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The interaction between a thin foil target and a circularly polarized laser light injected along an
external magnetic field is investigated numerically by particle-in-cell simulations. A standing wave
appears at the front surface of the target, overlapping the injected and partially reflected waves.
Hot electrons are efficiently generated at the standing wave due to the relativistic two-wave resonant
acceleration if the magnetic field amplitude of the standing wave is larger than the ambient field.
A bifurcation occurs in the gyration motion of electrons, allowing all electrons with non-relativistic
velocities to acquire relativistic energy through the cyclotron resonance. The optimal conditions for
the highest energy and the most significant fraction of hot electrons are derived precisely through a
simple analysis of test-particle trajectories in the standing wave. Since the number of hot electrons
increases drastically by many orders of magnitude compared to the conventional unmagnetized cases,
this acceleration could be a great advantage in laser-driven ion acceleration and its applications.

I. INTRODUCTION

Strong magnetic fields make considerable differences in
the properties of relativistic laser-plasma interaction [1–
11]. When laser injection along an external magnetic field
is considered, electromagnetic waves propagate in plas-
mas as circularly polarized waves. The whistler-mode
wave appears when the cyclotron frequency of electrons
ωce is larger than the laser frequency ω0. The characteris-
tics of the whistler wave have many attractive aspects for
plasma heating and particle acceleration. The nature of
right-hand circular polarization to the magnetic field has
a strong affinity with the electron cyclotron resonance.
Since there is no cutoff density for propagation, it may
interact directly with overdense plasmas and induce ef-
ficient energy transfer. Furthermore, the whistler wave
often plays a crucial role in various astrophysical phe-
nomena such as planetary magnetospheres, stellar winds,
and magnetars [12–14]. This paper focuses on how large-
amplitude whistler waves efficiently generate relativistic
hot electrons.
The propagation of whistler waves requires the ex-

istence of a supercritical magnetic field. The critical
strength is derived from the balance ωce = ω0 and given
by Bc = meω0/e, where me is the electron mass and e is
the elementary charge. For the case of high power lasers
with the wavelength λ0 = 1 µm, the critical strength
corresponds to Bc = 10(λ0/1µm)−1 kilo-Tesla. Although
quasi-static strong magnetic fields have been used in laser
experiments for various purposes [15–19], the current
controllable field strength is limited and has yet to reach
10 kT. However, the generation of axial magnetic fields
in the mega-Tesla order has been proposed theoretically
[20–22], and thus, it could be possible that magnetic fields
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exceeding 10 kT would become available in laboratories.
Thus, we are trying to clarify the complex laser-plasma
interaction under extreme unexplored conditions in ad-
vance.
Whistler waves can penetrate dense plasmas because

they have no critical density. The pulse length that can
be propagated is constrained mainly by the stimulated
Brillouin scattering, but it could survive at least for sev-
eral hundred femtoseconds even in the cases of relativis-
tic wave amplitudes [7–9]. We have reported that the
whistler waves entering dense plasmas can directly heat
the ions there [5]. In this process, the standing wave
structure formed by two opposing whistler waves is es-
sential. Periodic density bunches of electrons are formed
in the standing wave, and a large-amplitude longitudinal
electric field is excited. This electric field drives a com-
pressive wave of ions, which eventually thermalizes due
to plasma instabilities, producing a high-temperature ion
plasma. Since the injected wave energy is converted to
ions without going through electrons, this heating pro-
cess could be utilized as an efficient alternative scheme
for fast ignition laser fusion [7].
This paper sheds light on electron acceleration by

standing whistler waves in underdense plasma. The
cyclotron resonance energizes electrons to relativistic
speeds. In previous studies, efficient energy conversion
from lasers to electrons occurs when a magnetic field
of appropriate strength is applied [4, 5]. However, the
physical mechanism still needed to be fully understood,
although numerical simulations suggested that the cy-
clotron resonance of relativistic electrons was the primary
factor. Therefore, we revisit the issue of electron acceler-
ation by whistler waves. This work includes the effects of
particle-particle collisions and preplasma, which were not
considered in the previous analysis. It has been pointed
out that the standing wave structure plays a key role in
electron acceleration [23–25]. The acceleration is caused
by simultaneous relativistic resonance between a particle
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and two different waves, which is referred to in this pa-
per as the ”relativistic two-wave resonant acceleration”.
Then, we investigate the motion of electrons in standing
whistler waves using both numerical simulations and an
analytical approach to particle trajectories.
When laser light irradiates a solid target, injected and

reflected components form a standing wave at the front
side of the target. Then, underdense preplasma will in-
teract with the standing wave if it exists. Previous works
have examined cases without an external magnetic field
and revealed that a stochastic process in the standing
wave efficiently generates hot electrons [26–29]. However,
in our cases with a strong magnetic field, electron acceler-
ation is caused by the cyclotron resonance. The fraction
of relativistically accelerated electrons shows significant
enhancement compared to unmagnetized situations.
Higher temperatures and higher number densities of

relativistic hot electrons are of great advantage for laser-
driven ion acceleration. The hot electrons generated by
laser irradiation to a thin foil target form a strong sheath
electric field on the backside of the target. In recent
years, ion beams accelerated by this sheath field have at-
tracted much attention for plasma diagnostics and med-
ical cancer therapy [30]. For medical applications, the
energy of laser-driven protons and heavy ions is not yet
sufficient, and then the improvement of the maximum ion
energy is an urgent issue. Then, it must be meaningful
to investigate quantitatively how much improvement can
be expected by combining a strong magnetic field with
an intense laser.
Here, we investigate the generation process of hot elec-

trons during the interaction between a dense plasma tar-
get and a large-amplitude electromagnetic wave travel-
ing along an external magnetic field. The outline of this
paper is as follows. In Sec. II, the numerical setup for
particle-in-cell (PIC) simulations is described. Various
simulation results are shown in Sec. III to reveal the
electron acceleration mechanism under a strong magnetic
field. We scrutinize parameter dependences on the mag-
netic field strength and the laser intensity by a series of
one-dimensional simulations. Then, the physical mecha-
nism is identified by an analytical approach using test-
particle trajectories in standing electromagnetic waves.
The application to laser-driven ion acceleration is dis-
cussed in Sec. IV. The robustness of our acceleration
mechanism is also mentioned in the discussion. Finally,
the conclusions are summarized in Sec. V.

II. NUMERICAL SETUP AND METHOD

We consider a foil target in the vacuum irradiated by
laser light from one side. In general, if there is a dis-
continuity in the plasma density, a fraction of a traveling
electromagnetic wave should be reflected at the bound-
ary and form a standing wave by overlapping the incident
and reflected waves. Then, a standing wave appears at
the front surface of the target. The electron motions in

the standing wave are solved numerically and analytically
in our analysis.

Another crucial element for the electron acceleration is
an external magnetic field Bext with sufficient strength.
We are particularly interested in the cases where the di-
rection of the magnetic field is set parallel to the laser
injection. As for the strength, the electron cyclotron fre-
quency ωce = eBext/me is mostly assumed to be more
than the laser frequency ω0, but that of ion ωci is much
less than ω0. Thus the electromagnetic waves we focused
on correspond to the whistler-mode wave.

The laser light should be injected from the vacuum
region to the target foil. The laser wavelength in the
vacuum is λ0 = 2πc/ω0, where c is the speed of light.
The electric-field amplitude of the laser E0 is denoted
by the normalized vector potential a0 = eE0/(mecω0).
The pulse duration τ0 is defined by the full-width at half
maximum of Gaussian-shaped envelope. The polarity of
the laser is also one of the control parameters of the elec-
tron acceleration. Right-hand circularly polarized (RCP)
waves to the magnetic field direction are investigated pri-
marily because of a smooth mode conversion to whistler
waves in the plasma.

As the target material, diamond is adopted. Although
any material can be used, we have chosen it thinking of its
application to carbon-ion acceleration [30]. The electron
density in the target is then set to ñe ≡ ne/nc = 603.
Equating the plasma and laser frequencies, ωpe = ω0,
the critical density is given by nc = ǫ0meω

2
0/e

2, where
ǫ0 is the vacuum permittivity. The target thickness is
typically d = λ0. As usual, the preplasma with an ex-
ponential distribution is considered at the front side of
the target. The scale length is assumed to be λ0 with
the spread width of 5λ0. The maximum density of the
preplasma is 10nc adjacent to the target surface, which is
less than the constant density in the target. For simplic-
ity, we assume that the carbon ions are fully ionized as
C6+ from the beginning. However, this assumption has
little influence on our conclusions since the interaction
with a relativistic intensity laser would quickly result in
the field ionization inside the target due to the intrusion
of whistler waves.

A uniform magnetic field is applied perpendicular to

the target surface. The normalized strength B̃ext ≡
Bext/Bc (> 0) is used in the following analysis. Then,
this system is characterized predominantly by three non-

dimensional parameters; ñe, B̃ext, and a0.

The incident wave reaching the target surface must
be partially reflected if there is a density jump. The
whistler-mode wave can travel in any density plasmas if
the magnetic field strength is more than Bc. Thus, an
injected RCP wave from the vacuum will be converted
to a whistler wave with the same frequency ω0 at the
target surface. The transmittance of the electric field
Etra/E0 = 2/(N + 1) is characterized by the refractive
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index N of the whistler wave for the target density [31],

N =

(
1− ñe

1− B̃ext

)1/2

. (1)

Then, the reflected component is always non-zero at the
target surface and contributes to the standing wave for-
mation.

The wave-plasma interaction is solved by a PIC
scheme, PICLS [32], including the Coulomb colli-
sions. For one-dimensional configuration, we set the x-
coordinate as the direction of the external magnetic field.
The origin x = 0 is defined at the front surface of the tar-
get. The RCP laser light is injected from the minus-side
boundary of the computational domain and propagates
in the forward direction of the x-axis. The main pulse
hits the target from t = 0 to τ0, which defines the time
reference point in our simulations. The vacuum regions
on both sides of the target are kept reasonably vast, more
than 50λ0. The escape boundary conditions for waves
and particles are adopted for both boundaries.

The spatial and temporal resolution is ∆x = c∆t =
λ0/10

3. The particle numbers for ions and electrons are
initially 100 and 600 per grid cell, respectively. The par-
ticles in the PIC simulations are so-called superparticles,
which are aggregates of multiple particles. In our scheme,
the initial density distribution is expressed by changing
the weight of the superparticle. The particle number per
cell is the same anywhere in the target and preplasma.
Nevertheless, the number weight of each superparticle is
different according to the plasma density at each loca-
tion.

In strongly magnetized plasmas, the time resolution
∆t should be shorter than the electron gyration time, as
well as the laser period. Otherwise, the numerical heat-
ing breaks the energy conservation. It would be better to
resolve the wavelength by at least a few hundred grid cells
in order to capture the propagation of whistler waves and
the evolution of standing waves accurately. These condi-
tions are satisfied in all simulations shown in this paper.
The convergence test has confirmed that the conclusions
of our analysis are unaffected by the numerical resolution.

The list of performed parameters of main models and
the obtained results for characteristic quantities are sum-
marized in three tables in Appendix A. It will serve as
a reference for the discussions of numerical results in the
following sections.

Hereafter, the length and time are normalized by the
laser wavelength λ0 and period t0 = 2π/ω0, which will

be written by the variables with a tilde, l̃ = l/λ0 and

t̃ = t/t0.

III. NUMERICAL RESULTS

A. Spectral features of hot electrons

The generation process of hot electrons via laser-
plasma interaction is significantly affected by the po-
larization of the incident laser and the external mag-
netic field. First, the fundamental features are demon-
strated through several runs with fiducial parameters.
Figure 1(a) shows the electron energy spectra taken at

t̃ = 71 after a sufficient time has passed since the in-
teraction. The model parameters of the fiducial run are

B̃ext = 30 and a0 = 30 for RCP wave injection. The
pulse duration is τ̃0 = 10 and the thickness of the carbon

target is d̃ = 1. The laser incident angle to the magnetic
field is assumed to be θ = 0 as default.

By choosing the wavelength λ0 = 0.8 µm, the critical
values are evaluated as nc = 1.72× 1021 cm−3 and Bc =
13.4 kT. Then, the dimensional parameters of the fiducial
run correspond to ne = 1.05 × 1024 cm−3, Bext = 402
kT, I0 = 3.85 × 1021 W/cm2, τ0 = 26.7 fs, and d = 0.8
µm. The mass density of the target is ρ = 3.51 g/cm−3,
which is equivalent to diamond. The laser conditions are
determined based on the typical quantities of TW-class
femtosecond lasers.

When the RCP laser is irradiated, the energy distribu-
tion of electrons has two distinct peaks around 100 keV
and 30 MeV for the bulk and hot components, respec-
tively [see the black solid curve in Fig. 1(a)]. The number
fraction of hot electrons is more than 10% for this case.
Compared with the spectrum of the left-hand circularly
polarized (LCP) case (green curve), it is evident that the
RCP wave makes a remarkable contribution to the gen-
eration of hot electrons. Even for the RCP laser, the
second peak of hot electrons disappears in the absence of
the external magnetic field (black dashed curve). The hot
electron fraction drops below 1%, and thus the magnetic
field makes a notable difference in the production rate by
more than an order of magnitude. Therefore, the RCP
wave and the strong magnetic field must be indispensable
elements for the electron acceleration mechanism.

The results for the linearly polarized (LP) laser are
also shown in Fig. 1(a) by red curves. The pulse dura-
tion is the same as the CP cases, but the amplitude is
set to a0 = 42 to equalize the input wave energy. The
electron features in the spectra are very similar to those
in the RCP runs. The second peak of hot electrons is
also visible in the LP run, and the peak energy is about
the same as in the RCP case. However, the number of
hot electrons is considerably reduced by a factor of one-
third. The LP wave can be regarded as a superposition
of the RCP and LCP waves of half amplitude. The RCP
component within the LP laser must be responsible for
the hot electron production.

The momentum distribution of accelerated hot elec-
trons is found to be anisotropic. The phase diagram of
|p⊥| and p‖ is depicted in Fig. 1(b) for the fiducial RCP
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FIG. 1. (a) Electron energy spectra after the interaction of a thin foil target and a laser light propagating along an external
magnetic field. The target material is solid carbon with the density of ne/nc = 603 and the foil thickness is d/λ0 = 1. The
polarization of the laser is right-hand circular (black solid; run01), linear (red solid; run03), and left-hand circular (green; run02).
The laser amplitude is a0 = 30 for circularly polarized waves and a0 = 42 for linearly polarized one, and the pulse duration
is τ0/t0 = 10 for all the cases. The external magnetic field is assumed to be Bext/Bc = 30. For comparison, corresponding
unmagnetized cases (run05 and run06) are shown by the dashed curves with the same colors. All the spectra are measured at
t/t0 = 71. (b) Particle number distribution of electrons Np in the momentum phase space of |p‖| and p⊥ for the fiducial case
of right-hand circularly polarized laser, which is depicted by the black solid curve in (a). The dotted line denotes the isotropic
condition p⊥ = 2|p‖|.

run with the magnetic field. Here, the momentums are
defined as p = γmev, p‖ = px, and p⊥ = (p2y + p2z)

1/2.
Two components of the bulk and hot electrons are sepa-
rated clearly in this figure. The bulk component is sub-
ject to the dotted line of p⊥ = 2|p‖|, indicating that
it is isotropic. The hot component, on the other hand,
exhibits p⊥ >∼ 2|p‖|, so that the gyration velocity is dom-
inant. It infers that the cyclotron resonance would be
deeply involved in this acceleration process.

B. Acceleration site in the standing wave

Before proceeding to the theoretical modeling of the
acceleration mechanism, we will check some more prop-
erties of hot electrons that can be revealed from our PIC
simulations.
The x position where all the relativistic electrons are

accelerated is turned out to be outside of the target sur-
face. The behavior of hot electrons in the position-energy
diagram is shown in Fig. 2(a). We picked up 11 particles
that finally gained energy up to γ > 100 starting from
the inside of the dense target. The trajectories of the
electrons with different initial positions are displayed in
different colors. All the particles are regularly accelerated
near the target surface from a non-relativistic velocity
(γ < 1) to a relativistic velocity (γ ∼ 100). Interestingly,
as the x-coordinate is constant during the acceleration,
a sudden increase in energy by more than two orders of
magnitude occurs at a fixed location. In other words,
this rapid acceleration is associated with only the per-
pendicular velocity to the external magnetic field.
The longitudinal velocity increases after the electron

energy reaches around γ ∼ 100. The recirculation mo-
tion back and forth between the front and rear sides of the
target is repeated with relativistic speed. In Fig. 2(b),
the trajectories of the selected 11 particles are illustrated
in the time-position plane, where the line color indicates
the electron kinetic energy. All the accelerated particles
migrate once toward the front side of the target and then
acquire the energy just outside the target. The acceler-
ation time as indicated by the color change from blue to
red is much shorter than the pulse duration of τ̃0 = 10
and comparable to the laser oscillation time.

The locations and timings where the energy of the ac-
celerated electrons exceeds γ = 30 are also plotted in
Fig. 2(b). Note that these cross marks contain infor-
mation about all the hot electrons, including not only
the selected ones. The term when the acceleration takes
place coincides to the laser irradiation time (0 < t̃ < 10),
and the position is about at x̃ ∼ −0.25. The accelera-
tion site is slightly outside the target and not inside the
target at all. Besides, all electrons in the preplasma are
accelerated to relativistic velocity in situ. These facts
suggest that the standing waves generated outside the
target would play an important role in the relativistic
electron acceleration.

Let us check the electromagnetic fields at the accel-
eration site. Figure 3 shows the time evolution of the
tangential components, E⊥ = (E2

y + E2
z )

1/2 and B⊥ =

(B2
y +B2

z)
1/2, near the target. Each snapshot is taken at

t̃ = −7, −3, −1, and 1, which is about the time when the
main pulse arrives the target surface. The gray area indi-
cates the initial position of the carbon foil. At t̃ = −7, the
tip of the laser pulse has already traveled to the vicinity
of the target rear side. The magnetic field amplitude is
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FIG. 2. (a) Trajectories of hot electrons shown in the diagram of the position x and kinetic energy γ − 1. Eleven particles
are selected among the hot electrons that are eventually accelerated to over γ = 100. The front surface of the target is x = 0,
and the gray-filled area indicates the target thickness. The initial locations of these accelerated particles are inside the target,
and each trajectory curve is drawn by different colors. (b) Electron trajectories in the position-time plane for the same 11 hot
electrons in (a). The line color denotes the kinetic energy of the electron at each time. The gray area shows the original target
location. The cross marks mean the place where the hot electrons are accelerated and exceed the relativistic energy defined as
γ = 30.
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dominant inside the target compared to the electric field
because it propagates as a whistler wave. Some frac-
tion of the incident wave is reflected at the target front
surface. A standing wave is established there, and the
amplitude is almost stationary from t̃ = −3 to 1. For the
case of CP waves, the amplitude of the standing wave at
each position is constant in time. The presence of the
standing wave is recognized by nodes and antinodes in
the distribution of the electromagnetic fields.

There is a strong correlation between the periodic
structure of the electromagnetic field and the electron
acceleration point. The acceleration occurs at approxi-
mately equal intervals, and all the sites are precisely at
the trough of the magnetic field in the standing wave.
Figure 3 also shows the information on the spatial distri-
bution and energy of electrons by colored dots, where the
color represents the number weight of superparticles in
the PIC simulation. Particles initially inside the target
are shown in red, and electrons that started in the pre-
plasma are green or blue. Before the main pulse arrives,
the electrons are all at γ = 1 because their energy is non-
relativistic. However, as the amplitude of the standing
wave increases after t̃ >∼ −3, the electrons begin to accel-
erate in the preplasma region. The electrons gradually
gain energy as they gather in the trough of the magnetic
field. Finally, all the electrons are launched simultane-
ously like a line of fountains to the relativistic velocity
of γ >∼ 100. At the time t̃ = 1, almost all electrons in
the preplasma are transferred to the relativistic speed.
Then, the generated cavitation structure in the electron
density has quickly disappeared.

When we look at the particles inside the target (red
dots), the accelerated electrons go through the closest
trough of the magnetic field at x̃ ∼ −0.25 without excep-
tion. The energies of the accelerated electrons are nearly
identical, which is about γ ∼ 100 in this case. Due to
the low density outside the target, the wavelength of the
electromagnetic wave remains almost λ0. The interval
between the standing wave nodes is half of λ0. Then, the
trough (crest) of the magnetic (electric) field will locate
at x̃ = −1/4, −3/4, −5/4, · · · , which are matching with
the accelerateion site. The standing wave persists for the
laser irradiation time, during which the electrons that
stray near the target surface are successively elevated to
a relativistic speed. As a result of these processes, an ap-
parent dichotomy between the bulk and relativistic hot
components emerges in the electron energy distribution.

Even when we use a bare target without the preplasma
(e.g., run04 and run07), the behavior of hot electrons is
unchanged qualitatively and even quantitatively. How-
ever, this picture is entirely different from the cases with-
out the initial magnetic field. The hot electron fraction
is drastically reduced because the relativistic electrons
are generated only from the preplasma in that case. The
energy conversion from the laser to the electrons is dimin-
ished from 49% to 0.9% by simply removing the magnetic
field (see run01 and run05 in Table I). The collisional ef-
fects have little influence on the hot electron generation,

although the bulk component takes longer to reach the
thermal equilibrium.
The whistler wave propagating inside the target is par-

tially transmitted at the rear boundary, and the rest is
reflected. Therefore, another standing wave is created
within the target. However, the same acceleration does
not occur within the dense target, which may be because
the amplitude of the electric field is weaker. Furthermore,
the plasma frequency there is much larger than ω0, and
the collective movement of electrons cannot be ignored.
Although we concentrate our discussion on the diamond
target in this paper, the dependence of the target density
will be addressed in the subsequent analysis.

C. Dependence on the external magnetic field

It would be meaningful to clarify the dependence of the
external magnetic field on this acceleration mechanism.
Then, we will examine how the electron energy distri-
bution is affected by the strength of the magnetic field.
Figure 4(a) shows the average and maximum energies of

electrons as a function of B̃ext. All the parameters except

for B̃ext are the same as in the fiducial run, and then the
amplitude of incident RCP wave is a0 = 30. The average
energy is measured not only as of all electrons, 〈ǫe,total〉,
but also as of the bulk and hot components separately,
〈ǫe,bulk〉 and 〈ǫe,hot〉 (see Appendix B for the evaluation
method).
Focusing on the average energy of total electrons

〈ǫe,total〉, it is almost constant when the magnetic field

strength is in the range of B̃ext
<∼ 1. However, it in-

creases systematically as B̃ext exceeds unity, and takes a

peak value around B̃ext ∼ 30. In this moderate strength
regime, the bulk energy 〈ǫe,bulk〉 increases by an order

of magnitude around B̃ext ∼ 3 and then begins to de-
crease. Whereas the hot component 〈ǫe,hot〉 increases

monotonically with B̃ext. This trend changes abruptly
when the external magnetic field becomes stronger than
several tens of Bc, where the energy absorption rate
of electrons drops sharply. If the magnetic field is too
strong, very few hot electrons are generated, as antici-
pated from the relation of 〈ǫe,total〉 ≈ 〈ǫe,bulk〉. The vari-
ation of the maximum energy ǫe,max behaves similarly to
the average energy of hot electrons. The maximum en-
ergy near the peak is about 1 GeV, and the average of
hot electrons reaches 100 MeV. Thus, the valid range in
which electrons can be accelerated effectively is roughly

1 <∼ B̃ext
<∼ 30 for this particular case.

The enhancement of the hot electron fraction is also de-
pendent on the laser intensity. In Fig. 4(b), the average
energies of electrons 〈ǫe,total〉 are evaluated when the laser
amplitude has changed to a0 = 100, 30, 10, and 3. The
higher the laser intensity, the higher the average energy of
electrons. In all cases, the electron energy rises when the
magnetic field strength is larger than Bc. As seen in the

related work [4], the enhancement range in B̃ext for the
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FIG. 4. (a) The dependence of the maximum and average energies of electrons on the strength of an external magnetic field
Bext/Bc. The maximum energy ǫe.max is shown by blue triangles, the average energies of total electrons 〈ǫe,total〉, of hot electrons
〈ǫe,hot〉, and of bulk electrons 〈ǫe,bulk〉 are plotted by black filled circles, red open circles, and green open circles, respectively.
The theoretical predictions of the maximum electron energy and the bulk electron temperature are also denoted by the thick
curves of light-blue and light-green, which are discussed later on in Sec. III.D. The vertical dotted lines at Bext/Bc = 56.9 and
52.4 indicate the theoretical boundaries given by Eqs. (4) and (6), respectively. (b) The dependence of the average electron
energy on the injected laser intensity a0. A wide range of the laser amplitude is examined; a0 = 100 (red), 30 (black), 10
(green), and 3 (blue). The other model parameters are identical to the fiducial run. The polarization of the laser is assumed
to be right-hand circular except for the runs shown by the cross marks, which are the cases of linearly polarized laser with the
amplitude of a0 = 42. (c) The same data as in (b) but plotted with a different normalization. The horizontal and vertical axes
are divided by a0 and a20, respectively. Then the acceleration feature at 1 <∼ Bext/Bc

<
∼ a0 is overlapped nicely for all the runs.

The energy peak is always achieved when Bext/Bc ∼ a0.

energy conversion rate to electrons extends with increas-
ing the laser intensity a0. The magnetic field strength

at which the average energy is maximized is B̃ext ∼ a0
approximately, and the range of efficient electron accel-

eration can be commonly expressed as 1 <∼ B̃ext
<∼ a0.

The average energy of total electrons is proportional to
a20 [see Fig. 4(c)] and reaches 30 MeV if a0 = 100. Such
enhancement gives a considerable difference of more than
two orders of magnitude compared to the case without
the initial magnetic field.

For comparison, the outcomes of LP light with a0 = 42
are also shown by the cross marks in Fig. 4(b). The trend
of the average energy is quite similar to the RCP cases. In
the limit of the weaker magnetic field, LP light exhibits
a slight advantage in the efficiency of electron heating,

but the difference is insignificant when B̃ext is greater

than unity. This tendency is consistent with the spectral
features shown in Fig. 1(a).

The most striking feature of this electron acceleration
is that it can enlarge the number of hot electrons. Here,
we denote the fraction of electrons with the energy above
a certain threshold as P{ǫe > ǫthr}. Figure 5 illus-
trates the number fractions when the threshold is set to
ǫthr = 1, 10, and 100 MeV. As with the average energy,
the number of hot electrons is boosted by the stronger
magnetic field and larger amplitude of electromagnetic
waves.

In order to organize the characteristics of hot electrons,
we will use the results of the a0 = 30 runs (the black
circles in Fig. 5) as an example. In the range of 1 <∼
B̃ext

<∼ 30, electrons over 1 MeV are enhanced by a factor
of 10 or more compared to the unmagnetized limit. Since
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FIG. 5. The number fraction of hot electrons over the thresh-
old energies of (a) ǫthr = 1 MeV, (b) 10 MeV, and (c) 100
MeV. The meanings of the marks are identical to those of
Fig. 4(b).

the maximum energy is positively correlated with the
magnetic field strength, a significant number of electrons

breaks through 100 MeV at B̃ext ∼ 30. The electron
fractions above 10 MeV and 100 MeV are surprisingly
large, exceeding 0.1 and 0.01, respectively.

If a more intense laser is available, like a0 = 100, all
electrons inside the target could be accelerated entirely to
over 1 MeV. Furthermore, the fraction of ultrarelativistic
electrons with energies above 100 MeV reaches 20% when

B̃ext = a0 (see run10 in Table II). Such fast electrons
create a large sheath field on the target surface, which
may increase the maximum energy and efficiency of ion
acceleration. This curious application will be discussed
later in Sec. IV. A similar property of the high energy
conversion rate to electrons has been observed when the

laser intensity becomes lower with keeping the relation

B̃ext = a0 (e.g., run08 and run09). However, the merit of
this acceleration mechanism cannot be exploited because
the number of relativistic electrons is far from the dom-
inant. In short, an RCP laser of sufficiently relativistic
intensity and a coherent external magnetic field stronger
than the critical strength is essential for this electron ac-
celeration mechanism to become prominent.

D. Analytical approach for the acceleration physics

The electron acceleration phenomenon seen in the
laser-plasma interaction under a strong magnetic field
has many similarities to the acceleration mechanism dis-
covered in another context. Electron acceleration in the
standing Alfvén wave has been identified for the first time
in one-dimensional turbulence of electron-positron plas-
mas [23]. If the wave amplitude exceeds a critical value,
bifurcations occurs in the electron motions, allowing the
conversion from non-relativistic to relativistic velocities
without the injection problem [25]. The crucial process is
the cyclotron resonance of electrons with two CP waves
that constitute a standing wave. Here, we will extend
and generalize their analysis of particle trajectories and
compare it with the characteristics of our simulation re-
sults.
The equations of motion in the electromagnetic fields

of standing wave determine the time evolution of the nor-
malized electron momentum p̃ = γv/c. Because the elec-
tron acceleration occurs at a fixed location, those fun-
damental equations can be simplified by assuming that
there is no longitudinal component p̃‖ = 0. The gyra-
tion motion of electrons at the acceleration point, or the
trough of the magnetic-field envelope, is then described
in a Hamiltonian form [23]. The conserved quantity,
H(χ, ψ), is a function of the square of the electron mo-
mentum, χ = p̃2⊥, and the phase of the electron motion
relative to the standing wave, ψ,

H(χ, ψ) = Aχ1/2 sinψ − B(χ+ 1)1/2 + χ , (2)

where A = 2(1 + R)a0 and B = 2B̃ext (see Appendix C
for the derivation). The standing wave is formed from the
incident laser and the reflected component, whose ampli-
tude is Ra0. The reflectivity R is estimated using the
refractive index as R = (N − 1)/(N + 1), which is then
given by a function of the electron density ñe and the

magnetic field strength B̃ext. In other words, coefficient
A includes a novel extension to account for differences
in the amplitude of the opposing waves. We will explain
how the electron orbital feature described by Eq. (2) un-
dergoes bifurcations depending on the amplitude of the
standing wave, (1+R)a0 = A/2, and the intensity of the

external magnetic field, B̃ext = B/2.
The contour lines of the Hamiltonian denote the elec-

tron trajectories in ψ-p̃⊥ space, some of which are shown
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FIG. 6. (a-c) Electron trajectories in the phase-momentum diagram that described as the contours of the Hamiltonian given
by Eq. (2). The characteristics of the electron motions are determined by two parameters A = 2(1 +R)a0 and B = 2Bext/Bc,
which denotes the standing wave amplitude and the external magnetic field strength, respectively. These parameters are (a)
A = 40 and B = 60, (b) A = A1 = 45.043 and B = 60, and (c) A = A2 = 50.924 and B = 60. The red and green curves in
these figures indicate the separatrixes for the electron trajectory. (d) Electron trajectories when the external magnetic field is
absent, which are given by Eq. (9). The parameters for this case are A = 40 and B = 0.

in Fig. 6. Fig. 6(a) shows the case of A = 40 and B = 60
which represents when the wave amplitude is relatively
small. Two fixed points with non-relativistic and rela-
tivistic momenta are manifested as the central point of a
closed orbit at ψ = π/2 and 3π/2. The non-relativistic
and relativistic orbits are separated by the separatrixes
indicated by the red and green lines in the figure. Ob-
viously, electrons with a non-relativistic velocity cannot
move into the relativistic regime. This condition is the
same as the one discussed by Matsukiyo & Hada [23].

As the amplitude of the standing wave increases, the
electron orbital motions undergo bifurcations. Then non-
relativistic electrons are permitted to be accelerated to
relativistic velocities [25]. Figure 6(b) shows the elec-
tron trajectories at the condition where the first bifur-
cation occurs (A ≡ A1). Now, the boundary of the
non-relativistic orbits is connected to the relativistic part
through the crossing point at ψ = π/2. Thus, it becomes
possible for all the particles at π < ψ < 2π to have a rel-
ativistic velocity. The longitudinal momentum cannot be
ignored when p̃⊥ >∼ 1. In such a regime, the hot electrons
are known to behave like free particles while maintaining
their relativistic velocity [25]. However, for 0 < ψ < π,
there still remains non-relativistic closed orbits in this
case.

The value of H at the non-relativistic separatrix is cal-
culated as H(0, π) = −B. The condition for the bifur-
cation at A = A1 is equivalent that there is only one
p⊥ satisfing H = −B at ψ = π/2. The equation of
H(χ, π/2) = −B corresponds to the following cubic equa-
tion for p̃⊥,

p̃3⊥ + 2Ap̃2⊥ + (A2 −B2 + 2B)p̃⊥ + 2AB = 0 . (3)

Thus, the bifurcation condition can be derived as the
discriminant of Eq. (3) becoming zero. Eventually, the
exact formula for A1 is solved as

A1 =

√
2

2

[(
2B2 + 10B − 1

)

−
(
64B3 + 48B2 + 12B + 1

)1/2]1/2
. (4)

For B = 60, the first bifurcation occurs at A1 = 45.043.
As the intensity of the standing wave increases fur-

thermore, the second bifurcation makes the trajectories
of all non-relativistic electrons (p̃⊥ ≪ 1) at any phases
ψ connected to the relativistic velocity. The trajecto-
ries at the transition (A ≡ A2) are shown in Fig. 6(c).
Then, if the wave amplitude is A > A2, all electrons
in the non-relativistic regime can acquire relativistic en-
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FIG. 7. Theoretical prediction of the maximum electron mo-
mentum due to the relativistic two-wave resonant acceleration
in counter-propagating circularly polarized waves. The color
map shows the maximum momentum pmax obtained as the
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and B = 2Bext/Bc. The black solid and dashed lines indicate
the boundaries for the bifurcations in the electron trajectory
A = A1 and A = A2, respectively.

ergy without the injection problem. In the PIC simula-
tions, the ponderomotive force concentrates the electrons
at the trough of the magnetic field in the preplasma re-
gion. Then finally, entire electrons at any position x have
been perfectly accelerated to relativistic velocity within
the relativistic gyration timescale γ/ωce [25].
The conditions for the second bifurcation can also

be derived analytically with the following prescription.
Look at the H value profile along a line of ψ = π/2.
In order to ensure no closed orbit at all, H(p̃⊥, π/2)
must be a monotonically increasing function of p̃⊥ in the
range of p̃⊥ > 0. Then, the condition can be recognied
that ∂H(p̃⊥, π/2)/∂p̃⊥ must be positive for p̃⊥ > 0. It
can be obtained by setting the discriminant derived from
∂H(p̃⊥, π/2)/∂p̃⊥ = 0 to zero. By calculating the dis-
criminant of the following fourth-order equation,

4p̃4⊥ + 4Ap̃3⊥ + (A2 −B2 + 4)p̃2⊥ + 4Ap̃⊥ +A2 = 0 , (5)

the critical amplitude is solved simply as

A2 = 2

[(
B

2

)2/3

− 1

]3/2

, (6)

which corresponds to A2 = 50.924 for B = 60. In the

limit of B̃ext ≫ 1, the critical amplitude is given by

A2 ≈ B, so that the relation B̃ext
<∼ (1 + R)a0 will be

an excellent indicator of the occurrence of the relativistic
two-wave resonant acceleration of electrons.
The peak value of p̃⊥ along the separatrix is taken at

ψ = 3π/2. Then, the maximum momentum χmax = p̃2max

is obtained solving the equation of H(χmax, 3π/2) = −B,
that is,

p̃3max − 2Ap̃2max + (A2 −B2 + 2B)p̃max − 2AB = 0 . (7)

Figure 7 depicts the maximum momentum evaluated as
a root of Eq. (7) in the region where the transition to
relativistic energy is possible. The bifurcation bound-
aries A = A1 and A = A2 are drawn with the solid and
dashed lines. The maximum momentum depends mainly
on the amplitude of the standing wave. For a given A,
the larger the magnetic field strength B is, the larger
the maximum energy of electron becomes. Therefore, for
maximizing the relativistic two-wave resonant accelera-
tion, the parameters A and B should be closer to the

bifurcation boundary A ∼ B, that is, a0 ∼ B̃ext. This
fact is consistent with the electron energy peak in our
PIC simulations shown in Fig. 4(c). The total energy
is proportional to the injected laser energy a20 since the

conversion rate when a0 = B̃ext takes a similar value (see
Table I).
The approximate formula for p̃max is expressed as

p̃max ≈ A+ [B(B − 2)]
1/2

, (8)

in the limit of p̃max ≫
√
B. This simple formula would

be useful for quick estimation because the deviation from
the exact solution is less than 3% in the region of B >∼ 10.
The maximum momentum given by Eq. (7) is, in fact,

valid not only when B̃ext > 1, but also when the mag-

netic field is weaker. When B̃ext = 0, the Hamiltonian is
modified as

H(χ, ψ) = Aχ1/2 sinψ + χ . (9)

The trajectory analysis confirms that the maximum mo-
mentum of this unmagnetized case can be written as

p̃max = A . (10)

The analytical solutions of the maximum momentum
could be related to the maximum electron energy evalu-
ated by our numerical simulations. The normalized ki-
netic energy of electrons, ǫ̃ = ǫ/mec

2, corresponding to
the maximum momentum is given by

ǫ̃max = (1 + p̃2max)
1/2 − 1 , (11)

which is shown in Fig. 4(a) assuming the reflectivity R =

(N − 1)/(N + 1). The edge of the bifurcation at B̃ext =
56.9 given by Eq. (4) is perfectly consistent with a sharp
drop in the electron energy, which assures the accuracy
of the theoretical picture. The predicted energy gives
the same order of the simulation results for ǫe,max, but
is always below them at most a factor of a few. The
difference would be because the theoretical prediction is
evaluated under the assumption of p̃‖ = 0, while the
actual acceleration eventually increases the longitudinal
momentum as well.
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The temperature of bulk electrons is much lower than
the hot electron energy by many orders. Here, we at-
tempt to estimate the bulk temperature by a simplified
consideration. The resistive heating is expected to be
the dominant process for electron heating in our situa-
tion. Then the energy equation is given by

3

2

∂

∂t
(kBTe) ≈ meνei|ve − vi|2 , (12)

where kB is the Boltzmann constant.
If B̃ext is greater than unity, the relative velocity be-

tween electrons and ions is determined by the quiver mo-
tion of the whistler wave [5]. Assuming the Spitzer for-
mula for the collision frequency [31],

νei =
lnΛ

3(2π)3/2
Ze4

ǫ20m
1/2
e

ne

(kBTe)3/2
, (13)

the bulk electron temperature scaling with ñe, B̃ext, a0,
and time t̃ is derived as

kBTe
mec2

∼
[
40(2π)3/2 ln Λ

9

Zre
λ0

ñea
2
0

(N + 1)2(B̃ext − 1)2
t̃

]2/5

(14)
[5], where lnΛ is the Coulomb logarithm, Z is the ion
charge number, and re = e2/(4πǫ0mec

2) is the electron
classical radius. This approximation is valid when the
quiver velocity is non-relativistic, vq <∼ c, so that the
relation

2a0

(N + 1)(B̃ext − 1)
<∼ 1 (15)

should be satisfied.
When the external magnetic field is below the critical

Bc, the whistler wave cannot enter the target. Then the
bulk electrons are heated by the collisions with the return
current. Using an assumption γncc = nevret and the
ponderomotive scaling for hot electron energy γ = (1 +
a20)

1/2, the return current velocity vret is estimated as

vret
c

∼ (1 + a20)
1/2

ñe
. (16)

Then the bulk temperature due to the return current is
obtained by

kBTe
mec2

∼
[
20(2π)3/2 ln Λ

3

Zre
λ0

(1 + a20)

ñe
t̃

]2/5
. (17)

The bulk electron temperatures predicted by Eqs. (14)
and (17) are overplotted in Fig. 4(a). When whistler
waves cannot penetrate the target, the bulk temperature
is independent of the external magnetic field, as seen from

Eq. (14). On the other hand, for B̃ext
>∼ 1, the electrons

in the target is heated due to the electron quiver motion
of whistler wave [Eq. (17)]. In the range where the non-

relativistic approximation holds (B̃ext
>∼ 32), the PIC

results are in excellent agreement with the theoretical
model. In the region where the relativistic amplitude

must be taken into account (1 <∼ B̃ext
<∼ 32; dashed thick

line), there is a slight discrepancy from the theory, but
the accuracy would be still adequate for the use of the
order estimation.

E. The optimal condition for hot electron fraction

The condition under which the relativistic two-wave
resonant acceleration of electrons is most efficient has de-
rived in the previous subsection as A ∼ B, or a0 ∼ B̃ext.
We will now check the energy spectra of charged parti-
cles under this optimized condition. The energy distribu-
tions of electrons for various laser intensities are shown in
Fig. 8(a). Here the electron kinetic energy is normalized
by the maximum energy ǫmax evaluated from Eqs. (7)
and (11). In all cases, a considerable amount of hot elec-
trons are generated through the electron acceleration at
the standing wave, resulting in the two components in
the energy spectra. The peak of hot electrons is compa-
rable to the energy for the maximum momentum. In the

limit of a0 = B̃ext ≫ 1, it corresponds to p̃max ∼ 4B̃ext.
Thus, the peak energy increases approximately in pro-

portion to B̃ext. On the other hand, the temperature
of the bulk electrons is given by Eq. (14), which should

be proportional to B̃
2/5
ext . The electron spectra shown in

Fig. 8(a) strongly support the validity of the analytical
estimations on the parameter dependence.

For the electron acceleration using standing waves, the
number of hot electrons must be enhanced if the duration
of the standing wave becomes longer. Figure 9(a) indi-
cates the relationship between the pulse duration and the
hot electron features. These spectra are obtained when
the laser pulse is extended by a factor of 3 and 10 from the
fiducial case. To account for the longer pulse length, the
measured timing of the spectrum is reasonably late, and
the computational domain is enlarged by the same fac-
tor. As expected, the fraction of hot electrons increases
with increasing the pulse length. The longer the dura-
tion of the standing wave, the more chance the electrons
will move to the target surface and be accelerated. For
the case of τ̃0 = 100, the hot electrons overwhelm the
bulk component by number. The ratio of the hot elec-
tron number to the total increases monotonically, which
is 0.11, 0.25, and 0.73 for τ̃0 = 10, 30, and 100, respec-
tively, as listed in Table I. Further extension of the du-
ration would enable converting all the electrons in the
target to relativistic energy. Thus, a longer pulse dura-
tion of the incident laser would be a great advantage for
this acceleration mechanism.

From the point of efficiency, it would make sense to
have an appropriate target thickness that matches the
duration of the standing wave. Figure 9(b) shows the
electron energy distributions of varying the thickness of
the target. The pulse length is fixed as τ̃0 = 10 for all the
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FIG. 9. (a) Effects of the laser pulse duration on electron energy spectra demonstrated by three runs of τ0/t0 = 100 (red;
run15), 30 (green; run14), and 10(black; run01). (b) Comparison of three runs with different target thicknesses, d/λ0 = 0.3
(red; run18), 1 (black, run01), and 3 (green; run19). The fiducial parameters are used in all these one-dimensional calculations
(a0 = 30 and Bext/Bc = 30). The dotted lines in both panels correspond to the theoretical prediction of the maximum energy.

runs. Thus, there is almost no difference in the generated
number of hot electrons. Instead, looking at the fraction
of hot electrons, it decreases with increasing thickness,

that is 0.457, 0.106, and 0.029 for d̃ = 0.3, 1, and 3
(see Table I). It can be understood that the difference
is originated from the increase of unaccelerated electrons
inside the thicker target. Therefore, the relation between
the target thickness and laser pulse length is genuinely
essential for optimization.

IV. DISCUSSION

A. Ion acceleration by enhanced sheath fields

According to innovative progress in available laser in-
tensity, laser-driven ion acceleration has become an at-

tractive technique for the purposes such as plasma di-
agnostics and medical applications [30]. Various mech-
anisms of ion acceleration have been proposed theoreti-
cally and attempted in laboratories. Among them, the
most straightforward and robust mechanism is called the
target normal sheath acceleration (TNSA) [33]. By irra-
diating a thin foil with an intense laser beam, the electric
sheath field is formed naturally by the ejection of rela-
tivistic electrons from the backside of the target. Ions
are pulled out of the target by the sheath field and ac-
celerated due to the electric potential gap.

Since the size of the sheath field is affected severely
by the temperature (or the average energy) of hot elec-
trons, the electron energy distribution is crucial for the
maximum energy of the accelerated ions [34, 35]. It is
known that the number density of hot electrons also con-
tributes to the longer acceleration time [36]. Further-
more, a model fitting of the experimental achievement
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supports the idea that both the temperature and density
of hot electrons are essential variables in determining the
maximum ion energy [37]. Thus, the relativistic two-wave
resonant acceleration in standing whistler waves may dra-
matically alter the ion acceleration by TNSA. In this sub-
section, we will briefly quantify how the characteristics
of the accelerated ions are modified by the external mag-
netic field and the laser intensity.

Figure 8(b) shows the energy spectrum of carbon ions

obtained in the optimized runs with a0 = B̃ext. The max-
imum energy increases roughly in proportion to the laser
amplitude, for instance, ǫi,max = 11 MeV/u for a0 = 3
and 5.7 × 102 MeV/u for a0 = 100. The energy conver-
sion rate from the incident laser to ions is always 20–30%
in all cases. Whereas the average energy is enhanced by
many orders from 〈ǫi〉 = 1.0 × 105 eV/u for a0 = 3 to
〈ǫi〉 = 1.4× 108 eV/u for a0 = 100. Ion acceleration uti-
lized by our mechanism could be a promising option for
future production schemes because the required carbon-
ion energy for medical applications is about 400 MeV/u.

By the way, if B̃ext
>∼ a0, the resonant acceleration of

electrons has no chance, but ion heating due to the exci-
tation of ion compressible waves becomes efficient instead
[5, 7, 9]. Therefore, such a regime would be suitable for
generating fusion plasmas by direct energy transfer from
the electromagnetic waves to ions.

The dependence of the maximum ion energy on B̃ext

resembles that of electrons [see Figs. 10(a) and 4(a)]. For

the range of 1 <∼ B̃ext
<∼ a0, where the acceleration condi-

tion is satisfied, the maximum energy seems to be higher
than the case without the magnetic field, but the dif-
ference is less than an order of magnitude. There is no
quantitative difference with the case of LP laser irradi-
ation. Thus, the maximum ion energy does not bene-
fit from this electron acceleration mechanism by much.
On the other hand, a significant advantage exists in the
number fraction of accelerated ions. Figures 10(b) and
10(c) show the ion fraction above 10 MeV/u and 100
MeV/u, respectively. The magnetic field dependence in-
herits the characteristics of the electron acceleration. For
a0 = 100, a large fraction of ions more than a few 10%
are achieved for ǫi,thr = 10 MeV/u in a wide range of

the field strength, 3 <∼ B̃ext
<∼ 100. Furthermore, the ion

fraction over 100 MeV/u becomes a few percent of total
ions if the conditions are right (see also Table III).

In the standing waves of LCP waves, the ion version
of the two-wave resonant acceleration can be expected
in principle [25]. However, the required magnetic field
strength for the ion cyclotron resonance is much larger
than the electron case by a factor of the mass ratio
mi/me. Thus, for the laboratory application, such field
strength is far beyond the available range at present.
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FIG. 10. (a) The maximum ion energy and the number frac-
tion of carbon ions over a threshold energy of (b) ǫthr = 10
MeV/u, and (c) 100 MeV/u in a series of runs with various
Bext/Bc and a0. The meanings of the marks are identical to
those of Fig. 4(b).

B. Influence of Preplasma Density Profile

In this work, we focus on the electron acceleration in
the preplasma region. The presence of preplasma can-
not be ignored when considering energy conversion pro-
cesses near the target surface, especially in the cases of in-
tense lasers. However, there is a quantitative uncertainty
in preplasma properties (e.g., density and scale length)
in actual experiments. In our simulations, we fixed the
scale length as λ0, and the maximum density of the pre-
plasma at the target surface as 10nc. The dependence
of the plasma density on the acceleration mechanism by
standing whistler waves is not so significant as can be
understood by the test particle analysis. We have con-
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firmed that the same acceleration occurs even with the
reduced density by an order of magnitude or different
scale lengths. Therefore, it can be said that the effect
of the density distribution of the preplasma is unimpor-
tant and that electron acceleration by standing whistler
waves is a universally occurring phenomenon in under-
dense preplasma.

C. Laser Incident Angle

So far, we have considered only the setup where the
magnetic field and laser propagation directions are per-
fectly coincident. However, other situations in which
those directions are misaligned will occur in both space
phenomena and laboratory experiments. Then, whether
the laser-plasma interaction is affected by shifting the
magnetic field angle is an interesting question.
Suppose that the incident angle of the laser is fixed so

that it is perpendicular to the target surface. The angle
of the magnetic field to the laser direction is denoted by
θ. The one-dimensional simulations with various θ re-
veal that the energy distributions of electrons and ions
are almost unchanged if the angle is less than 15 degrees.
Therefore, a slight angle deviation would not be a serious
problem when trying to verify this acceleration mecha-
nism experimentally. If the angle becomes around θ = 45
deg, the energy conversion efficiency to plasma is reduced
by about 20%, which may be a level that cannot be ne-
glected (see run22–run26 in Table I). Other wave modes
such as the X-wave must be considered when the mag-
netic field has a perpendicular component to the laser
propagation. Such a complex interaction would be worth
analyzing in detail in the future.

D. Multi-dimensional effects

Once a standing wave forms, the electron accelera-
tion process in this study would be independent of the
spatial dimension. We have verified it by running two-
dimensional simulations. The computational box size of

the additional spatial direction y is set to L̃y = 30, which
is sufficiently broader than the laser focal spot 3λ0 of the
Gaussian shape. The target and preplasma conditions
are the same as in the one-dimensional fiducial run. The
key parameters are taken as a0 = B̃ext = 30, and the
polarization of the laser light is right-hand circular. In
order to demonstrate multi-dimensional effects, the in-
cident angle of the laser irradiation to the x axis is as-
sumed to be ϕ = 26.6 deg (tanϕ = 0.5), whereas the
external magnetic field is along the x direction. In the
y direction, we adopt the periodic boundary condition
for simplicity. The resolution in two-dimensional runs is
∆x = c∆t = λ0/200, and the initial particle number per
cell is 20 and 120 for ions and electrons, respectively.
Figure 11 shows the time history of the energy conver-

sion. The injected laser energy is transferred to electrons

Ion

Electron

Field

t/t0

E
/
E
0

3020100−10

1

0.8

0.6

0.4

0.2

0

FIG. 11. Time histories of the field and plasma energies in
the two-dimensional run. The model parameters are identical
to those in the one-dimensional fiducial run (ne/nc = 603,
Bext/Bc = a0 = 30). A right-hand circularly polarized laser is
injected toward a carbon foil with an incident angle ϕ = 26.6
deg. The color indicates the energy of the electrons (red), ions
(green), and electromagnetic waves (black). For comparison,
the results of the case without the external magnetic field are
also plotted by the dashed curves. The gray area denotes the
laser pulse duration, where the injected laser irradiates the
target surface (0 ≤ t/t0 ≤ 10).

and reduced by about 80% immediately in the timescale
of pulse duration τ̃0 = 10. Although the laser light has
a finite incident angle ϕ, a standing wave appears near
the target surface (see Fig. 12). Electrons are acceler-
ated effectively by two-wave resonance in the standing
wave, as seen in the one-dimensional cases. The ion en-
ergy increases gradually after the electron acceleration
and sheath formation. Then, the electrons acquire al-
most all the energy of the electromagnetic wave during
the direct interaction. It can be seen in Fig. 12(b) where
the injected electric field is extinguished while forming a
standing wave at the end of the laser pulse t̃ ∼ τ̃0.

The spatial distributions of the accelerated electrons
are displayed by the average kinetic energy ǭe in each cell.
The relativistic electrons are trapped by the Larmor mo-
tions in the y direction when the external magnetic field
exists [Fig. 13(a)]. The Larmor radius for this case is

r̃L = (2πB̃ext)
−1, which is much shorter than the laser

wavelength. Thus, there is no structure in the tangen-
tial direction to the target surface, which preserves the
phenomenon’s one-dimensionality. The amplitude of the
sheath field is also similar to the one-dimensional cases.
A strong magnetic field provides a significant advantage
by confining accelerated electrons, as without a magnetic
field, they would diverge isotropically [Fig. 13(b)]. The
accelerated electrons spread out in the x direction much

wider than the original target thickness of d̃ = 1. Those
electrons are recirculated between the front and rear sur-
faces. A strong sheath field forms at both sides of the
target, and this electric field accelerates ions.

The electron energy distributions plotted in Fig. 1(a)
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FIG. 12. Spatial distributions of the electric field |E|/Ec where Ec = mecω0/e. The snapshot data are taken at (a) t/t0 = −4
and (b) t/t0 = 11. The right-hand circularly polarized laser comes from the left with an incident angle ϕ = 26.6 deg. The
carbon target surface is x = 0 initially, and the thickness is d/λ0 = 1, indicated by the gray dashed lines. The feature of
standing waves can be recognized by periodic stripes parallel to the target surface in this image.
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FIG. 13. Spatial distributions of the electron average energy ǭe/(mec
2) for the cases (a) with an external magnetic field

(Bext/Bc = 30) and (b) with no field (Bext = 0). The orientation of the magnetic field is parallel to the x axis or the target-
normal direction. The other model parameters are the same as in Fig. 12. The time taken snapshot data is t/t0 = 11 for both
cases.

are unaltered even in two dimensions. Figure 14 shows
the electron spectra taking account of the spatial multi-
dimensionality. Notice that the electrons only within
|ỹ| ≤ 1.5 are considered for the spectrum. The charac-
teristics of hot electrons around 10–100 MeV are hardly
changed. The bulk temperature is slightly higher due to
the lower resolution than the one-dimensional cases, but
it does not affect the hot electron features. Therefore, it
can be verified that two-wave resonance acceleration in
standing whistler waves also occurs in multi-dimensional
geometries, suggesting that it is a universal and robust

acceleration mechanism.
In our two-dimensional simulations, standing waves

could exist adequately in space and time as the accel-
eration site. In the absence of a magnetic field, the inter-
action of a relativistic laser with an overdense target has
been reported to generate surface modulation, such as
filamentary structures in the density and self-generated
magnetic field [28, 38, 39]. The interface fluctuation will
have a non-negligible influence on forming standing waves
consisting of incident and reflected waves. Indeed, sur-
face structure modulation within a scale of the laser spot
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FIG. 14. Energy spectra of electrons obtained from PIC sim-
ulations taking account of two-dimensional geometry. Except
for the dimensionality, the model parameters and plot marks
are the same as Fig. 1(a). The spectra are calculated from
the electrons in a |y/λ0| ≤ 1.5 region at the end of calculation
t/t0 = 34. The dotted lines correspond to the theoretical pre-
diction of the maximum energy given by Eqs. (7) and (11).

size has been observed in our simulations without an ex-
ternal magnetic field. In that case, filamentary density
stripes are formed in the direction of laser propagation.
However, the interface remains relatively flat, and no
significant modulation is seen when applying a strong
magnetic field. This significant difference may be caused
by the advent of the whistler mode, which modifies the
transmittance properties of the intense laser light. A
comprehensive understanding of complex surface modu-
lation with and without an external magnetic field will
need a more thorough investigation in the future.

V. CONCLUSIONS

We have investigated laser-plasma interaction in the
presence of a strong magnetic field and revealed the phys-
ical mechanism and optimal conditions for hot electron
generation. Electrons are accelerated efficiently in stand-
ing waves formed by two RCP electromagnetic waves that
counter-propagate along an external magnetic field. The
standing wave of CP lights and the external magnetic
field are essential ingredients for this acceleration mech-
anism. If these two elements coexist, the energy con-
version process from electromagnetic waves to electrons
through wave-particle interaction will result in a com-
pletely different picture than the conventional one. Our
findings are summarized as follows.
(i) The structure of the electromagnetic fields in the

CP standing wave is intrinsic to this electron accelera-
tion. The cyclotron resonance caused by the background
magnetic field quickly raises the electron velocity from
non-relativistic to relativistic. The magnetic field must
be strong such that the electron cyclotron frequency is
larger than the laser one.

(ii) Furthermore, for this acceleration to be realized,
there is the minimum requirement in the amplitude of the
electromagnetic wave. The condition for the bifurcation
in the electron gyration motion is that the magnetic field
amplitude of the standing wave must be larger than the
external magnetic field.

(iii) The stronger the external magnetic field, the
higher the maximum energy of the accelerated electrons.
Therefore, there is the optimal condition for the electron
acceleration, which is when the external magnetic field

B̃ext is roughly equal to the injected laser amplitude a0.

(iv) Generation of a large number of hot electrons
brings a significant advantage in laser-driven ion accel-
eration. For the case of carbon ions, the maximum en-
ergy reaches a few hundreds of MeV/u, and the number
fraction over 10 MeV/u could be more than 10 percent.

(v) This relativistic two-wave resonant acceleration oc-
curs even in two-dimensional geometry as well as the ideal
one-dimensional situation. A slight deviation in the angle
between the laser and magnetic field has little influence
on the electron acceleration, indicating the robustness of
this acceleration process.

The experimental verification of this mechanism will
be a precious step in the future. The laser conditions
used in this study can be achievable with a realistic TW-
class femtosecond laser. The most challenging part is
to prepare a uniform magnetic field much stronger than
Bc ≈ 10 kT. Recently, laser-driven magnetic fields have
been generated in various ways [40–46], but they are yet
in the order of kT. Theoretically, the generation of even
stronger magnetic fields of MT-class has been proposed
by designing nm-scale structural targets [20–22]. Since
the synchronization of the field orientation with the laser
direction is also essential, the self-generation of the axial
magnetic field has to be well controlled, which may raise
the difficulty even more. However, strong magnetic fields
bring drastic and attractive differences in laser-plasma
interaction. Thus, it would be worth challenging to pur-
sue such extreme magnetic fields because there are many
practical applications of hot electron generation, such as
laser-driven ion acceleration and fusion plasma genera-
tion.
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Appendix A: Parameters and resulted quantities of

performed runs

A list of the simulation results used for the discussions
in this paper is summarized in Tables I, II, and III. The
first column of these tables gives the common label for
each run.
Table I contains the physical parameters for each run.

The injected laser is characterized by the polarization,
the normalized amplitude a0, and the pulse length τ̃0.
The strength of the external magnetic field is given by

B̃ext, and the angle to the laser direction is θ. The tar-
get material is carbon plasma in all the runs, and the
density is set to ñe = 603. The target type is described

by the thickness relative to the laser wavelength d̃ and
the presence or absence of preplasma. The energy con-
version efficiency to plasmas obtained from each simula-
tion is evaluated regarding the ratio to the incident laser
energy. The hot electron fraction in the last column is
calculated using a procedure explained in Appendix B.
Table II summarizes the features of electrons after the

laser-plasma interaction. The maximum and average en-
ergies, ǫmax and 〈ǫe〉, are shown in the unit of eV. This
table has three kinds of average energy for the total, bulk,
and hot electrons. The last three columns are the num-
ber fraction of electrons exceeding the threshold energy
of ǫthr = 1, 10, and 100 MeV.
Table III is a list of carbon ion characteristics. The

maximum and average energies are given in the electron
volts per nucleon. The number fractions of ions above
the threshold energy of ǫthr = 1, 10, and 100 MeV/u are
listed in the last three columns.

Appendix B: Evaluation of bulk electron

temperature

In this analysis, the bulk electron temperature and the
average energy of hot electrons are defined based on the
electron energy spectrum. Here, we describe the proce-
dure and some examples.
The Maxwell-Boltzmann distribution for a non-

relativistic temperature T is given by

fMB(ǫ, T ) = 2π

(
1

πkBT

)3/2

ǫ1/2 exp

(
− ǫ

kBT

)
, (B1)

where ǫ is the kinetic energy of the particles.
The bulk temperature Tbulk is obtained by fitting the

energy spectrum with a function of αfMB, where α (≤ 1)
is a constant factor meaning the fraction of bulk elec-
trons. The fitted examples are shown in Fig. 15. The
black solid curve depicts the electron spectrum obtained
from the PIC calculation ǫfǫ(ǫ), and the dotted red line
is the fitted thermal bulk component αǫfMB(ǫ, T ) with
T = Tbulk. In the three examples shown here, the char-
acteristics of the hot electrons are all different, but the
thermal component is nicely fitted. By using the bulk

temperature, the average energy of the bulk electrons is
given by 〈ǫe,bulk〉 = (3/2)kBTbulk.
The average energy of hot electrons is estimated from

the subtraction of the bulk component from the numer-
ically obtained spectrum. We integrate the hot electron
energy in the range of ǫ > kBTbulk. This procedure de-
termines the number fraction and average energy of hot
electrons listed in Tables I and II.

Appendix C: Test particle trajectories in standing

whistler waves

The equations for the electron motion in CP standing
waves are solved analytically to interpret the physical
mechanism of electron acceleration. Here, we assume the
same k0 and ω0 for the wavenumber and frequency of the
counter-propagating electromagnetic waves that form the
standing wave. Suppose that the magnetic field Bext is
oriented in the x direction of the Cartesian coordinate
system. The wave amplitudes propagating in the posi-
tive direction of x are denoted by (E+

0 , B+
0 ), and those in

the reverse direction by (E−
0 , B−

0 ). In this case, the elec-
tromagnetic fields of the standing wave can be described
as

E = E+
0 +E−

0

= −(E+
0 + E−

0 ) sin k0x




0
cosω0t
sinω0t




−(E+
0 − E−

0 ) cos k0x




0
− sinω0t
cosω0t


 , (C1)

B = Bext +B+
0 +B−

0

=



Bext

0
0


 + (B+

0 +B−
0 ) cos k0x




0
cosω0t
sinω0t




+(B+
0 −B−

0 ) sin k0x




0
sinω0t

− cosω0t


 . (C2)

The amplitude of the electromagnetic fields is connected
by the following relationship,

B± =
N

c
E± , (C3)

where N is the refractive index defined by Eq. (1). It
should be noticed that the envelopes of the transverse
components E⊥ and B⊥ are a function of position x alone
and independent of time t,

E2
⊥ = (E+

0 +E−
0 )2 sin2 k0x+(E+

0 −E−
0 )2 cos2 k0x , (C4)

B2
⊥ = (B+

0 +B−
0 )

2 cos2 k0x+(B+
0 −B−

0 )2 sin2 k0x . (C5)
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TABLE I. Simulated model parameters and the obtained energy conversion rates.

Label Dim. Polarity a0 τ̃0 B̃ext θ d̃ Preplasma Conversion Rate Hot Electron
[deg] Electron Ion Fraction

run01 1D RCP 30 10 30 0 1 Yes 0.492 0.293 0.106
run02 1D LCP 30 10 30 0 1 Yes 0.001 0.032 0.000
run03 1D Linear 42 10 30 0 1 Yes 0.186 0.143 0.033
run04 1D RCP 30 10 30 0 1 – 0.392 0.215 0.088
run05 1D RCP 30 10 0 0 1 Yes 0.009 0.081 0.007
run06 1D Linear 42 10 0 0 1 Yes 0.020 0.131 0.045
run07 1D RCP 30 10 0 0 1 – 0.004 0.034 0.000
run08 1D RCP 3 10 3 0 1 Yes 0.645 0.212 0.016
run09 1D RCP 10 10 10 0 1 Yes 0.550 0.303 0.033
run10 1D RCP 100 10 100 0 1 Yes 0.474 0.272 0.428
run11 1D RCP 3 10 0 0 1 Yes 0.045 0.029 0.012
run12 1D RCP 10 10 0 0 1 Yes 0.016 0.104 0.006
run13 1D RCP 100 10 0 0 1 Yes 0.003 0.105 0.013
run14 1D RCP 30 30 30 0 1 Yes 0.437 0.387 0.254
run15 1D RCP 30 100 30 0 1 Yes 0.453 0.477 0.727
run16 1D RCP 30 30 0 0 1 Yes 0.002 0.045 0.005
run17 1D RCP 30 100 0 0 1 Yes 0.001 0.083 0.004
run18 1D RCP 30 10 30 0 0.3 Yes 0.483 0.318 0.457
run19 1D RCP 30 10 30 0 3 Yes 0.488 0.292 0.029
run20 1D RCP 30 10 0 0 0.3 Yes 0.007 0.084 0.026
run21 1D RCP 30 10 0 0 3 Yes 0.016 0.075 0.002
run22 1D RCP 30 10 30 5 1 Yes 0.493 0.318 0.108
run23 1D RCP 30 10 30 10 1 Yes 0.536 0.321 0.132
run24 1D RCP 30 10 30 15 1 Yes 0.490 0.328 0.144
run25 1D RCP 30 10 30 30 1 Yes 0.494 0.225 0.148
run26 1D RCP 30 10 30 45 1 Yes 0.460 0.201 0.178

TABLE II. Electron features in the simulated runs. The model parameters of each run are listed in Table I.

Label ǫe,max 〈ǫe,total〉 〈ǫe,bulk〉 〈ǫe,hot〉 P{ǫe > ǫthr}
[eV] [eV] [eV] [eV] 1 MeV 10 MeV 100 MeV

run01 4.95 × 108 3.87 × 106 1.27 × 105 3.57 × 107 1.04 × 10−1 9.17 × 10−2 2.43 × 10−3

run02 2.97 × 106 1.20 × 104 1.18 × 104 5.58 × 105 4.77 × 10−5 – –
run03 3.64 × 108 1.41 × 106 4.67 × 104 4.10 × 107 3.26 × 10−2 2.85 × 10−2 6.24 × 10−4

run04 1.64 × 108 3.09 × 106 8.25 × 104 3.45 × 107 8.70 × 10−2 7.95 × 10−2 1.02 × 10−3

run05 9.42 × 107 7.24 × 104 2.92 × 104 6.50 × 106 4.84 × 10−3 1.43 × 10−3 –
run06 8.82 × 107 1.58 × 105 4.44 × 104 2.58 × 106 2.65 × 10−2 2.17 × 10−3 –
run07 5.11 × 105 3.62 × 104 3.62 × 104 4.37 × 105 – – –
run08 3.32 × 107 5.12 × 104 5.19 × 103 2.93 × 106 1.20 × 10−2 2.24 × 10−4 –
run09 1.21 × 108 4.81 × 105 4.03 × 104 1.35 × 107 3.24 × 10−2 2.19 × 10−2 –
run10 1.27 × 109 4.06 × 107 5.41 × 105 9.88 × 107 5.07 × 10−1 3.36 × 10−1 1.95 × 10−1

run11 7.06 × 106 3.61 × 103 1.74 × 103 1.54 × 105 4.52 × 10−4 – –
run12 2.10 × 107 1.40 × 104 8.73 × 103 8.51 × 105 1.19 × 10−3 3.53 × 10−5 –
run13 1.99 × 108 2.09 × 105 1.41 × 105 5.38 × 106 6.89 × 10−3 1.33 × 10−3 1.59 × 10−4

run14 6.11 × 108 1.04 × 107 1.73 × 105 4.09 × 107 2.52 × 10−1 2.35 × 10−1 1.05 × 10−2

run15 4.96 × 108 3.62 × 107 1.37 × 106 5.05 × 107 8.47 × 10−1 6.64 × 10−1 6.64 × 10−2

run16 4.35 × 107 4.14 × 104 3.45 × 104 1.53 × 106 1.74 × 10−3 9.61 × 10−5 –
run17 1.28 × 108 1.16 × 105 1.04 × 105 2.55 × 106 3.39 × 10−3 2.20 × 10−4 –
run18 3.98 × 108 1.23 × 107 1.56 × 105 2.74 × 107 4.17 × 10−1 3.17 × 10−1 1.34 × 10−2

run19 9.87 × 108 1.30 × 106 1.15 × 105 4.08 × 107 2.91 × 10−2 2.72 × 10−2 1.02 × 10−3

run20 8.60 × 107 1.63 × 105 2.55 × 104 5.20 × 106 1.48 × 10−2 4.46 × 10−3 –
run21 1.05 × 108 4.13 × 104 2.41 × 104 8.20 × 106 1.68 × 10−3 6.08 × 10−4 –
run22 2.80 × 108 3.90 × 106 1.02 × 105 3.54 × 107 1.07 × 10−1 9.83 × 10−2 1.75 × 10−3

run23 3.25 × 108 4.26 × 106 1.26 × 105 3.17 × 107 1.29 × 10−1 1.13 × 10−1 2.44 × 10−3

run24 3.58 × 108 3.90 × 106 1.86 × 105 2.63 × 107 1.42 × 10−1 1.10 × 10−1 2.99 × 10−3

run25 4.09 × 108 3.94 × 106 3.34 × 105 2.52 × 107 1.85 × 10−1 9.87 × 10−2 4.47 × 10−3

run26 4.78 × 108 3.67 × 106 5.46 × 105 1.87 × 107 3.10 × 10−1 8.93 × 10−2 5.17 × 10−3
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FIG. 15. Fitted results of the bulk electron temperature for the cases of (a) Bext/Bc = 10 and θ = 0, (b) Bext/Bc = 100 and
θ = 0, and (c) Bext/Bc = 30 and θ = 15. The other parameters are identical to the fiducial run. The bulk component in the
energy spectrum is fitted by a thermal distribution of αfMB(ǫ, Tbulk). Here, fMB(ǫ, T ) is the Maxwell-Boltzmann distribution,
and α stands for a fraction of bulk electrons. The best solutions for each spectrum are (a) Tbulk = 184 keV and α = 0.83, (b)
Tbulk = 23.4 keV and α = 1.0, and (c) Tbulk = 124 keV and α = 0.85, which are shown by the red dotted curve in each panel.

TABLE III. Carbon-ion features in the simulated runs. The model parameters of each run are listed in Table I.

Label ǫi,max 〈ǫi,total〉 P{ǫi > ǫthr}
[eV/u] [eV/u] 1 MeV/u 10 MeV/u 100 MeV/u

run01 1.75 × 108 1.17 × 106 7.72 × 10−2 2.89 × 10−2 7.18 × 10−4

run02 3.58 × 106 1.27 × 105 2.53 × 10−3 – –
run03 1.41 × 108 5.71 × 105 2.87 × 10−2 1.12 × 10−2 4.13 × 10−4

run04 8.47 × 107 8.75 × 105 6.26 × 10−2 2.53 × 10−2 –
run05 9.45 × 107 3.25 × 105 2.59 × 10−2 9.82 × 10−3 –
run06 9.87 × 107 5.21 × 105 4.39 × 10−2 1.41 × 10−2 –
run07 2.03 × 106 1.39 × 105 1.29 × 10−2 – –
run08 1.14 × 107 8.46 × 103 2.18 × 10−3 4.92 × 10−5 –
run09 5.51 × 107 1.34 × 105 1.87 × 10−2 2.91 × 10−3 –
run10 5.74 × 108 1.21 × 107 7.45 × 10−1 1.95 × 10−1 2.45 × 10−2

run11 1.71 × 106 1.18 × 103 6.89 × 10−5 – –
run12 2.40 × 107 4.62 × 104 7.78 × 10−3 6.71 × 10−4 –
run13 9.35 × 107 4.68 × 106 8.26 × 10−1 4.42 × 10−2 –
run14 2.96 × 108 4.63 × 106 2.71 × 10−1 1.19 × 10−1 3.15 × 10−3

run15 5.21 × 108 1.90 × 107 6.75 × 10−1 3.95 × 10−1 3.33 × 10−2

run16 5.29 × 107 5.45 × 105 1.11 × 10−1 5.97 × 10−3 –
run17 1.44 × 108 3.33 × 106 9.49 × 10−1 3.03 × 10−3 6.59 × 10−5

run18 1.81 × 108 4.08 × 106 3.39 × 10−1 1.15 × 10−1 2.46 × 10−3

run19 1.40 × 108 3.93 × 105 2.23 × 10−2 8.88 × 10−3 1.19 × 10−4

run20 9.71 × 107 1.07 × 106 1.24 × 10−1 3.16 × 10−2 –
run21 7.72 × 107 1.01 × 105 5.94 × 10−3 3.24 × 10−3 –
run22 1.74 × 108 1.27 × 106 8.42 × 10−2 3.70 × 10−2 7.77 × 10−4

run23 1.55 × 108 1.28 × 106 9.28 × 10−2 3.86 × 10−2 6.39 × 10−4

run24 1.32 × 108 1.31 × 106 1.01 × 10−1 4.10 × 10−2 3.64 × 10−4

run25 8.58 × 107 8.99 × 105 9.55 × 10−2 2.27 × 10−2 –
run26 6.36 × 107 8.02 × 105 1.11 × 10−1 1.66 × 10−2 –

The electron motion in the standing wave is solved by
treating it as a test particle in the electromagnetic fields
defined by Eqs. (C1) and (C2). The basic equations to
be solved are

dp

dt
= −e

(
E +

p

γme
×B

)
, (C6)

dx

dt
=

px
γme

, (C7)

where the momentum p = γmev and the Lorentz factor
γ = [1 + (p/mec)

2]1/2.

Using p = (p‖, p⊥ cosφ, p⊥ sinφ) and ψ = φ − ω0t,
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TABLE IV. Conditions and momenta at various fixed points

Type Condtions for x̂ and ψ p̃⊥
FP1 cos x̂ = cosψ = 0 sin x̂ sinψ = 1 p̃⊥(B̃ext/γ − 1) = (1 +R)a0
FP2 cos x̂ = cosψ = 0 sin x̂ sinψ = −1 p̃⊥(1− B̃ext/γ) = (1 +R)a0
FP3 sin x̂ = sinψ = 0 cos x̂ cosψ = 1 p̃⊥(1− B̃ext/γ) = (1−R)a0
FP4 sin x̂ = sinψ = 0 cos x̂ cosψ = −1 p̃⊥(B̃ext/γ − 1) = (1−R)a0

Eqs. (C6) and (C7) are rewritten as

dp̃‖

dt̂
= Na0

p̃⊥
γ

[(1 +R) cos x̂ sinψ + (1−R) sin x̂ cosψ] ,

(C8)

dp̃⊥

dt̂
= a0 [(1 +R) sin x̂ cosψ + (1−R) cos x̂ sinψ]

− Na0
p̃‖

γ
[(1 +R) cos x̂ sinψ + (1 −R) sin x̂ cosψ] ,(C9)

dψ

dt̂
= a0

1

p̃⊥
[(1 +R) sin x̂ sinψ − (1−R) cos x̂ cosψ]

− Na0
p̃‖

γp̃⊥
[(1 +R) cos x̂ cosψ − (1 −R) sin x̂ sinψ]

+
B̃ext

γ
− 1 , (C10)

dx̂

dt̂
= N

p̃‖

γ
, (C11)

where the momentum, position, and time are normal-
ized by p̃∗ = p∗/(mec), x̂ = k0x, and t̂ = ω0t, respec-
tively. The field amplitudes of the waves are assumed to
be E+ = E0 and E− = RE+. Then the energy evolution
of the electron is determined through the equation below,

dγ

dt̂
= a0

p̃⊥
γ

[(1 +R) sin x̂ cosψ + (1−R) cos x̂ sinψ] .

(C12)
The fixed points, at which all the time derivatives

of Eqs. (C8)–(C11) vanish, are helpful to understand
the resonance characteristics of an electron. By setting
p‖ = 0, the requirement for a fixed point is derived as
cos x̂ = cosψ = 0 or sin x̂ = sinψ = 0. The momentum
values at the fixed points in our situation are summa-
rized in Table IV. The fixed points, FP1 and FP2, are
the same as those already reported [23], but the other
two have appeared as a result of considering two waves
with different amplitudes.
As for the case of cos x̂ = cosψ = 0, let us consider an

electron at x̂ = π/2, i.e., at the trough of the magnetic
field. Then, the condition for the FP1 is satisfied at ψ =
π/2. In the non-relativistic limit (γ ≈ 1), the momentum

at FP1 is given by p̃⊥ ≈ (1 + R)a0/(B̃ext − 1). Under

a strong magnetic field (B̃ext > 1), it becomes a stable
fixed point [23]. In the relativistic limit (γ ≈ p̃⊥), the

momentum will become p̃⊥ ≈ B̃ext−(1+R)a0. Although

an extra condition B̃ext ≫ (1+R)a0 is needed for it to be
valid, this solution is known to be unstable [23]. On the
other hand, at ψ = 3π/2, we have the stable FP2, which

is given by p̃⊥ ≈ (1+R)a0+ B̃ext in the relativistic limit.
The relativistic FP2 is related to the cyclotron resonance,
and its existence is the key to electron acceleration. The
momentum at FP2 in the small-amplitude limit, p̃⊥ =

(B̃2
ext − 1)1/2, satisfies the resonance conditions for both

of the two counter waves simultaneously [23, 24].
The relativistic momentum at the FP3, p̃⊥ ≈ (1 −

R)a0 + B̃ext, is always smaller than that of the FP2.
Therefore, for the discussion of the maximum momen-
tum, we should focus on the electron motions at x̂ = π/2.
Assuming p̃‖ = 0, the equations of motion for an elec-

tron at x̂ = π/2 are given by

dp̃‖

dt̂
= N(1−R)a0

p̃⊥
γ

cosψ , (C13)

dp̃⊥

dt̂
= (1 +R)a0 cosψ , (C14)

dψ

dt̂
= −(1 +R)a0

1

p̃⊥
sinψ +

B̃ext

γ
− 1 . (C15)

If the amplitude of the opposing wave is the same (R =
1), there is no force in the parallel direction. It is be-
cause the perpendicular component of the magnetic field
is zero at the trough of the magnetic field. Thanks to this
property, the governing equations for the electron gyra-
tion motion are closed only with Eqs. (C14) and (C15).
However, if the amplitudes of the counter waves are dif-
ferent, the magnetic field of the standing wave is finite
everywhere. Then, strictly speaking, the parallel motion
is coupled with the transverse momentum. In the non-
relativistic limit of p̃⊥, the time derivative of p̃‖ is neg-
ligible compared to that of p̃⊥ by a factor of p̃⊥/γ ≪ 1.
On the other hand, for the case of relativistic momen-
tum, these time derivatives are in the same order, so we
have to solve the equations of motion in the horizontal
direction at the same time.
For simplicity, we will consider only Eqs. (C14) and

(C15) in the analysis of this paper, and define the Hamil-
tonian to describe the electron motions following the pre-
vious works [23, 25]. Note that for the case of R = 1, our
analysis can be regarded as exact, while it corresponds to
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approximated solutions for the non-relativistic momen-
tum if R 6= 1. The equations of motion (C14) and (C15)
are combined into the following equation,

H(χ, ψ) = Aχ1/2 sinψ −B(χ+ 1)1/2 + χ , (C16)

where χ = p̃2⊥, A = 2(1 + R)a0, and B = 2B̃ext. Then,

Eq. (C16) satisfies the relations dχ/dt̂ = ∂H/∂ψ and

dψ/dt̂ = −∂H/∂χ simaltaneously. The electron trajec-
tories in the χ-ψ coordinate can be obtained as constant
H contour lines. This equation (C16) gives the basis of
the analysis discussed in Sec. III D. This relation is valid
at the trough (crest) of the magnetic (electric) field in
the standing wave, that is x̂ = (2n− 1)π/2 where n is an
integer. These locations correspond to x̃ ≈ (2n− 1)/4 in
our simulations.
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