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Abstract. 

Objective: Proton spot-scanning arc therapy (ARC) is an emerging modality that can improve the high-

dose conformity to targets compared with standard intensity-modulated proton therapy (IMPT). However, 

the efficient treatment delivery of ARC is challenging due to the required frequent energy changes during 

the continuous gantry rotation. This work proposes a novel method that delivers a multiple IMPT (multi-

IMPT) plan that is equivalent to ARC in terms of biologically effective dose (BED).  

Approach: The proposed multi-IMPT method utilizes a different subset of limited number of beam angles 

in each fraction for dose delivery. Due to the different dose delivered to organs at risk (OAR) in each 

fraction, we optimize biologically effective dose (BED) for OAR and the physical dose delivered for target 

in each fraction. The BED-based multi-IMPT inverse optimization problem is solved via the iterative 

convex relaxation method and the alternating direction method of multipliers. The effectiveness of the 

proposed multi-IMPT method is evaluated in terms of dose objectives in comparison with ARC. 

Main results: Multi-IMPT provided similar plan quality with ARC. For example, multi-IMPT provided 

better OAR sparing and slightly better target dose coverage for the prostate case; similar dose distribution 

for the lung case; slightly worse dose coverage for the brain case; better dose coverage but slightly higher 

BED in OAR for the head-and-neck case. 

Significance: We have proposed a multi-IMPT approach to deliver ARC-equivalent plan quality.  

 

Keywords: biologically effective dose (BED), proton arc therapy 
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1. Introduction 

Sandison et al. [1] proposed passive-scattering-based proton arc radiotherapy (PS-ARC) and 

demonstrated an approach could improve the target dose conformity. However, the implementation of PS-

ARC [2, 3, 4] faced several limitations including the need to change beam compensator and range 

modulation wheel during gantry rotation. 

The technological challenges posed by PS-ARC were addressed by proton spot-scanning arc therapy 

(ARC) [5, 6, 7, 8, 9, 10] that uses modern scanning nozzles and does not require the compensator and range 

modulation wheel. ARC emerges as an advanced treatment method that can provide conformal dose 

distribution and spare organs at risk (OAR) adjacent to targets [5, 6, 8, 11, 12, 13]. However, during the 

ARC delivery, while the gantry rotates continuously, the energy changes can happen frequently, which can 

substantially impact the delivery efficiency due to energy switching time, e.g., each energy switching-up 

of around 5s and each energy switching-down time of around 0.5s. 

Various energy layer optimization methods have been proposed to minimize the number of energy 

switching-ups and energy layer changes to improve ARC delivery efficiency [1, 6, 14, 15, 16, 17], including 

mono-energy-per-control-point regularization [6], heuristic algorithms [16], and mixed-integer 

programming approach [17]. However, maintaining plan quality while simultaneously reducing the number 

of energy changes remains challenging. 

In this work, we propose a novel method called multi-IMPT that is biologically equivalent to ARC in 

terms of plan quality. The multi-IMPT consists of multiple IMPT plans alternatingly delivered over the 

entire course, with each IMPT plan consisting of a different subset of limited number of field angles. The 

key difference between multi-IMPT and ARC is the dose to normal tissues and OAR, resulting in the need 

to model the effect of temporal fractionation for multi-IMPT. Thus, biologically effective dose (BED), 

calculated using linear and quadratic (LQ) model for normal tissues, will be used to demonstrate the 

biological equivalence of multi-IMPT and ARC. 
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2. Problem Formulation 

In this section, we start by defining the parameters for the optimization problem (including the 

definition of the BED), followed by defining the constraints to minimize the BED in OAR, and finally 

introducing the complete optimization model for multi-IMPT. 

 

2.1. Defining parameters, decision variables and constraints in the multi-IMPT optimization problem  

We now define all the quantities associated with our optimization problem followed by defining the 

constraints in the problem. 

Parameters and decision variable: 

1. 𝑀 = {1,… ,𝑀}: set of indices of OAR 

2. For 𝑚 ∈ 𝑀, 𝑛!: number of voxels in  𝑚-th OAR 

3. 𝐴"! ∈ 𝑅#!×%": dose influence matrix of 𝑚-th OAR during fraction 𝑡; 𝑘" is the number of beams 
in the active fields in fraction 𝑡; 𝐴&!: 𝑗-th row of the matrix 𝐴! and corresponds to the 𝑗-th voxel 
in OAR 𝑚. 

4. 𝐴"' ∈ 𝑅##×%" : dose influence matrix corresponding to tumor/target during fraction 𝑡; 𝑛'  is the 
number of voxels in the tumor. 

5. 𝑇: number of fractions  

6. (Decision variable) 𝑢" ∈ 𝑅%": spot intensity vector in fraction 𝑡, for 𝑡 = 1,… , 𝑇 

Biologically Effective Dose (BED) [18, 19, 20] and physical dose (d):  

1. BED in OAR: For OAR 𝑚, let 𝛼!, 𝛽! be the parameters of the well-known LQ-model that is used 
to define BED. Define 𝜌! = 1/(𝛼!/β!). Under the LQ model, the total biologically effective 
dose (BED) delivered to the 𝑗-th voxel in OAR 𝑚 is ∑ (𝐴&"!𝑢"(

")* + 𝜌!;𝐴&"!𝑢"<
+). During the 

experiments, we set 𝛼!/𝛽! value to 2 Gy for all 𝑚. 

2. Physical dose delivered to target: The physical dose delivered to each target voxel 𝑗 ∈ [𝑛'] in 
each fraction is calculated as 𝑑&"' = 𝐴&"'𝑢". 

Constraints in the model: 

1. BED-max constraint for OAR [21, 22, 23, 24]: Let 𝑀*be the set of OAR that are highly sensitive 

to radiation, and their function is hampered even when a single voxel is damaged by radiation. For 
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such OAR, the BED-max constraint bounds the maximum BED (𝐵𝐸𝐷!,-! ) delivered to each voxel 

in OAR 𝑚. Thus, we define  

C𝐴&"!𝑢"

(

")*

+		C𝜌!(𝐴&"!𝑢")+ ≤
(

")*

𝐵𝐸𝐷!,-! 		∀	𝑚 ∈ 𝑀*, j ∈ [𝑛!]. 

2. BED-mean constraint for OAR [21, 22, 23, 24]:  Let 𝑀+ be the set of OAR whose small portion 

can be damaged without affecting their function. For such OAR, the BED-mean constraint bounds 

the mean BED (𝐵𝐸𝐷!.,#! ) delivered to all voxels in OAR 𝑚. Thus, we define 

CC𝐴&"!𝑢"

(

")*

+		CC𝜌!(𝐴&"!𝑢")+
(

")*

≤
#!

&)*

𝑛! × 𝐵𝐸𝐷!.,#! 		∀	𝑚 ∈ 𝑀+.
#!

&)*

 

3. BED-DVH max constraint for OAR [21, 22, 23, 24]: Consider the set of OAR 𝑀/. The BED-

DVH constraints states that for any OAR 𝑚 ∈ 𝑀/, at most 𝑝 fraction of voxels should receive BED 

larger than 𝐵𝐸𝐷01! , i.e., 𝐵𝐸𝐷&! = ∑ 𝐴&"!𝑢"(
")* +		∑ 𝜌!(𝐴&"!𝑢")+ ≥(

")* 𝐵𝐸𝐷01!  for at most 𝑝 × 𝑛! 

voxels. One of the commonly used techniques to define the DVH max constraint is to first define 

the set of indices (called active index set) of voxels that violate the constraint. More precisely, let 

[𝑛!2 ] be the set of indices of voxels that are sorted in descending order of the BED delivered to the 

voxels in OAR 𝑚. The active index set is then defined as  

Ω! = {𝑗 ∈ [𝑛!2 ]	|	𝑗 ≥ 𝑝 × 𝑛!, 𝐵𝐸𝐷&! ≥ 𝐵𝐸𝐷01! }. 

If the active index set, Ω!, is non-empty, the BED-DVH max constraint is be defined as 

C𝐴&"!𝑢"

(

")*

+		C𝜌!(𝐴&"!𝑢")+ ≤
(

")*

𝐵𝐸𝐷01! 		∀	𝑚 ∈ 𝑀/, 𝑗 ∈ Ω!.	 

4. DVH min constraint for target [25, 26]: DVH min constraint ensures that at least 𝑝 fraction of 

the target voxels receive physical dose larger than 𝑑01'  in each fraction 𝑡, i.e., 𝑑&"' ≥ 𝑑01' , for at 

least 𝑝 × 𝑛' voxels. To define the DVH min constraint, we first define the active index set for the 

target as 

Ω' = {𝑗 ∈ [𝑛'2 ]	|	𝑗 ≤ 𝑝 × 𝑛!, 𝑑&"' ≤ 𝑑01' }, 
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where [𝑛'2 ] is the set of indices of the target voxels sorted in the descending order of the dose 

delivered. The DVH min constraint is then defined as 

𝑑&"' ≥ 𝑑01' 	∀	𝑗 ∈ Ω'. 

5. Max dose for target: Finally, we define a constraint that bounds the maximum physical dose that 

can be tolerated by target dose in each fraction. In our model, we add the constraint 

𝑑&"' = 𝐴&"'u3 ≤ 1.1𝑝𝑥			∀𝑗 ∈ [𝑛'], 𝑡 ∈ [𝑇], 

i.e., the dose delivered to each target voxel 𝑗 in each fraction 𝑡 should not exceed 1.1 times the 

prescribed physical dose (𝑝𝑥). 

 

2.2 Optimization problem 

Combining the constraints defined above, we now define the multi-IMPT optimization problem: 

min
4"

C||𝐴"'𝑢" − 𝑝𝑥||++
(

")*

	

	s. t.C𝐴&"!𝑢"

(

")*

+		C𝜌!(𝐴&"!𝑢")+ ≤
(

")*

𝐵𝐸𝐷!,-! 		∀	𝑚 ∈ 𝑀*, j ∈ [𝑛!],

	CC𝐴&"!𝑢"

(

")*

+		CC𝜌!(𝐴&"!𝑢")+
(

")*

≤
#!

&)*

𝑛! × 𝐵𝐸𝐷!.,#! 		∀	𝑚 ∈ 𝑀+,
#!

&)*

	 (1)

C𝐴&"!𝑢"

(

")*

+		C𝜌!(𝐴&"!𝑢")+ ≤
(

")*

𝐵𝐸𝐷01! 		∀	𝑚 ∈ 𝑀/, 𝑗 ∈ Ω!,

C𝐴"'𝑢"

(

")*

+		C𝜌'(𝐴"'𝑢")+ ≥
(

")*

𝐵𝐸𝐷01' 		∀	𝑗 ∈ Ω',

𝐴&"'u3 ≤ 1.1��𝑥			∀	𝑗 ∈ [𝑛'], 𝑡 ∈ [𝑇],
𝑢" ∈ {0} ∪ [𝑔,+∞}		∀	𝑡 = 1,… , 𝑇.

 

 

The last constraint in Eq. (1) defines a minimum-monitor-unit (MMU) constraint [27, 28, 29, 30, 31, 

32] for 𝑢" with 𝑔 as the MMU threshold to ensure plan deliverability. The multi-IMPT model (Eq. (1)) is 

non-convex with quadratic constraints. Before we provide the solution methodology, we first provide a 

comparison of Eq. (1) with ARC. 
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Comparison with ARC: Note that, our decision variable (spot intensity vector 𝑢") is not the same in 

every fraction since we do not use the same fields in every fraction. Instead, we choose a different subset 

of limited number of beam angles in each fraction. Thus, multi-IMPT (Eq. (1)) differs from ARC, where 

all fields are active in each fraction resulting in equal dose per fraction, i.e., 𝑢" = 𝑢	∀𝑡. We should note that 

the size of the decision variable in the ARC model is much larger since it consists of spot intensities from 

each beam spaced at 15º interval over a 360º rotation resulting in one large optimization problem that needs 

to be solved to find optimal 𝑢. In contrast, in Eq. (1), the spot intensities in each fraction are defined from 

a small subset of beams. Thus, the size of the decision variables 𝑢" in Eq. (1) is much smaller than the size 

of decision variable 𝑢 in ARC model. Furthermore, as we see in Section 2.3, the optimization problem in 

Eq. (1) can be separated in 𝑡 , resulting in multiple computationally cheaper and smaller optimization 

problems defined for each 𝑡. 

 
2.3 Solution algorithm 

To solve Eq. (1), we first introduce additional variables. Define 𝑧&"! = 𝐴&"!𝑢" for all 𝑗 ∈ [𝑛!],𝑚 ∈

𝑀* ∪𝑀+ ∪𝑀/, 𝑡 ∈ [𝑇], and 𝑧&"' = 𝐴&"'𝑢" for all 𝑗 ∈ [𝑛'], 𝑡 ∈ [𝑇] and re-write Eq. (1) as 

min
4",6$

"!,6$
"#	
C||𝐴"'𝑢" − 𝑝𝑥||++
(

")*

		

	𝑠. 𝑡.		C;𝑧&"!<
(

")*

+		C𝜌!;𝑧&"!<
+
≤

(

")*

𝐵𝐸𝐷!,-! 		∀	𝑚 ∈ 𝑀*, j ∈ [𝑛!],

	CC;𝑧&"!<
(

")*

+		CC𝜌!;𝑧&"!<
+

(

")*

≤
#!

&)*

𝑛! × 𝐵𝐸𝐷!.,#! 		∀	𝑚 ∈ 𝑀+,
#!

&)*

C;𝑧&"!<
(

")*

+		C𝜌!;𝑧&"!<
+ ≤

(

")*

𝐵𝐸𝐷01! 		∀	𝑚 ∈ 𝑀/, 𝑗 ∈ Ω!, (2)

C;𝑧&"'<
(

")*

+		C𝜌';𝑧&"'<
+
≥

(

")*

𝐵𝐸𝐷01' 		∀	𝑗 ∈ Ω',

𝑧&"' ≤ 1.1𝑝𝑥	∀	𝑗 ∈ [𝑛'], 𝑡 ∈ [𝑇],
𝑧&"! = 𝐴&"!𝑢"	∀	𝑗 ∈ [𝑛!],𝑚 ∈ 𝑀* ∪𝑀+ ∪𝑀/, 𝑡 ∈ [𝑇],

𝑧&"' = 𝐴&"'𝑢"	∀	𝑗 ∈ [𝑛'], 𝑡 ∈ [𝑇],
	𝑢" ∈ {0} ∪ [𝑔,+∞}		∀	𝑡 = 1,… , 𝑇.
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We now solve Eq. (2) via iterative convex relaxation (ICR) method [33, 34] and alternating direction 

method of multipliers (ADMM) method [35, 36]. The method involves iteratively updating the active index 

sets (defined in Section 2.1) followed by sequentially updating each decision variable in the problem. To 

do so, we first define the augmented Lagrangian as  

min		
	

𝑤'
𝑛'
C||𝐴"'𝑢" − 𝑝𝑥||++
(

")*

	 +
µ*
2 C C

𝑤!
𝑛!

||𝐴"!𝑢"
!∈9%∪9&∪9'

− 𝑧"! + λ"!||++
(

")*

+
µ+
2
C

𝑤'*

𝑛'

(

")*

||𝐴"'𝑢" − 𝑧"' + λ"'||++ +
µ/
2
C

𝑤'+

𝑛'

(

")*

||𝐴"'𝑢" − 1.1𝑝𝑥 + γ"||++ +
µ;
2
C||𝑢" − 𝑦" + ζ"||++
(

")*

𝑠. 𝑡.		C;𝑧&"!<
(

")*

+		C𝜌!;𝑧&"!<
+ ≤

(

")*

𝐵𝐸𝐷!,-! 		∀	𝑚 ∈ 𝑀*, j ∈ [𝑛!],

CC;𝑧&"!<
(

")*

+		CC𝜌!;𝑧&"!<
+

(

")*

≤
#!

&)*

𝑛! × 𝐵𝐸𝐷!.,#! 		∀	𝑚 ∈ 𝑀+,
#!

&)*

(3)

C;𝑧&"!<
(

")*

+		C𝜌!;𝑧&"!<
+ ≤

(

")*

𝐵𝐸𝐷01! 		∀	𝑚 ∈ 𝑀/, 𝑗 ∈ Ω!,

C;𝑧&"'<
(

")*

+		C𝜌';𝑧&"'<
+
≥

(

")*

𝐵𝐸𝐷01' 		∀	𝑗 ∈ Ω',

𝑦" ∈ {0} ∪ [𝑔,+∞}		∀	𝑡 = 1,… , 𝑇.

 

In Eq. (3), 𝑢" , 𝑧	"! , 𝑧	"', 𝑦"  are primal variables and λ"! , λ"', γ" , ζ"  are dual variables. Algorithm 1 

provides a brief outline of the optimization method that solves Eq. (3). We explain each step in the appendix. 

Algorithm 1: Optimization method for solving Eq. (3) 
1. Input: Choose parameters µ*,… , µ;, 𝑤', 𝑤!, 𝑤'*, 𝑤'+ 
2. Initialization: Randomly initialize 𝑢" .	Choose iteration number 𝐾 
3. Set 𝜆"! 	= 𝑧"! = 𝐴"!𝑢", 𝜆"' = 𝑧"' = 𝐴"'𝑢", ζ" = 𝑦3 = 𝑢" , 𝛾" = 1.1𝑝𝑥 for all 𝑡 
4. For 𝑘	 = 	1, … , 𝐾 

a. Find active index sets Ω! , Ω'  for BED-DVH and DVH constraints as described in 
Section 2.1 

b. Update primal variables 𝑢" , 𝑧	"! , 𝑧	"' , 𝑦"	∀𝑡  by fixing all variables except one and 
solving the resulting minimization problem 

c. Update dual variables as follows: 
	𝜆"! =		 𝜆"! + 𝐴"!𝑢" − 𝑧"!	
	𝜆"' =		 𝜆"' + 𝐴"'𝑢" − 𝑧"'	
𝛾" =	𝛾" + 𝐴"'𝑢" − 1.1𝑝𝑥	

ζ" = ζ" + 𝑢" − 𝑦" 
5. Output: 𝑢" 
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2.4 Materials 

We show the equivalency of multi-IMPT and ARC in terms of the biologically effective dose for four 

clinical cases. For ARC, the control points for each beam are spaced at 15º intervals over a 360º rotation. 

For multi-IMPT, six beam angle combinations are used: (0º, 90º, 180º, 270º), (15º, 105º, 195º, 285º), (30º, 

120º, 210º, 300º), (45º, 135º, 225º, 315º), (60º, 150º, 240º, 330º), and (75º, 165º, 255º, 345º), generating six 

different IMPT plans. We generate the ARC plan and multi-IMPT plans by solving Eq. (1) using the method 

described in Algorithm 1. The dose influence matrix is generated using MatRad [37], with spot width of 5 

mm on 3 mm3 dose grid. 

We consider four clinical cases with prescription dose and number of fractions given as: (1) prostate 

case (1.8 Gy x 25 fractions), (2) lung case (2 Gy x 30 fractions), (3) brain case (1.2 Gy x 60 fractions), (4) 

head and neck (HN) case (2 Gy x 35 fractions). The upper bound for each constraint on the BED delivered 

to the OAR are stated in Table 1-4 for the respective test cases. BEDp denotes that at most p% of OAR 

voxels should receive BED greater than the value defined as the upper bound. For a fair comparison, we 

normalize all multi-IMPT and ARC plans so that 95% of the target volume receives 100% of the 

prescription dose. To quantify the plan quality, we compare the following quantities for the two plans: (a) 

Conformity Index (CI), (b) maximum dose delivered to tumor (Dmax), (c) mean and max BED to OAR. CI 

is defined as 𝑉*''+ /(𝑉 × 𝑉′*'') , where 𝑉*''  is the target volume that receives at least 100% of the 

prescription dose, 𝑉 is the target volume, and 𝑉′*'' is the total volume that receives at least 100% of the 

prescription dose. 

 

3. Results 

Prostate: Table 1 presents the results of the comparison between the multi-IMPT and ARC plan. We 

observed that the conformity index was similar for the two methods (0.76 for ARC and 0.78 for multi-

IMPT). The max dose value, Dmax, decreased from 110.74% for ARC to 106.6% for multi-IMPT. 

Furthermore, multi-IMPT achieved substantially lower BED to OAR than proton ARC. Notably, BED50 to 

bladder decreased from 44.6 Gy (ARC) to 24.49 Gy (multi-IMPT), and the BED50 to rectum dropped nearly 
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45% from 45.02 Gy (ARC) to 24.69 Gy (multi-IMPT). Comparison of dose plots and DVH plots in Figure 

1 indicates a slightly better dose distributions for target as well as OAR using multi-IMPT. Thus, for the 

prostate case, multi-IMPT plan provided a slightly improved overall performance. 

Lung: Table 2 provides the lung case results. Comparing the results for both models, we can summarize 

that both plans have similar results. While the BED delivered to the OAR was slightly better for ARC (for 

example, BEDmean = 6.24 Gy (ARC), 6.97 Gy (multi-IMPT), BEDmean = 2.28 Gy (ARC), 2.54 Gy (multi-

IMPT)), we observed that Dmax values slightly improved 113.39 from ARC to 109.31% for the multi-IMPT 

plan. However, the difference between the performance of the plans was not significant, thus, leading to 

nearly equivalent dose plans in this case. The plan equivalency is also evident from the dose plots and DVH 

plots given in Figure 2.  

Brain: From Table 3, we observed that, in the brain case, ARC model slightly outperformed the multi-

IMPT model in terms of the BED delivered to the OAR and CI (0.904 for ARC and 0.863 for multi-IMPT). 

Figure 3 also shows that the ARC model was slightly better than the multi-IMPT model in terms of DVH 

in OAR and target. However, the dose plots in Figure 3 show similar dose distribution for the two methods. 

Thus, while ARC outperforms multi-IMPT in the brain case, the difference was not significant. 

HN: Table 4 shows the comparison of the two models for HN case. From the table, we observed that 

there is a <1% difference in Dmax values for both values. Furthermore, we note that the BEDmax values for 

right parotid and oral cavity for both models differ by less than 0.5 Gy. We also note that the difference 

between BEDmean value of oral cavity for both models is around 1.1 Gy. Finally, we note that the BEDmean 

value increases by around 7% for oropharynx for multi-IMPT model. From the dose plots, it is evident that 

the dose distribution for both models is quite similar. Thus, we can state that, for the HN case, the two 

models provide fairly equivalent dose plans. 
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Table 1: Comparison of (a) ARC, and (b) our model multi-IMPT for the prostate case.  
Structure Quantity Upper bound 

on BED (Gy) 
ARC multi-IMPT 

CTV CI - 0.76 0.783 
Dmax - 110.74% 106.6% 

Bladder BED50 (Gy) 40 44.60 24.49 
BED20 (Gy) 63 67.75 58.65 

Rectum BED50 (Gy) 40 45.02 24.69 
BED20 (Gy) 63 65.70 52.46 
BED10 (Gy) 90 81.48 73.39 

Femoral head BED10 (Gy) 90 2.73 4.14 
Penile bulb BED50 (Gy) 40 12.85 11.51 

 
Table 2: Comparison of (a) ARC, and (b) our model multi-IMPT for the lung case. 

Structure Quantity Upper bound 
on BED (Gy) 

ARC multi-IMPT 

CTV CI - 0.937 0.929 
Dmax - 113.39% 109.31% 

Lung BEDmean (Gy) 25.2 6.24 6.97 
BED30 (Gy) 15.6 3.23 3.43 

Heart BEDmean (Gy) - 2.28 2.54 
Esophagus BEDmean (Gy) 28.66 5.06 5.29 

 
Table 3: Comparison of (a) ARC, and (b) our model multi-IMPT for the brain case. 

Structure Quantity Upper bound 
on BED (Gy) 

ARC multi-IMPT 

CTV CI - 0.904 0.863 
Dmax - 103.14% 104.08% 

Brainstem BEDmax (Gy) 83.7 85.25 87.91 
BEDmean (Gy) - 14.95 16.88 

Brain BEDmax (Gy) 96 104.31 109.37 
BEDmean (Gy) - 1.01 1.11 

 
Table 4: Comparison of (a) ARC, and (b) our model multi-IMPT for the HN case. 

Structure Quantity Upper bound 
on BED (Gy) 

ARC multi-IMPT 

CTV CI - 0.85 0.796 
Dmax - 102.19% 102.45% 

R Parotid BEDmax (Gy) - 5.622 5.85 
Oral Cavity BEDmax (Gy) - 140.5 140.21 

BEDmean (Gy) 66.85 10.95 12.14 
Oropharynx BEDmean (Gy) 90.71 55.97 60.19 
Larynx BEDmean (Gy) 78.42 4.73 5.13 
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Figure 1. Prostate. (a), (b) Dose plots for ARC and multi-IMPT methods respectively, (c) DVH plot for 
the target, (d) BED-DVH plot for OAR 
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Figure 2. Lung. (a), (b) Dose plots for ARC and multi-IMPT methods respectively, (c) DVH plot for the 
target, (d) BED-DVH plot for OAR 
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Figure 3. Brain. (a), (b) Dose plots for ARC and multi-IMPT method respectively, (c) DVH plot for the 
target, (d) BED-DVH plot for OAR 
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Figure 4. HN. (a), (b) Dose plots for ARC and multi-IMPT methods respectively, (c) DVH plot for the 
target, (d) BED-DVH plot for OAR 
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4. Conclusion and Discussion 

In this work, we propose an ARC-equivalent IMPT method, termed multi-IMPT, which consists of 

multiple IMPT plans. The multi-IMPT method utilizes different combinations of a small subset of beams 

in each fraction, which sums up to a large set of beams as in ARC. It was shown that the multi-IMPT can 

deliver the dose coverage equivalent to ARC in terms of the BED delivered to the OAR and the physical 

dose delivered to the target. 

 From the results of four clinical cases, we observed that the BED delivered to the OAR in multi-IMPT 

was similar to the BED delivered to the OAR in proton ARC for two cases (brain and lung). Moreover, the 

BED delivered to the OAR in multi-IMPT was much lower compared to that of  ARC plan for the prostate 

case. The physical dose delivered to the target using multi-IMPT plan matched the dose delivered using 

ARC for prostate and lung case. The DVH plot for the HN case showed an improvement in the physical 

dose delivery to the target. Thus, for three out of four cases, we observed that multi-IMPT was equivalent 

to or slightly better than ARC. For the brain case, multi-IMPT provided a slightly worse performance than 

ARC. Overall, the dosimetric difference multi-IMPT and ARC is not clinically significant, which shows 

that multi-IMPT can provide equivalent plan quality to ARC. 

In multi-IMPT, the choice of each individual plan and the number of times a plan is used during the 

treatment impacts the BED delivered to the OAR. In this work, we do not compare the performance of 

individual dose plans generated by multi-IMPT. It might be possible to consider an optimal choice of plans 

for each fraction to minimize the overall BED delivered to the OAR. 

 

Appendix A: ICR and ADMM method (Algorithm 1) for solving the Augmented Lagrangian 

formulation (Eq. (3)) 

In this section, we review the steps of the ADMM method (Algorithm 1) in detail. In Step 1, we 

carefully choose the values of the parameters in the augmented Lagrangian model. In Step 2, we can 

randomly initialize the decision variable 𝑢" . We choose to set 𝑢" = 0		∀𝑡. In Step 3, we initialize the 
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remaining primal and dual variables. The Step 4 of the algorithm is performed 𝐾 times, i.e., we run the 

ADMM method for 𝐾 iterations. 

Next, in each iteration 𝑘, Step 4a defines the active index set of the BED-DVH max and BED-DVH 

min constraints as explained in Section 2.1. The BED-DVH and DVH-min constraints are defined for OAR 

voxels and target voxels respectively based on the active index set. Finally, Step 4c updates the dual 

variables in the augmented Lagrangian formulation (Eq. (3)) and Step 4b defines the updates to the primal 

variables. We now describe the procedure to update each primal variable in detail. 

1. Updating 𝑢" : For each 𝑡 ∈ [𝑇], we fix all the variables except 𝑢" . The augmented Lagrangian 

formulation (Eq. (3)) is then unconstrained in 𝑢". Thus, we take the first-order derivative of the 

objective function in Eq. (3) and set it to 0. Then, 𝑢" is the solution of the resulting linear system 

of equations. 

2. Updating 𝑦" : For each 𝑡 ∈ [𝑇],  we fix all the variables except 𝑦"  in Eq. (3). The resulting 

optimization problem has a closed form solution as follows: 𝑦" = 𝑚𝑎𝑥(𝑔, 𝑢" + ζ") if  𝑢" + ζ" ≥

𝑔/2. Otherwise, 𝑦" = 0. 

3. Updating 𝑧"! for all 𝑚 ∈ 𝑀*: For each 𝑚 ∈ 𝑀*, 𝑗 ∈ [𝑛!], we fix all the variables except 𝑧&"! in 

Eq. (3). The resulting minimization problem over 𝑧&"! is 

𝑚𝑖𝑛C;𝐴&"!𝑢" + 𝜆&"! − 𝑧&"!<
+

(

")*

s. t.Ck𝑧&"! +
1
2𝜌!

l
+
≤

(

")*

𝐵𝐸𝐷!,-!

𝜌!
+

𝑇
4𝜌!+

.

 

The optimal solution to the resulting minimization problem is the projection of 𝐴&"!𝑢" + 𝜆&"! onto 

the quadratic inequality constraint. The projected point (i.e., the optimal solution) is defined as 

𝑧&"! = (1 − 𝑟);𝐴&"!𝑢" + 𝜆&"!< − 𝑟
*

+<!
, where 𝑟	 = 	𝑚𝑎𝑥	{0, 𝑞} and 𝑞 can be defined as follows: 

𝑞	 = 	1 −	p
()*!+,!

-!
=> .

/-!&

∑ @A$
"!4">B$

"!> %
&-!

C
&.

"0%

. 
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4. Updating 𝑧"! for all 𝑚 ∈ 𝑀+: For each 𝑚 ∈ 𝑀+, we fix all the variables except 𝑧&"! in Eq. (3). The 

resulting minimization problem over 𝑧&"! is 

𝑚𝑖𝑛CC;𝐴&"!𝑢" + 𝜆&"! − 𝑧&"!<
+

#!

&)*

(

")*

s. t.CCk𝑧&"! +
1
2𝜌!

l
+#!

&)*

≤
(

")*

𝑛!𝐵𝐸𝐷!.,#!

𝜌!
+
𝑇𝑛!
4𝜌!+

.

 

We observe that the optimal solution to this problem is the projection of 𝐴&"!𝑢" + 𝜆&"! onto the 

inequality constraint. Thus, the optimal solution is 𝑧&"! = (1 − 𝑟);𝐴&"!𝑢" + λ&"!< − 𝑟
*

+D!
, where 

𝑟	 = 	𝑚𝑎𝑥	{0, 𝑞} and 𝑞	 = 	1 −	p
1!()*!2+1!

-!
=>.1!

/-!&

∑ ∑ @A$
"!4">B$

"!> %
&-!

C
&1!

$0%
.
"0%

. 

5. Updating 𝑧"! for all 𝑚 ∈ 𝑀/: For each 𝑚 ∈ 𝑀*, 𝑗 ∈ ΩE, we use the same procedure as outlined 

for updating 𝑧"! for 𝑚 ∈ 𝑀*. 

6. Updating 𝑧"' : For each 𝑗 ∈ [𝑛'],  we fix all variables except 𝑧&"'  in Eq. (3). The resulting 

minimization problem is 

𝑚𝑖𝑛C;𝐴&"'𝑢" + 𝜆&"' − 𝑧&"'<
+

(

")*

s. t.Ck𝑧&"' +
1
2𝜌'

l
+
≥

(

")*

𝐵𝐸𝐷01'

𝜌'
+

𝑇
4𝜌'+

.

 

The optimal solution to this problem is the projection of 𝐴&"'𝑢" + 𝜆&"' onto the constraint. Thus, we 

can write the optimal solution to the above problem as 𝑧&"' = (1 + 𝑟);𝐴&"'𝑢" + 𝜆&"'< + 𝑟
*
+<#

, where 

𝑟	 = 	𝑚𝑎𝑥	{0, 𝑞} and 𝑞	 = 	p
()*34

#

-#
=> .

/-#
&

∑ @A$
"#4">B$

"#> %
&-#

C
&.

"0%

	− 1. 
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