1) and no individuals in the

recovery phase initially, the contagion dynamics of ABD can be described as follows

[42,55]:

µ

λ
ϵi =

N

∑
j=1

[
(1 − p)2δij

fi

ne f f
i

+ p(1 − p)

(
Rij

f j

ne f f
j

+ Rji
fi

ne f f
i

)
+ p2 ∑

l
RilRjl

fl

ne f f
l

]
nj

︸ ︷︷ ︸
Mij

ϵj,

(S1)

where µ represents the recovery rate, λ the contagion rate, ϵi the infectious size in patch

i, and p the probability that a healthy individual decides to move. Additionally, fi is the

number of daily contacts per individual in patch i, ne f f
i is the effective population of patch

i (accounting for individuals present but not residing in the location), nj is the human

population in patch j, and M is the critical matrix, with µ
λ as its eigenvalue.

Assuming µ remains constant, the maximum eigenvalue of M determines the minimum

contagion rate required for an epidemic outbreak. This maximum eigenvalue is defined

as the epidemic vulnerability. The analysis prioritizes collective mobility patterns across

patches rather than individual-scale movements. Therefore, without loss of generality, we

assume that the probability of a healthy individual undertaking a trip, p, equals 1. This

assumption does not preclude individuals from remaining within their local patch, as such

behavior can be modeled as a zero-distance trip. Instead, it ensures that the framework

captures all possible local mobility patterns within the defined geographic area. The

critical matrix (C = M) under this assumption simplifies to:

CABD
ij = nj

N

∑
l=1

RilRjl
fl

nl
e f f

. (S2)

Assuming that the number of contacts that each individual makes inside each patch

depends on its density, we can substitute fl ≈
nl

e f f
al

where al is the area of the patch l. Thus,

CABD
ij = nj

N

∑
l=1

RilRjl

al
. (S3)
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This gives:

CABD
ii = ni

(R2
ii

ai
+

R2
ij

aj

)
, (S4)

CABD
ij = nj

(RiiRji

ai
+

RijRjj

aj

)
, (S5)

CABD
ji = ni

(RjiRii
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+

RjjRij
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)
, (S6)

CABD
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(R2
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+
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)
. (S7)

Hence,
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S3.2. VBD

Similarly, assuming a negligible initial human and vector infectious seed size (ϵH << 1

and ϵM << 1) and no initial individuals in the recovery phase, the contagion dynamics of

ABD can be described as follows [45]:

ϵH
i =

N

∑
j=1

λMHβ∗

µH

(
pRij

mj

ne f f
j

+ (1 − p)δij
mi

ne f f
i

)

︸ ︷︷ ︸
Mij

ϵM
j , (S9)

ϵM
i =

N

∑
j=1

λHMβ∗

µM

(
α∗pRij

nj

ne f f
i

+ (1 − α∗p)δij
ni

ne f f
i

)

︸ ︷︷ ︸
M̃ij

ϵH
j , (S10)

where ϵHi is the infectious size of humans in patch i, λMH is the contagion rate of an

infected vector transmitting the disease to a healthy individual, β∗ is the feeding rate of

vectors, µH is the recovery rate of humans, p is the probability that a healthy individual

decides to move, mj is the vector population in patch j, and ne f f
j is the effective population

of location j, representing the number of humans present in the location but not residing

there.

Additionally, λHM is the contagion rate of an infected human transmitting the disease

to a healthy vector, µM is the mortality rate of vectors, α∗ is a scaling factor that reflects the

degree to which an ill individual can move (with α∗ ∈ [0, 1], depending on the nature of

the disease and individuals’ coping ability), and nj is the human population in patch j. It

is important to note that the parameters β∗ and α∗ in the above equations are distinct from

the leaf-to-hub ratios of human population (α) and vector population (β) used elsewhere

in this paper. The parameters β∗ and α∗ specifically describe behavioral and biological

dynamics within the vector-host interaction framework.

Thus, the bipartite nature of VBD transmission, involving vector-to-human and human-

to-vector infections, can be represented respectively using matrices M and M̃ as:

Mij = pRij
mj

ne f f
j

+ (1 − p)δij
mi

ne f f
i

, (S11)

M̃ij = α∗pRji
nj

ne f f
i

+ (1 − α∗p)δij
ni

ne f f
i

. (S12)
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The nontrivial solutions for ϵH correspond to the eigenvectors of matrix MM̃. Thus, the

critical matrix defining VBD epidemic vulnerability can be defined as: C = MM̃. As

we are more interested towards comprehensive patch mobility rather than mobility in

individual scale; without loss of generality we assume p = 1 & α∗ = 1. The critical matrix

(C) thus becomes:

CVBD
ij = nj

N

∑
l=1

RilRjl
ml

(nl
e f f )

2
. (S13)

Here, the effective population ni
e f f is defined as:

ni
e f f = ∑

j=i
njRji. (S14)

Thus, for two patch i & j, the above equation can be written as:

ni
e f f = niRii + njRji, (S15)

nj
e f f = niRij + njRjj. (S16)

Similarly the critical matrix can be written as:

CVBD
ii =

mi

ni


 R2

ii

(Rii +
nj
ni

Rjj)2
+

mj
mi

R2
ij

(Rij +
nj
ni

Rjj)2


 , (S17)

CVBD
ij =

mi

ni

( nj
ni

RiiRji

(Rii +
nj
ni

Rjj)2
+

nj
ni

mj
mi

RijRjj

(Rij +
nj
ni

Rjj)2

)
, (S18)

CVBD
ji =

mi

ni

(
RiiRji

(Rii +
nj
ni

Rjj)2
+

mj
mi

RijRjj

(Rij +
nj
ni

Rjj)2

)
, (S19)

CVBD
jj =

mi

ni




nj
ni

R2
ji

(Rii +
nj
ni

Rjj)2
+

nj
ni

mj
mi

R2
jj

(Rij +
nj
ni

Rjj)2


 . (S20)

(S21)

Hence,

CVBD =
mi

ni

(
1

(
Rii +

nj
ni

Rji

)2


 R2

ii
nj
ni

RiiRji

RiiRji
nj
ni

R2
ji


+

mj
mi(

Rij +
nj
ni

Rjj)2


 R2

ij
nj
ni

RijRjj

RijRjj
nj
ni

R2
jj



)

.

(S22)
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S4. CALCULATION OF EPIDEMIC VULNERABILITY
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FIG. S3. Simplifying the Complex Model to a One Hub-Leaf Model. Using the human population

(n), vector population (m), and area of each patch (a), we calculate the population density for each

patch. Hotspots are identified based on their densities using the LouBar method, with hotspots

and suburbs (non-hotspots) represented by red and green patches, respectively. The mobility

associated with hotspots is denoted by the parameter κ, while mobility in suburbs is denoted by

δ. The complex model is then simplified into a one hub-leaf model, where the hub represents the

cumulative hotspot and the leaf represents the cumulative non-hotspot (suburb). Overall mobility

within the hub is represented by κ, while mobility within the leaf is represented by δ. The model

also incorporates the proportions of key variables between the hub and the leaf: α denotes the

proportion of the human population in the leaf relative to the hub, β denotes the proportion of

the vector population in the leaf relative to the hub, and γ denotes the proportion of the leaf area

relative to the hub.
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For one hub-leaf model, we define vulnerability of the hub (i.e. assuming i to be hub

and j to be leaf) where human population ni = nh, vector population mi = mh, area

ai = ah, Rii = κ, Rij = 1 − κ, Rjj = δ, Rji = 1 − δ. We assume α denotes the proportion of

human population in leaf to the hub, β denotes the proportion of vector population in leaf

to the hub (these α, β is different than α∗, β∗ above) and γ denotes proportion of leaf area

to the hub. Thus, the leaf human population nl = αnh, leaf vector population ml = βmh &

leaf area al = γah.

S4.1. ABD

The Critical Matrix of ABD defined in Eq. S8 becomes:

=⇒ CABD =
nh
ah

[
 κ2 ακ(1 − δ)

κ(1 − δ) α(1 − δ)2


+

1
γ


(1 − κ)2 α(1 − κ)δ

(1 − κ)δ αδ2



]

.

=⇒ CABD =
nh
ah


 κ2 + (1−κ)2

γ ακ(1 − δ) + α(1−κ)δ
γ

κ(1 − δ) + (1−κ)δ
γ α(1 − δ)2 + αδ2

γ .


 (S23)

The scale factor nh
ah

does not influence the contagion dynamics and can therefore be

neglected. Thus, the eigenvalue for CABD is:

|CABD − λI| = 0

=⇒

∣∣∣∣∣∣
κ2 + (1−κ)2

γ − λ ακ(1 − δ) + α(1−κ)δ
γ

κ(1 − δ) + (1−κ)δ
γ α(1 − δ)2 + αδ2

γ − λ

∣∣∣∣∣∣
= 0

Let’s say X = κ(1 − δ) + α(1−κ)δ
γ ,

=⇒

∣∣∣∣∣∣
κ2 + (1−κ)2

γ − λ αX

X α(1 − δ)2 + αδ2

γ − λ

∣∣∣∣∣∣
= 0.

=⇒ ακ2(1 − δ)2
︸ ︷︷ ︸+

ακ2δ2

γ
+

α(1 − κ)2(1 − δ)2

γ
+

αδ2(1 − κ)2

γ2
︸ ︷︷ ︸

−
(

κ2 + α(1 − δ)2 +
(1 − κ)2 + αδ2

γ

)
λ

+ λ2 − αX2 = 0.
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=⇒ ακ2(1 − δ)2 +
αδ2(1 − κ)2

γ2 +
2ακδ(1 − κ)(1 − δ)

γ︸ ︷︷ ︸
−2ακδ(1 − κ)(1 − δ)

γ
+

ακ2δ2

γ

+
α(1 − κ)2(1 − δ)2

γ
−
(

κ2 + α(1 − δ)2 +
(1 − κ)2 + αδ2

γ

)
λ + λ2 − αX2 = 0.

=⇒���αX2 − 2ακδ(1 − κ)(1 − δ)

γ
+

ακ2δ2

γ
+

α(1 − κ)2(1 − δ)2

γ︸ ︷︷ ︸
−
(

κ2 + α(1 − δ)2 +
(1 − κ)2 + αδ2

γ

)
λ

+ λ2 −���αX2 = 0.

=⇒ α

γ

(
κδ − (1 − κ)(1 − δ)

)2

︸ ︷︷ ︸
−
(

κ2 + α(1 − δ)2 +
(1 − κ)2 + αδ2

γ

)
λ + λ2 = 0.

=⇒ α

γ
(1 − κ − δ)2 −

(
κ2 + α(1 − δ)2 +

(1 − κ)2 + αδ2

γ

)
λ + λ2 = 0.

Which is in the form of ax2 + bx + c = 0 with the solution:

λ =
κ2 + α(1 − δ)2 + (1−κ)2+αδ2

γ ±
√(

κ2 + α(1 − δ)2 + (1−κ)2+αδ2

γ

)2
− 4 α

γ (1 − κ − δ)2

2
.

(S24)

Thus,

λmax
ABD =

κ2 + α(1 − δ)2 + (1−κ)2+αδ2

γ +

√(
κ2 + α(1 − δ)2 + (1−κ)2+αδ2

γ

)2
− 4 α

γ (1 − κ − δ)2

2
.

(S25)

We define Vulnerability in ABD (νABD) as λmax
ABD. Thus the expression for overall vulnera-

bility of the system is:

νABD =
Θh(κ, δ) + Θl(κ,δ)

γ +

√(
Θh(κ, δ) + Θl(κ,δ)

γ

)2
− α

γ

(
Θhl(κ, δ)

)2

2
, (S26)

where,

• hub-vulnerability: Θh(κ, δ) = κ2 + α(1 − δ)2,

• leaf-vulnerability: Θl(κ, δ) = (1 − κ)2 + αδ2,

• cross-vulnerability: Θhl(κ, δ) = 2(1 − κ − δ).
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S4.2. VBD

The Critical Matrix of VBD defined in Eq. S22 becomes:

=⇒ CVBD =
mh
nh

[
1

(
κ + α(1 − δ)

)2


 κ2 ακ(1 − δ)

κ(1 − δ) α(1 − δ)2




+
β(

(1 − κ) + αδ)2


(1 − κ)2 α(1 − κ)δ

(1 − κ)δ αδ2



]

.

=⇒ CVBD =
mh
nh




κ2(
κ+α(1−δ)

)2 +
β(1−κ)2

(
(1−κ)+αδ

)2
ακ(1−δ)(

κ+α(1−δ)

)2 +
βα(1−κ)δ(
(1−κ)+αδ

)2

κ(1−δ)(
κ+α(1−δ)

)2 +
β(1−κ)δ(

(1−κ)+αδ

)2
α(1−δ)2

(
κ+α(1−δ)

)2 +
βαδ2

(
(1−κ)+αδ

)2




. (S27)

The scale factor mh
nh

does not influence the contagion dynamics and can therefore be

neglected. Thus, the eigenvalue for CVBD is:

|CVBD − λI| = 0

=⇒

∣∣∣∣∣∣∣∣∣∣

κ2(
κ+α(1−δ)

)2 +
β(1−κ)2

(
(1−κ)+αδ

)2 − λ
ακ(1−δ)(

κ+α(1−δ)

)2 +
βα(1−κ)δ(
(1−κ)+αδ

)2

κ(1−δ)(
κ+α(1−δ)

)2 +
β(1−κ)δ(

(1−κ)+αδ

)2
α(1−δ)2

(
κ+α(1−δ)

)2 +
βαδ2

(
(1−κ)+αδ

)2 − λ

∣∣∣∣∣∣∣∣∣∣

= 0.

Let’s say X = κ(1−δ)(
κ+α(1−δ)

)2 +
β(1−κ)δ(

(1−κ)+αδ

)2 ,

=⇒

∣∣∣∣∣∣∣∣∣∣

κ2(
κ+α(1−δ)

)2 +
β(1−κ)2

(
(1−κ)+αδ

)2 − λ αX

X α(1−δ)2
(

κ+α(1−δ)

)2 +
βαδ2

(
(1−κ)+αδ

)2 − λ

∣∣∣∣∣∣∣∣∣∣

= 0.

=⇒ κ2α(1 − δ)2

(
κ + α(1 − δ)

)4

︸ ︷︷ ︸

+
κ2βαδ2

(
κ + α(1 − δ)

)2(
(1 − κ) + αδ

)2 +
β(1 − κ)2α(1 − δ)2

(
(1 − κ) + αδ

)2(
κ + α(1 − δ)

)2

+
β2α(1 − κ)2δ2

(
(1 − κ) + αδ

)4

︸ ︷︷ ︸

−
[

κ2 + α(1 − δ)2

(
κ + α(1 − δ)

)2 +
β
(
(1 − κ)2 + αδ2

)

(
(1 − κ) + αδ

)2

]
λ + λ2 − αX2 = 0.
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=⇒ κ2α(1 − δ)2

(
κ + α(1 − δ)

)4 +
β2α(1 − κ)2δ2

(
(1 − κ) + αδ

)4 +
2κα(1 − δ)β(1 − κ)δ

(
κ + α(1 − δ)

)2(
(1 − κ) + αδ

)2

︸ ︷︷ ︸

− 2κα(1 − δ)β(1 − κ)δ
(

κ + α(1 − δ)
)2(

(1 − κ) + αδ
)2 +

κ2βαδ2

(
κ + α(1 − δ)

)2(
(1 − κ) + αδ

)2

+
β(1 − κ)2α(1 − δ)2

(
(1 − κ) + αδ

)2(
κ + α(1 − δ)

)2 −
[

κ2 + α(1 − δ)2

(
κ + α(1 − δ)

)2 +
β
(
(1 − κ)2 + αδ2

)

(
(1 − κ) + αδ

)2

]
λ

+ λ2 − αX2 = 0.

=⇒���αX2 − 2κα(1 − δ)β(1 − κ)δ
(

κ + α(1 − δ)
)2(

(1 − κ) + αδ
)2 +

κ2βαδ2

(
κ + α(1 − δ)

)2(
(1 − κ) + αδ

)2

︸ ︷︷ ︸

+
β(1 − κ)2α(1 − δ)2

(
(1 − κ) + αδ

)2(
κ + α(1 − δ)

)2

︸ ︷︷ ︸

−
[

κ2 + α(1 − δ)2

(
κ + α(1 − δ)

)2 +
β
(
(1 − κ)2 + αδ2

)

(
(1 − κ) + αδ

)2

]
λ

+ λ2 −���αX2 = 0.

=⇒
αβ
(

κδ − (1 − κ)(1 − δ)
)2

︸ ︷︷ ︸
(

κ + α(1 − δ)
)2(

(1 − κ) + αδ
)2 −

[
κ2 + α(1 − δ)2

(
κ + α(1 − δ)

)2 +
β
(
(1 − κ)2 + αδ2

)

(
(1 − κ) + αδ

)2

]
λ + λ2 = 0.

=⇒ αβ(1 − κ − δ)2

(
κ + α(1 − δ)

)2(
(1 − κ) + αδ

)2 −
[

κ2 + α(1 − δ)2

(
κ + α(1 − δ)

)2 +
β
(
(1 − κ)2 + αδ2

)

(
(1 − κ) + αδ

)2

]
λ + λ2 = 0.

Which is in the form of ax2 + bx + c = 0 with the solution:

λ =

κ2+α(1−δ)2
(

κ+α(1−δ)

)2 +
β

(
(1−κ)2+αδ2

)

(
(1−κ)+αδ

)2 ±

√√√√√
[

κ2+α(1−δ)2
(

κ+α(1−δ)

)2 +
β

(
(1−κ)2+αδ2

)

(
(1−κ)+αδ

)2

]2

− 4αβ(1−κ−δ)2
(

κ+α(1−δ)

)2(
(1−κ)+αδ

)2

2
(S28)
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Thus,

λmax
VBD =

κ2+α(1−δ)2
(

κ+α(1−δ)

)2 +
β

(
(1−κ)2+αδ2

)

(
(1−κ)+αδ

)2 +

√√√√√
[

κ2+α(1−δ)2
(

κ+α(1−δ)

)2 +
β

(
(1−κ)2+αδ2

)

(
(1−κ)+αδ

)2

]2

− 4αβ(1−κ−δ)2
(

κ+α(1−δ)

)2(
(1−κ)+αδ

)2

2
.

(S29)

We define Vulnerability in VBD (νVBD) as
√

λmax
VBD. Thus, the expression for overall

vulnerability of the system is:

νVBD =

√√√√√ Θ̃h(κ, δ) + βΘ̃l(κ, δ) +

√(
Θ̃h(κ, δ) + βΘ̃l(κ, δ)

)2
− αβ

(
Θ̃hl(κ, δ)

)2

2
, (S30)

where,

• hub-vulnerability: Θ̃h(κ, δ) = κ2+α(1−δ)2
(

κ+α(1−δ)

)2 ,

• leaf-vulnerability: Θ̃l(κ, δ) =

(
(1−κ)2+αδ2

)

(
(1−κ)+αδ

)2 ,

• cross-vulnerability: Θ̃hl(κ, δ) = 2(1−κ−δ)(
κ+α(1−δ)

)(
(1−κ)+αδ

) .
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S5. LIMITING CASES

S5.1. Contagion dynamics in ABD

The vulnerability equation in ABD Eq.S26 is:

νABD =
Θh(κ, δ) + Θl(κ,δ)

γ +

√(
Θh(κ, δ) + Θl(κ,δ)

γ

)2
− α

γ

(
Θhl(κ, δ)

)2

2
, (S31)

where,

• hub-vulnerability: Θh(κ, δ) = κ2 + α(1 − δ)2,

• leaf-vulnerability: Θl(κ, δ) = (1 − κ)2 + αδ2,

• cross-vulnerability: Θhl(κ, δ) = 2(1 − κ − δ).

S5.1.1. Hub-vulnerability

• Minimum: When κ = 0 and δ = 1, all hub individuals migrate to the leaf, and all

leaf individuals stay at the leaf, hub’s vulnerability is 0.

• Maximum: When κ = 1 and δ = 0, all hub individuals stay at the hub, and all leaf

individuals migrates to the hub, hub’s vulnerability reaches a maximum value of

1 + α.

S5.1.2. Leaf-vulnerability

• Minimum: When κ = 1 and δ = 0, all hub individuals stay at the hub, and all leaf

individuals migrates to the hub, leaf’s vulnerability is 0.

• Maximum: When κ = 0 and δ = 1, all hub individuals migrate to the leaf, and all

leaf individuals stay at the leaf, leaf’s vulnerability reaches a maximum value of

1 + α.
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S5.1.3. Cross-vulnerability

• Minimum: When δ = 1 − κ, the cross vulnerability is 0. This implies that a trade-off

is required to nullify cross-vulnerability. Either decreasing κ to reduce outflow from

the hub and increasing δ to restrict inflow from the leaf, or increasing κ to restrict the

hub population and decreasing δ to encourage migration from the leaf to the hub,

can achieve this.

• Maximum: The cross vulnerability term has a maximum value of 2 when both κ

and δ are 0 i.e. when all hub population migrates to leaf and all leaf population

migrates to hub. However, the cross-vulnerability is scaled by the factor α
γ in the

overall expression of vulnerability. Since we define hotspots based on population

density, which results in α
γ < 1 (i.e.

nlea f
alea f

< nhub
ahub

). Thus, the cross-vulnerability term

is always small.

Hub as the hotspot:

As observed earlier, depending on the values of κ and δ, the vulnerability of the hub and

leaf can reach a maximum value of 1 + α at different points. This implies that mobility

dynamics can alter the relative vulnerability of the hub and leaf, potentially reversing their

roles as hotspots. In other words, each patch can act as a hotspot under different mobility

conditions. However, assuming a significantly smaller α
γ ratio (i.e., α

γ << 1), indicating a

significantly larger leaf area, the contact density in the leaf is very low. This suggests that

most contagion events occur in the hub, increasing the likelihood of persistent contagion

and reinforcing its role as a hotspot.
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S5.2. Contagion dynamics in VBD

The vulnerability equation in ABD Eq.S30 is:

νVBD =

√√√√√ Θ̃h(κ, δ) + βΘ̃l(κ, δ) +

√(
Θ̃h(κ, δ) + βΘ̃l(κ, δ)

)2
− αβ

(
Θ̃hl(κ, δ)

)2

2
, (S32)

where,

• hub-vulnerability: Θ̃h(κ, δ) = κ2+α(1−δ)2
(

κ+α(1−δ)

)2 ,

• leaf-vulnerability: Θ̃l(κ, δ) =

(
(1−κ)2+αδ2

)

(
(1−κ)+αδ

)2 ,

• cross-vulnerability: Θ̃hl(κ, δ) = 2(1−κ−δ)(
κ+α(1−δ)

)(
(1−κ)+αδ

) .

Unlike ABDs, VBDs are confined within patches and follow a mean-field assumption

that vectors are restricted to their respective patches and can only interact with individuals

present within those patches, regardless of whether they are residents or incoming popula-

tions. Consequently, vulnerability in each patch cannot be completely eliminated if vectors

are present, as they cannot migrate to other patches. Mathematically, this arises because

contact density ( f ) in ABD is directly proportional to effective population (ne f f

area ), while in

VBD, it is inversely proportional to effective population (vector−population
ne f f ). Consequently,

the contact density/effective population term in the vulnerability equation cancels out the

effective population term in ABD, but results in 1
(ne f f )2 in VBD.

S5.2.1. Hub-vulnerability

• Minimum: When κ = 1 − δ i.e. when either decreasing κ to reduce outflow from the

hub and increasing δ to restrict inflow from the leaf, or increasing κ to restrict the

hub population and decreasing δ to encourage migration from the leaf to the hub,

hub’s vulnerability is minimized to a value of 1
1+α .

• Maximum: In contrast, When κ ≈ 0 and δ < 1, most hub individuals migrates to the

leaf, and some leaf individuals migrates to the hub, hub’s vulnerability reaches a

maximum value of 1
α (provided α ≤ 1).
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S5.2.2. Leaf-vulnerability

• Minimum: When κ = 1 − δ i.e. when either decreasing κ to reduce outflow from the

hub and increasing δ to restrict inflow from the leaf, or increasing κ to restrict the

hub population and decreasing δ to encourage migration from the leaf to the hub,

leaf’s vulnerability is minimized to a value of 1
1+α .

• Maximum: In contrast, When κ ≈ 1 and δ > 0, most hub individuals stay the hub,

and some leaf individuals stay at the leaf, leaf’s vulnerability reaches a maximum

value of 1
α (provided α ≤ 1).

Similar to ABDs, the contribution of the leaf to the vulnerability of the hub for VBD) is

scaled by a spatial factor. However, for VBDs, this spatial factor is β, the proportion of the

leaf’s vector population relative to the hub.

S5.2.3. Cross-vulnerability

• Minimum: When δ = 1 − κ, the cross vulnerability is 0. This implies that a trade-off

is required to nullify cross-vulnerability. Either decreasing κ to reduce outflow from

the hub and increasing δ to restrict inflow from the leaf, or increasing κ to restrict the

hub population and decreasing δ to encourage migration from the leaf to the hub,

can achieve this.

• Maximum: The cross vulnerability term has a maximum value of 2
α (provided α ≤ 1)

when both κ and δ are 0 i.e. when all hub population migrates to leaf and all leaf

population migrates to hub. However, the cross-vulnerability is scaled by the factor

αβ in the overall expression of vulnerability. Since both α and β are typically small,

the cross-vulnerability term is generally negligible.
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S6. EPIDEMIC VULNERABILITY IN ABD

(a) (b)

(c) (d)

FIG. S4. Epidemic vulnerability in ABD: Contour plots illustrating the dynamics of vulnerability

in vector-borne disease (ABD) for different values of the parameter α. The blue dotted contour line

indicates the threshold where vulnerability equals 1. In all plots, γ = 1.
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S7. EPIDEMIC VULNERABILITY IN VBD

(a) (b)

(c) (d)

FIG. S5. Epidemic vulnerability in VBD: Contour plots illustrating the dynamics of vulnerability

in vector-borne disease (VBD) for different values of the parameter α. The blue dotted contour line

indicates the threshold where vulnerability equals 1. In all plots, β = 0.01.
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S8. APPLICATION OF NPI STRATEGIES TO CALI

For Strategy I, values for δ were randomly sampled from a uniform distribution between

0 and 1, while κ was determined using the constraint κ = 1 − δ. These values of κ were

redistributed equally among hotspot patches, with 1 − κ allocated as the total outward

flow from hotspots to suburban patches. Similarly, δ was distributed equally among

suburban patches and within suburban patches, with 1 − δ representing the total outward

flow from suburban patches to hotspot patches. This redistribution ensured that the

modified mobility matrix remained normalized. The ratio of the modified vulnerability to

the baseline vulnerability was then calculated for evaluation.

For Strategy II, the desired values of δ ( γ
γ+1 ) and κ ( 1

γ+1 ) were first calculated. To account

for patch-level variability, values were randomly sampled from Gaussian distributions

centered on these desired values, with a standard deviation of 0.2. This allowed for

realistic variability while adhering to the general parameter guidelines.

The results indicated that Strategy I was beneficial for both ABDs and VBDs, effectively

reducing vulnerability. However, it was slightly less effective than Strategy II for ABDs,

highlighting the latter’s ability to optimize mobility parameters more precisely and adapt

to the distinct transmission dynamics of airborne diseases.
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