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ABSTRACT

Spiking Neural Networks (SNNs) offer a biologically inspired alternative to conventional artificial
neural networks, with potential advantages in power efficiency due to their event-driven computation.
Despite their promise, SNNs have yet to achieve competitive performance on complex visual tasks,
such as image classification. This study introduces a novel SNN architecture designed to enhance
computational efficacy and task accuracy. The architecture features optimized pulse modules that fa-
cilitate the processing of spatio-temporal patterns in visual data, aiming to reconcile the computational
demands of high-level vision tasks with the energy-efficient processing of SNNs. Our evaluations
on standard image classification benchmarks indicate that the proposed architecture narrows the
performance gap with traditional neural networks, providing insights into the design of more efficient
and capable neuromorphic computing systems.

1 Introduction

Spiking Neural Networks (SNNs) represent the forefront of a paradigm shift towards more energy-efficient and
biologically plausible computational models. As the third generation of neural network technologies, SNNs offer
a promising alternative to traditional machine intelligence systems by emulating the event-driven characteristics of
biological neural processing [1]. The appeal of SNNs is multifaceted, with their ability not only to operate at lower
power consumption, but also to perform computations in a manner that closely mirrors the spatiotemporal dynamics of
the brain [2]. The spike-based communication protocol of SNNs is especially well-suited for sparse and asynchronous
computations, making it highly appropriate for deployment on neuromorphic chips. These chips are designed to emulate
the neural architecture of the brain, leveraging the inherent sparse activation patterns of SNNs to achieve significant
energy efficiency improvements [3–7].

Despite their potential, SNNs have historically grappled with performance limitations, particularly in complex cognitive
tasks that are easily handled by their ANN counterparts. This has prompted researchers to explore the adaptation of
successful ANN architectures into the spiking domain. For instance, SNNs based on Convolutional Neural Networks
(CNNs) have been developed, enabling the transposition of classic architectures like VGG and ResNet into SNN
frameworks [8, 9]. These adaptations have made significant strides, yet the quest for architectures that can fully exploit
the unique advantages of SNNs continues.

The emergence of the Transformer architecture, originally designed for natural language processing, has sparked a
new wave of innovations across various fields of machine learning [10]. Its success in ANNs has not gone unnoticed
in the SNNs community, leading to the exploration of Transformer-based designs within spiking networks [11, 12].
However, the integration of the self-attention mechanism into SNNs has been challenging, as it relies on operations
that are at odds with the principles of spike-based processing, such as the energy-intensive Multiply-and-Accumulate
(MAC) operations. Recent efforts have sought to reconcile this discrepancy by proposing spike-driven variants of
the self-attention mechanism, aiming to retain the computational efficiency and low power consumption that are
hallmarks of SNNs [13]. These innovations represent a significant departure from traditional Transformer models,
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yet the challenge remains to demonstrate their superiority over existing SNN designs in both performance and energy
efficiency.

In this paper, we introduce an innovative spiking neural network framework called SpikeAtConv, designed to incorporate
the strengths of advanced Transformer models into SNNs. An overview of the SpikeAtConv network is shown in
Figure 1. Inspired by MaxViT, we propose a novel spike-driven transformer module named Spike-Driven Grid
Attention. This module facilitates global spatial interactions within a single block, providing enhanced flexibility and
efficiency compared to traditional spike-driven full self-attention or (shifted) window/local attention mechanisms. The
SpikeAtConv Block, composed of Spike-Driven Grid Attention and ConvNeXt, serves as the core component of the
SpikeAtConv network. Additionally, we have designed various Spiking Neuron (SPK) Blocks to enable a more flexible
neuron activation mechanism, such as the Multi-Branch Parallel LIF SPK (MBPL) Block, which consists of multiple
parallel neurons with different thresholds. The main contributions of this paper are as follows:

1. We design a series of SPK Blocks to explore the effects of multiple neurons with different thresholds and combinations
on network performance. Through extensive experiments, we identify the optimal configuration of the spiking neuron
module, which significantly enhances the computational performance of the model.

2. We develop Spike-Driven Grid Attention, enabling global spatial interactions within a single block. This allows the
SpikeAtConv block to capture both local and global significant features more effectively.

3. We propose the SpikeAtConv network, which is based on the developed SPK Block and SpikeAtConv Block.
This architecture successfully adapts advanced transformer models to the SNN framework, thereby enhancing the
computational performance and efficiency of the model.

4. Extensive eperiments show that the proposed model outperforms or is comparable to the state-of-the-art (SOTA)
SNNs on the datasets. Notably, we achieved a top-1 accuracy of 81.23% on ImageNet-1K using the directly trained
Large SpikeAtConv , which is a SOTA result in the field of SNN.

2 Related Work

Our exploration of Spiking Neural Networks (SNNs) intersects with several key research domains, including the direct
training of SNNs using surrogate gradients, as well as the integration of SNNs with advanced visual models such as
Vision Transformers (ViTs).

ANN to SNN Conversion and Direct Training. The non-differentiable nature of spike functions has traditionally posed
a challenge to applying conventional backpropagation to SNNs [14]. In response to this, researchers have developed
ANN-to-SNN conversion techniques that establish neuron equivalency, discretizing a trained ANN into an SNN [15,16].
Simultaneously, direct training methods using surrogate gradients have been proposed, allowing for the training of
SNNs despite the non-differentiability of the spiking process [17,18]. Our work builds upon these foundations, utilizing
direct training approaches due to their fine-grained temporal resolution and architecture-adaptive flexibility.

Advancements in Conv-based SNNs. The design of Conv-based SNNs has been significantly influenced by the concept
of residual learning from ResNet [19]. Efforts to extend SNNs to deeper architectures have led to the development of
techniques such as tdBN [20], as well as enhancements like SEW-Res-SNN and MS-Res-SNN [16, 21], which have
facilitated the creation of SNNs with over 100 layers.

Vision Transformers in SNNs. The impressive performance of ViTs [22] has prompted a shift from traditional
convolutional neural networks to transformer-based architectures. Our work is particularly inspired by the Meta
SpikeFormer architecture, which aims to bridge the gap between SNNs and ANNs in image classification tasks. While
there have been advancements in ViTs such as PVT [23] and MLP Mixer [24], and explorations of the self-attention
mechanism [25, 26], their application within the SNN domain is still in its infancy. Our goal is to extend the capabilities
of SNNs by incorporating self-attention mechanisms tailored to the spiking nature of these networks.

3 Method

3.1 Overall Architecture

In this study, we propose a spiking neural network architecture called SpikeAtConv, which is inspired by MaxViT
[27–30]. The overall structure of the SpikeAtConv network is shown in Figure 1. MaxViT is a vision neural network
architecture that effectively combines the strengths of Transformers and convolutional neural networks by integrating
self-attention mechanisms with convolutional operations. Building on MaxViT, we modified both the Transformer and
convolutional components to handle and generate spike signals, resulting in a novel SNN model.
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Figure 1: The overview of SpikeAtConv. The model is primarily composed of three components: the Feature
Extraction Layer, the Feature Encoding Layer, and the Decision Layer. Initially, the input image is subjected to
preliminary processing within the Feature Extraction Layer, where essential characteristics are identified. Subsequently,
the Feature Encoding Layer performs a comprehensive analysis to distill salient features from the extracted data. Finally,
the decision layer synthesizes this information to generate the prediction results.

Firstly, the Feature Extraction Layer of the model consists of two Convolutional Neural Network (CNN) layers and a
spiking neuron (SPK) Block. Further details regarding the SPK Block will be provided in the following sections. The
primary function of this layer is to downsample the input image, halving its resolution with a stride setting of 2 in the
first CNN layer. Additionally, it converts continuous image data into neural spike signals, i.e., binary discrete data,
making it suitable for subsequent processing.

Next is the Feature Encoding Layer of the model, which forms the core of the model. It includes four stages, each
performing downsampling at the entrance to halve the resolution of the feature map, with no further downsampling within
the same stage. Each stage consists of a series of SpikeAtConv Blocks, varying in number but collectively achieving
deep feature encoding. The SpikeAtConv Blocks represent our novel integration of CNN, attention mechanisms,
and SNN, designed to enhance the performance of model. Detailed information about these modules is provided in
subsequent sections. The depth of these four stages follows a spindle-shaped distribution; for instance, in the base
model, the depths of the stages are 2, 6, 12, and 2, respectively. This design follows empirical rules of classification
visual neural networks to effectively capture features and facilitate information flow.

Finally, the Decision Layer of the model is responsible for the classification task. It processes the output feature maps
from the previous stages through global pooling, followed by a linear layer to predict the categories. This layer is
designed to be both simple and efficient, capable of transforming complex, high-dimensional features into the final
classification decision. The overall structure of our model leverages traditional methods while incorporating innovative
SNN elements for enhanced performance.

3.2 SPK Block

The Leaky Integrate-and-Fire (LIF) neuron model is a fundamental computational neuroscience model, widely used for
its simplicity and reasonable approximation of biological neuron behavior. The core of the LIF model lies in simulating
the dynamics of the neuronal membrane potential, which is governed by the following differential equation:
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Figure 2: SPKBlock. Based on LIF neurons, we designed multiple SPK blocks to explore the impact of various
hyperparameters and different combinations of multiple neurons on network performance. For example, the MBPL
Block consists of multiple parallel neurons with different thresholds, while the DCL Block is composed of two parallel
branches, each including a convolutional layer and a LIF neuron.

τm
dV

dt
= −(V − Vrest) +RI(t) (1)

where V represents the membrane potential, τm is the membrane time constant, Vrest is the resting membrane potential,
R is the membrane resistance, and I(t) is the input current. When the membrane potential V exceeds the threshold
Vthreshold, the neuron fires a spike, and the membrane potential is reset to a lower reset potential vreset, after which
the neuron enters a refractory period during which it is unresponsive to new inputs. Other important hyperparameters
in the LIF model include the duration of the refractory period, which affects the firing frequency and the response to
consecutive inputs.

Leveraging the dynamic properties of LIF neurons, we have designed five SPK Blocks, as illustrated in Figure 2, to
emulate various aspects of biological neural network information processing mechanisms.

Single-Layer LIF SPK (SL) Block: This fundamental building block consists of a single LIF neuron. Despite its
simplicity, it effectively simulates the activation and inhibition dynamics of an individual neuron.

Residual LIF SPK (RL) Block: In this design, features pass through a LIF neuron and then split into two branches.
The main branch is processed by a second LIF neuron, while the auxiliary branch retains the original features. The
residual connection mitigates information loss and enhances the learning capacity of the model.

Multi-Branch Parallel LIF SPK (MBPL) Block: This block comprises several LIF neurons with distinct hyperparam-
eters arranged in parallel, allowing features to pass through several different thresholds simultaneously. The outputs of
these neurons are then combined and fed into a ConvNeXt module to simulate membrane potential variations before
summing the results. This approach enables the model to integrate information across different scales effectively.

Hidden Split LIF SPK (HSL) Block: This design splits and concatenates the outputs of two neurons along the hidden
dimension. This method allows the model to capture features across different representational space dimensions,
enhancing the model’s expressive power.

Dual Convolutional LIF SPK (DCL) Block: The Dual Convolutional LIF SPK (DCL) Block features a bifurcated
architecture with two parallel branches, each comprising a convolutional layer and a LIF neuron. The first branch
harnesses a 3x3 convolutional kernel to discern fine spatial details, whereas the second branch leverages a 5x5 kernel
to apprehend a wider spatial context. This strategy of extracting features at varying scales enables the DCL Block
to simultaneously process spatial details with high and low resolution. Each branch’s convolutional layer halves
the channel dimension, and the outputs from both branches are subsequently concatenated along the channel axis,
maintaining the original dimensionality.

3.3 Attention SpikeMerge Block

ViT was a pioneering effort to apply a pure Transformer architecture to image recognition, demonstrating the impressive
capabilities of Transformers in image processing. However, ViT also revealed several challenges, such as optimization
difficulties, convergence issues, and high computational and memory costs. Additionally, handling long-tail effects,
intra-class variations, and designing effective positional encodings remain areas requiring further investigation.

MaxViT addresses these issues by incorporating the multi-axis self-attention (Max-SA) module, which balances local
and global attention. The Max-SA module combines window attention with grid attention, providing a better inductive
bias, and uses CNNs for positional encoding, thereby mitigating some of ViT’s limitations.
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Figure 3: Attention SpikeMerge Block. This represents two different computational approaches. In the SISA Block,
after computing the Q, K, and V, we add the SPK Blcok separately to obtain the spike form of Q, K, and V. Subsequently,
we use Q and K to calculate the attention scores, apply these scores to V, and then incorporate the SPK Block to convert
the attention into spike sequences. In the BDSA Block, we bypass the computation of Q, K, and V, directly converting
the input into spike sequences through the SPK Block, treating Q, K, and V as the same.

Building on the MaxViT architecture, we propose two distinct Attention SpikeMerge Blocks that integrate the Spk
module to process spike signals. Our goal is to optimize the combination of attention mechanisms with Spk modules
based on Leaky Integrate-and-Fire (LIF) neurons to enhance spike signal processing.

Spike-Integrated Self-Attention (SISA) Block: In this approach, the SPK Block is incorporated during the computation
of the self-attention query (Q), key (K), and value (V). After calculating the attention scores and applying them to V, the
SPK Block converts the attention map into spike signals. In the Feed-Forward Network, each linear layer is followed by
an Spk module to maintain the spike-based processing.

Binary Direct-Spike Attention (BDSA) Block: This approach diverges significantly from the previous one. Given the
binary nature of spike signals, we bypass the computation of Q, K, and V and directly transform the input features into
spike signals, treating Q, K, and V as identical. This method accelerates the computation of the attention map by using
matrix multiplication with identical binary vectors. During inference, post-training, the attention-processed features can
be directly obtained without additional computation, simplifying the process.

We trained models using these two distinct Attention SpikeMerge Blocks to evaluate the impact of varying module
complexity on model performance. The experimental results and their implications will be discussed in the following
sections.

4 EXPERIMENTS

4.1 CIFAR-100 Experiments

In this study, we utilized the CIFAR-100 dataset as a preliminary benchmark to evaluate and refine the design of various
SPKBlock modules. CIFAR-100 is a well-regarded image classification dataset comprising 60,000 images across 100
distinct categories [31]. Its manageable scale and diversity make it an ideal choice for initial experimentation aimed at
optimizing computational resources and reducing experimental time.
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To highlight the impact of SPKBlock modules, we deliberately refrained from optimizing the training parameters,
instead opting for a straightforward and commonly used set of settings. Specifically, training was conducted over
200 epochs, AdamW optimizer with an initial learning rate of 0.02 [32]. We opted for a batch size of 256 to ensure
efficient use of computational resources while maintaining reasonable memory consumption. To mitigate early training
instability, a warm-up strategy was implemented during the first 5 epochs. The weight decay parameter was set at 0.01
to counteract overfitting. Our primary goal was not to achieve a highly optimized model on CIFAR-100, but rather to
evaluate the effectiveness of different SPKBlock modules.

In terms of data augmentation, we applied horizontal flipping, random rotations within a 30-degree range, and random
shearing to enhance the model’s generalization capabilities. Our base model architecture was ResNet-18, with various
SPKBlock modules replacing the traditional activation functions to explore their impact. We systematically adjusted
hyperparameters such as surrogate functions, voltage thresholds, tau values, and the spatial and temporal configurations
of LIF neurons.

4.2 ImageNet1K Experiments

In this study, we utilized the ImageNet-1K dataset as a benchmark to evaluate and compare the efficacy of different
neural network module designs [33]. ImageNet-1K is a widely-used image classification dataset that contains over one
million annotated images across one thousand distinct categories. Its diversity and scale make it a significant challenge
in the field of computer vision.

Regarding our experimental setup, we employed a series of meticulously chosen training parameters. Specifically, we
set our training to run for 200 epochs to ensure ample learning opportunities. The initial learning rate was set at 0.001,
a value aimed at balancing convergence speed and training stability. We opted for a batch size of 768 to make efficient
use of our computational resources while maintaining reasonable memory consumption. During the first 10 epochs, we
implemented a warm-up strategy to mitigate early training instability. The weight decay parameter was set at 0.05 to
help counteract overfitting. The gradient clipping threshold was established at 0.1 to prevent gradient explosion issues.
All images were resized to a uniform resolution of 224×224 to maintain consistency in input data.

Additionally, we adopted a cosine learning rate decay strategy, which allows for a smooth reduction of the learning rate
in the later stages of training, aiding the model in converging to a more optimal solution. For data augmentation, we
utilized the AutoAugment technique, an approach that optimizes augmentation policies through automatic searching.
We also employed label smoothing with a value of 0.1 to reduce the model’s sensitivity to label noise. Techniques such
as Random Erase, Mixup, and CutMix were integrated as well, which have been proven to effectively enhance the
model’s generalization capabilities on images [34, 35].

We designed three different model architectures to explore the impact of varying network scales on performance: Tiny,
Base, and Large models.

For the Tiny model, the hidden state dimensions were set to 64, 128, 256, and 512 for the four stages, respectively. The
module depths for each stage were set at 1, 3, 6, and 1. This configuration aims to provide a lightweight model suitable
for environments with limited computational resources.

For the Base model, the hidden state dimensions were set to 128, 256, 512, and 1024 for the four stages, respectively.
The module depths for each stage were set at 2, 6, 12, and 2. This design is intended to progressively extract and process
features of the images, balancing computational efficiency and performance.

For the Large model, the hidden state dimensions were set to 160, 320, 640, and 1280 for the four stages, respectively.
The module depths for each stage were set at 2, 6, 16, and 2. This configuration aims to capture more complex features
and provide higher accuracy, suitable for environments where computational resources are abundant.

4.3 Main Properties

We ablate SpikeAtConv using the default settings from section 4.1 and observe some interesting phenomena.

Comparative Analysis of SPK Block Variants

To evaluate the performance of different SPK blocks, we selected SISA as the Attention SpikeMerge Block. Our
experiments on the CIFAR-100 dataset systematically assessed various SPKBlock configurations, focusing on the
impact of different simulation time windows, surrogate gradient functions, and the number of branches on model
accuracy. Table 1 presents a detailed comparison of these configurations.
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The analysis of Single-Layer (SL) configurations revealed that increasing the simulation time window T generally
enhances model performance. For instance, the accuracy improved from 64.3% at T = 1 to 70.9% at T = 4. However,
when T was further increased to T = 8, there was a slight performance drop to 70.4%. This indicates an optimal range
for T , beyond which the benefits diminish, likely due to increased complexity and potential overfitting.

Additionally, the choice of surrogate gradient functions significantly impacted performance. The Atan function
consistently outperformed the Sigmoid function under equivalent settings. For example, with T = 1 and τ = 2.0, the
accuracy with Atan was 67.1%, compared to 66.0% with Sigmoid. This suggests that the Atan function provides a more
effective gradient approximation for training spiking neurons.

In the MBPL Block experiments (see Table 2), we observed that increasing the number of branches markedly enhanced
performance. A configuration with four branches and varied voltage thresholds achieved a top-1 accuracy of 74.4%,
significantly higher than simpler configurations. However, an excessive number of branches, such as eight, resulted in a
performance drop to 59.0%. This decline was attributed to the insufficient training of the numerous branches, which
introduced noise and hampered the model’s learning capacity.

In our CIFAR-100 experiments, we only listed representative examples. For the SSL and HSL modules, when using
the same number of LIF branches, their performance was similar to that of the MBPL. However, they are either
computationally more complex or less scalable, so we did not list more detailed results.

Table 1: Accuracy for different SPKBlock on CIFAR-100. Surrogate denotes surrogate gradient, a smooth approxi-
mation used to train spiking neural networks.

Model Top-1 Acc (%) SPKBlock T τ V Threshold Number of Branches Surrogate

ResNet-18 75.4 — — — — — —
ResNet-18 64.3 SL 1 4.0 1.0 1 Sigmoid
ResNet-18 66.0 SL 1 2.0 1.0 1 Sigmoid
ResNet-18 67.1 SL 1 2.0 1.0 1 ATan
ResNet-18 70.9 SL 4 2.0 1.0 1 Sigmoid
ResNet-18 70.4 SL 8 2.0 1.0 1 Sigmoid
ResNet-18 71.0 RL 1 2.0 1,2 2 ATan
ResNet-18 74.4 MBPL 2 2.0 0.2,1,2,4 4 ATan
ResNet-18 70.6 HSL 2 2.0 1,2 2 ATan
ResNet-18 70.3 DCL 2 2.0 1,1 2 ATan

Table 2: MBPL Block experiments on CIFAR-100.

Model Top-1 Acc (%) SPKBlock T τ V Threshold Number of Branches Surrogate

ResNet-18 71.7 MBPL 1 2.0 1,2 2 ATan
ResNet-18 71.9 MBPL 1 2.0 1,2,4 3 ATan
ResNet-18 72.5 MBPL 1 2.0 0.2,1,2,4 4 ATan
ResNet-18 72.2 MBPL 1 2.0 1,2,4,6 4 ATan
ResNet-18 73.8 MBPL 2 2.0 0.2,1,2,4 4 Sigmoid
ResNet-18 74.4 MBPL 2 2.0 0.2,1,2,4 4 ATan
ResNet-18 73.6 MBPL 4 2.0 0.2,1,2,4 4 ATan
ResNet-18 59.0 MBPL 2 2.0 0.2,1,2,3,4,5,6,7 8 ATan

Through extensive experimentation, we discovered that the MBPL module exhibited the best overall performance. For
each module, we identified the optimal hyperparameter settings and structural configurations specific to CIFAR-100.
These preliminary results allowed us to eliminate numerous suboptimal designs and provided valuable insights for
further experiments on more complex datasets like ImageNet-1K.

Table 3 presents a performance comparison of various SPKBlock configurations on the ImageNet-1K dataset. It is
observed that the MBPL modules outperform others, while the SL module exhibits comparatively weaker performance.
This phenomenon suggests a disparity in the information capture capabilities of different LIF neurons: a combination of
multiple LIF neurons appears to integrate a richer set of information, compensating for the potential deficiencies of
individual LIF neurons in processing information.
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Additionally, it is noted that when information sequentially passes through two LIF neurons, there seems to be a
reduction in the amount of effective information in the output. This could explain why the RL module performs better
than the SL module but still falls short of the SSL.

However, despite the theoretical advantages, we found that DCL modules prevented the model from being fully trained.
After 40 epochs, the loss of the training set stopped decreasing. Even lowering the learning rate, adjusting the position
of the SPK module, or adding a normalization layer did not resolve this issue. This is a common problem encountered
when processing spiking signals, where the neural spike module is prone to crashing in the existing deep learning
training framework.

Table 3: Accuracy for different SPKBlock on ImageNet1K.

SL RL MBPL HSL DCL spike-free

Top1 (%) 74.91 78.35 80.53 78.44 77.66 81.13
Top5 (%) 91.94 93.73 94.17 93.75 93.83 94.30

Comparison of SpikeAtConv and Other Models on ImageNet-1K

We evaluated the performance of our SpikeAtConv model at different scales (Tiny, Base, and Large) on the ImageNet-1K
dataset. Each model was trained for 200 epochs with an image input resolution of 224. Most LIF neurons were set
with a time dimension of 1; however, we added an experiment with the Base model using T=2 to explore its impact.
Our findings indicate that while the Large model achieves slightly higher accuracy than the Base model, further
improvements are expected with increased image resolution and additional training epochs.

Table 4 presents a detailed comparison of the performance metrics, including top-1 and top-5 accuracy, as well as the
number of parameters for each model. The SpikeAtConv models are also compared against state-of-the-art models like
Meta-SpikeFormer and SpikFormer.

Table 4: Performance of different models on ImageNet-1K.

Base(T=1) Base(T=2) Tiny(T=1) Large(T=1) Meta(T=1) SpikFormer(T=1)

Top-1 (%) 80.53 80.70 76.58 81.23 79.1 74.8
Top-5 (%) 94.17 94.89 92.74 95.41 — —

From the table, it is evident that our Large SpikeAtConv model achieves a top-1 accuracy of 81.23%, outperforming
both Meta-SpikeFormer (79.1%) and SpikFormer (74.8%). The Base model also shows competitive performance with a
top-1 accuracy of 80.53%. Despite having fewer parameters, the Tiny model maintains a respectable top-1 accuracy
of 76.58%, demonstrating the efficiency of our approach.In terms of top-5 accuracy, the Large SpikeAtConv model
reaches 95.41%, and the Base model achieves 94.17%.

The comparison indicates that SpikeAtConv models, particularly the Large variant, provide superior performance on
ImageNet-1K, while maintaining a balance between accuracy and model complexity. This demonstrates the effectiveness
of our approach in leveraging spiking neural networks for large-scale image classification tasks.

Discussion

In summary, our results highlight two key points. First, a well-designed SNN architecture can significantly enhance the
performance of spiking neural networks (SNNs). Second, integrating SNNs with advanced deep learning architectures
can further improve their performance.

For the first point, we observed that SNN modules based on LIF neurons tend to lose a considerable amount of
information. While redundant picture information might be unnecessary for classification tasks, the SNN module acts
similarly to an activation function, filtering out irrelevant details. However, this filtering can also lead to performance
degradation. To address this, we adopted an approach akin to early convolutional neural networks (CNNs) by setting up
parallel LIF neurons with different parameters. This setup captures different levels of information, thereby maximizing
the richness of information extracted by the SNN.

Regarding the second point, our experiments demonstrate that the reasonable integration of SNN modules can have
minimal impact on the original performance of the neural network. However, we also noticed that the loss of the SNN
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Figure 4: Comparison of Loss Between MaxViT and SpikeAtConv. We present the training and validation loss
trajectories of our SpikeAtConv and MaxViT models. In the figure below, we emphasize the loss variations during the
first 10 epochs. It is evident that SpikeAtConv experiences a slower reduction in loss during the initial 5 epochs. Due
to the application of data augmentation techniques such as auto augment and mixup during training, the training loss
consistently remains higher than the test loss.

network decreased more slowly in the early stages of training compared to networks without SNNs (Figure 4). This
suggests that while SNNs have the potential to achieve excellent results in visual tasks, further research is needed to
develop corresponding training methods and network modules that effectively cooperate with SNNs.

Traditional deep learning architectures like CNNs and Transformers have been extensively researched, leading to the
development of numerous auxiliary layers, targeted data augmentation techniques, and pre-training strategies that
ensure these networks are well-trained and stable. Similarly, SNNs require further in-depth studies to develop analogous
methods that can ensure sufficient training and stability during the training process. This includes designing specialized
layers, data augmentation techniques, and training protocols tailored specifically for SNNs to unlock their full potential.

5 Conclusion

In this study, we developed a novel spiking neural network (SNN) model named SpikeAtConv, which achieved state-of-
the-art (SOTA) results among SNN models on the ImageNet-1K dataset. Our approach involved designing a series of
Spk blocks to convert continuous hidden states into neural spikes. Through extensive experimentation, we identified
the optimal Spk block configuration and integrated it with the MaxVit architecture. This combination enabled us to
significantly advance the performance of SNNs.

One of our key findings was that even when using a degenerate self-attention mechanism, the performance of our
model did not degrade significantly. This suggests that our Spk blocks are highly effective in capturing and processing
information, even without the full complexity of self-attention.

Additionally, our experiments demonstrated that a well-designed SNN architecture can substantially enhance per-
formance. By setting up parallel LIF neurons with different parameters, we were able to capture various levels of
information, thereby enriching the data representation within the SNN.

Looking forward, we aim to further refine the design of Spk blocks and explore improvements in backpropagation
techniques. These enhancements will help ensure that Spk blocks are fully trained and can further improve the
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performance and stability of SNNs across various tasks. Moreover, we recognize the need for developing specialized
training methods, auxiliary layers, and data augmentation techniques tailored specifically for SNNs, akin to the extensive
research conducted for CNNs and Transformers.

In conclusion, our work not only introduces a powerful new SNN model but also lays the groundwork for future
research in optimizing SNN architectures and training methodologies. We believe that with continued exploration and
innovation, SNNs can achieve even greater performance and applicability in diverse domains.
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