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Abstract—This study addresses critical challenges of cyberse-
curity in digital substations by proposing an innovative task-
oriented dialogue (ToD) system for anomaly detection (AD) in
multicast messages, specifically, generic object oriented substation
event (GOOSE) and sampled value (SV) datasets. Leveraging
generative artificial intelligence (GenAI) technology, the proposed
framework demonstrates superior error reduction, scalability, and
adaptability compared with traditional human-in-the-loop (HITL)
processes. Notably, this methodology offers significant advantages
over machine learning (ML) techniques in terms of efficiency and
implementation speed when confronting novel and/or unknown
cyber threats, while also maintaining model complexity and
precision. The research employs advanced performance metrics
to conduct a comparative assessment between the proposed AD
and HITL-based AD frameworks, utilizing a hardware-in-the-loop
(HIL) testbed for generating and extracting features of IEC61850
communication messages. This approach presents a promising
solution for enhancing the reliability of power system operations
in the face of evolving cybersecurity challenges.

Index Terms—Anomaly detection, GenAI, GOOSE, human-in-
the-loop, SV, task-oriented dialogue.

I. INTRODUCTION

The integration of IEC 61850-based digital substations into
smart grids has revolutionized energy management, enabling
automated data collection and remote control of electrical
systems. However, the fusion of power infrastructure with com-
munication networks has introduced various security vulnerabil-
ities, requiring the implementation of robust anomaly detection
systems (ADSs) to effectively address challenges concerning
the preservation and defense of critical national assets [1]–[3].

While ML techniques have become instrumental in detecting
anomalies within GOOSE and SV multicast messages, they
face limitations in terms of scalability, decision-making efficacy,
and data processing. The continuous need for model re-training
to address new attack vectors creates temporal vulnerabilities
and resource-intensive processes. Given these complexities and
limitations, GenAI tools present a more flexible and adaptive
approach to AD in digital substations [4]. GenAI, with its
inherent capability to understand situational intricacies and
subtleties, can potentially detect novel attacks without prior
training, offering a more robust and efficient AD methodology.
This innovative approach emphasizes the potential of GenAI
tools to enhance cybersecurity by providing a tool that can
dynamically evolve in response to emerging cyber threats,
thereby addressing the limitations of traditional ML frameworks
and HITL processes [5], [6]. Recent advancements in AD
processes for securing digital substations have seen a significant
shift toward the utilization of sophisticated ML models. These

A. Zaboli and J. Hong are with the Department of Electrical and Computer
Engineering, University of Michigan – Dearborn, Dearborn, MI 48128, USA.

S. L. Choi is with the Power Systems Engineering Center, National Renew-
able Energy Laboratory (NREL), Golden, CO 80401, USA.

models have demonstrated considerable potential in enhancing
AD capabilities by analyzing patterns and anomalies within
datasets, thereby enabling real-time detection of cyberattacks
and contributing to grid security [7]. Notable among these
efforts is the AI-based ransomware detection approach proposed
by Alvee et al. [8], that employs a convolutional neural network
(CNN) and innovatively converts binary files into 2-D image
files for detection, achieving a high accuracy rate of 96.22%.
However, the approach’s efficacy remains subject to debate due
to the absence of HIL testbed data and the absence of various
attack scenarios. Further contributions to this field include the
research of Yang et al. [9] who introduced a novel methodology
combining statistical analysis and ML models for AD processes,
offering improved adaptability to evolving threats. Additionally,
Zhu et al. [1] have developed a novel ADS specifically targeting
manufacturing message specification (MMS)-based measure-
ment attacks, incorporating advanced detection algorithms to en-
hance accuracy. These diverse approaches highlight the ongoing
efforts to refine and optimize AD techniques in the context of
digital substation security, although each methodology presents
its own set of limitations and areas for further research and
development. Current literature reviews indicate a notable ab-
sence of research exploring directed methodologies leveraging
GenAI tools for attack and anomaly detection based on human
recommendations. Existing research endeavors predominantly
grapple with challenges in scalability, adaptability, robustness,
and processing efficiency. Consequently, there is a pressing need
for a framework that can address challenges with minimal effort
and reduced reliance on continuous human expert intervention.

This study presents an advanced GenAI-based ToD system,
offering advantages over HITL processes and ML algorithms
for AD in multicast messages. Built on historical human
recommendations, it automates decision-making by emulating
patterns, potentially reducing errors over time. The learning
capabilities and data processing proficiency enable scalability,
though challenges remain in building user trust. The following
points encapsulate contributions of the proposed approach:

• This paper introduces a groundbreaking implementation of
a GenAI-based ToD system for the efficient and reliable
detection of anomalies in multicast messages. This innova-
tive approach presents a method for bolstering the security
and operational stability of smart grid infrastructures.

• An analysis of the proposed methodology was conducted
employing a diverse array of advanced metrics. This
rigorous evaluation process not only rectifies the limi-
tations identified in prior research but also institutes a
new paradigm for assessing ADS efficacy with improved
efficiency, flexibility, and expandability.

The subsequent sections are organized thusly: An assessment
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of IEC 61850-based protocols, and human-derived rules is
presented in Section II. Section III elucidates the proposed AD
methodology in GOOSE/SV datasets. Section IV encompasses a
detailed discussion of results, conducting a comparative analysis
of the efficacy of the HITL approach with that of the proposed
framework. Finally, this research concludes in Section V.

II. SUBSTATION CYBER IMPERATIVES

The integration of advanced communication technologies into
digital substations necessitates robust cybersecurity measures,
encompassing multi-layered protective strategies and regular
assessments to address evolving cyber threats. An HIL testbed
provides a controlled environment for investigating the interplay
between cyber breaches and power system resilience. GOOSE
and SV packet extraction from the HIL testbed is executed using
Wireshark, enabling comprehensive network traffic analysis.
This process facilitates detailed observation of communication
patterns within the testbed environment. This methodical ap-
proach ensures accurate data collection and provides critical in-
sights into cyber-physical system (CPS) dynamics [6]. The next
section describes datasets, their feature extraction process and
human recommendations integral to the proposed framework.

A. GOOSE and SV Dataset Features & Rules

The most important features of GOOSE messages can
be considered as time, destination MAC address (DM)
(01 00 03), source MAC address (SM) (27 34 31),
type (88b8), application identifier (appid) (3), dataset
(SEL 421 1CFG/LLN0$Goose), GOOSE identifier (goid)
(SEL 421 1), state number (stnum) (27), sequence number
(sqnum), and data1/data2 values that are binary. Let G = (time,
DM, SM, type, appid, dataset, goid, stnum, sqnum, data1/data2)
represent the features of a GOOSE message. Eqs. (1)–(8)
illustrate the GOOSE rules (i.e., GR#1 to GR#8) employed in
this paper to check the different abnormalities of datasets. This
paper presents different levels of considering rules as without
training, WT (i.e, no rules), partial training, PT (i.e., GR#1
to GR#5), and full training, FT (i.e., GR#1 to GR#8). GR#1:
When consecutive data packets exhibit identical DM and SM
attributes, the sqnum parameter should incrementally advance.
Any inconsistency reveals an abnormality.

GR#1(Gi, Gi−1) =


1, if DMi = DMi−1 ∧ SMi = SMi−1∧

sqnumi = sqnumi−1 + 1

0, otherwise
(1)

GR#2: Modifications in data1 (d1) or data2 (d2) necessitate
a unitary increment in stnum and an sqnum reset to 0. Non-
compliance with this protocol indicates an anomaly.

GR#2(Gi, Gi−1) =


1, if (d1i ̸= d1i−1 ∨ d2i ̸= d2i−1) ∧ stnumi

= stnumi−1 + 1 ∧ sqnumi = 0

0, otherwise
(2)

GR#3: For data with identical DM and SM, the stnum must
maintain a monotonically increasing sequence. Any regression
in stnum value constitutes an anomaly.

GR#3(Gi, G1:i−1) =


1, if DMi = SMi ∧ stnumi >

maxj<i(stnumj)

0, otherwise
(3)

GR#4: Any alteration in DM, SM, type, appid, dataset, or goid
parameters is indicative of an anomalous condition.

GR#4(Gi, Gi−1) =


1, if DMi = DMi−1 ∧ SMi = SMi−1∧

typei = typei−1 ∧ dataseti = dataseti−1

0, otherwise
(4)

GR#5: The time column must adhere to a format delineating
hour, minute, and second with microsecond precision. Any
deviation from this temporal feature constitutes an anomaly.

GR#5(timei) =

{
1, if timei is in format HH:MM:SS.mmmmmm
0, otherwise

(5)
GR#6: The occurrence of data frequency exceeding 10 instances
within a 10 µs interval is classified as an anomalous event.

GR#6(Gi−9:i) =

{
1, if ∀j ∈ [i− 9, i− 1] : timej+1 − timej ≤ 10µs

0, otherwise
(6)

GR#7: A temporal gap in data transmission exceeding 10
seconds is indicative of an anomalous condition.

GR#7(Gi, Gi−1) =

{
1, if timei − timei−1 ≤ 10s

0, otherwise
(7)

GR#8: Upon detection of alterations in d1 or d2, the stnum
should remain constant while the sqnum undergoes an incre-
ment. Any deviation depicts an anomaly.

GR#8(Gi, Gi−1) =


1, if (d1i ̸= d1i−1 ∨ d2i ̸= d2i−1) ∧ stnumi =

stnumi−1 ∧ sqnumi > sqnumi−1

0, otherwise
(8)

In the case of SV datasets, the most important features can be
denoted as time, DM (04 00 01), SM (27 22 13), type (88ba),
appid (40), sampled value identifier (svid) (4000), and sample
count (smpcnt). Let S = (time, DM, SM, type, appid, svid,
smpcnt) represent the features of an SV message. Eqs. (9)–
(16) illustrate the SV rules (i.e., SR#1 to SR#8) utilized to
check the anomalies of SV datasets. A similar procedure of
rules for different level of training in GOOSE messages can
be applied to SV messages. SR#1: The smpcnt parameter is
constrained to the integer interval [0, 4799] for 60 Hz systems
(i.e., 80 × 60 = 4800) or [0, 3999] for 50 Hz systems (i.e.,
80 × 50 = 4000). Any value outside this prescribed range is
classified as an anomalous condition.

SR#1(Si) =

{
1, if 0 ≤ Smpcnti ≤ 4799

0, otherwise
(9)

SR#2: The smpcnt parameter should exhibit a uniformly increas-
ing series from 0 to 4799 for 60 Hz systems, followed by a
reset to 0. Any deviation from this progression is indicative of
an anomaly.

SR#2(Si, Si−1) =


1, if (Smpcnti > Smpcnti−1∧

Smpcnti ≤ 4799)∨
(Smpcnti = 0 ∧ Smpcnti−1 = 4799)

0, otherwise
(10)



SR#3: The smpcnt parameter must maintain a non-decreasing
sequence until it attains the value 4799, whereupon it resets to
0. Any deviation from this pattern denotes an anomaly.

SR#3(Si, Si−1) =

1, if Smpcnti ≥ Smpcnti−1∨
(Smpcnti = 0 ∧ Smpcnti−1 = 4799)

0, otherwise
(11)

SR#4: The parameters DM, SM, type, appid, and svid must
maintain invariance across all conditions. Any changes in these
values signifies an anomalous state.

SR#4(Si, Si−1) =


1, if DMi = DMi−1 ∧ SMi = SMi−1∧

typei = typei−1 ∧ apidi = apidi−1∧
svidi = svidi−1

0, otherwise
(12)

SR#5: The temporal data field must conform to a hierarchical
structure of hour, minute, second, and microsecond. A deviation
from this chronological format indicates an anomaly.

SR#5(timei) =

{
1, if timeiin format HH:MM:SS.mmm
0, otherwise

(13)

SR#6: The standard temporal interval is constrained to the range
of 200 to 215 µs. Any deviation from this prescribed timeframe
indicates an anomalous condition.

SR#6(Si, Si−1) =

{
1, if 200µs ≤ timei − timei−1 ≤ 215µs

0, otherwise
(14)

SR#7: The occurrence of data frequency exceeding 12 instances
within a 2.083-ms interval is an anomalous event.

SR#7(Si−11:i) =

{
1, if timei − timei−11 ≤ 2.083ms

0, otherwise
(15)

SR#8: The smpcnt parameter should exhibit a unitary increment
with each successive instance. Any irregularity in this sequential
progression implies an anomalous condition.

SR#8(Si, Si−1) =

{
1, if Smpcnti = (Smpcnti−1 + 1)

0, otherwise
(16)

The proposed framework is crafted in which GOOSE (GR#1 to
GR#8) and SV (SR#1 to SR#8) rules guide SQL queries that
filter messages to detect anomalies. In general, this framework
uses partial training to help analysts apply rules for identifying
abnormal patterns, suggesting additional rules if no anomalies
are found. In full training, this method tries to confirm anoma-
lies, by analyzing recent message packets and refining detection
through belief-action updates. This adaptive approach enhances
AD accuracy by dynamically incorporating rule adjustments
which will be elaborated in the next section.

III. A NOVEL ANOMALY DETECTION SYSTEM PARADIGM:
INTEGRATING GENAI WITH TASK-ORIENTED DIALOGUE

A GenAI-driven approach to AD in GOOSE and SV datasets
can enhance the detection process, using interactive processing
paradigms such as HITL and ToD as demonstrated in Fig. 1.
The framework begins with gathering IEC61850-based message
datasets. Initial prompts are crafted in GenAI tools to help
the system identify anomalies by establishing normal opera-
tional patterns and highlighting potential threats. The interactive

Fig. 1. A general framework of interactive GenAI-based AD process.

processing then enhances this process through HITL and ToD
which the HITL process integrates human feedback to itera-
tively refine the model’s detection accuracy, while ToD allows
the GenAI system to engage in dialogue, gathering context
and adjusting its response. These steps create a flexible, adapt-
able detection system that can efficiently identify anomalies.
Compared to the ToD approach, the HITL process exhibits
several limitations. While HITL relies heavily on constant
human review and manual validation, requiring time and effort
for each feedback loop, ToD offers a more efficient automated
analysis system with dynamic validation capabilities. The HITL
process’s dependence on human intervention creates scalability
constraints and slower processing cycles. Different steps of the
ToD system are organized below to show its outperformance on
HITL processes and ML models. ToD systems’ efficacy is tradi-
tionally evaluated through their proficiency in distinct subtasks,
encompassing dialogue state tracking (also known as belief state
management), dialogue management (which includes action and
decision prediction), and the generation of responses utilizing
an SQL query database. In this GenAI-based framework, SQL
query block acts as a filtering tool that efficiently identifies
anomalies in data by checking GOOSE and SV messages
against predefined rules. This approach simplifies the AD by
processing only relevant data and maintaining consistent rule
application to detect issues. This partitioning of tasks has facil-
itated the development of specialized models for each subtask,
a methodology that has gained considerable adoption within
the field [10]. The present research endeavors to investigate the
efficacy of a unified and end-to-end model in managing these
multilayered functions, as illustrated in Fig. 2 along with CPS.
This model incorporates a cybersecurity analyst component,
implemented as a GenAI tool, which processes GOOSE and
SV data to detect anomalies, leveraging packets, ToD labels,
and anomaly scores as inputs to foster an understanding of
anomalous characteristics. A separation of the proposed ToD
framework’s steps illustrated in Fig. 1 and elaborated below.

Structured Input: This block captures structured inputs
essential for the ToD system to function effectively which



Fig. 2. Advancing multicast messages security: A GenAI-based ToD System for the AD process.

corresponds to data parameters (e.g., time, DM). For PT and FT
levels, input packets are represented as Cpt = [U0, S0, . . . , Upt]
and Cft = [U0, S0, . . . , Uft], respectively, which denotes a
collection of structured data extracted from GOOSE/SV packets.

Automated Analysis: This step involves analyzing data au-
tomatically, applying AD rules based on prior rules. It includes
SQL queries for messages to extract anomaly-related data.
During the PT level, automated analysis is stated as Bpt =
ToD(Cpt) which indicates the transformation of the structured
input to identify preliminary anomalies based on rules. Then,
the analysis is refined in the FT level as Bft = ToD(Cft),
providing a deeper analysis for complete training.

Dynamic Validation: This step includes verifying identified
anomalies dynamically, using a set of conditions. It includes
queries to count specific packet conditions. In the PT phase,
dynamic validation refines the analysis with additional packet
transformations as Spt = ToD([Cpt, Bpt, Dpt, Apt]) where
Dpt includes additional conditions. Further, the validation in-
cludes more advanced criteria in the FT phase as Sft =
ToD([Cft, Bft, Dft, Aft]), increasing the complexity and ro-
bustness of validation checks with further transformations.

Continuous Learning: The framework adapts over time, in-
corporating feedback to refine the AD process. This aligns with
the transition from partial to full training levels in the proposed
ToD framework. In this case, the learning happens iteratively
in PT with Apt, where rules are revised to enhance AD as
xpt = [Cpt;Bpt;Dpt;Apt;Spt]. Moreover, the learning process
is formalized with a higher count of structured feedback and
adaptive rules in FT level as xft = [Cft;Bft;Dft;Aft;Sft].

Adaptive Response: Based on AD outcomes, the system
generates adaptive responses to inform the cybersecurity analyst
of potential issues in the GOOSE/SV data. The responses align
with the system’s blocks for communicating anomaly findings.
The adaptive responses for PT and FT levels involve generating
responses based on the findings in xpt and xft, respectively.

An evaluation of contemporary AD paradigms, including
HITL processes, ML architectures, and the novel GenAI-based
ToD framework, illuminates the efficacy and versatility of
the latter approach. While HITL methodologies are inherently
limited by the availability and expertise of human operators,

and ML models, despite their computational capability, are
constrained by input/output structures and reduced adaptability,
this system emerges as a more comprehensive and efficient
solution. This innovative framework harnesses the power of
natural language dialogue to accommodate complex queries and
responses, demonstrating remarkable adaptability to emergent
scenarios and anomalies through advanced prompt engineering
techniques, while concurrently offering interpretable insights.

IV. RESULTS AND DISCUSSION

A comparative analysis is carried out to evaluate the perfor-
mance of the proposed framework against the HITL process.
This evaluation aims to illuminate the potential advantages
of the proposed approach, offering insights into its scalability
and adaptability in complex scenarios. This study utilizes ad-
vanced evaluation metrics including informedness, markedness,
Matthews correlation coefficient (MCC), and geometric mean
(GM), each ranging from −1 to 1, except for the GM, which is
between 0 and 1, to assess the consistency, decision-making,
quality, and balance between normal and abnormal datasets,
respectively. In the context of GOOSE/SV datasets, these met-
rics serve distinct purposes: Informedness measures the model’s
ability to detect anomaly-indicative patterns, Markedness as-
sesses its proficiency in reducing false positives (FPs) and neg-
atives (FNs), MCC provides a balanced performance measure
in scenarios with rare anomalies, and the GM evaluates the
model’s precision in AD while maintaining low FP rates [11].
In this application, a value of 1 for informedness, markedness,
MCC, or GM indicates optimal performance, reflecting perfect
anomaly detector, crucial for maintaining the accuracy and
reliability of digital substation communications. This section
endeavors to elucidate the results obtained through the ap-
plication of advanced metrics across diverse methodologies,
classified by their respective training levels (i.e., WT, PT, and
FT). To simplify this process and minimize human effort, an
image-based framework based on rules was conceptualized
and implemented. The empirical evidence presented in Table I
demonstrates the superiority of the proposed framework across
all training levels. By comparison, the HITL process exhibits
suboptimal performance, with the first three metrics yielding



TABLE I
A COMPARATIVE ANALYSIS OF AD REGARDING WT, PT, FT LEVELS.

GOOSE
Method HITL ToD
Metrics WT PT FT WT PT FT

Informedness 0.22 0.3964 0.5709 0.825 0.8998 0.9492
Markedness 0.233 0.416 0.599 0.8296 0.8998 0.9492

MCC 0.0247 0.2054 0.4142 0.822 0.8997 0.9491
Geometric Mean 0.5865 0.6844 0.7784 0.9105 0.9512 0.9746

SV
Method HITL ToD
Metrics WT PT FT WT PT FT

Informedness 0 0.5 0.8833 0.8296 0.8968 0.9467
Markedness 0 0.3836 0.7407 0.825 0.8968 0.9467

MCC 0 0.3713 0.8432 0.823 0.8966 0.9466
Geometric Mean 0.5 0.7483 0.9397 0.9143 0.9484 0.9733

values of 0, indicating that its predictive capabilities for positive
and negative data rarely surpass random chance. This defi-
ciency manifests in elevated rates of FPs and FNs, substantially
compromising the prediction accuracy. An in-depth analysis of
Fig. 3 reveals the proposed method’s unquestionable superiority
across all metrics, thereby affirming its reliability in the context
of AD for GOOSE/SV datasets. Moreover, the model’s decision-

Fig. 3. A comparative assessment of GenAI-based HITL and the proposed
framework: Insights from advanced metrics applied to GOOSE and SV datasets.

making efficacy when applied to SV dataset is comparable
to that of a coin toss, rendering these models unreliable due
to the absence of meaningful correlations and the inability to
consistently identify correct predictions. The advanced metrics
visualized in Fig. 3 further confirm the exceptional performance
of the GenAI-based framework, particularly at the FT level,
where values approaching 1 underscore its good efficiency,
scalability, adaptability, and reliability. Additionally, Fig. 4
presents a novel comparative framework, investigating various
models across different training levels based on accuracy and
improvement differentials. This visualization serves to articulate
the incremental percentage gains at each level. Notably, this
model exhibits minimal increases when implemented within
the proposed framework, suggesting a robust correlation across
training levels and demonstrating exceptional AD capabilities
even in the absence of training, as evidenced by the negligible
performance disparities across levels. Conversely, the HITL
process displays the highest incremental percentage, indicating
enhanced adaptability in synthesizing new rules. Nevertheless,
the integration of HITL methodology further enhances the ToD
framework by incorporating human expertise. This combination
allows for a refinement of the model’s accuracy and responsive-
ness through continuous feedback mechanisms. As a result, the

Fig. 4. Accuracy metrics for various models based on training levels.

AD process becomes more precise and dependable, effectively
leveraging both automated systems and human insight to iden-
tify and respond to anomalies more efficiently.

V. CONCLUSION AND FUTURE DIRECTIONS

This study introduces a GenAI-based ToD framework for an
efficient and reliable AD in IEC61850-based multicast mes-
sages. The framework’s scalability and adaptability are validated
through comparative analysis with HITL process, employing
advanced metrics to assess reliability and correlation capa-
bilities—aspects previously overlooked in smart grids. Also,
this GenAI-based methodology demonstrates acceptable perfor-
mance across all metrics. Future research directions will include
integrating a self-learning component to expand the applicability
to other messages, such as MMS, and incorporating natural
language processing (NLP) metrics to enhance the quality of
GenAI-generated outputs.
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