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Abstract. Super sample covariance (SSC) is important when estimating covariance matrices
using a set of mock catalogues for galaxy surveys. If the underlying cosmological simulations
do not include the variation in background parameters appropriate for the simulation sizes,
then the scatter between mocks will be missing the SSC component. The coupling between
large and small modes due to non-linear structure growth makes this pernicious on small
scales. We compare different methods for generating ensembles of mocks with SSC built in
to the covariance, and contrast against methods where the SSC component is computed and
added to the covariance separately. We find that several perturbative expansions, developed
to derive background fluctuations, give similar results. We then consider scaling covariance
matrices calculated for simulations of different volumes to improve the accuracy of covariance
matrix estimation for a given amount of computational time. On large scales, we find that the
primary limitation is from the discrete number of modes contributing to the measured power
spectrum, and we propose a new method for correcting this effect. Correct implementation of
SSC and the effect of discrete mode numbers allows covariance matrices created from mocks
to be scaled between volumes, potentially leading to a significant saving on computational
resources when producing covariance matrices. We argue that a sub-percent match is difficult
to achieve because of the effects of modes on scales between the box sizes, which cannot be
easily included. Even so, a 3% match is achievable on scales of interest for current surveys
scaling the simulation volume by 512×, costing a small fraction of the computational time
of running full-sized simulations. This is comparable to the agreement between analytic and
mock-based covariance estimates to be used with DESI Y1 results.
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1 Introduction

The next generation of cosmological surveys (DESI [1], Euclid [2], LSST [3], Roman [4],
SphereX [5]) are set to measure cosmic structure over larger volumes and at higher redshift
than ever before. Inferring cosmological parameters from these surveys typically proceeds
with a measurement of both an observable (e.g. the power spectrum) and an estimate of its
covariance. In the linear regime, the density field is a Gaussian random field and all informa-
tion is contained in the power spectrum. These next-generation surveys are pushing into the
quasi-linear regime; since the assumption of Gaussianity is expected to break down in this
regime, exploring alternative statistics (e.g. the bispectrum) is an active area of investigation.

The information of current and near-future analyses is still predominantly contained in
the power spectrum [1, 6], and hereafter we will consider power spectrum-based analyses.
The power spectrum covariance is a 4-point function of the density field and can be estimated
in three ways: analytically with a number of approximations, from large ensembles of mock
galaxy catalogues, or from the data itself using jackknife type methods. Covariance estimation
is often the dominant computational cost for large-scale structure analysis and will continue
to rise as surveys push to larger volumes and smaller scales.

The covariance matrix depends on cosmology; strictly, each cosmological model being
tested requires a new covariance matrix in the likelihood as we wish to determine the probabil-
ity of the data given the model [7, 8]. Because of the computational expense of this, typically,
a single cosmology is used to calculate the covariance used for all models, with parameters
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similar to the best-fit to the survey data. This is not as bad an approximation as it sounds
as the variation of the likelihood caused by the fixed-covariance is similar and opposite to the
change from assuming a Gaussian likelihood [9], another popular approximation.

In the linear regime, the covariance matrix can be calculated analytically from the power
spectrum [10] and shot-noise. Beyond the linear regime, the covariance becomes a compli-
cated function dependent on the survey window function, non-Poissonian shot noise, scale-
dependent galaxy bias, and small-scale redshift space distortions. Great progress has been
made in modeling the dark matter power spectrum covariance [11–17] and the galaxy power
spectrum covariance [18, 19] accurately into the non-linear regime, often using perturbation
theory or effective field theory of large-scale structure [11, 19]. These analytical methods
have the advantage of being less computationally expensive than numerical methods, but
much work remains to correctly model nonlinear evolution. Alternatively, one can estimate
the covariance matrix from an ensemble of N -body simulations. While N -body simulations
are better able to capture the effects of small-scale evolution than existing analytic models,
the simulations are highly computationally expensive to run; each must be large enough to
cover the entire survey volume and have high enough resolution to reproduce the observed
galaxy distribution. This computational cost can be offset by use of control variates [20, 21],
combining the results from a small number of high accuracy simulations with those from
a large number of lower accuracy surrogate simulations. While this technique has already
demonstrated an order of magnitude or more improvement on covariance matrix precision for
a given computation time, the limiting factor is the time it takes to run the high accuracy
simulations.

In order not to degrade survey results, the covariance matrix must be modeled with a
high enough precision that error in the covariance matrix is sub-dominant to the statistical
error from the survey parameters. For next-generation surveys, this will require ensembles of
O(10, 000) mocks [17, 22, 23] if the mocks are used to calculate all covariance matrix elements
independently.

With galaxy survey volume and resolution growing faster than the availability of compu-
tational resources for covariance estimation, many studies have aimed to reduce the number of
simulations needed to achieve the desired covariance precision. Paz and Sanchez [24] presented
the covariance tapering method in which bins of the covariance matrix with low signal-to-
noise can be down-weighted to reduce noise on measured parameters. Shrinkage can be used
to balance an accurate but imprecise covariance made from high-resolution simulations to
a precise but inaccurate covariance made either from low-resolution simulations or analytic
methods [25, 26]. Alternatively, modeling can be used to reduce the free parameters fitted by
the mocks [27–30]. Rather than reducing the number of mocks required, [31] demonstrated a
method where the covariance matrix can be estimated using an ensemble of smaller mocks,
leveraging the volume scaling of the covariance.

One complication with any mock-based approach is the lack of modes in simulations on
scales larger than the box size, which affect the measured covariance on both large and small
scales. This effect is called super-sample covariance (SSC). For the large-scale covariance to
be recovered without correction, the box must be large enough to include all modes that affect
the covariance within a survey. The substantial coupling between large-scale and small-scale
modes makes this difficult to achieve. The UCHUU-GLAM project [32–35] has shown great
success in modeling the covariance of the BOSS and eBOSS luminous red galaxy samples
by re-scaling results from simulations smaller than the samples but large enough that the
SSC contribution is insignificant (L ≥ 1.5 h−1 Gpc). To scale from even smaller (and thereby
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cheaper) mocks, the SSC effect must be properly accounted for to recover an accurate estimate
of the covariance from small mocks.

In this work, we evaluate different prescriptions for including super-sample covariance
in an ensemble of simulations. We estimate the covariance matrix from different ensembles of
simulations and compare them to the covariance matrix from subsampled mocks to determine
how well each prescription recovers the true SSC effect. We then use the volume scaling
technique to recover large mock covariance from ensembles of smaller volume mocks and
determine conditions for which the volume scaling of the covariance breaks down. This
establishes the limit in which the volume scaling technique can be leveraged to maximally
reduce computation time without significantly biasing the covariance matrix estimate. For
simplicity we focus on the matter power spectrum, without a window function, and ignore
redshift-space distortions. We do not expect these simplifications to significantly affect our
general conclusions about the validity of the approach.

The layout of our paper is as follows. In Section 2, we outline the origin of the SSC
effect as a power spectrum response to a background mode and review different methods of
including SSC in simulations. In Section 3, we evaluate the effectiveness of these different
methods in recovering the SSC effect. In Section 4, we test the volume scaling behaviour of
the covariance matrix and determine where it breaks down. In Section 5, we discuss these
findings and identify the conditions in which volume scaling provides the greatest increase
in computational efficiency without loss of information in the covariance matrix at scales of
interest.

2 Covariance estimation from simulations

In this section, we describe how the covariance matrix is most simply estimated using N -body
simulations, the effect of super-sample covariance, and how this super-sample effect can be
captured by running separate universe simulations.

2.1 The power spectrum and its covariance

The distribution of matter in a survey or simulation volume is often represented by the
overdensity field δ(x). The most straightforward way to measure the clustering of matter is
using the matter power spectrum, estimated by

P (ki) =
〈
δ̃(ki)δ̃

∗(ki)
〉
, (2.1)

where δ̃(k) is the Fourier transform of the overdensity field. The statistical uncertainty of
this estimator is captured by its covariance matrix

C(ki, kj) = ⟨P (ki)P (kj)⟩ − ⟨P (ki)⟩ ⟨P (kj)⟩ , (2.2)

where ⟨⟩ denotes the average value over the ensemble of realizations. The covariance matrix
is a 4-point clustering statistic. In the case of δ being a Gaussian random field in a cubic
survey volume with periodic boundary conditions, this means that the covariance matrix can
be calculated directly from the power spectrum

CGauss(ki, kj) ≡
1

V

(2π)3

Vki

2P (ki)
2δKij , (2.3)
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where V is the survey volume, Vki is the volume of the ith spherical shell in k space, and
δKij is the Kronecker delta function. In this case the covariance CGauss would be diagonal,
reflecting the fact that the modes of a Gaussian random field are independent of each other.
Once nonlinear evolution has occurred and modes of the power spectrum become correlated,
the off diagonal terms of the covariance become nonzero. In this case, it has been established
that the covariance matrix picks up a contribution from the matter trispectrum [10, 36–38]

C(ki, kj) = CGauss(ki, kj) +
1

V
T (ki, kj), (2.4)

were T is the bin-averaged trispectrum

T (ki, kj) =

∫
|k|∈ki

d3k

Vki

∫
|k′|∈kj

d3k′

Vkj

T (k,−k,k′,−k′) . (2.5)

Given an ensemble of realizations of the density field, a brute-force estimate of the covariance
matrix can be constructed

C(ki, kj) =
1

Ns − 1

Ns∑
m=1

[
Pm(ki)− P (ki)

] [
Pm(kj)− P (kj)

]
, (2.6)

where Pm(ki) is the ith bin of the mth power spectrum sample, and P (ki) is the average power
among all Ns samples in the ith bin.

2.2 Super-sample covariance

The long- and short- wavelength modes of the power spectrum are coupled due to non-
linear gravitational evolution. Consequently, when measuring the power in a survey volume,
modes larger than the survey volume have a significant effect on the modes within the survey
despite not being able to be measured directly. The variance of these super-survey modes thus
contributes to the covariance matrix on scales of interest within the survey. This additional
covariance is termed super-sample covariance.

Super-sample covariance has been the subject of many studies given its importance in
determining errors [14, 31, 38–63]. Extracting information from the weakly non-linear and
fully non-linear scales of the power spectrum requires accurate modeling of super-sample
covariance due to its significant contribution to the covariance in these regimes.

In the work of Ref. [38], the predominant effect of a super-sample mode can be concep-
tualized as a rescaling of the background density δb of the survey or simulation. To measure
super-sample covariance from simulations, one must determine the response of the power
spectrum to a change in δb. The covariance can then be determined as

CSSC(ki, kj) = Csmall(ki, kj) + σ2
b

∂P (ki)

∂δb

∂P (kj)

∂δb
, (2.7)

where σ2
b is the variance of the background density. If the survey window is large enough that

the background density corresponds to a mode in the linear regime, σ2
b can be computed as

σ2
b =

1

(2π)3

∫
|W̃ 2(kx)|Plin(k)d

3k , (2.8)

where W̃ (kx) is the Fourier transform of the survey window function and Plin(k) is the linear
power spectrum.
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Measuring the power spectrum of a simulation with nonzero δb carries with it the question
of whether to normalize the power spectrum relative to this “local” average density or relative
to the “global” average set by the cosmological parameters. To distinguish between quantities
using these different normalizations, we adopt the “local” and “global” subscripts, respectively.
The power spectrum measured relative to the global mean density can be related to that of
the local mean density by

Pglobal(k) = Plocal(k) (1 + δb)
2 . (2.9)

2.3 Running separate universe simulations

To capture the super-sample covariance effect in an ensemble of simulations, we need to be
able to run cosmological simulations with non-zero δb. This problem has been an active field
of study for many years, even before being contextualized by its application for computing
super-sample covariance [38, 40, 41, 43–45, 59, 64–71]. While multiple methods to do so exist,
the fundamental principle of each method is the same: the change in average density of the
simulation can be interpreted as though the simulation was a separate universe with different
cosmological parameters compared to a fiducial background universe with δb = 0.

2.3.1 Sirko method

Following the derivations used in Ref. [65], the change in δb can be interpreted directly as
a perturbation in the matter density parameter Ωm in the simulation. The matter density
parameter of the separate universe can be related to that of the fiducial cosmology by

Ωm,uniH
2
0,uni

a3uni(t)
(1 + δb) =

Ωm,boxH
2
0,box

a3box(t)
, (2.10)

where H0 is the Hubble parameter and a(t) is the scale factor. The subscripts “box” and “uni”
refer to parameters in the separate universe and fiducial cosmology, respectively. This in turn
modifies other input cosmological parameters for the separate universe

abox = auni

(
1− δb

3

)
, (2.11)

H0,box = H0,uni
1

1 + ϕ
, (2.12)

Ωm,box = Ωm,uni(1 + ϕ)2, (2.13)
ΩΛ,box = ΩΛ,uni(1 + ϕ)2 , (2.14)

where
ϕ =

5Ωm,uni

6

δb
D(1)

, (2.15)

and D(1) is the linear growth factor at scale factor a = 1.

2.3.2 Spherical collapse method

Alternatively, one can interpret a change in δb by considering how a change in the average
density within the simulation volume would perturb the curvature of space within. Our
description of this approach follows the notation presented in Refs. [59, 72]. We can write the
Friedmann equation of our N -body simulation as:

1

H2
0,uni

(
dabox

dt

)2

=
Ωm,uni

abox
+ ϵbox +ΩΛ,unia

2
box , (2.16)
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where ϵbox is the perturbed curvature of the box, given by:

ϵbox = Ωk,uni −
5Ωm,uniδb

3D0
= Ωk,uni − 2ϕ . (2.17)

Note that here ϵbox ̸= 1−Ωm,uni −ΩΛ,uni. If we re-normalize Equation 2.16 by dividing both
sides by 1− 2ϕ and define a new set of renormalized cosmological parameters

H0,box = H0,uni
√

1− 2ϕ

Ωm,box =
Ωm,uni

1− 2ϕ

Ωk,box =
ϵbox

1− 2ϕ

ΩΛ,box =
ΩΛ,uni

1− 2ϕ
, (2.18)

then the Friedmann equation becomes

1

H0,box

(
dabox

dt

)2

=
Ωm,box

abox
+Ωk,box +ΩΛ,boxa

2
box . (2.19)

Under this renormalization of the cosmological parameters, Ωk,box = 1 − Ωm,box − ΩΛ,box,
which makes it useful when working with N -body codes that infer the value of Ωk from the
input values of Ωm and ΩΛ. This form of the perturbed cosmological parameters is consistent
with those found in Refs. [43, 45, 64].

2.4 Addition method

Once the perturbed cosmological parameters are computed so that we can model the evolution
of a patch of the universe with a particular δb, there are two possible methods to compute the
super-sample covariance effect. The first method, the “addition” method, involves computing
the power spectrum derivative (the last term in Equation 2.7). We can do this by generating
pairs of simulations, one having δb > 0 and the other δb < 0. The power spectrum derivative
can then be computed from the finite difference of the measured power spectra from the pair
of simulations. In principle, this method only requires one pair of simulations to determine
the super-sample effect, but typically several realizations are averaged together to decrease
the stochasticity in the measured power spectrum derivative. The size of the separate universe
simulations used to calculate this response is largely unimportant; the measured power and
its response to the background mode does not depend on simulation volume, so as long as
the separate universes are large enough to capture the scales of interest they can be used to
calculate the super-sample effect within arbitrary survey volumes.

2.5 Ensemble method

The second method, the “ensemble” method, directly incorporates the effects of super-sample
covariance into the ensemble of simulations. To do this, each simulation in the ensemble
is a separate universe with δb drawn from a Gaussian distribution with variance σ2

b . The
covariance matrix calculated from these simulations’ power spectra will already include the
super-sample effect. This method has the advantage of requiring fewer simulations than the
addition method since it requires no additional simulations to be run for the purpose of
computing the power spectrum derivative.
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3 Comparison of SSC models

The different methods of computing the effects of SSC presented thus far have been verified
in previous works to recover the SSC correction with reasonable accuracy [31, 44, 45, 60].
In this section we confirm this match and, for the first time, compare results from the two
proposed ways of perturbing parameters to create ensembles and the additive method.

3.1 Simulation parameters

To test these different methods, we generated ensembles of approximate non-linear dark-
matter simulations using the N -body simulation code L-PICOLA [73]. L-PICOLA is a paral-
lelized implementation of the COmoving Lagrangian Acceleration method [74]. When running
simulations in parallel across multiple CPUs, L-PICOLA divides the simulation volume into
slabs along one axis. Each CPU is assigned one slab for which it evolves its particles using
the particle-mesh method. At the end of each timestep, particles that have moved outside of
their CPU’s slab are moved to the correct slab before the next timestep begins. Due to this
parallelization, L-PICOLA can run simulations with large numbers of particles quickly and
using few timesteps while still accurately modeling nonlinear clustering. We chose L-PICOLA
for its ability to model the non-linear scales of the power spectrum very accurately for rel-
atively low computational cost. The simulations are cubic volumes with periodic boundary
conditions.

When using L-PICOLA to run separate universe simulations, it is important to change
the value of σ8 passed to the simulation code. L-PICOLA must be given the value of σ8
at redshift zbox = 0 which it uses to normalize the input linear power spectrum. Since the
separate universe has different cosmological parameters, the value of σ8,box will differ from
that of the fiducial cosmology. This change can be calculated using the growth factors of the
two cosmologies

σ8,box = σ8,uni
D2(async,Ωm,uni,ΩΛ,uni)

D2(1,Ωm,uni,ΩΛ,uni)

D2(1,Ωm,box,ΩΛ,box)

D2(async,Ωm,box,ΩΛ,box)
, (3.1)

where async is an early scale factor (typically a = 0.001) at which the simulations are syn-
chronized and their power spectra are identical.

Following Ref. [44], care must be taken when handling units in the input and outputs
of the simulation codes being used. When running separate universe simulations using L-
PICOLA, the code works in units of h−1

box Mpc. This requires the initial linear power spectrum
to be converted to these units and the output particle positions to be converted back to h−1

uni
Mpc units before computing the power spectrum.

Since the scale factor abox is different for the separate universe simulations, it is con-
venient to set their comoving sizes such that, at the output epoch, they all have the same
proper sizes. This can be achieved by modifying the size of each simulation to be

Lbox = Luni
auni

abox

hbox
huni

. (3.2)

The particle positions can then be converted into proper units before the power spectrum
is computed. This ensures that the same physical scales are being compared between the
separate universes.
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Cosmological parameter Value
h 0.6736

Ωbh
2 0.02237

Ωcdmh2 0.12
ns 0.9649
σ8 0.8111

Table 1. Flat ΛCDM parameters chosen for the background universe.

3.2 Comparison of parameter choices

To demonstrate the significance of SSC and compare the effectiveness of the Sirko and SC
parameter choices in recovering the SSC effect, we ran ensembles with the following parameters
using L-PICOLA:

• Small boxes: 9728 L = 625 h−1 Mpc simulations with N = 2563 particles and mesh-
grid cells. These simulations have identical cosmological parameters and are used to
compute the covariance matrix without any SSC correction.

• Sub-boxes: 8 L = 5000 h−1 Mpc, N = 20483 simulations with identical cosmological
parameters. Each simulation was subdivided into 512 sub-boxes with L = 625 h−1 Mpc,
resulting in a total of 4096 sub-boxes. These simulations innately include the effect of
SSC and will serve as the benchmark that the other ensembles will try to match the
covariance.

• Sirko addition method : 128 L = 625 h−1 Mpc, N = 2563 simulations, where the first
set of 64 simulations has been generated with cosmological parameters corresponding to
δb = −0.01, and the remaining 64 generated with δb = 0.01. The two sets of simulations
are run with the same set of 64 initial seeds. These simulations are used to compute
the power spectrum derivative needed for the SSC term in Equations 2.7. The no-SSC
term is computed using the “Small boxes” ensemble covariance.

• SC addition method : 128 L = 625 h−1 Mpc, N = 2563 simulations identical in setup to
the “Sirko addition method” simulations except using the SC method parameters from
Equation 2.18

Each ensemble has fiducial background cosmological parameters given by Table 1 and
each mock run to an output redshift corresponding to auni = 1. They were evolved from an
initial redshift of zi = 100 using 60 logarithmically spaced time steps. The power spectra
were computed from the output particle catalogues using Nbodykit [75] without any shot
noise subtraction. The particles were painted to an overdensity field using a PCS resampler
to accurately measure the power spectrum to the Nyquist frequency. Only the dark matter
power spectrum is considered in this work as the SSC effect on smaller-scale modes is largely
washed out by shotnoise in galaxy power spectra. The power spectra and covariance matrices
were calculated using bins of width ∆k = 10π/625 ∼ 0.05 huni Mpc−1, spanning a range
of values from 0 < k < 1.3 huni Mpc−1. The uncertainty on the recovered covariance was
estimated based on the matrices being drawn from the Wishart distribution.

Figure 1 shows the comparison between the variance calculated using the Sirko and SC
method. The SSC effect on the variance relative to the global mean is to increase it by over
100% for modes of k ∼ 0.1 h Mpc−1 or greater compared to simulations without SSC. The
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Figure 1. Comparison of Sirko (red ×) and Spherical Collapse (SC) (green plus) method variance,
divided by the variance from the small boxes (without super-sample covariance). The blue curve and
shaded region show the variance from the sub-boxes of the 5000 h−1 Mpc box and its 2σ confidence
interval, which we take as the true covariance including SSC. The left and right panels show the
variance relative to the global (i.e. relative to the 5000 h−1 Mpc box) and local mean density (i.e.
relative to each 625 h−1 Mpc sub-box), respectively. The error bars show the 95% confidence interval.

effect grows larger as k increases, reaching a maximum of almost 500% at k = 1.28 h Mpc−1.
This increase in variance is primarily driven by the normalization of the power spectrum
with different δb. In the local mean case, which is more observationally relevant for galaxy
surveys, the SSC contribution is still significant, reaching almost 80% at k = 1.28 h Mpc−1.
In Figure 2, the effect of SSC on the off-diagonal terms of the covariance matrix can be seen
to be substantial even at low kj .

Both the Sirko and the SC methods perform well in modeling the SSC effect and were
able to recover the same covariance as the sub-boxes to within 10% or better for most bins
in both the local and global cases. The two methods were consistent with one another, with
the SC method only marginally outperforming the Sirko method in some of the bins. The
variance from both methods was biased low compared to the sub-boxes, and most bins fell
outside of the 95 percent confidence interval of the sub-box variance. This bias could be a
product of using the addition method, which itself is only a first order approximation of the
ensemble method.

3.3 Comparing addition and ensemble methods

To compare the performance of the addition and ensemble methods, we ran a new ensemble of
simulations we refer to as “Ensemble SC”, containing 9728 simulations with L = 625 h−1 Mpc
containing (256)3 particles and with background overdensity drawn from a Gaussian distribu-
tion as prescribed by the ensemble method. The cosmological parameters for each simulation
were computed using the SC method and used the same fiducial background cosmology given
in Table 1.
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Figure 2. Comparison of select off-diagonal elements of the covariance matrix, showing the first,
fifth, tenth, and fifteenth bins for kj . Black × represent SC addition method mocks, and red circles
represent Sirko addition method mocks. The blue curve and shaded region show the covariance from
the sub-boxes of the 5000 h−1 Mpc box and its 2σ confidence interval. The left and right panel show
the global and local mean results, respectively.

For both the global and local normalizations of the power spectra, Figures 3 and 4
show that the addition and ensemble methods are consistent with one another for both on-
diagonal and off-diagonal terms of the covariance matrix. The ensemble method estimates
the covariance a few percent higher than the addition method in most k bins, causing it to
match more closely to the sub-box covariance. This is because the addition method is a first
order approximation of the ensemble method. While this first order approximation is good
enough to recover the majority of the SSC effect, the higher order terms make a few percent
improvement to the overall accuracy.

3.4 Comparison with previous studies

This level of agreement between the sub-box covariance and the different SSC methods is
comparable to that recovered in previous studies [31, 40, 42, 44, 60, 76, 77]. To compare our
results to these studies, we computed the variance over the Gaussian expectation CGauss for
our power spectra and the data from Refs. [60] and [31] to match the format of figures 6 and
7 from Ref. [44]. The results of this are shown in Figure 5. The SC ensemble method we used
was able to capture the effect of SSC with a comparable level of success to the results from
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Figure 3. Comparison of SC addition method (red circles) and ensemble method (black ×) variance
over small mock variance. The blue curve and shaded region show the variance from the sub-boxes
and its 2σ confidence interval. The left and right panels show variance relative to the global and local
mean density, respectively.

Refs. [44], [60] and [31], each of which also found agreement between sub-box and SU variance
to within 10 percent or better. The agreement between this work, Ref. [60], and Ref. [31] is
especially good. Differences in the measured covariances between studies can be attributed
to the different choices of fiducial cosmologies and simulation codes used. In particular,
the order of magnitude difference in covariance measured at high k between the results of
Ref. [44] and the other works is likely driven by the fact that the former used the simulation
code L-Gadget2 [78]. The full N -body (Tree)-PM method used by L-Gadget2 is able to more
accurately model the power spectrum at high k than fast simulation codes such as L-PICOLA
and FastPM at the cost of requiring more computation time. This suggests that fast N -body
codes under-estimate the full non-Gaussian covariance at k > 0.2 h Mpc−1, where full N -
body codes are needed for accurate covariance estimation. Regardless of simulation code, the
internally consistent ability to recover small-scale covariance demonstrates the effectiveness
of modeling super-sample covariance.

4 Volume scaling of the covariance matrix

We now consider how well we can use volume scaling to speed up the covariance matrix
calculation.

4.1 Motivation: reducing the error on the covariance matrix

When estimating a covariance from a number of simulations N much greater than the number
of bins in the power spectrum, the error on the covariance matrix scales as

∆C ∝
√

1

N
. (4.1)
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This scaling has been shown to hold even for non-linear simulations [42, 79]. The error on
the covariance matrix also scales proportionally to the covariance itself, which in turn scales
inversely with the survey or simulation volume V in the absence of super-sample covariance.
Equation 4.1 can be modified to reflect this

∆C ∝
√

1

N

1

V
. (4.2)

Using the fact that both terms in Equation 2.4 scale inversely with volume, we can
estimate the covariance within a large survey window with volume VL by running an ensemble
of small simulations with volume VS , computing the covariance matrix, and re-scaling it by a
factor of VS/VL. In a given amount of computation time, this re-scaled covariance from the
small volume mocks CS,scaled will have reduced error compared to that from the full volume
mocks CL

∆CS,scaled ∝
√

NL

NS
∆CL, (4.3)
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where NL and NS are the number of large and small volume mocks able to be run in the
given computation time.

While this volume scaling technique sees greater improvement on the precision of the
covariance matrix estimation as simulation volume decreases, the volume scaling in Eq. 4.2
must be corrected for super-sample covariance to maintain accuracy. When doing this, the
simulations cannot be made arbitrarily small: the simulations must be large enough to contain
modes at scales of interest for measurements of the power spectrum to be made. Additionally,
the small scale modes in these small volume simulations evolve without the coupling to large
scale modes that would be present in full volume simulations, causing the covariance on small
scales to be biased compared to the “true” covariance. The super-sample covariance term also
scales as a complex function of the simulation volume, so care must be taken when adding it
back into the simulations. For the addition method, σb must be calculated to correspond to
the full survey volume and the SSC term added to the covariance after volume scaling has
taken place. The volume of the simulations used to compute the power spectrum derivative
does not matter since the power spectrum derivative is expected to be volume independent.
The total covariance for the survey volume CL is then computed as

CL(ki, kj) =
VS

VL
CS(ki, kj) + σ2

b,L

dP (ki)

dδb

dP (kj)

dδb
, (4.4)

where VL and VS are the volumes of the survey and the simulations, respectively, and σ2
b,L is

the variance in background density calculated as in Equation 2.8 using the large box volume.
For the ensemble method, the variance of the background overdensity of the small sim-

ulations must be set to VL/VSσ
2
b,L rather than σ2

b,S , the actual variance in background over-
density calculated for the small volume. This ensures that, after volume scaling has been
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applied, the super-sample covariance contribution will be equal to that expected in the large
survey volume. Incorrectly using σ2

b,S calculated for the small simulation volume will result
in a substantial overestimation of the SSC term since it scales with volume more strongly
than 1/V . The techniques of reintroducing super-sample covariance discussed in Section 2
are only expected to work so long as the super-sample modes fall within the linear regime;
if the simulation volume is small enough that non-linear modes are being left out, a higher
order correction would be necessary to correctly capture the super-sample covariance.

There is also a correction that needs to be applied arising from the discrete k modes in
each bin of the power spectrum. The power spectrum measured in a given k bin is computed
from modes that fit within that bin. Since only certain discrete values of k are allowed from
the volume of the box and the mesh size used, the mean k mode is not necessarily the centre
of the bin. As the volume changes, the modes contained in the bin will also change. This
means that the power in this same k bin is measured at a slightly different average k value
for the large and small mocks. This also changes the measured covariance in this k bin, with
the change becoming more significant at lower k. To recover the correct covariance of the
large-volume mocks using the volume scaling technique, we apply a corrective factor to the
measured power of each of the small-volume mocks PS(k)

Pcorr,S(k) =
PL(k)

PS(k)

√
Vk,S

Vk,L
PS(k), (4.5)

where Pcorr,S(k) is the corrected small volume power spectrum, PL(k) and PS(k) are the
ensemble average power of the large and small volume mocks respectively, and Vk,S and
Vk,L are the k-space volumes of the bin of interest in the small and large volume mocks
respectively, computed by directly summing the volumes contributed by each mode in that
bin. This corrective factor was chosen based on the Gaussian behaviour of the covariance
matrix at low k where the bin centering issue is most significant.

4.2 Super-sample covariance and volume scaling

To evaluate how well the volume scaling technique is able to recover the covariance matrix
of a large volume survey, we generated five ensembles of 9728 simulations each with volumes
of (2500 h−1 Mpc)3, (1250 h−1 Mpc)3, (625 h−1 Mpc)3, (312.5 h−1 Mpc)3, and (156.25 h−1

Mpc)3 respectively. The simulations each had zero background overdensity, contain a number
density of particles N/V = (256/625)3 h3Mpc−3 and used cosmological parameters given in
Table 1. The covariance matrix of each ensemble was computed and volume scaled to match
a survey with volume (2500 h−1 Mpc)3. The super-sample covariance term was computed
using the SC parameters with the addition method. The power spectrum derivative was
calculated using the SC addition method ensemble described in Section 3.2. In principle, the
power spectrum derivative does not depend on the simulation volume, so it can be calculated
using any size simulation. In practice, one must still choose a simulation volume containing
enough modes at scales of interest to be measured. In this section, we used simulations with
a volume of (2500 h−1 Mpc)3 to calculate the power spectrum derivative. For smaller volume
simulations, the bin centreing issue discussed in Section 4.1 is also present. This effect only
significantly changes the power spectrum derivative in low k bins where the SSC contribution
is weakest, and we have verified that, for the ensembles considered in this work, this effect is
negligible when calculating the derivatives.

Figures 6, 7, and 9 show the results of using volume scaling to recover the large volume
covariance matrix. We plot the ratio of the volume scaled small mock covariance over the
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Figure 6. Ratio of volume-scaled small box covariance and large box covariance on-diagonal elements.
All covariances are computed relative to the local mean density. The bin centering correction was
applied to the power spectra of each ensemble. Each panel corresponds to a different large box volume
used as the denominator. Top left: Vlarge = (2500 h−1 Mpc)3. Top right: Vlarge = (1250 h−1 Mpc)3.
Bottom left: Vlarge = 625 h−1 Mpc)3. Bottom right: Vlarge = (312.5 h−1 Mpc)3.

“large” mock covariance. We find that, for all volumes tested with the exception of V =
(156.25 h−1 Mpc)3, the scaled covariance matches the true covariance to within 3% or better
on almost all scales. This level of agreement is comparable to that of semi-analytic covariance
models designed for use with DESI Y1 data [80]. The volume-scaled covariance ratio depends
on both the volume ratio and the large mock volume, with the covariance ratio decreasing as
the volume ratio decreases and as the large mock volume decreases. In Figure 6, the large
mock covariance is generally more accurately recovered in the case of volume ratios closer to
one. This can be explained by the fact that the covariance calculated from the small volume
simulations is missing a contribution from modes with sizes between that of the large and
small box. The SSC term added accounts for the coupling of modes larger than the large box,
but does not capture the coupling of these missing intermediate-scale modes. The greater
the volume ratio between the mocks, the more of these intermediate modes are missing,
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resulting in a greater underestimation of the covariance. While there is no simple method to
re-introduce the effects of these missing modes into the covariance, using tidal fields to model
the contribution to SSC by anisotropic background density perturbations could potentially
capture some of this missing covariance [69].

Figure 7 shows that the large mock covariance is better recovered as the volume of
the large mocks increases independently of the volume ratio. The accuracy of the volume-
scaled covariance depends more strongly on the large mock volume than the volume ratio of
the mocks. This dependence on large mock volume can similarly be explained by missing
intermediate modes in the small mocks. The strength of coupling between modes in a survey
or simulation depends on the size of the modes in question (see e.g. Figure 1). Figure 2 shows
that the coupling between modes increases as k increases. This means that the intermediate
modes missing from volume scaling from L = 1250 h−1 Mpc to L = 2500 h−1 Mpc are less
correlated with the smaller modes of the power spectrum than those missing when volume
scaling from L = 625 h−1 Mpc to L = 1250 h−1 Mpc, resulting in the former case recovering
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Figure 8. Histogram of power spectrum amplitudes in the k = 0.04 h Mpc−1 bin of the L = 312.5 h−1

Mpc ensemble (left panel) and L = 156.25 h−1 Mpc ensemble (right panel). The solid black curve
shows a Gaussian distribution with mean and variance matching those computed from the power
spectra of the ensemble. There is a noticeable skewness in the distribution compared to a Gaussian.

the covariance more accurately than the latter. Unexpectedly, the 1250/2500 ratio and the
625/2500 ratio generally overestimate the covariance matrix after volume scaling despite the
missing intermediate mode contribution, though Clarge still lies within 2σ of Cscaled in both
cases.

The V = (156.25 h−1 Mpc)3 mocks also fail to recover the correct covariance, especially
at low k. This is due to the low k bins of the smaller volume mocks containing a very small
number of bins, causing the power spectra measured in these bins to be significantly non-
Gaussian. Figure 8 demonstrates this in the data from the k = 0.04 h Mpc−1 bin of our
L = 312.5 h−1 Mpc and L = 156.25 h−1 Mpc ensemble, where the number of modes in this
bin is Nmodes = 81 and Nmodes = 6, respectively. In the linear regime, the power spectrum
measured from one realization of the density field is drawn from a Rayleigh distribution. In
bins containing a large number of modes, the central limit theorem causes the distribution to
be approximately Gaussian. When this approximation breaks down, the covariance matrix
can no longer completely describe statistical uncertainty on the power spectrum. Choosing
a non-Gaussian shape for the posterior distribution of the cosmological parameters has been
shown to produce accurate results when working with such non-Gaussian data [8, 81–85].

Figure 9 shows that the off-diagonal elements of the covariance are also accurately re-
covered using the volume scaling technique, with most k bins having comparable accuracy to
the on-diagonal elements. However, at low k (top left panel in Figure 9), the volume-scaled
covariance deviates significantly from the large mock covariance. This is due to the k bin
centre correction assuming the covariance in these bins is Gaussian; the Gaussian expecta-
tion for off-diagonal terms of the covariance in the absence of a window function is zero, so
the correction in Equation 4.5 is not expected to model it accurately on these large, linear
scales. Figure 10 demonstrates the effect of this correction on the lowest k bin of one of
our ensembles. The diagonal term of the volume-scaled covariance at k = 0.04 hMpc−1 is
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for select off-diagonal elements. All covariances are computed relative to the local mean density. The
bin centering correction was applied to the power spectra. Each panel corresponds to a different k
bin.

greatly underestimated due to the bin centering issue, but it is accurately recovered once the
correction is applied. For the off-diagonal terms of C(ki, kj), the uncorrected volume-scaled
covariance is still underestimated at low k, but more accurately matches the large mock co-
variance beyond k ∼ 0.2 hMpc−1. To better recover the low k off-diagonal elements using
volume scaling, a higher-order analytic approximation of the form of the covariance matrix
could be used to generate the corrective factor.

5 Conclusions

The super-sample covariance component within covariance matrices is now well understood.
Given a set of simulations calculated with fixed background density, it is the missed compo-
nent of the scatter between simulation results due to background density fluctuations that
would exist between patches of the Universe with the same volume and background cosmol-

– 18 –



0.0 0.5 1.0
k (hMpc 1)

0.6

0.8

1.0

1.2

C s
ca

le
d/C

la
rg

e
On diagonal

With bin center correction

0.0 0.5 1.0
ki (hMpc 1)

0.6

0.8

1.0

1.2

C s
ca

le
d(

k i
,k

j)/
C l

ar
ge

(k
i,k

j)

Off diagonal, kj = 0.04 hMpc 1

No correction

Figure 10. Ratio of volume-scaled V = (312.5 h−1 Mpc)3 covariance and V = (2500 h−1 Mpc)3
covariance shown with the bin centre correction applied (green triangles) and without the correction
(black circles). The left panel shows the on-diagonal elements of the covariance matrix, and the
left panel shows the off-diagonal elements for ki = 0.04 hMpc−1 where the correction has the most
significant effect.

ogy as the simulations. Because of the coupling between large and small-scale modes, the
effect dominates the contribution to off-diagonal elements of the dark matter power spectrum
covariance matrix and substantially correlates on-diagonal elements in the non-linear regime.
For galaxy power spectra measured in next-generation surveys, the SSC term is expected to
be a significant fraction of the covariance on scales of k ≤ 0.3 hMpc−1, beyond which it is
largely washed out by shotnoise. Understanding this component is vital when constructing
covariance matrices and when considering fast methods for their calculation [31].

We have investigated three ways to include SSC within a covariance matrix by either
running simulations with different cosmological parameters, or by including an additive term
in the estimation of the covariance matrix. Running a set of simulations to include SSC effects
is non-trivial [45, 65]. The SSC effect can be modeled by changing the cosmological parameters
of a simulation in the presence of a background mode. Two methods have been proposed to
do this: one based on spherical collapse [45, 59], and one based on a different perturbative
expansion linking the background density to cosmological parameters [65]. We have shown
that these give very similar results, and match the expected additive contribution to the
covariance based on the effect of varying the background on the power spectrum [44]. The
ensemble methods achieve results with fewer total simulations, but with increased complexity
of implementation. The additive method offers further flexibility including allowing simpler
volume scaling, and should be preferred for any applications where such flexibility is desired.

Being able to model SSC should, in principle, allow us to scale covariance matrices be-
tween samples of different volumes, speeding up the calculation [31], as this is the component
that has a non-trivial scaling with volume. We show that this scaling works using a wider
range of simulations than previously considered. In principle, this will allow us to use smaller,
less computationally expensive mocks and hence to make higher precision covariance matri-
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ces in a given amount of computation time. Using the new simulations, we found that if we
push the volume scaling too far, we begin to see effects from the discrete number of modes in
small-k bins adjusting the average k value and thus the scale at which P (k) is measured. We
discuss this effect and show how we can mitigate it by rescaling P (k) by the k-space volume
they represent in the covariance. We also see the distribution of power in low k bins becoming
significantly non-Gaussian, requiring them to be modeled by a Rayleigh distribution to be
usable in computing cosmological parameter estimates. Even so, we are able to achieve a 3%
match on scales k < 1.0h−1Mpc scaling the simulation volume by a factor 512 (see Fig. 7).
These scales include all those of interest for current surveys. The main limitation is the lack
of SSC correction for modes lost in the smaller boxes that are present in the large boxes.
We note that this level of accuracy is comparable to the agreement between analytic and
mock-based covariance estimates to be used with DESI Y1 results [80] and thus should be
acceptable for future surveys, potentially providing a huge saving in computational resources.

Our analysis has, so far, avoided introducing a number of complications relevant for
realistic surveys, particularly window functions and redshift-space effects. Ref. [31] has shown
that the inclusion of these will be non-trivial, and is left for future work. However, we do not
expect these to affect the more fundamental volume scaling arguments discussed in our paper.
The work here comparing SSC inclusion methods and discussing effects of finite number of
modes will remain important.

The simulation parameter files and power spectra used in this work are publicly available
at https://zenodo.org/records/14218207.
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