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ABSTRACT

The short gamma-ray burst (sGRB), GRB 170817A, is often considered a rare event. However, its inferred event rate,

O(100s) Gpc−3 yr−1, exceeds cosmic sGRB rate estimates from high-redshift samples by an order of magnitude. This

discrepancy can be explained by geometric effects related to the structure of the relativistic jet. We first illustrate

how adopting a detector flux threshold point estimate rather than an efficiency function, can lead to a large variation

in rate estimates. Simulating the Fermi-GBM sGRB detection efficiency, we then show that for a given a universal

structured jet profile, one can model a geometric bias with redshift. Assuming different jet profiles, we show a

geometrically scaled rate of GRB 170817A is consistent with the cosmic beaming uncorrected rate estimates of short

γ-ray bursts (sGRBs) and that geometry can boost observational rates within O(100s)Mpc. We find an apparent

GRB 170817A rate of 303+1580
−300 Gpc−3 yr−1 which when corrected for geometry yields 6.15+31.2

−6.06 Gpc−3 yr−1 and

3.34+16.7
−3.29 Gpc−3 yr−1 for two different jet profiles, consistent with pre-2017 estimates of the isotropic sGRB rate. Our

study shows how jet structure can impact rate estimations and could allow one to test structured jet profiles. We

finally show that modelling the maximum structured jet viewing angle with redshift can transform a cosmic beaming

uncorrected rate to a representative estimate of the binary neutron star merger rate. We suggest this framework can

be used to demonstrate parity with merger rates or to yield estimates of the successful jet fraction of sGRBs.
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1 INTRODUCTION

Short gamma-ray bursts (sGRBs) represent one of the most
energetic phenomena in the universe, arising from the merg-
ing of compact binary systems such as neutron stars. These
events are pivotal for advancing our knowledge in high-energy
astrophysics, gravitational waves, and the behavior of mat-
ter under extreme conditions. The landmark observation of
GRB 170817A (Goldstein et al. 2017; Savchenko et al. 2017),
coupled with the detection of gravitational waves from the
binary neutron star merger (BNS) GW170817 (Abbott et al.
2017a; Abbott et al. 2017c) prompted an electromagnetic fol-
lowup campaign that enriched our understanding of the elec-
tromagnetic counterparts to gravitational-wave events (Ab-
bott et al. 2017b; Resmi et al. 2018; Margutti et al. 2018).
However, it also uncovered significant discrepancies between
the estimated sGRB rates from models predating 2017 and
those derived from the observation of GRB 170817A.
Table 1 highlights a number of recent studies in which a

lower limit on the sGRB event rate has been estimated using
the distance of GRB 170817A; the term lower limit is used
here as these numbers are assumed uncorrected for beam-

⋆ E-mail: XXX@uwa.edu.au

ing effects. The table provides short notes on the methodolo-
gies employed and extrapolates the implied maximum dis-
tance unless defined in the study and shows that the median
170817A-like rates range from 190 – 370 Gpc−3 yr−1 . These
numbers are much higher than pre-170817 estimates based on
the more distant sGRB sample with available redshifts which
were, at most, O(10) Gpc−3 yr−1 (Nakar et al. 2006; Coward
et al. 2012; Wanderman & Piran 2015; Mandel & Broekgaar-
den 2022).
The discrepancy between the rates can be reconciled through
consideration of the structured jet of GRB 170817A (Salafia
et al. 2016a; Salafia & Ghirlanda 2022; Salafia et al. 2023).
A structured jet profile, in which an ultra-relativistic core
smoothly transforms to a milder relativistic outflow at greater
angles, was predicted more than a decade previous to GRB
170817A (Lipunov et al. 2001; Rossi et al. 2002; Zhang &
Mészáros 2002). This possibility was an explanation of the
low luminosity of GRB 170817A even though it was observed
at a distance of 42Mpc. It was finally confirmed with late
electromagnetic observations that proved the emergence of an
off-axis jet (Lazzati et al. 2017a; Mooley et al. 2018a; Alexan-
der et al. 2018). It is clear that the low observed flux from
a wide viewing angle, coupled with the relatively close prox-
imity, where components of a wider jet become detectable,
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can cause an elevation in the event rate through geometric
factors.
How to reconcile the discrepancies between the geomet-

rically biased rate estimates of locally observed bursts and
the estimates from higher-z events is the focus of this study.
We will explore if a refined model that incorporates detec-
tion efficiencies and structured jet profiles can reconcile the
apparent discrepancies in low-z and high-z event rates. We
will also highlight how a more detailed description of detector
efficiency can result in improved rate estimates.
The structure of the paper is organised as follows. In Sec-

tion 2 we introduce our framework to estimate sGRB rate
densities. We compare two methodologies: one employing a
simple point estimate and another utilizing a detector effi-
ciency function. Section 3 presents the detection efficiency
function for the Fermi Gamma-ray Burst Monitor (GBM),
and Section 4 calculates the efficiency as a function of red-
shift. In Section 5, we explore the impact of two different
rate estimation methods and demonstrate the advantages
of incorporating detection efficiencies. Section 6 details two
structured jet models employed in our study, outlining their
theoretical foundations and relevance to our analysis. Sec-
tion 7 examines the effect of jet geometry on event rates and
introduces a geometric relationship between apparent low-z
and high-z sGRB rates. In Section 8, we derive an appar-
ent low-z sGRB event rate and demonstrate how a geometric
scaling function can provide parity between low-z and high-z
estimated sGRB rates. Section 9 extends our framework to
compare sGRB rates with BNS rates to confirm parity or to
estimate the fraction of successful sGRB jets. We conclude
in Section 10, discussing the impact of our findings on our
understanding of cosmic sGRB event rates, highlighting po-
tential areas for future research.
Throughout this paper we assume a ‘flat-Λ’ cosmology with

cosmological parameters Ωm = 0.315 and H0 = 67.3 km
s−1 Mpc−1 (Planck Collaboration et al. 2020). Unless oth-
erwise stated, peak flux values are assumed in the 64 ms
time-window and the 50–300 keV energy range. We present
our main results using the maximum a posteriori estimates
paired with asymmetric credible intervals. This approach fa-
cilitates direct comparisons with estimates from other studies
obtained using non-Bayesian frameworks.

2 THE FRAMEWORK TO CALCULATE THE
RATE DENSITY OF SGRBS

Given a volumetric rate of some transient astrophysical pop-
ulation, R, the mean number of events is given by R⟨V T ⟩
where, for a given population, this is the product of the ob-
servation time T and the volumetric reach of the search V .
The angle brackets denote that we consider the rate to be
constant or non-evolving in the co-moving frame; this as-
sumption is supported as rate estimates will be dominated
by the closest detected events.
The posterior probability distribution of the event rate Ri

for an individual detection i is given by:

P (Ri|1) ∝ P (1|Ri)P (Ri) . (1)

Here, the first term is the likelihood function taken as the

Poisson probability of observing one event given a mean rate
Ri⟨ViTi⟩:

P (1|Ri) = Ri⟨ViTi⟩ exp(−Ri⟨ViTi⟩) , (2)

The second term of Equation 1 is the prior; for estimates
of Ri that typically span several orders of magnitude, a good
choice is the Jeffreys priorR−1/2

i , which allows an equal prob-
ability per decade. In this case, the posterior distribution be-
comes:

P (Ri|1) ∝ R1/2
i ⟨ViTi⟩ exp(−Ri⟨ViTi⟩) . (3)

To estimate the sensitive time-volume ⟨V T ⟩, two ap-
proaches are generally used in the literature:

2.1 Method [A]: Using a detector sensitivity
threshold point estimate

Given a single point estimate of the threshold sensitivity
threshold of a detector, one can calculate the following in-
tegral:

⟨V T ⟩ = T

∫ zM

0

dVc(z)

dz

1

(1 + z)
dz (4)

where T is the total observation time and the factor 1/(1 +
z) factor corrects clock rates from the source frame to the
observer frame. The upper limit of the integral is set by the
maximum detection redshift of a given burst, zM in terms of
its threshold sensitivity (Soderberg et al. 2006; Coward et al.
2012; Howell & Coward 2013; Della Valle et al. 2018a). The
co-moving cosmological volume element dVc(z)/dz describes
how the number densities of non-evolving objects locked into
Hubble flow are constant with redshift and is given by:

dVc

dz
=

4πc

H0

D2
L(z)

(1 + z)2E(z)
, (5)

with DL is the luminosity distance and E(z) the normalized
Hubble parameter,

E(z) ≡ H(z)/H0 =
[
Ωm(1 + z)3 +ΩΛ

]1/2
. (6)

The threshold sensitivity required to define zM is obtained
though flux threshold point estimate, PL, for astrophysical
populations of GRBs. Therefore, if adopting equation (4),
the maximum detection redshift of a GRB, zM, can be deter-
mined numerically by solving:

DL(zM)2 =
L

4πPL

C−1
N

k(zM)

1

1 + z
. (7)

where, L is the isotropic equivalent luminosity (erg s−1) in
the 1–104 keV rest-frame band and PL is a photon flux (ph
s−1 cm−2). The (1+ z) factor in the denominator is included
as the standard definition of DL(z) is valid for an energy
flux, but we convert to photon counts (Mészáros et al. 2011).
Equation (7) includes two corrections that assume a given
γ−ray spectrum photon N(E) (in ph s−1 cm−2 keV−1).
The normalization constant CN calculates the average en-

ergy per detected photon within the specified energy range
[E1, E2]:
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Short gamma-ray burst rate 3

Study dL,max R170817A notes

(Mpc) (Gpc−3 yr−1 )

Zhang et al. (2018)† 65 190+440
−160 Defined as a lower limit estimate of sGRBs - R(Liso > 1.6× 1047 erg s−1

Della Valle et al. (2018a) ‡ 49 352+810
−281 The 170817A-like rate represents an observed rate of sGRBs associated with kilonovae.

Salafia et al. (2022) †† - 342+1798
−337 We estimate dL,max in the 10-1000 keV band by XXX

Burgess et al. (2020) ♯ 170 No limits calculated. We back-extrapolate their volumetric reach to estimate dL,max.

Table 1. A selection of studies in which a lower limit on the sGRB event rate R has been estimated based on GRB 170817A. We state

a maximum distance, dL,max, for cases in which that value has been used in the calculation (i.e. as an upper limit in equation 4). † The
value of dL,max determined by simulating GRB 170817A light curves at progressively greater distances ‡ Estimated using a dL,max based

on a Fermi-GBM 1.024 s flux threshold PL = 0.5 ph s−1 cm−2 in the 50-300 kev band. †† Calculated through eq (10) using a derived

Fermi-GBM efficiency function for 170817A-like events estimated from data in the 10-1000 keV reporting band. ♯ A simple approximation
based on a flux limit for Fermi-GBM of 10−7 erg s−1 cm−2 .

Figure 1. The maximum distance at which 170817A would have
been detected is plotted against a range of GBM flux sensitivity

limits. This plot assumes an apparent luminosity for a burst ob-

served outside the jet axis; therefore, it is not the true maximum
distance based on the intrinsic properties of the burst. The dashed

horizontal line indicates the distance at which GRB 170817A was

detected corresponding to a peak photon flux of around 2.27
ph s−1 cm−2 .

CN =

∫ 10MeV

1 keV
EN(E) dE∫ E2

E1
N(E) dE

. (8)

This constant has units of ergs and normalizes the observed
gamma-ray data to a standard measurement that would be
recorded for a burst hypothetically observed at z = 0. The
function, k(z) is the cosmological k-correction for the given
spectrum at redshift z,

k(z) =

∫ E2

E1
N(E)dE∫ (1+zE2

(1+z)E1
N(E)dE

, (9)

which compensates for the effect of cosmic downshifting of
the spectrum relative to a fixed detector bandwidth.
Figure 1 illustrates the quantity, dL(zM), for GRB 170817A

as a function of different peak flux sensitivity thresholds, PL.
This curve is calculated for illustration using equation (7)
and the rest-frame luminosity and spectral parameters for
the brightest part of GRB 170817A, modeled by a Comp-
tonized spectrum with power law index α = −0.85 and Epeak

= 229 keV (Goldstein et al. 2017) . Given the 64 ms peak flux
of 2.3 ± 0.8 ph s−1 cm−2 in the 50–300 keV GBM trigger-
ing band, by rearranging equation (7) one can calculate the
isotropic equivalent luminosity in the 1–104 keV rest-frame
band of (1.4± 0.5)× 1047 erg s−1 .
Assuming a nominal detection threshold of 1 ph s−1 cm−2

we see that this equates to a maximum detection distance
of 61.8 Mpc (zM=0.014) for this event. Selecting a higher
point estimate, 2 ph s−1 cm−2 , results in a maximum detec-
tion distance of 43.5 Mpc (zM=0.0097). Based on the analysis
in later section 5, we find the difference in the relative quanti-
ties of 1/⟨V T ⟩ calculated by adoption of the former or latter
flux thresholds equates to a range of 140-470 Gpc−3 yr−1 ; a
factor of over 3 in rate estimates. Thus significant variation
in rates can occur through choices of a flux threshold point
estimate.

For GRBs, adopting the most realistic point estimate PL is
difficult as values vary considerably in the literature; this is
shown later in Table 2. It is worth noting that initial point es-
timates from post-launch instrument specifications often dif-
fer from those based on statistical analyses of accumulated
data once the instruments are operational. Additionally, such
limits are often absolute thresholds only appropriate for very
low efficiency. For example pre-launch scientific performance
requirements for Fermi-GBM (i.e. Kippen et al. 2001) sug-
gested a threshold of < 0.5 ph s−1 cm−2 in the 50–300keV
triggering range: the actual detector efficiency at this level
would be <0.1% (see later Table 2). The importance of es-
timating detector sensitivity is obviously important, but not
a trivial task without access to simulated detector efficiency
curves (Howell et al. 2014).

2.2 Method [B]: Using a detector efficiency function

If detector efficiency curves are available one can calculate
a detection efficiency with redshift, Σz(z) for a given source
population (Howell et al. 2014). One can fold this function
with dVc/dz and calculate the integral of equation (4) out to
∞.

⟨V T ⟩ = T

∫ ∞

0

dVc(z)

dz

Σz(z)

(1 + z)
dz . (10)

See for example Abbott et al. (2016); Salafia et al. (2022) who
have applied this approach to GWs and sGRBs respectively.
Other than avoiding the dependence on a highly uncertain
point estimate of flux sensitivity, this approach allows the
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integral ⟨V T ⟩ to smoothly converge towards zero rather than
enforcing an abrupt cutoff in ⟨V T ⟩.

In the following section we will compare approaches to es-
timate event rates using both flux threshold point estimates
and detection efficiency functions. We will first estimate a
detection efficiency function for Fermi-GBM and the corre-
sponding function Σz(z).

3 GBM SGRB PEAK FLUX DETECTION
EFFICIENCY

To calculate the time-volume integral, eq. (10), an estimate of
the peak flux detection efficiency function with redshift Σz(z)
is required. The first stage in determining this component is
to estimate the detection efficiency in peak flux space ΣP(P ).

To obtain the function ΣP(P ), there are a number of dif-
ferent factors to consider, such as the energy detection band-
width or the use of different count rate thresholds above back-
ground. Furthermore, harder bursts typically have lower pho-
ton count rates than the softer long duration GRBs which can
decrease the detection efficiency. One approach, as used by
Salafia et al. (2022), is to fit to the available Fermi-GBM
data in the required band (the 10-1000 keV reporting band
in that study) assuming the expected P−3/2 integrated flux
distribution. The approach used here is to model the detec-
tor response given a simulated population of sGRBs (see also
Lien et al. 2014; Howell et al. 2014; Shahmoradi & Nemiroff
2011).
We determine ΣP(P ) for the Fermi-GBM by recording the

detection fraction of 64ms photon fluxes in the 50-300 keV
band from a simulated population of sGRBs, where each
GRB has a spectrum sampled from the GBM spectral cata-
log (Poolakkil et al. 2021). The simulated population of GRBs
includes a variety of arrival angles, a variety of Fermi rock-
ing angles and orbital locations sampled from historical data;
this ensures that the model is representative of GBM’s actual
in-orbit performance. The simulations assume that at least 2
detectors can trigger a burst at ⩾ 4.5 sigma. Furthermore,
the background rates and background variability observed
over the first 13 years of GBM operation including entering
and exiting the South Atlantic Anomaly are incorporated.
We note that these simulations have not considered the FSW
trigger algorithms but they represent a first-order approxi-
mation for the trigger efficiency in the 64ms timescale.
Figure 2 shows the estimated Fermi-GBM efficiency curve

for the 64-ms photon flux. The plot illustrates how the ef-
ficiency degrades rapidly below around 5 ph s−1 cm−2 . At a
flux limit of around 1 ph s−1 cm−2 , above which around 95%
of sGRBs are detected the efficiency is of order 2 × 10−3;
at 2 ph s−1 cm−2 the detection efficiency is still less than 1%
(0.5%). We find that within the range 2 – 4 ph s−1 cm−2 the
efficiency can be approximated (norm of residuals = 0.02) by
the cubic function:

ΣP = η1P 3 + η2P 2 + η3P + η4 , (11)

with η1 = -0.14, η2 = 1.20, η3 = -2.87, η4 = 2.10.
Figure 3 shows the 64-ms peak flux distribution in the 50–

300 keV energy range for all bursts recorded with a T90 less
than 2.1 s; this is total of 578 bursts from the Fermi-GBM
sample of 3447 bursts up to February 2023 (14.5 years of data

Figure 2. The Fermi-GBM detection efficiency ΣP(P ) for the 64-

ms photon flux in the 50–300 keV band. The plot shows a rapid

decline in sensitivity between 1 - 4 ph s−1 cm−2 . Three fiducial
flux limits are also indicated; the latter corresponds with the peak

of the differential distribution of detected sGRBs shown in Figure

3. The small feature at the lowest peak fluxes is an artifact due to
the number of simulations used to create the efficiency curve.

Figure 3. The Fermi-GBM detection distribution for the 64-ms

photon flux in the 50–300 keV band (dark line). The peak of the

distribution is around 3 ph s−1 cm−2 , below which detection ef-
ficiency is less than 34%. A small excess is evident at around

0.5-1 ph s−1 cm−2 which is a result of non-uniform detector point-

ings. The cumulative distribution (grey line) is the 1-year averaged
count.

from: Fermi-GBM-Catalog 2024) The plot shows that the
dominant peak of the distribution is around 3 ph s−1 cm−2 ,
below which the detection losses are expected to be signif-
icant given an expected -5/2 power-law differential distri-
bution. The efficiency at 3 ph s−1 cm−2 is around 52%, de-
grading significantly below this value as discussed above.
Fig 3 also highlights a small enhancement at around 0.5 –1
ph s−1 cm−2 due to non-uniform detector pointings. The cu-
mulative count is also shown and is scaled by 14.5 to repre-
sent detections per year; this curve becomes asymptotic at
around 1 ph s−1 cm−2 . Given the nominal -3/2 scaling above
this point, we note that a factor of 2 in peak flux sensitivity
corresponds to around an increase factor of 2.8 times as many

MNRAS 000, 000–000 (0000)



Short gamma-ray burst rate 5

Figure 4. The Fermi-GBM detection efficiency with redshift to a

GRB 170817A-type burst.

bursts; thus the motivation to improve detector sensitivity is
clear.

4 GBM SGRB DETECTION EFFICIENCY WITH
REDSHIFT

Once an estimate of the detector efficiency is obtained across
a range of the chosen detection threshold parameter, i.e. peak
flux, SNR, or magnitude, one can determine the detection effi-
ciency through a range of redshift, Σz(z) (Howell et al. 2014;
Abbott et al. 2016; Salafia et al. 2022). One can estimate
this function on a population level by sampling population
parameters across a range of redshift bins. Alternatively, one
can determine the function Σz(z) for a single representative
source using best known intrinsic properties.
In this study we will use a small sample of Fermi-GBM

sGRBs with known redshifts. By treating these events inde-
pendently, we will construct ⟨V T ⟩ for each and an associated
rate. Due to its close proximity, we will find that the cosmic
rate is dominated by GRB 170817A. Given the apparent in-
trinsic luminosity of GRB 170817A calculated in section 2.1
one can calculate the observed peak flux at each step of z.
The resulting efficiency Σz(z) is constructed by the mapping,
Σz(z) = ΣP(Pz), where Pz is the observed peak flux from a
sGRB at given z.
Figure 4 shows the resulting function Σz(z). We find that

GRB 170817A would have been detectable by Fermi-GBM
out to z ∼0.006 with 100% efficiency. Interestingly, the de-
tection efficiency for a GRB 170817A-like burst is only around
17%. This relatively low efficiency may at first seem strange
considering it was detected at 42 Mpc, but is purely a conse-
quence of the viewing angle. The efficiency for this burst at
more favorable orientations will be discussed later (see later
in Figure 8).
An important point that must be emphasised here is that

the function Σz(z) calculated above does not take into ac-
count geometrical factors that can impact detection effi-
ciency. In particular, Σz(z) is that of a GRB 170817A-type
burst, viewed at the same orientation with z ; in this case
∼ 20◦. As such the time-volume integral ⟨V T ⟩ calculated as
in equation 10 is an apparent quantity and its use results in

Figure 5. To illustrate difference in calculating equation ⟨V T ⟩
using a flux efficiency function or a flux threshold point estimate,

the relative areas of integration are shown for both cases. The top

panel assumes a flux threshold of 1.0 ph s−1 cm−2 – in this case
the integral would result in an overestimate in Vc and thus, an un-

derestimate in rate. The lower panel assumes a higher value point

estimate 2.5 ph s−1 cm−2 - this case will result in an overestimate
of the event rate.

apparent rates. This is an important consideration and will
be discussed in detail in section 7.

5 THE IMPACT OF DETECTOR SENSITIVITY
ON EVENT RATE CALCULATIONS

As described in the previous section, if detector efficiency
curves are available one can construct and fold the function
Σz(z) with dVc/dz and calculate the integral of equation (10)
smoothly out to zM without an abrupt cutoff. In this section
we will quantify the effect of using this approach to determine
rate estimates (method [A] in section 2.1 against using a point
estimate (method [B] in section 2.2).

Figure 5 compares the regions of integration for the inte-
grand of equation (4) based on two threshold point estimates
PT = [1, 2.5] ph s−1 cm−2 with the regions defined by equa-
tion (10) which includes a detection efficiency function Σz(z).
In both panels the region of integration using the efficiency
function begins to decline at around z ∼ 0.006 - this would
correspond with a value of around 3 ph s−1 cm−2 at which
differences in the detected P−3/2 integrated rate distribution
start to deviate significantly from the intrinsic population due
to instrument sensitivity.

The top panel shows the case in which a flux threshold of
1.0 ph s−1 cm−2 is applied; this produces an overestimate in
V in comparison to that determined using an efficiency func-
tion, and thus, an underestimate in rate, R. The lower panel
considers the opposing situation in which applying a higher
flux threshold of 2.5 ph s−1 cm−2 can result in a comparative
underestimate of R.
Figure 6 quantifies the effective differences between the two

approaches for the Fermi-GBM – flux threshold point esti-
mate (subscript p) against efficiency function (subscript f) –
for a range of flux thresholds. The effective error in ⟨V T ⟩ is
calculated through the ratio of the integrals:

MNRAS 000, 000–000 (0000)
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Figure 6. The ratio between the sensitive volumes calculated as-
suming a flux efficiency function or a flux threshold point estimate

for a range of flux detection thresholds. The plot shows that below

around 2.8 ph s−1 cm−2 use of a point estimate can overestimate
the event rate.

⟨V ⟩f
⟨V ⟩p

=

∫ ∞

0

dVc(z)

dz

Σz(z)

(1 + z)
dz

/∫ zM

0

dVc(z)

dz

1

(1 + z)
dz (12)

where zM represents the maximum detection redshift and all
other quantities are as for equations (4) and (10). The im-
plications on rate estimates are apparent through the inverse
ratio i.e. ⟨V ⟩f/⟨V ⟩p ∼ Rp/Rf . One can see that up to around
2.8 ph s−1 cm−2 a point estimate can lead to an overesti-
mation in R (region indicated by no shading); above this
point an underestimate in rate (light-blue shading). Exami-
nation of the lower panel of Fig. 5 at the intersection point 2.8
ph s−1 cm−2 shows that the decreasing region of integration
is approximately divided at this point.
Table 2 shows a representative sample of 64ms PL in the

50-300 keV triggering band gathered from literature. We note
here that the referenced studies employ a range of applica-
tions, approaches and assumptions; some estimate the rate,
luminosity function and source rate evolution [1,4], some as-
sume a set form of the luminosity function, structured jet
profile or binary neutron star merger rate estimates to calcu-
late joint gravitational wave/sGRB rates [2,4,5,6]. However,
the quoted values of PL represent the range of values that
could be adopted in an event rate calculation if choosing a
point estimate approach.
The table compares the values of ΣP(P ) and ⟨V ⟩f/⟨V ⟩p

arising from each PL based on the Fermi-GBM detection effi-
ciency adopted in this study. Due to the varied assumptions
in these studies, results cannot be directly scaled against each
other; in particular, none of the included studies directly cal-
culated 1/⟨V T ⟩1. The main message conveyed by Table 2 is
that in calculations of rates using 1/⟨V T ⟩ the choice in point

1 Recent studies that have calculated ⟨V T ⟩ using a point estimate

have used different assumptions, so are not directly comparable to
this study. For example, Della Valle et al. (2018a) assumed a 1 s

photon fluxes rather than the 64ms adopted here.

estimate is highly sensitive can lead to a large variation in
rate estimates. The use of a detector flux efficiency curve
allows one to calculate the integral of equation (10) to ∞,
negating the choice of a single flux limit. By folding in the
detection efficiency Σz(z) will allow the integral to smoothly
converge towards zero rather than have an abrupt cutoff and
a related overestimate in ⟨V T ⟩. Thus, given the availability of
a detector efficiency function here, we will employ functions
Σz(z) along with eq. (10) for estimating event rates.

It is worth noting in conclusion, this framework is equally
applicable to other quantities referenced as detection thresh-
olds; for example, taking a point estimate of a gravitational
wave detection threshold in terms of a signal-noise-ratio and
integrating out to the horizon distance without considering
the corresponding function Σz(z) would result in a similar
discrepancy.

6 APPARENT STRUCTURED JET
LUMINOSITY

6.1 Luminosity and the angular timescale

A structured jet has an angular dependence on energy
dE(θ)/dΩ and bulk Lorentz factor Γ(θ). The structured jet
profile can be described by an ultra-relativistic core without
sharp edges that smoothly transforms to a milder relativistic
outflow at greater angles (Lipunov et al. 2001; Rossi et al.
2002; Zhang & Mészáros 2002; Salafia et al. 2016a; Salafia &
Ghirlanda 2022; Salafia et al. 2023).

Using this formulation to also describe the angular depen-
dence of luminosity, dL(θ)/dΩ, one can gain valuable insights
on the form of the GRB luminosity function (Salafia et al.
2023) and allow inferences from an observed flux (Howell
et al. 2019). However, to apply this prescription requires an
acknowledgment of certain limitations. In particular,the vari-
ability from internal shocks within the jet leads to a series of
short emission pulses which can overlap and modify the emis-
sion (Salafia et al. 2016b). Since an energy is a cumulative
measure that integrates all emissions throughout the burst,
the impact of pulse overlaps on this quantity is diluted over
the total burst duration.

To understand the effect of pulse overlap, in what follows
we will take a rather simplified approach. Firstly, one must
consider the angular timescale, τθ = Rγ/Γ(θ)

2 c, which rep-
resents the time difference between the arrival of photons
emitted at zero latitude and at an angle 1/Γ at a γ-ray emit-
ting radius, Rγ . A smaller value of tang indicates less overlap
in the pulses.

To illustrate this, let us set the total observed GRB du-
ration by τGRB = τE − τJ,B + τθ where τE is the activity
timescale of the jet engine and τJ,B is the timescale in which
the jet breaks out from the merger ejecta. One can assume
that τE ⩾ τJ,B to avoid most of jet energy to be deposited
in the cocoon rather than the jet (Ramirez-Ruiz et al. 2002;
Beniamini et al. 2020). If we then assume τE > τθ, the ob-
served duration is set by τGRB ∼ τE and an average isotripic
equivelent luminosity can scale approximately with the en-
ergy Liso ∼ Eiso/τE ∼ Eiso/τGRB (Salafia et al. 2020; Salafia
& Ghirlanda 2022). Furthermore, if one additionally assumes
that ratio of peak luminosity to the average luminosity has
no angular dependence one can formulate a luminosity profile
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that takes the form of the jet profiles for energy dE(θ)/dΩ.
To continue we will therefore make the important assumption
that τE > τθ (Salafia et al. 2020). We note however that this
is dependent on the range of the parameters Γ and Rγ as well
as the structured jet profile; we further discuss and illustrate
this subtle effect in Appendix A using a toy model.

6.2 Structured jet models

As the goal of this study is to investigate the effect of jet
geometry on event rates we will employ two different struc-
tured jet profiles. We consider apparent forms of the jet pro-
file which include the effects of relativistic beaming, which
enhances the observed brightness at off-axis viewing angles.
The intrinsic structured jet profile describes the angular

distribution of energy dE(θ)/d(Ω) and Lorentz factor Γ(θ).
This has been generally modelled using simple Gaussian or
power-law jet profiles. Different to an intrinsic jet profile
which is independent of the observer’s perspective an appar-
ent jet profile takes into account relativistic aberration effects
that describes how the jet appears to an observer.
We adopt here two models: the first is an intrinsic structure

that takes a Gaussian form which is modulated by relativistic
beaming effects to produce an apparent structure. The second
is an analytic broken power law form derived to directly fit
an apparent profile:

6.2.1 Apparent Gaussian profile

This model (model A hereafter) has a Gausssian intrinsic
structure defined by Zhang & Mészáros (2002):

dL

dΩ
(θv) = Lc exp

(
− θ2v
2 θ2c

)
Γ(θv) = 1 + (Γ0 − 1) exp

(
− θ2v
2 θ2c

) (13)

where dL/dΩ(θv) is the luminosity per unit solid angle, and
Γ(θv), the Lorentz factor of the emitting material. The pa-
rameter, θv, is the viewing angle, θc, a parameter that defines
the sharpness of the angular profile. The parameters Lc and
Γ0 are the maximal values of the core luminosity and Lorentz
factor at the center of the jet.
The observed isotropic equivalent γ-ray luminosity,

4πdL/dΩ(θv) for an observer positioned at an angle θv from
the axis of the jet is:

L(θv) =

∫ π/2

0

∫ 2π

0

δ3D(θ, ϕ, θv)

Γ(θ)

dL

dΩ
(θ) dϕ sin θdθ (14)

Here, δD is the relativistic Doppler factor, cubed to account
for time dilation and abberation effects; it is a function of the
polar angle θ, the azimuthal angle ϕ and the viewing angle
θv. It takes the form:

δD(θ, ϕ, θv) =
1

Γ(θ) (1− β(θ) cos ξ)
(15)

where β(θ) is the velocity of the outflow at an angle, cos ξ,
relative to the observer; this latter factor is given by.

cos ξ(θ, ϕ, θv) = cos θ cos θv + sin θ sinϕ sin θv (16)

Figure 7. The apparent structured jet profiles adopted in this
study are plotted as an isotropic equivalent luminosity based on a

source at the distance of GRB 170817A . Model A is based on a

Gaussian intrinsic profile (shown by the dashed curve) and model
B a broken power law form based on a population inference of

sGRBs (Salafia et al. 2023). The shaded horizontal band shows

the Fermi-GBM observed values of luminosity in the 50-300 keV
band for GRB 170817A.

6.2.2 Apparent broken power-law profile

To circumvent strong theoretical constraints on the intrinsic
profile, Salafia et al. (2023) presented an analytical broken
power law model of the apparent structured jet profile. This
model (model B hereafter) takes the following form:

L (θv) = Lc

[
1 +

(
θv
θc

)4
]−αL/4 [

1 +

(
θv
θw

)4
]−(βL−αL)/4

A full inference of universal observed sGRB properties
yielded estimates for several characteristics, including the
structure parameters, apparent luminosity function, and
source evolution. We adopt the best parameters based on
the flux-limited sample, which are: s=3.0, θc=3.0◦, αL=4.9,
βL=1.9 and a truncation angle θw=64.5◦.

Figure 7 shows these two structured jet profiles assuming
a source at the distance of GRB 170817A. The shaded hor-
izontal band shows the two models are comparable with the
observed isotropic equivalent luminosity of GRB 170817A,
1.4 ± 0.5 × 1047 erg s−1 coinciding with a viewing angle of
20± 5 deg (Mooley et al. 2018b). The most likely maximum
viewing angle maximum requires a consideration of the ac-
tual detection efficiency at a given flux. However, for an ap-
proximate estimate we note that in Goldstein et al. (2017)
GRB 170817A would have been detected at 50% of its ob-
served brightness during an untargeted search and 44% in a
targeted search. Using a 50% value of the observed flux in the
50-300keV band we find 1.1 ph s−1 cm−2 which equates to an
efficiency of less than 1%. We use this value to produce the
blue horizontal band that infers that the maximum viewing
angle for a GRB 170817A-like burst would be 25 deg based on
an isotropic equivalent luminosity of 7.1±2.4×1046 erg s−1 .
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Study PL ΣP(P ) ⟨V ⟩f/⟨V ⟩p
(ph s−1 cm−2 ) %

[1]Wanderman & Piran (2015) 2.37 17.2 1.3

[2] Clark et al. (2015) 2.37 17.2 1.3
[3] Abbott et al. (2017d) 2.0 0.05 1.7

[3] Zhang & Wang (2018) 2.3 14.2 1.4

[4] Howell et al. (2019) 1.05 † 0.2 4.4
[5] Ronchini et al. (2022) 0.5 < 0.1 †† 13.4

[6] Patricelli et al. (2022) 0.27 < 0.1 †† 33.1

Table 2. A selection of peak flux thresholds point estimates available in recent literature for Fermi-GBM 64ms peak fluxes in the 50-300
keV band. We show also the projected values of ΣP(P ) and estimates of ⟨V ⟩f/⟨V ⟩p based on the use of these point estimates. We note

the studies above are varied in goal and incorporate a variety of different parameters and assumptions other than PL; they are presented
for illustration only. † Based on the threshold 95% of the Fermi-GBM sample had been detected †† Quoted PL were below the lower limit

of the flux range of the function ΣP(P ).

7 EFFECT OF JET GEOMETRY ON RATE
ESTIMATES RATES

As widely understood, and as illustrated in Figure 1, the de-
tection of GRB 170817A would not have been possible had
the burst originated from high-z (see also Goldstein et al.
2017). Such a scenario would have negated the ability to ob-
serve the wider angled emissions of a structured jet that were
accessible at lower-z. Understanding this allows us to make
an important distinction that relates to the true meaning of
Fig. 1. The maximum distance in that plot represents that
of a GRB 170817A-type burst, that is observed at the same
viewing angle with each increment of peak flux; in this case
∼ 20◦. Taking this interpretation, we immediately see that
the true maximum distance would correspond to the same
burst observed face-on or within the core of the relativistic
jet.

Although this realisation is quite intuitive, a framework
for the relation between maximum viewing angle and dis-
tance relation and its implications was presented in How-
ell et al. (2019); based on the adopted structured jet pro-
file and given Fermi-GBM flux limit, that study suggested
a maximum viewing angle of around ∼ 22◦ at the distance
of GRB 170817A. Their Fig. 5 suggested that the true (on-
axes) maximum distance was order z = 1. We will revisit this
relation in section 7.1.

The distinction between a low-z sGRB observed through
a wide-angled emission or a distant event observed on-axis
has important implications for event rate estimates. For the
low-z scenario, the estimated ⟨V T ⟩ can result in elevated es-
timations of the intrinsic event rate; the perceived rarity of
the event, in comparison with the more general source pop-
ulation, is artificially boosted by geometrical effects. To il-
lustrate this further it is useful to revisit the effect on the
function Σz(z) in equation (10).

Figure 8 shows how, for a burst with a 170817-like struc-
tured jet profile (we assume model A), the function Σz(z)
is dependent on the viewing angle. As shown by the ranges
of the efficiency curves with z, observations at a wider view-
ing angle would have a low-flux contributions and thus only
be accessible at low-z; in this case the z contribution to the
integral over dVc(z)/dz would be minimized resulting in a
small ⟨V T ⟩ and thus an inflated rate estimate. The inverse
scenario corresponds to a burst observed on-axis within 5◦. In
this case the detection efficiency is optimal to nearly z ∼ 1,
so the integral limits over z would result in a larger ⟨V T ⟩

Figure 8. The Fermi-GBM detection efficiency with redshift for
a GRB 170817A-type burst viewed at a range of viewing angles.

In comparison with Fig 4 we see that the detection efficiency is

optimised for more on-axis bursts that occur at higher-z which
due to source rate evolution are predominantly more frequent.

and a lower rate estimate. Its interesting to note that due to
source rate evolution, the higher-z bursts that are observed
most frequently will contribute less to event rate estimates
than the rarer low-z observations.

Figure 9 follows from Fig. 8 to show how the inferred ap-
parent rate will depend on the viewing angle of the sGRB.
The rate is shown as a function of viewing angle for the 2 dif-
ferent structured jet models shown in Fig. 7. The plot shows
how GRB 170817A, with an expected viewing angle of or-
der 20◦, would suggest an apparent rateO(100s)Gpc−3 yr−1 .
The plot also shows consideration only of an intrinsic jet pro-
file (for the case of a Gaussian profile) as opposed to an ap-
parent profile would lead to vastly inflated rate estimates.
This effect is due to the steep drop off in flux within 20◦for
the model presented in Fig.7.

Regardless of the model considered, Fig. 9 reinforces how
larger viewing angles correspond to larger rate estimates. The
plot also suggests how the field may evolve: we see that an im-
proved understanding of the event rate, coupled with firm ob-
servational estimates of z and and good estimates of viewing
angle could eventually allow one to place constraints on struc-
tured jet profiles. Such a scenario may be possible by coupling
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Figure 9. The apparent rate inferred by a GRB 170817A-like
burst at 42Mpc observed at different viewing angles. The plot

shows how two different models (as shown in Fig. 7) show apparent

rate estimates that increase with viewing angle.

higher sensitivity γ-ray detectors with multi-messenger obser-
vations.
The discussion in this section emphasizes how ignoring the

effect of a source orientation can lead to possible false inter-
pretations. For example, seemingly anomalous low-z events of
a particular class could be suggested as members of a under-
luminous sub-population (i.e. Howell & Coward 2013; Siellez
et al. 2016). Thus, such outliers could be a manifestation of
geometry rather than time-volume effects (see also the related
discussion in Salafia et al. 2016a).
One should note that for high-z GRBs, a top-hat profile is

a reasonable assumption, so a simple scaling can be applied
between observed and intrinsic rates. At low-z however the
extended angular structure of the jet becomes more signif-
icant in influencing rate estimates. Understanding the rela-
tionship between detection and geometry for these lower-z
detections can provide useful insights into the actual rarity
and rate of GRB 170817A-type bursts. To clarify the discus-
sions that follow, it’s important to define three different rates
that can be inferred from observations:

Apparent local rate, RA,L: This is the rate inferred by
observing a low-z (GRB 170817A-like) burst for which the
wider angled emissions of a structured jet are detectable.
This is a geometrical dependent rate and for a given z is a
direct result of the jet profile of an individual burst. If one
approximately assumes that on axis emissions would be from
within ∼ 10◦ , Fig. 8 suggests that this rate would dominate
for bursts observed within z ∼ 0.05.

Apparent cosmological rate, RA,C: This is the inferred
rate of sGRBs observed from outside a local volume z ∼ 0.05
which are predominantly on-axis. At such distances the
sensitivity to the prompt emission will not be sufficient
to detect the lower-flux contributions from the wings of
a structured jet. This rate is also termed apparent, as at
high-z, detection is dependent on the orientation of the
relativistic beaming.

Parameter Definition

RI Intrinsic rate of sGRB progenitors
RA,L Apparent local low-z rate of sGRBs

RA,C Apparent cosmological rate of sGRBs

RBNS Intrinsic rate of binary neutron star mergers
PO Observed flux

PT Flux threshold point estimate

PR representative flux: can be PO or PT

Σz(z) GRB detector efficiency function with z

ΣP GRB detector efficiency function with peak flux

θv The viewing angle
θv,M,J Maximum viewing angle based on the observed flux

θ̂v,M,J Most likely θv,M,J given ΣP and z

θ̂v Most likely θv based on ΣP and z

Table 3. Table of Parameters: Lists the rates, viewing angles, and

detector efficiencies used in this study, essential for the analysis

presented. Parameters dependent on a structured jet model are
indicated by the subscript J.

Intrinsic rate, RI: This is the true intrinsic rate of occur-
rence in the Universe, regardless of beaming or related geom-
etry. In this paper we will assume the majority of sGRBs
result from BNS mergers, so can take the approximation
RI ∼ RBNS.

Table 3 presents the parameters employed in this study,
including the above rate definitions, viewing angles, and de-
tector efficiencies. These parameters are crucial for analyz-
ing the observational data and theoretical models discussed
herein.

7.1 The relationship between RA,C and RA,L

The relationship between RA,C from RA,L for a particular
burst can be derived by assuming a dependence on geometry
if one assumes a model of the structured jet profile. Given
a sample of low-z sGRB detections, this relationship could
allow constraints on the jet profile parameter space by future
sensitive instruments.

One approach to relate RA,C with an estimated RA,L is to
extend the framework of Howell et al. (2019) which explores
the interplay between the maximum viewing angle θv,M and
redshift. For a given value of z and a structured jet luminosity
profile given as L(θ), rearranging equation (7) we observe a
peak flux:

P (θv) =
L(θv)

4πDL(z)2
C−1

N

k(z)

1

1 + z
. (17)

So for a given z, a flux value maps to some viewing angle θv.
Given for some reference value of peak flux PR there is an as-
sociated maximum viewing angle θv,M. In the study of Howell
et al. (2019) a threshold peak flux value was employed as a
point estimate of sensitivity, so PR = PT. One can could also
use the observed value of peak flux, PO, in which PR = PO,
which is more appropriate for calculating Σz(z) to estimate
an apparent rate, RA,C.

Figure 10 shows how the maximum viewing angle – redshift
dependence, θv,M – z, varies with a range of PR. At low-z there
is a greater likelihood of detecting an off-axis event which can
artificially boost approximations of the event rate based on
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Figure 10. The maximum observable viewing angle as a function
of redshift for a sGRB with a structured jet profile based on model

A. We assume here 64ms peak fluxes in the 50-300 keV band. The

plot shows the interplay between detection threshold and opening
angle with increasing redshift. A lower flux sensitivity, that could

allow one to probe jet structures at low-z, is balanced by decreased

detection probability. This is shown for Fermi-GBM in Figure 2.

volumetric arguments. Thus the need to separate an apparent
local rate RA,L from rates determined at higher-z, RA,C.

This effect also impacts the ability to make inferences on
the intrinsic rate RI as the observed properties of the jet
vary with z. This introduces uncertainties into simple scaling
assumptions for rates through a standard beaming correction,
(1−cos θj), where θj represents an average half-opening angle
of the jet. This highlights the need for an understanding of
these geometric effects. Such an analysis will enable us to
more accurately convert between the observed rates, RA,L

and RA,C, and the intrinsic rate RI, thereby enhancing our
understanding of the rate at which events occur. With this
in mind we will derive a geometric scaling relation for sGRBs
in the following section.

7.2 A Geometric Scaling Relation for sGRBs

As the more frequent higher-z population is expected to dom-
inate detection samples, it is crucial to emphasize that these
events will likely be observed closer to the jet core. Conse-
quently, it is a reasonable approximation that the viewing
angle approximates the core angle θc. However, when cal-
culating volumetric rates, the disproportionate influence of
nearer events due to geometric bias must be considered for
accurate estimates.

To address this, a simple scaling relation is desired to con-
vert an apparent rate local rate RA,L from its higher redshift
analogue RA,C. Such a scaling will be dependent on z and
PR and can be represented by:

Figure 11. The geometric scaling factor ηθ,J(z, PR) is shown for
a range of z for given PL and using structured jet model A. This

factor is a scaling that can be applied to rate estimates obtained

from sources with structured jets at low z; the proximity means
such estimates are artificially boosted by the accessibility to larger

viewing angles. At higher-z the effect is minimal and the factor

converges towards unity.

ηθ,J(z, PR) =



1 θv,M,J ⩽ θc,J

1− cos θc,J
1− cos θv,M,J(z, PR)

θc,J > θv,M,J ⩽ θT

1− cos θc,J
1− cos θT

θv,M,J > θT

(18)

where the subscript J underscores that this relationship re-
lies on a specific structured jet profile; we will adopt this
convention for the remainder of this study, in particular for
the jet core angle θc,J and the maximum viewing angle θv,M,J.
This function is derived based on reasonable theoretical as-
sumptions and while reliant on the structured jet profile, in-
troduces a geometric correction across three distinct redshift
domains, corresponding to the value of θv,M,J.
At high-z, where θv,M,J < θc,J, the observable flux predom-

inantly originates from the jet core, rendering the observed
rates, RA,L and RA,C, comparable. For lower z values, contri-
butions from outside the core become significant, with θv,M,J

constrained by a truncation angle θT, independent of flux sen-
sitivity. We will assume a truncation of order 30◦as supported
by numerical simulations (i.e. Rezzolla et al. 2011).

Figure 11 illustrates the correction term ηθ,J against red-
shift for a structured jet profile based on model A, consider-
ing various PR values. At higher-z, the correction uniformly
equals one, indicating dominance of the jet core in detections.
Conversely, at lower-z, contributions from the jet’s wings are
accessible, enhancing the observed rate. We see equation (18)
facilitates scaling of apparent observed rates from off-axis,
low-z bursts to a standardized apparent rate RA,C, which
is more representative of the sGRB population. This correc-
tion diminishes the exaggerated impact of closer events on

MNRAS 000, 000–000 (0000)



Short gamma-ray burst rate 11

Figure 12. The inverse of ηθ,J(z, PR) shows the actual bias in rate
estimation as a function of redshift due to a structured jet profile.

We see that a source detected at low-z can have an apparent rate

RA,L orders of magnitude greater than that estimated from the
same source observed at higher-z.

rate estimates, offering a more balanced understanding when
geometric bias is considered.
Figure 12 is a simple inversion of Figure 11 to eluci-

date the scaling impact of equation (18) on an apparent lo-
cal rate estimate. As an illustration, taking a simple flux
point estimate approach at the redshift of GRB 170817A
(z ∼ 0.009), the correction term 1/ηθ,J(z, PR), for a standard
peak flux value of PR ∼ 2 ph s−1 cm−2 , is approximately
two orders of magnitude based on model A. This significant
correction suggests that the inferred rates RA,L ∼ O(100)
Gpc−3 yr−1 , as reported by Zhang et al. (2018); Della Valle
et al. (2018b); Salafia et al. (2022), are consistent with esti-
mates of RA,C ∼ O(10) Gpc−3 yr−1 , as found in Nakar et al.
(2006); Coward et al. (2012); Wanderman & Piran (2015),
when the geometric bias is accounted for.
In the following sections, we aim to apply this methodol-

ogy to GRB 170817A’s apparent local observed rate, RA,L,
converting it to a cosmological apparent rate RA,C.

8 THE SGRB RATE DENSITY

8.1 Estimating apparent rates for the Fermi-GBM
sGRB sample

Table 4 shows the sample of bursts detected by Fermi-GBM
with redshift information. We will use this sample to esti-
mate the apparent local observed rates, RA,C, and show that
the rate sample is dominated by GRB 170817A. The table
outlines the peak flux and spectral information required to
estimate the detection efficiency with redshift Σz(z) for each
burst. We use data from the 50-300 keV detection band for
each burst.
Other than for GRB 170817A, the redshift measurements

were provided through host galaxy identifications following
a precise Swift or optical localization. For GRB 170817A we
take the distance value of 40.7+ /− 2.4Mpc derived through
surface-brightness fluctuation for the distance to NGC 4993
by Cantiello et al. (2018).

Figure 13. The sGRB apparent local rate posterior based

only on the most dominant burst in the Fermi-GBM sam-

ple, GRB 170817A. The maximum a posteriori rate and
90% credible intervals (shown by the shaded region) is

RA,L =303+1580
−300 Gpc−3 yr−1 .

Table 5 details the calculated rest frame isotropic equiv-
alent luminosities, Liso, sensitive ⟨V T ⟩ and volumetric local
apparent rates RA,L for each burst. We note that Liso is di-
rectly extrapolated using the flux and z value of each burst;
therefore for low-z bursts such as GRB 170817A, this repre-
sents an apparent luminosity.

The ⟨V T ⟩ estimates are determined through equation (10)
and the values of RA,L are the median values and the 90%
credible intervals of the posterior distributions estimated
through the framework described in sections 2 and 7.

The data presented in Tab. 5 reveal that the estimates
of RA are overwhelmingly influenced by the closest and, in
terms of luminosity, the least bright burst in our sample,
GRB 170817A. To illustrate the relative contributions of each
burst to the total volumetric rate, we display the maximum
detection distances for each burst, calculated with a refer-
ence flux limit of 2.2 ph s−1 cm−2 which is the value at which
detection efficiency is 10%. For GRB 170817A, this distance
reaches a maximum of 42 Mpc. The second nearest burst,
GRB211211A, boasts a significantly higher peak flux, making
it visible up to the largest distance in our sample, approxi-
mately 5.5 Gpc. This burst yields the highest estimate of
⟨V T ⟩, and consequently, the lowest estimate of RA,L. Given
that GRB 170817A predominantly influences the rate calcu-
lations, our subsequent analysis will primarily concentrate on
this particular burst.

Figure 13 presents the posterior probability distribution
for RA,L, centering on the pivotal burst, GRB 170817A.
Our analysis yields an apparent sGRB rate of RA =
303+1580

−300 Gpc−3 yr−1 . A review of Table 1 demonstrates that
our findings are closely aligned with the estimates made by
Della Valle et al. (2018a); Salafia et al. (2022), despite the
utilization of different assumptions as outlined in the table
notes. In the next section we will proceed to employ the ge-
ometric scaling relation ηθ,J(z, PR) in order to derive a rep-
resentative value for RA,C.
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Table 4. The flux, spectral data and redshifts data for the sample of sGRBs observed by Fermi-GBM with secure redshift measurements.

All parameters are provided for the 50-300 keV band. Values for the 64ms peak fluxes are shown in photon count and energy units. The
spectra models are: power law (pl), exponentially cut-off power law (cpl) and Band function (Band 2003). The spectra are descrobed by

a peak energy (EP ) and low (αS) and high (βS) energy power-law indexs where appropriate. We also show the redshift measurement for

each burst. Data is taken from the Fermi-GBM burst catalog (von Kienlin et al. 2020) at HEASARC: https://heasarc.gsfc.nasa.gov/
W3Browse/fermi/fermigbrst.html

GRB Peak Photon Flux Peak Energy Flux Spectrum EP αS βS redshift
[64ms Ph s−1cm2] [64ms erg s−1cm2 ×10−7]

170817A 2.3± 0.8 5.2± 1.8 cpl 229.0± 78.0 0.8± 1.4 - 0.0093

211211A 201.0± 2.9 457.0± 6.7 band 1473.0± 76.0 −0.8± 0.0 −2.5± 0.1 0.076

080905A 2.4± 0.3 16.1± 2.0 pl - −1.3± 0.1 - 0.12
150101B 13.0± 1.4 28.0± 3.1 cpl 550.0± 190.0 −0.8± 0.2 - 0.13

160821B 2.5± 0.3 12.6± 2.1 pl - −1.6± 0.1 - 0.16
150101B 1.0± 0.3 4.8± 1.1 pl - −2.4± 0.3 - 0.13

Figure 14. The sGRB apparent cosmological rate posteri-

ors for two structured jet models based only on the most
dominant burst in the Fermi-GBM sample, GRB 170817A.

The maximum a posteriori rate and 90% credible in-

tervals are RA,C =6.15+31.2
−6.06Gpc−3 yr−1 for model A and

RA,C =3.34+16.7
−3.29Gpc−3 yr−1 for model B.

8.2 The Apparent Cosmological rate from
Fermi-GBM data

To derive the posterior distribution on RA,C we apply the
same framework as in the previous section, but this time
modify equation (3). We apply the inverse geometric scaling
relation 1/ηθ,J(z, PR) to the function ⟨V T ⟩ which essentially
scales the efficiency function Σz(z) to account for the redshift
dependent effects of beaming:

⟨V T ⟩ = T

∫ ∞

0

Σz(z)

ηθ,J(z, PR)

dVc(z)

dz

1

(1 + z)
dz . (19)

Here, to ensure a consistent scaling PR is set to the observed
peak flux 2.27 ph s−1 cm−2 at each step of z.
Figure 14 presents the posterior probability dis-

tributions for RA,C which yield apparent cosmo-
logical rates of RA,C =6.15+31.2

−6.06 Gpc−3 yr−1 and
RA,C =3.34+16.7

−3.29 Gpc−3 yr−1 for models A and B re-
spectively. These estimates are interestingly in line with
previous estimates based on more distant events observed

by Swift (Wanderman & Piran 2015; Coward et al. 2012).
Given the smaller field-of-view and higher sensitivity of
Swift, statistically one would expect this instrument to
make most detections from the more frequently occurring
bursts at relatively higher-z and thus a more face-on orien-
tation. Thus the relative geometrical corrections required for
Swift would be less significant.

9 COMPARING THE RATE DENSITIES OF
BINARY NEUTRON STAR MERGERS AND
SGRBS

Prior to GRB 170817A, when GRB rate approximations gen-
erally assumed a top-hat geometry, an observed rate RA,C

was often related to an intrinsic rate RI by the scaled relation
(1− cos θj) where θj is the average observed jet half-opening
angle. For a jet to produce an sGRB, it must first success-
fully form and then propagate through the merger ejecta.
This depends on a complex interplay of factors including the
post-merger remnant (Kiuchi et al. 2023) density and struc-
ture of the ejecta (Bromberg et al. 2012; Lazzati et al. 2017b;
Hamidani et al. 2020), and the jet’s intrinsic properties (Got-
tlieb et al. 2023; Kathirgamaraju et al. 2019). Therefore, this
a relation can also provide insights on the fraction of success-
ful jets assuming that RI = RBNS (Coward et al. 2012; Sarin
et al. 2022; Rouco Escorial et al. 2023).

Given that most sGRBs are observed at distances in which
wider angled emissions are not accessible (O’Connor et al.
2024), a top-hat approach can allow reasonable approxima-
tions. However, in the strictest sense, for detailed modeling,
a top-hat approximation does not account for the observa-
tional dependency of a given jet profile with z as emphasized
by Fig.4. This latter fact will be key when future sensitive in-
struments are able to accumulate more low-z events viewed
at wider angles.

Without access to a standard value of θj the methodology
presented in this paper can provide a different approach to
estimate of the successful jet fraction. Under a SJ scenario,
the maximum viewing angle θv,M,J can be a surrogate for θj
as it naturally incorporates a z dependency.

As an illustration, if we assume here that the fraction of
successful jets is 100%, then we can derive a representative
BNS rate, R′

BNS, through:

MNRAS 000, 000–000 (0000)
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Table 5. The rate related parameters calculated for the sample of Fermi-GBM sGRbs with secure redshifts as shown in table 4. The

first column shows the sGRB name, Liso is the apparent luminosity. The quantity ⟨V T ⟩ is the product of the observation time T and
the volumetric reach of the search V calculated through equation (10). A maximum detection distance DL,max, which is highly sensitive

to the chosen flux threshold, is provided for illustration using a reference peak flux value 2.2 ph s−1 cm−2 which is the value at which

the Fermi-GBM detector has a 10% detection efficiency. The quantity RA,L is the apparent local rate. The last four columns are model
dependent as indicated: the quantity RA,C is the apparent cosmological rate determined using the framework outlined in section 7; a

measure of the maximum viewing angle θv,M is shown for each model for illustration and is calculated using the same reference value of

peak flux as used for DL,max.

GRB Liso VT DL,max RA,L RA,C,modelA θv,M,modelA RA,C,modelB θv,M,modelB

[erg s−1 ] [yr Gpc3] [Gpc] [yr−1Gpc−3] [yr−1Gpc−3] [deg] [yr−1Gpc−3] [deg]

170817A 1.42× 1047 1.65× 10−3 4.16× 10−2 300+1600
−300 5.9+30

−5.8 18.78 2.9+14
−2.8 25.74

211211A 6.14× 1051 2.20× 102 3.64 0.0023+0.0064
−0.0013 0.0023+0.0064

−0.0013 8.76 0.0023+0.0064
−0.0013 7.20

080905A 1.10× 1051 17.70 1.15 0.028+0.093
−0.027 0.006+0.014

−0.005 7.06 0.011+0.028
−0.0096 5.17

150101B 4.20× 1050 40.33 1.63 0.012+0.034
−0.011 0.0036+0.0091

−0.0026 8.68 0.0065+0.015
−0.0055 7.11

160821B 6.76× 1050 28.85 1.41 0.017+0.051
−0.016 0.003+0.008

−0.002 7.45 0.0053+0.012
−0.0043 5.55

150101B 2.54× 1050 6.78 0.78 0.074+0.29
−0.071 0.0077+0.018

−0.0066 7.70 0.0099+0.025
−0.0088 5.84

R′
BNS = RA,C · [1− cos(θv,M,J(z, PR)]

−1 . (20)

Here the variable RA,C is transformed by scaling it with a
constant factor [1 − cos(θv,M,J(z, PR)]

−1. Therefore the pos-
terior distribution, P (R′

BNS) must be obtained from P (RA,C)
through a transformation of variables. If we set ΛSF =
[1− cos(θv,M,J(z, PR)]

−1 then:

P (R′
BNS) = P

(
RA,C

ΛSF

)
× 1

|ΛSF |
(21)

where the Jacobian of the transformation, 1/|ΛSF | modifies
P (RA,C) to account for the change in scale ensuring that the
total probability remains equal to unity. The absolute value
is used to ensure the scale factor is positive.
As a demonstration we take the maximum viewing angle of

both model-A and model-B at a representative redshift given
by the median value of the GBM redshift sample provided
in Table 4, zR = 0.1. Using a reference peak flux, PR = 2.2
ph s−1 cm−2 , the 10% efficiency value of GBM as used in
Table 1, we find, using in Eq. 17, values of θv,M,A = 10.8◦and
θv,M,B = 9.3◦.
Figure 15 shows the representative posterior distributions

of R′
BNS using θv,M,A and θv,M,B. We find rates of R′

BNS =
340+1700

−330 Gpc−3 yr−1 and R′
BNS = 250+1300

−250 Gpc−3 yr−1 for
model-A and model-B respectively. For comparison with es-
timated BNS rates the shaded region shows the RBNS range
of 10− 1700 Gpc−3 yr−1 from Abbott et al. (2021). We sug-
gest that this methodology can be used to draw comparisons
between sGRB and BNS merger rates but also to obtain es-
timates of the fraction of successful sGRB jets.

10 CONCLUSIONS

In this study we have reconciled the discrepancies between
the apparent rate estimates of short gamma-ray bursts from
the singular event GRB 170817A and predictions based on
pre-2017 top-hat jet models. By incorporating Fermi-GBM
detection efficiency and structured jet profiles into our anal-
ysis, we have developed a comprehensive framework that ac-

Figure 15. The representative BNS rate posteriors P (R′
BNS)

based on the two structured jet models A and B. These are ob-

tained by applying a transformation to the sGRB apparent cosmo-

logical rate posteriors P (RA,C) of Fig 14. The BNS merger rates
constraints of Abbott et al. (2021) are indicated by the shaded

area.

curately accounts for observational biases introduced by jet
geometry at low redshifts.

Our results emphasize the importance of geometric correc-
tions in understanding the observed discrepancies in sGRB
event rates. Specifically, we have shown that elevated sGRB
event rates from sources at low-z are primarily driven by ge-
ometrical effects. Once the geometric biases are understood
and removed, the rates align with previous population rates
for sGRBs obtained from high-z sources. We suggest that
under a structured jet scenario, event rates determined from
low-z, RA,L, are apparent due to geometry and rates deter-
mined from higher-z, RA,C are apparent due to beaming ef-
fects.

As a demonstration, we have determined an ap-
parent low-z rate of GRB 170817A-like events of
RA,L =303+1580

−300 Gpc−3 yr−1 . When we recalculate the
rates, adjusting for geometrical effects, we find apparent
cosmological sGRB rates of RA,C =6.15+31.2

−6.06 Gpc−3 yr−1 and
RA,C =3.34+16.7

−3.29 Gpc−3 yr−1 for models A and B respec-
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tively. These numbers are in line with other studies of high-z
sGRBs (Nakar et al. 2006; Coward et al. 2012; Wanderman
& Piran 2015; Mandel & Broekgaarden 2022).
Notably, our proposed framework is model-dependent, em-

phasizing that a more confident understanding of rates can
help discriminate between different structured jet models.
This model dependency is crucial as it suggests that enhance-
ments in our understanding of detection efficiencies and jet
geometries could lead to more refined models that accurately
predict the occurrence rates of sGRBs. It is a logical next
step to test the scaling relations in population inference of
the rate and intrinsic luminosity function of sGRBs.
An important aspect of our study is the comparison be-

tween estimating sGRB rates using detection efficiencies and
point estimates. We have demonstrated that using detection
efficiency functions, rather than single flux threshold point
estimates, provides a more accurate and nuanced approach.
We have shown how rate estimates are highly sensitive to the
chosen flux threshold. Modelling a detector efficiency func-
tion allows for the incorporation of real observational con-
straints and variability in detector sensitivities, thereby of-
fering a substantial improvement over simpler models.
Our study suggests that one cannot exactly convert a rate

RA,C to an intrinsic rate RI as an average beaming factor
does not truly exist; the geometric scaling is both redshift and
structural jet model dependent. Without access to a standard
value of θj we suggest that the maximum viewing angle θv,M,J

could be a surrogate for θj as it naturally incorporates a z de-
pendency. We find that this approach is able to demonstrate
some parity between RA,C and a BNS rate RBNS.
In conclusion, this study underlines the necessity of con-

sidering jet geometry and detection biases when estimating
rates of astronomical phenomena like sGRBs. Our method-
ologies enhance our understanding of these events and set the
stage for future observational strategies and theoretical de-
velopments in γ-ray burst astrophysics. This refined approach
not only facilitates accurate interpretation of apparent rate
estimates but also provides insights into the potential to dis-
criminate between jet models, contributing to a deeper un-
derstanding of the mechanisms driving these extraordinary
cosmic events.

APPENDIX A: THE EFFECT OF THE
ANGULAR TIMESCALE ON THE LUMINOSITY
OF A STRUCTURED JET

To consider the effect of pulse overlap on GRB luminosity, one
must consider the angular timescale tang, which represents
the time difference between the arrival of photons emitted
from different parts of the jet due to the jet’s geometry and
relativistic effects. The variability from internal shocks, mag-
netic reconnections, or other dynamic processes within the
jet leads to a series of short emission pulses. Pulse overlap
occurs when multiple emission pulses overlap in time as ob-
served from a given viewing angle. The degree of overlap is
influenced by both the intrinsic variability of the jet and the
angular timescale.
Figure A1 shows a toy model to examine the effect on vari-

ations in Γ0 and Rγ . We compute Tθ for two values of Rγ

[1012 cm, 1013 cm], the latter corresponding to GRB 170817A

Figure A1. A toy model shows the effect of the angular time scale
τθ with viewing angle θV. The shaded area represents the observed

GRB duration set as τGRB = 2s. The solid curves represent a

structured jet core parameter of θc = 5 and the dashed curves,
θc = 2. The colors of the curves represent different values of Γ0

and the upper and lower panels are based on the indicated values

of the γ-ray emitting radius, Rγ . The plots show that τθ becomes
larger with with θV leading to increased pulse overlap. This effect

is enhanced with smaller θc and larger Rγ .

and model the Lorentz factor as a function of θV through
Γ(θ) = Γ0/(1 + (θ/θc)

2) so that:

τθ(θV) =
Rγ

cΓ2
0

[1 + (θV/θc)
2]2 .

We further set two values of both Γ0 [250, 1000] and θc [2◦,
5◦].
The plots show that to the jet core, τθ will be small relative

to the intrinsic duration of the pulses; thus the pulses will
appear more distinct and overlap less allowing pronounced
variability in the observed light curve. When τθ is large at
wider angles, pulses emitted from different parts of the jet
will overlap more in time. This overlap can smooth out the
observed light curve, reducing the apparent variability. One
can see that the latter effect is more pronounced with lower
Γ0, higher values of Rγ and a more compact value of θc.
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Lazzati D., López-Cámara D., Cantiello M., Morsony B. J., Perna

R., Workman J. C., 2017b, ApJL, 848, L6

Lien A., Sakamoto T., Gehrels N., Palmer D. M., Barthelmy S. D.,

Graziani C., Cannizzo J. K., 2014, ApJ, 783, 24

Lipunov V. M., Postnov K. A., Prokhorov M. E., 2001, Astronomy

Reports, 45, 236

Mandel I., Broekgaarden F. S., 2022, Living Reviews in Relativity,

25, 1

Margutti R., et al., 2018, The Astrophysical Journal, 856, L18
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