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Abstract

A general theory of stochastic extensive forms is developed to bridge two concepts of information
flow: decision trees and refined partitions on the one side, filtrations from probability theory on the
other. Instead of the traditional “nature” agent, this framework uses a single lottery draw to select a
tree of a given decision forest. Each “personal” agent receives dynamic updates from an own oracle
on the lottery outcome and makes partition-refining choices adapted to this information. This
theory addresses a key limitation of existing approaches in extensive form theory, which struggle
to model continuous-time stochastic processes, such as Brownian motion, as outcomes of “nature”
decision making. Additionally, a class of stochastic extensive forms based on time-indexed action
paths is constructed, encompassing a wide range of models from the literature and laying the
groundwork for an approximation theory for stochastic differential games in extensive form.
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Introduction

This paper is the second in a series aimed at developing a unified theory of stochastic games
and decision problems in extensive form. Representing a decision problem in extensive form means
specifying it in terms of what the author suggests calling “extensive form characteristics”, namely,
the flow of information about past choices and exogenous events, along with the set of choices
available to decision makers. Although classical theory, as established by von Neumann and Mor-
genstern in [66] and furthered by Kuhn in [45, 46], relies on strong finiteness assumptions, the
concept itself is very general and broadly applicable. In a series of papers, including [3, 4, 2], and in
the monograph [5], Alós-Ferrer and Ritzberger develop an abstract, highly general theory of exten-
sive form games and decision problems and give a concrete order-theoretic characterisation of its
own boundaries. Beyond these boundaries, the notions of strategy, outcome, and equilibrium lose
rigorous decision-theoretic meaning when applied to the extensive form characteristics of a given
decision problem.

Hence, any decision problem and game exhibiting extensive form characteristics lies within these
boundaries or is, at least, some sort of limit of objects within these boundaries. The inclusion, or
the precise meaning of this limit, allows us to rigorously determine the decision-theoretic meaning of
strategies, outcomes, equilibrium, etc. for the given decision problem. This opens a new perspective
on problems in continuous time in particular – a domain where the subtlety of this issue has long
been recognised (see, e.g. [62, 64] and the references therein). Based on the maximality result in
[64], systematically emphasised in [4, 2], which advocates restricting outcomes to certain piecewise
constant paths, [1] introduces, for the first time, a rigorous extensive form foundation of continuous-
time games and decision problems involving such outcomes.

Having said that, an important question remains to be addressed: How can the “extensive form
characteristics” of stochastic games, decision problems exposed to randomness, or those endowed
with randomisation devices be modelled? The standard approach in game and decision theory is to
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introduce a “nature” agent executing a behaviour strategy (described in, e.g. [3, Subsection 2.2.3] or
[31, 5], with roots in the works of Shapley [60] and Harsanyi [38, 39, 40]). However, a fundamental
problem arises in the continuous-time case: many relevant modelling applications – from economics
(see, e.g. [54, 35]) and finance (see [25, 51, 16, 47]) to engineering (see [23, 41] and the references
therein) and reinforcement learning (see, for example, [36]) – require exogenous noise represented
by stochastic processes whose paths are anything but piecewise constant, with Brownian motion
serving as a paradigmatic case (see, for instance, [51, 44, 22] for an overview of both theory and
applications). By no means this implies “the world to be Brownian” or any similar assumption;
rather, such models are widely used, be it because it appears reasonable to allow for unpredictably
small time lags until the next exogenous information revelation, be it because certain quantities
arguably evolve in decision paths of low regularity, be it for mathematical and computational
convenience. One can certainly argue that these models exhibit “extensive form characteristics”
without fitting into the Alós-Ferrer–Ritzberger framework ([5]). This creates a fundamental issue:
the lack of a rigorous decision-theoretic foundation of a large class of relevant models.

Despite this, stochastic control and differential game theory, based on stochastic analysis, have
found a pragmatic way to deal with the “extensive form characteristics” of a continuous-time deci-
sion problem (see, e.g. [22, 21]). While extensive form theory is based on graph theory and refined
partitions, stochastic analysis models exogenous information through filtrations on a given mea-
surable space of scenarios. These are strictly less restrictive objects because σ-algebras need not
be generated by partitions of the sample space. This works as if a one-shot lottery draw selects
a scenario ω at the beginning, without communication, and then, as time progresses, more and
more properties of ω become known to the decision makers. For instance, this could be knowledge
about the realised path of a Brownian motion. From a decision-theoretic perspective, there is no
disadvantage in using this weaker structure for modelling exogenous information.

However, when it comes to the actual decision makers, the stochastic analysis-inspired approach
is not compatible with the extensive form paradigm in the strict sense. This is because it does not
explain strategies, randomisation, outcomes, or (dynamic, e.g. subgame-perfect) equilibria in terms
of a decision tree-like object and choices locally available at moves. In this approach, “strategies” are
typically defined as stochastic processes satisfying a certain measurability condition (e.g. progressive
measurability) and such that a given stochastic differential equation, depending on them in a non-
anticipating way, has a unique solution in some sense. This contradicts the problem’s own extensive
form characteristics in the strict sense, due to the ex post restriction of the strategy space, which
implies that the availability of a choice depends on future decisions (for a detailed discussion of
this issue, see the introduction in [1]). The “outcome” is taken to be the solution to the differential
equation, and “equilibria” (or “optimal controls”) are defined with implicit reference to the dynamic
programming principle, but without an extensive form foundation. This not only fundamentally
undermines the use of the equilibrium concept, but also introduces potential confusion, particularly
regarding the decision-theoretic meaning of these “equilibria” (for example, concerning the notions
of “closed” and “open loop” “equilibria” in stochastic differential games, see the discussion in [21,
p. 72–76]), as well as the precise definition of subgames (for example, in stochastic timing games,
see [54] for further discussion).

Thus, there is room for an extensive form theory that models exogenous information through
filtration-like objects, while modelling endogenous decision making with decision tree-like objects
and partition-refining choices. This approach synthesises both frameworks in a productive way,
which the author refers to as stochastic extensive forms. This is the aim of this project, with the
present paper forming its second part. The theory can be used to construct extensive form games
involving general stochastic processes as noise. Moreover, it provides a way to precisely characterise
how stochastic control and differential games can be approximated by stochastic extensive form
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decision problems. For instance, it applies to the stochastic timing game, which is typically not at
all formulated in extensive form (see, in particular, [54], where strategic form games are stacked
according to a notion of “consistency”, which is justified a priori by an analogy to discrete time and a
posteriori in [63] by a “discrete time with an infinitesimal grid” approximation argument reminiscent
of [61, 62]). While a central motivation for this project stems from continuous-time problems, the
theory is not confined to this domain. It is fundamentally about pushing the boundaries of extensive
form theory as far as logically possible, with a focus set on probability. This makes it possible to
formally establish links between uses of concepts such as equilibrium, which otherwise might seem
ad hoc. It also allows for a clear outline of the decision-theoretic structure that arises naturally
from the combination of these two ideas, distinguishing it from the additional structure sometimes
added in modelling based on the modeller’s discretion or specific perspectives on a given problem.
For example, stochastic extensive form theory is independent of the representation of noise through
a “nature” agent’s virtual decision making, and in that sense, it is naturally stochastic.

The first step in this endeavour, which is taken in the first paper [53] and briefly recalled in this
paper for the reader’s convenience, is to develop a theory of stochastic decision forests. These can
be understood as forests of decision trees, where each tree corresponds to exactly one exogenous
scenario, equipped with a similarity structure across trees, which identifies moves. Decision trees,
as graph-theoretical objects, are the traditional base model for extensive form games and decision
problems. However, as pointed out in [3], the refined partitions-based representation, using the set
of all maximal chains, exhibits not only strong duality properties but also makes dynamic decision
making amenable to the traditional decision-theoretic paradigm of choice under uncertainty: acts
which assign a consequence to any state, following Savage’s framework ([57]). In this refined parti-
tions approach, acts translate into strategies, mapping each move to a choice determined by a set
of outcomes still possible at that move from the agent’s perspective. This is how uncertainty about
choices (whether past or future choices of oneself or others, and present choices of opponents) – that
is, endogenous information – is handled. The modelling of uncertainty about exogenous noise, or
exogenous information, in this paper, however, is fundamentally different. It is the aforementioned
similarity structure, consisting in so-called random moves, that can be equipped with a filtration-like
object which dynamically reveals information about the realised exogenous scenario. This allows
for general stochastic processes to model noise without running into outcome generation problems
along that dimension. The adaptedness of strategies with respect to exogenous information can be
based on a concept of adapted choices.

In the present paper, the above-mentioned ingredients are combined to align with the modelling
framework of choice under uncertainty, using refined partitions along decision paths and general
probabilistic structure across exogenous scenarios. This yields, inter alia, the notion of stochastic
extensive forms, a strict generalisation of the corresponding concept in [4, 2]. Strategies are simply
Savage acts ([57]), and randomisation occurs with respect to exogenous signals (following Aumann
[11]). We demonstrate that the existence and uniqueness of induced outcomes for strategy profiles
can be classified on a scenariowise level, so that the strong results in [4] can be directly applied. We
extend the concepts of sequential rationality and perfect Bayesian equilibrium to general well-posed
stochastic extensive forms, showing that these concepts are not restricted to certain finite games
or to specific formulations of more general situations. We conclude by discussing why stochastic
extensive forms cannot be subsumed into the existing theory through the typical process of rep-
resenting exogenous noise by means of a nature agent (as, especially, put forward by Harsanyi, in
[38, 39, 40]).

The fundamental motivation for this theory arises in a large class of concrete applications.
Thus, its presentation is tightly accompanied by examples. While some of them remain rather
pedagogical, a general class of stochastic extensive forms based on time-indexed action paths is
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also constructed. A small set of readily verifiable axioms allows for many different time regimes,
many different specifications of the outcomes (e.g. paths of timing games, also in the case of the
scenario-dependent expiration of certain options), and general stochastic noise. Of course, it also
includes the deterministic case. To the best of the author’s knowledge, this theoretical unification of
action path-based decision problems with extensive form characteristics within a single framework
is a second new contribution of this paper in its own right.

Before concluding the introduction, three remarks remain to be made. First, this paper is the
second in a series of three and serves as the central part, introducing the key concepts from an
abstract and general perspective. The main notions and results of the first papers are revisited
as needed, with detailed references provided. Second, as pointed out by Aumann (see [13]), game
theory arguably is “interactive decision theory”, while decision theory is, in a trivial sense, single-
player game theory. Still, game theory and decision theory are not the same; the former is more
concerned with the “interactive” aspect, while the latter focuses more on the “decision” facet. This
paper is more concerned with the latter, so it primarily employs the corresponding terminology.
However, when the context allows, “game” is used instead of “decision problem”, or vice versa, and
similarly, the terms “decision maker”, “agent”, and “player” are used interchangeably. Finally, the
relevant proofs of all new theorems, propositions, lemmata, and claims in examples can be found
in the corresponding subsection of the appendix.

Notation

– N = Z+ = the positive integers including zero, N∗ = N \ {0}, R = the real numbers, R+ =
{x ∈ R | x ≥ 0};

– P(A) = PA = the set of subsets of a given set A, P(f) = Pf = the function PA → PB,M 7→
{f(m) | m ∈ M} for a given function f : A → B between two sets A and B;1

– im f = (Pf)(D) = the image of a set-theoretic function f : D → V ;

– |M | = if M is not a number, then this is the cardinality of the set M ;

– E |D = {A ∩D | A ∈ E }, for any σ-algebra E and any D ∈ E .

1. Stochastic extensive forms

The fundamental object of classical extensive form decision and game theory is the decision tree
([66, 45, 46, 5]). The stochastic generalisation constructed in the present series of papers replaces
the traditional “nature” agent with a device “randomly” selecting a decision tree. As noted in the
first part [53], this implies that we consider decision forests rather than decision trees. In that
paper, the former have been formalised using the refined partitions framework and made amenable
to exogenous noise in the sense of general probability theory, and it has been shown that these are
in a strong sense decision-theoretically natural. The most important notions of [53], elementary
in what follows, namely that of stochastic decision forests, exogenous information structures, and
adapted choices are recalled in the first subsection. Then, based on this, the central concept of the
current paper and arguably of the whole series, that of stochastic extensive forms, is introduced.
This makes it possible, in turn, to give a definition of strategies in the sense of Savage acts ([57])
and their extension due to Anscombe and Aumann in [6] and Aumann in [11], respectively. Towards

1P defines a covariant endofunctor on the category of sets.
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the end of this section, the new concepts are illustrated by simple examples, including the absent-
minded driver story.

1.1. Preliminaries: Stochastic decision forests

Let us start with recalling some basic definitions from graph and order theory, thereby fixing
conventions used in this text, which combine those from [20, 3, 24], and are identical to those from
the first part [53]. In a partially ordered set (in short, poset) (N,≥) a chain is a subset c ⊆ N such
that for all x, y ∈ c, x ≥ y or y ≥ x holds true. A maximal chain is a chain that is maximal as
a chain with respect to set inclusion in P(N). x ∈ N is called a maximal element iff there is no
y ∈ N other than x such that y ≥ x. x ∈ N is called maximum iff for all y ∈ N , x ≥ y. For x ∈ N ,
the principal up-set ↑ x and principal down-set ↓ x are defined by

↑ x = {y ∈ N | y ≥ x}, ↓ x = {y ∈ N | x ≥ y}.

Moreover, in this text, a poset (F,≥) is called a forest iff for every x ∈ F , ↑ x is a chain. A
forest (F,≥) is called rooted iff F 6= ∅ and for every x ∈ F , ↑ x contains a maximal element of
(F,≥). A forest (T,≥) is called a tree iff for every x, y ∈ T , (↑ x) ∩ (↑ y) 6= ∅. Given a forest (F,≥),
the elements x ∈ F are called nodes. Nodes x ∈ F such that ↓ x = {x} are called terminal. We
recall the following lemma, fundamental for what follows. It can actually be seen as an explicitly
order-theoretic reformulation of a basic result from graph theory (see the discussion in [20, section
I.1]).

Lemma 1.1 (Lemma 1.1 [53]). For any forest (F,≥) there exists a unique partition F of F into
trees such that for all x, y ∈ F with x ≥ y there is T ∈ F with x, y ∈ T . If (F,≥) is rooted, then
for any T ∈ F , (T,≥) is a rooted tree and has a maximum.

The elements of F are called connected components of (F,≥). The maximum of a rooted tree
(T,≥) is called the root. The roots of a forest (F,≥) are the roots of its connected components.
A decision forest (decision tree) is a rooted forest (tree, respectively) (F,≥) such that all x, y ∈ F
with x 6= y can be separated by some maximal chain c ⊆ F , that is, c ∩ {x, y} is a singleton. A
move in a decision forest (F,≥) is a non-terminal node x ∈ F . Following [53], a decision forest is
called (F,≥) (everywhere) non-trivial iff some (any, respectively) root is a move.

If V is a set, a V -poset is a subset N ⊆ P(V ). The name derives from the fact that (N,⊇)
defines a poset of subsets of V ordered by set inclusion.

Note that the conventions used in this text are chosen intentionally in view of its objective. For
instance, the definition of a tree used in this text is an order-theoretic transcription of a graph-
theoretical concept. The meaning of “tree” and “root” and also the sense of the order (≥ instead of
≤) might differ slightly from those in other texts. See [53, Remark 1.2] for a detailed explanation
and comparison.

Next, we recall the concept of decision forests from [53], defined as a transcription of a charac-
terisation of (a subclass of) so-called “game trees” in [3, Theorem 3] (see [53, Subsection 1.2] for a
detailed comparison).

Definition 1.2 (Definition 1.3 in [53]). Let V be a set. A decision forest on V is a V -poset F such
that:

1. (F,⊇) is a rooted forest;

2. F is its own representation by decision paths, that is, if W denotes the set of maximal chains
in (F,⊇), and for every y ∈ F , W (y) = {w ∈ W | y ∈ w}, then there is a bijection f : V → W
such that for every y ∈ F , (Pf)(y) = W (y).
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F is called decision tree on V iff, in addition, for all x, y ∈ F there is z ∈ F with z ⊇ x ∪ y.
The nodes, terminal nodes, and moves of (F,⊇) are also called nodes, terminal nodes, and moves

of F , respectively, and the elements of V are called outcomes. The set of moves of F is denoted by
X(F ) or X in short.

Decision forests on sets can be seen as a complete, faithful, and self-dual representation of order-
theoretic decision forests in terms of refining partitions of the set of outcomes. They are self-dual
in the sense that outcomes and maximal chains of nodes (called decision paths in [53] and plays in
[3]) can be uniquely identified. Actually, there is one and only one f as in the definition, and it
satisfies, for all x ∈ F and v ∈ V :

x ∈ f(v) ⇐⇒ v ∈ x.

In that sense, we can identify V and W , and for that reason, we use the notation W for the set
underlying F in the sequel (as in [3]).

We note that although phrased differently and with a different aim, the duality and represen-
tation concepts just reviewed constitute one of the essential innovations of [3]. [53] presents them
from the perspective of (stochastic) decision forests and therefore additionally raises the question
whether, put simply, a forest of decision trees on sets is the same thing as a decision forest on
the union of these sets. The answer is shown to be affirmative in [53, Theorem 1.7]. As a conse-
quence, the analysis of decision forests as such (abstracting from possible supplementary structure
like the one introduced in stochastic decision forests) can be reduced to the analysis of decision
trees (compare [53, Remark 1.8]).

We now come to recall stochastic decision forests. The main idea behind this is to weaken
the traditional assumptions on exogenous information which is no more assumed to arise through
dynamic decision making of a nature agent. Rather, an exogenous scenario is “randomly” selected
within a given measurable space which determines the decision tree underlying the actual decision
maker’s problem. From a decision-theoretic point of view, it is indeed very meaningful to define
an exogenous scenario space as a measurable space (Ω,E ) with Ω 6= ∅, in the sense of measure
theory (see [53, Subsection 2.1] for a detailed argument, [19] for a textbook on measure theory).
However, decision makers need not know in which tree they are (a piece of exogenous information)
while making choices based on knowledge about the current (“information set” of) move(s) (a piece
of endogenous information). As a consequence, there is a need of a structure of similarity among
trees that can serve as a consistent basis for both exogenous and endogenous information revelation.
This led to the following definitions.

Definition 1.3 (Definition 2.1 in [53]). A stochastic decision forest, in short sdf, on an exogenous
scenario space (Ω,E ) is a triple (F, π,X) consisting of:

1. a decision forest F on some set W ;

2. a surjective map π : F → Ω such that the set F of connected components of (F,⊇) is given
by the fibres of π, that is,

F = {π−1({ω}) | ω ∈ Ω};

3. a set X such that:

(a) any element x ∈ X is a section of moves defined on some non-empty event, that is, it is
a map x : Dx → X satisfying π ◦ x = idDx

for some Dx ∈ E \ {∅};

(b) X induces a covering of X , that is, {x(ω) | x ∈ X, ω ∈ Dx} = X .

7



The elements of X are called random moves. For ω ∈ Ω, let Tω = π−1({ω}) and Wω be the root of
Tω. For E ⊆ Ω, let WE =

⋃

ω∈E Wω and FE =
⋃

ω∈E Tω.

Definition 1.4 (Definition 2.2 in [53]). Given a stochastic decision forest (F, π,X) on an exogenous
scenario space (Ω,E ), let ≥X denote the partial on X defined by

x1 ≥X x2 ⇐⇒
[

Dx1
⊇ Dx2

and ∀ω ∈ Dx2
: x1(ω) ⊇ x2(ω)

]

.

A set X̃ ⊆ X of random moves is said order consistent iff for all x1, x2 ∈ X̃:

[

∃ω ∈ Dx1
∩Dx2

: x1(ω) ⊇ x2(ω)
]

=⇒ x1 ≥X x2.

A stochastic decision forest (F, π,X)

4(a) is said order consistent iff X is order consistent;

4(b) is said surely non-trivial iff (F,⊇) is everywhere non-trivial;

4(c) that is order consistent, is said maximal iff for every set X̄ such that (F, π, X̄) is an order
consistent stochastic decision forest and that is refined by X in that for all x̄ ∈ X̄ there is
Px̄ ⊆ X with x̄ =

⋃
Px̄,2 we have X̄ = X.

For a detailed discussion, the reader is referred to [53, Subsection 2.2]. Here, only the following
two results are briefly recalled. For this, one extends (X,≥X) by letting T be the set X augmented
with all maps y : Dy = {ω} → {{w}} for all (ω,w) ∈ Ω × W such that {w} ∈ Tω, and letting, for
all y, y′ ∈ T, y ≤T y′ iff Dy ⊇ Dy′ and all ω ∈ Dy′ satisfy y(ω) ⊇ y′(ω) (see [53, Subsection 2.2]).
Then, first, in the order consistent case, the evaluation map on T • Ω = {(y, ω) ∈ T × Ω | ω ∈ Dy},
equipped with the order induced by the product of ≥T on T and equality on Ω, defines an order-
isomorphism onto (F,⊇) ([53, Proposition 2.4]). Second, in the order consistent, surely non-trivial,
and maximal case, (T,≥T) is a decision tree in its own right and the set of its moves equals the
set X of random moves of F ([53, Theorem 2.5]). See [53, Subsections 2.2, 2.3, 2.4] for a detailed
discussion, including illustrations and examples.

Random moves provide the basis for exogenous information revelation. The crucial modelling
idea is based on adapting the concept of filtrations from probability theory, which provide a different
and in probabilistic hindsight far more flexible way of generalising refined partitions on countable
sets of a nature agent’s “choices” (see [53, Subsections 3.1, 3.2]). The corresponding definition is
recalled next.

Definition 1.5 (Definition 3.1 in [53]). Let (F, π,X) be a stochastic decision forest on an exogenous
scenario space (Ω,E ) and let X̃ ⊆ X. An exogenous information structure on X̃ is a family F =
(Fx)x∈X̃ such that for all x ∈ X̃, Fx is a sigma-algebra on Dx with Fx ⊆ E . An exogenous

information structure F is said to admit recall iff for all x′ ∈ X̃ with x ≥X x′ and every E ∈ Fx,
we have E ∩Dx′ ∈ Fx′ .

For further explanation and examples, see [53, Section 3].

The combination of stochastic decision forests and exogenous information structures makes it
possible to define a concept of choices that is able to reconcile the classical decision-theoretic model

2According to standard set-theoretic conventions, x̄ =
⋃

Px̄ means: x̄ is a map with domain
⋃

x∈Px̄
Dx and for all

x ∈ Px̄ and ω ∈ Dx, x̄(ω) = x(ω).
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of choice under uncertainty in its dynamic interpretation studied in [5] on the one hand and on
the other the general theory of stochastic processes. In short, choosing remains an act of refining
partitions of global consequences (alias outcomes), but must be compatible with random moves, the
exogenous information revealed at these and a given system of reference choices. This implements
the basic principle from extensive form theory that at any “move” it is “known” to decision makers
whether a given “action” is available to them or not.

One of the important facts the refined partitions approach formalised in [3] and subsequent
papers clarifies, is that the availability of a choice at a given move can be completely described in
terms of the underlying set-theoretic structure: A choice is available at a move iff the latter is an
immediate predecessor of the former. More precisely, if (F, π,X) is a stochastic decision forest on
an exogenous scenario space (Ω,E ), W =

⋃
F and c ⊆ W is some subset (for instance, a union of

nodes representing a choice), then, with

↓ c = {x ∈ F | c ⊇ x},

let, as in the classical setting of [3], the set of immediate predecessors of c be defined by:

P (c) = {x ∈ F | ∃y ∈↓ c : ↑ x =↑ y\ ↓ c}.

We now recall the definition of reference choices and adapted choices. For this, let us recall the
definition going back to [3] and reformulated in the setting of stochastic decision forests in [53] of
a choice: In a stochastic decision forest, a choice is a non-empty union of nodes.

Definition 1.6 (Definition 4.2 in [53]). Let (F, π,X) be a stochastic decision forest on an exogenous
scenario space (Ω,E ), let X̃ ⊆ X, and let F be an exogenous information structure on X̃.

1. A choice is said

(a) non-redundant iff for any ω ∈ Ω with P (c) ∩ Tω = ∅, we have c ∩Wω = ∅;

(b) X̃-complete iff for every random move x ∈ X̃, x−1(P (c)) is either empty or equal to Dx;

(c) complete iff it is X-complete.

2. For any random move x ∈ X, a choice c is said available at x iff x−1(P (c)) = Dx.

3. A reference choice structure on X̃ is a family C = (Cx)x∈X̃ of sets Cx of non-redundant and

X̃-complete choices available at x.

4. Let C be a reference choice structure on X̃. An F -C -adapted choice is a non-redundant and
X̃-complete choice c such that for all x ∈ X̃ that c is available at and all c′ ∈ Cx:

x−1(P (c ∩ c′)) = {ω ∈ Dx | x(ω) ∈ P (c ∩ c′)} ∈ Fx.

For a detailed motivation and discussion of this definition, including examples, see [53, Section 4].

1.2. Definition: Stochastic extensive forms

The first paper, summarised in the preceding subsection, is about a model of stochastic decision
forests that consistently combines exogenous and endogenous information flow and allows for a
notion of choices adapted to exogenous information. While exogenous information is modelled
through an additional structure, endogenous information is given in terms of the sets of immediate
predecessors. In that sense, choices are “adapted to” endogenous information by construction.
Given a stochastic decision forest (F, π,X), a set I of agents, and families F = (F i)i∈I , C =
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(C i)i∈I and C = (Ci)i∈I of exogenous information structures, reference choice structures, and sets
of adapted choices, respectively, additional criteria are required in order to define an extensive
form. First, choices must be partition refining along the trees: alternative future nodes must be
separable by alternative choices and alternative choices must be disjoint, in any scenario; endogenous
information sets must be disjoint; any possible future node must be compatible with some choice.
Second, endogenous and exogenous information must be compatible: exogenous information must
be identical across endogenous information sets. Finally, as we allow for multiple agents to act
“simultaneously” at the same move (as in [3, 4, 2]), any admissible combination of choices must be
compatible with at least one outcome.

The notation and definition that follow are generalisations of those from [3, 4, 2]. While the
latter are based on (what we call) decision trees, the former are based on (more general) stochastic
decision forests.

Let I be a set. If C = (Ci)i∈I is a family of sets of choices on some stochastic decision forest
(F, π,X), then for any move x ∈ X , any random move x ∈ X, and any i ∈ I,

Ai(x) = {c ∈ Ci | x ∈ P (c)}, Ai(x) = {c ∈ Ci | x−1(P (c)) 6= ∅}

are the sets of choices in Ci available at x, x, respectively. The notation A, commonly used and
linked to the term “action”, is discussed later in this subsection.

For any move x ∈ X , any random move x ∈ X, let

J(x) = {i ∈ I | Ai(x) 6= ∅}, J(x) = {i ∈ I | Ai(x) 6= ∅}.

For any i ∈ I, let
X i = {x ∈ X | i ∈ J(x)}, Xi = {x ∈ X | i ∈ J(x)}.

Let Xi • Ω = {(x, ω) ∈ Xi × Ω | ω ∈ Dx}.
Clearly, if all c ∈ Ci are Xi-complete, then we have Ai(x) = {c ∈ Ci | x−1(P (c)) = Dx} =

Ai(x(ω)) and J(x) = J(x(ω)) for all x ∈ Xi and ω ∈ Dx. It is also clear that if c ∈ Ci is Xi-
complete, then it is already complete.

Definition 1.7. Let (Ω,E ) be an exogenous scenario space. A stochastic pseudo-extensive form,
in short: ψ-sef, on (Ω,E ), is a tuple F = (F, π,X, I,F ,C , C) such that (F, π,X) is a stochastic
decision forest on (Ω,E ), I is a set, C = (Ci)i∈I is a family of sets of choices, F = (F i)i∈I is a
family of exogenous information structures on Xi, i ∈ I, C = (C i)i∈I is a family of reference choice
structures on X

i, i ∈ I, such that all elements of Ci are F i-C i-adapted and the evaluation map
Xi • Ω → X is injective, for all i ∈ I, and satisfying the following axioms:

1. For all i ∈ I, all c, c′ ∈ Ci such that P (c) ∩P (c′) 6= ∅ we have P (c) = P (c′), and for all ω ∈ Ω,
we have either c ∩Wω = c′ ∩Wω or c ∩ c′ ∩Wω = ∅.

2. For all x ∈ X and all (ci)i∈J(x) ∈×i∈J(x)
Ci, we have

x ∩
⋂

i∈J(x)

ci 6= ∅.

3. For all y, y′ ∈ F with π(y) = π(y′) and y ∩ y′ = ∅ there are i ∈ I and c, c′ ∈ Ci such that
y ⊆ c, y ⊆ c′ and c ∩ c′ ∩Wπ(y) = ∅.

4. For all x ∈ X , all i ∈ J(x), all y ∈↓ x \ {x}, there is c ∈ Ai(x) with c ⊇ y.

5. For all i ∈ I, x, x′ ∈ Xi such that Ai(x) ∩Ai(x′) 6= ∅, we have F i
x = F i

x′ and C i
x = C i

x′ .
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6. For all i ∈ I, all F i-C i-adapted choices c′ such that

(i) any ω ∈ Ω with c′ ∩Wω 6= ∅ admits c ∈ Ci with c′ ∩Wω = c ∩Wω ,

(ii) and there is c ∈ Ci with P (c′) = P (c),

are choices for i, that is, satisfy c′ ∈ Ci.

The elements of I are called agents or decision makers. For each agent i ∈ I, F i is called i’s
exogenous information structure, C i is called i’s reference choice structure, and the elements of Ci

are called i’s choices. For i ∈ I and x ∈ X (x ∈ X) i is said active at x (x, respectively) iff i ∈ J(x)
(i ∈ J(x), respectively). For any agent i ∈ I, the sets P (c), c ∈ Ci, are called immediate predecessor
sets of i’s choices. For any agent i ∈ I, the elements of X i and Xi are called i’s moves and i’s
random moves, respectively.

If F is a stochastic pseudo-extensive form on (Ω,E ), then its items are typically denoted by

F = (F, π,X, I,F ,C , C).

A stochastic extensive form, in short: sef, on (Ω,E ), is a stochastic pseudo-extensive form
satisfying the following stronger separation axiom:

3’. For all y, y′ ∈ F with π(y) = π(y′) and y ∩ y′ = ∅, there are x ∈ X , i ∈ I and c, c′ ∈ Ci with
x ∩ c ⊇ y, x ∩ c′ ⊇ y′, c ∩ c′ ∩Wπ(y) = ∅ and x ∈ P (c) ∩ P (c′) ∩ Tπ(y).

A classical (pseudo-) extensive form is the data (F, I, C) for a stochastic (pseudo-) extensive
form F on the singleton exogenous scenario space, respectively.

In other words, a stochastic pseudo-extensive form specifies a stochastic decision forest (F, π,X),
a set of agents I, and for each agent i ∈ I, a “dynamically updating oracle” (exogenous information
structure) F i along i’s random moves, a set of reference choices C i describing how i can measure
choices locally at each of i’s random moves, and a set Ci of choices adapted to this data satisfying
six axioms. Five of these axioms have already been motivated roughly, and all of them are discussed
in more detail in the sequel.

At this point, we make a first comparison with the notion of the “extensive decision problem” in
the sense of [3] and of the “extensive form” in the sense of [2], reproduced and further developed in
the monographic version in [5, Definition 5.2, p. 118]. Indeed, upon consulting the latter reference
it becomes evident that, respectively, a triple (T, I, C) is a classical (pseudo-) extensive form in the
sense of the preceding definition iff (T,C) is an (“extensive decision problem”) “extensive form”
with set of “players” I according to ([5, Definition 4.1]) [5, Definition 5.2, p. 118], the tree (T,⊇)
is rooted, and C = (Ci)i∈I is such that for all i ∈ I and all c ∈ Ci, P (c) 6= ∅. In that sense, the
concept of [5, Definition 5.2]-“extensive forms” is naturally equivalent to the concept of classical
extensive forms, which is naturally embedded into the concept of stochastic extensive forms. An
analogous statement holds true for [5, Definition 4.1]-“extensive decision problems” and classical
pseudo-extensive forms.

In the present text, the term “pseudo-extensive forms” is preferred over that of “extensive
decision problems” because the latter, just as the term “extensive (form) game”, can easily be
understood to include a given preference relation on outcomes. This, however, is not the case and
we wish to avoid any confusion about this. In this framing, pseudo-extensive forms as defined
above, whether stochastic or classical, provide a form describing all possibilities of evolution, the
information agents have about it, and what they can do. But to make a decision problem or game
out of it, individual preferences about outcomes must be added. While the stronger separability
property of extensive forms makes them more relevant in the end, their relaxed version (whatever
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its name) has been found to be important for understanding the problem of well-posedness in the
classical case in [4, 2]. This is why here as well both versions are introduced, but the naming is
chosen such as to underline the importance of the stronger version.

The term “classical” is used instead of “deterministic” which, at first sight, might seem to be
more compelling. This is because a certain class of stochastic (pseudo-) extensive forms can be
represented as classical (pseudo-) extensive forms, as is discussed in Section 3. In the case of
classical extensive forms, Axioms 5 and 6 become redundant, and the formulation of the remaining
four axioms slightly shorter. The interpretation of the first four axioms in the general stochastic
case, as discussed next, therefore resembles the discussion in [4, 2, 3] (see [5] for a monographic
treatment).

Axiom 4 means that at any move and for any possible future node, any active agent can choose
not to discard it. Put less rigorously, it ensures that at any move any future node is compatible with
some choice which is the last part of the refined partitions model. Axiom 3 means that any pair of
non-consecutive nodes from the same exogenous scenario ω can be separated by a pair of choices
disjoint on Wω and jointly available to one and the same agent, while Axiom 3’ in addition requires
this to be possible jointly at one and the same, and preceding move in Tω. Put less rigorously, both
axioms ensure that alternative future nodes are separable by alternative choices, but to different
extents. Axiom 2 means that at any move, all profiles of admissible choices by active agents are
compatible with at least one outcome. This is a minimal requirement on the decision forest F to
be a faithful descriptor of outcomes, and is linked to the possibility that multiple agents can choose
at once. This modelling ansatz, though non-standard compared to the historic literature, has been
pursued in [3, 4, 2, 5]. We adopt this convention because it simplifies the presentation of interactive
settings.

1.3. Information sets

For the understanding of Axioms 1 and 5, let us note the following.

Proposition 1.8. Let F be a stochastic pseudo-extensive form and i ∈ I an agent.

1. {P (c) | c ∈ Ci} is a partition of X i.

2. {Ai(x) | x ∈ X i} is equal to {Ai(x) | x ∈ X
i} and is a partition of Ci.

3. For all c, c′ ∈ Ci, we have P (c) = P (c′) iff there is x ∈ X with c, c′ ∈ Ai(x).

4. For all x, x′ ∈ X, we have Ai(x) = Ai(x′) iff there is c ∈ Ci with x, x′ ∈ P (c).

5. There is a unique partition Pi of Xi such that for all x, x′ ∈ Xi we have Ai(x) = Ai(x′) iff
there is p ∈ Pi such that x, x′ ∈ p.

6. The assignment

Pi ∋ p 7→
⋃

x∈p

im x

defines a bijection Pi → {P (c) | c ∈ Ci}.

7. For all p ∈ Pi, all x, x′ ∈ p, we have Dx = Dx′ , C i
x = C i

x′ , and F i
x = F i

x′ .

Remark 1.9. In the proof of the preceding proposition in Section Appendix B.1, a bit more is
shown. Namely, let F = (F, π,X, I,F ,F , C) be a tuple as in Definition 1.7 satisfying Axioms 1.7.k,
k = 1, . . . , 5, but not necessarily Axiom 1.7.6. Then the conclusions of Proposition 1.8 hold true.
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Thus, the immediate predecessor sets partition i’s moves, and the sets of available choices
partition i’s choices. Two choices have identical immediate predecessor sets iff they are available
at a common move; and two moves i is active at have identical available choices iff they are jointly
immediate predecessors to one and the same choice. Moreover, immediate predecessor sets as well
as the preceding statements can equivalently be formulated on the level of random moves, which
gives rise to a model of endogenous information sets for stochastic extensive forms. This model is
consistent with respect to exogenous information in that at two random moves belonging to the
same endogenous information set p the same exogenous information is revealed.

As a reaction to Proposition 1.8, let, for p ∈ Pi and x ∈ p:

Ai(p) = Ai(x), Dp = Dx, F
i
p = F

i
x , C

i
p = C

i
x .

Previous definitions about moves can be lifted accordingly. For instance, we call c available at an
endogenous information set p iff c ∈ Ai(p).

To fix names for the discussed concept of information, let us note that in stochastic pseudo-
extensive forms, information is revealed along two different channels: exogenous information is
revealed via F , endogenous information (about agents’ behaviour) is revealed via the position in
(X,≥X). Therefore, it is natural to decompose the property of perfect recall accordingly.

Definition 1.10. Let F be a stochastic pseudo-extensive form and i ∈ I be an agent.

1. The elements of Pi are called i’s endogenous information sets.

2. The set of choices of agent i is said to admit and agent i itself is said to have perfect endogenous
information iff all p ∈ Pi are singletons and for all j ∈ I \ {i}, all x ∈ X

i, x′ ∈ X
j , we have

im x ∩ im x′ = ∅. Agent i is said to have perfect exogenous information iff F i
x = E |Dx

for all
x ∈ Xi. Agent i is said to have perfect information iff i has both perfect endogenous and
exogenous information, and F is said to be of perfect information iff this holds true for all
i ∈ I.

3. The set of choices of agent i and agent i itself are said to admit perfect endogenous recall iff
all c, c′ ∈ Ci and ω ∈ Ω with c ∩ c′ ∩Wω 6= ∅ satisfy c ∩Wω ⊇ c′ ∩Wω or c ∩Wω ⊆ c′ ∩Wω .
Agent i is said to admit perfect exogenous recall iff F i admits recall. Agent i is said to admit
perfect recall iff i admits both perfect endogenous and exogenous recall, and F is said so iff
this holds true for all i ∈ I.

Perfect recall with respect to endogenous information is defined by the requirement that for
two choices available at moves along a given decision path the earlier one cannot condition on less
endogenous information (this criterion is compatible with many classical definitions of perfect recall
for a large class of classical extensive forms, see [5, Subsections 6.4.1, 6.4.2]). Perfect information
with respect to endogenous information is essentially defined in the classical way, namely, by re-
quiring information sets to be minimally small, among and across agents. Note, however, that we
formulate the notion both for individual agents and the stochastic (pseudo-) extensive form as a
whole. Perfect information with respect to exogenous information is defined analogously. However,
it is not a very interesting case as no “nature” agent is supposed to act dynamically. The stochastic
component of stochastic (pseudo-) extensive forms is relevant just because there may be agents hav-
ing imperfect exogenous information (about the realised scenario). For the sake of an illustration
of the above-defined notions it is shown in Lemma Appendix B.2 that, as to be expected, perfect
information implies perfect recall.

Perfect endogenous recall can be analysed along the lines of [55]. Perfect recall, however, has a
richer structure in the present setting with general sigma-algebras. We also note that in stochastic
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extensive forms, no information set can be visited twice by a given decision path (as in the classical
case discussed in [3] and [5]), which the author proposes to call the Heraclitus property:

Lemma 1.11 (Heraclitus Property). Let (F, π,X, I,F ,C , C) be a stochastic pseudo-extensive form
on an exogenous scenario space (Ω,E ). Then we have for all agents i ∈ I:

1. for all x, x′ ∈ X with Ai(x) ∩Ai(x′) 6= ∅ and x ⊇ x′ we have x = x′;

2. for all x, x′ ∈ X with Ai(x) ∩Ai(x′) 6= ∅ and x ≥X x′ we have x = x′.

The possibility of crossing an information set twice is typically referred to as “absent-mindedness”,
as a response to the absent-minded driver story and the subsequent modelling idea both due to
Piccione and Rubinstein in [52]. Together with the preceding result, we might thus be tempted
to reject either the hypothesis that “absent-mindedness” as a concept is compatible with classical
decision theory, as brought up in [52], or the claim of the generality of extensive form modelling
(compare the corresponding discussion in [5]). The author believes that to resolve this seeming
dilemma it might be helpful to distinguish between a phenomenon (such as the absent-minded
driver story) and a model or formal attempt to analyse or describe a phenomenon.

Note that from a point of view of classical decision theory and in particular of refined partitions-
based (stochastic) extensive forms, the phenomenon of absent-mindedness as expressed in this story
is not contradictory in itself. This has been discussed, for instance, in [15, 32]. Gilboa, for instance,
has proposed an alternative description which can be succinctly formulated in stochastic extensive
form (see the third of the simple examples in [53], rediscussed in Subsection 1.6). Moreover, both
[15] and [32] make disappear much of the paradoxical conclusions from [52] which suggests that the
latter arise rather from the model than from the phenomenon.

In that sense, the phenomenon of absent-mindedness is not at odds with the refined-partitions
theory of (stochastic) extensive forms. There is such a model describing the strategic phenomenon
convincingly and concisely. To make that clear we have used the term “Heraclitus property” for the
above-described formal property as opposed to the word “absent-mindedness” which we use here
only for the phenomenon (without denying its use in purely graph-based models that one cannot
always make sense of from the rigorous decision-theoretic refined partitions-based perspective).
This point of view also distinguishes the present treatment from the one in [5].

Let us conclude this subsection with two remarks. The first is about the actual information
flow perceived by a given agent. If an agent i ∈ I is at random move x ∈ Xi, the three pieces
of information the agent has are Ai(x), F i

x , and C i
x . From this, the agent can infer the current

information set p ∈ Pi alias P (c), for c ∈ Ai(x), the fact that the realised scenario ω is an element of
Dx, and for any E ∈ F i

x the fact whether ω ∈ E or not, including E = x−1(P (c∩c′)) for all c′ ∈ C i
x .

But the consistency conditions imply that all of this does not reveal more information along the
vertical tree axis (e.g. about which x′ ∈ p is the actual one) or about the horizontal scenario axis
(e.g. about events not contained in F i

x ).
Also note that the refined partitions approach implemented through stochastic (pseudo-) ex-

tensive forms does not require action labels. Choices already implicitly contain the data specifying
conditional on which endogenous information they can be made – this point has been made in
[3, 4, 2] already (for classical (pseudo-) extensive forms). This implies that there is no necessity
to add action labels because they are already implicit in the definition of choices. In the present
framework, a choice does not only tell whether to go left at one particular move, but also at which
set of moves. So for instance, a choice can consist in going left at move x0; but it can also consist
in going left at any move at time 2; or it can consists in going left if agent j 6= i has gone left at
time 1. Moreover, the fact whether these choices are available or not determines the endogenous
information the given agent has: knowing whether you are at move x0 or not when you are actually
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there; knowing nothing about what agents did before time 2; knowing whether j has gone left at
time 1, respectively. This has partly been discussed in [53, Section 4] and is further detailed in the
upcoming examples. Consequently, for a stochastic (pseudo-) extensive form denoted as above, one
could call the elements c ∈ Ci actions of agent i. Although this is avoided for reasons of simplicity,
the standard notion Ai(x) for the set of actions at move x ∈ X is retained.

Moreover, note that Axiom 1 also includes the statement that for any agent i ∈ I, any pair
of choices c, c′ ∈ Ci with P (c) = P (c′) when “evaluated” in a particular scenario ω ∈ Ω is either
equal or disjoint. Along any tree Tω, two choices available at the same move are either identical or
disjoint (alias strict alternatives).

1.4. Completeness

Finally, let us consider Axiom 6. This is a completeness axiom. Indeed, any tuple of the form
(F, π,X, I,F ,C , C) satisfying the conditions from Definition 1.7 except Axiom 6 can be modified
by extending the set of choices for any agent such that the result satisfies Axiom 6 and is equivalent
to (F, π,X, I,F ,C , C). More precisely:

Lemma 1.12. Let F = (F, π,X, I,F ,C , C) be a tuple satisfying the conditions defining a stochastic
extensive form on some exogenous scenario space (Ω,E ) possibly except Axiom 6, according to
Definition 1.7. For any i ∈ I, let Ĉi be the set of all F i-C i-adapted choices ĉ such that

(i) any ω ∈ Ω with ĉ ∩Wω 6= ∅ admits c ∈ Ci satisfying ĉ ∩Wω = c ∩Wω,

(ii) there is c ∈ Ci such that P (ĉ) ⊆ P (c).

Let Ĉ = (Ĉi)i∈I .

Then, F̂ = (F, π,X, I,F ,C , Ĉ) defines a stochastic extensive form on (Ω,E ) such that

1. for all i ∈ I, all ω ∈ Ω,

{ĉ ∩Wω | ĉ ∈ Ĉi} \ {∅} = {c ∩Wω | c ∈ Ci} \ {∅};

2. for all i ∈ I,
{P (ĉ) | ĉ ∈ Ĉi} = {P (c) | c ∈ Ci}.

The lemma remains true if “stochastic extensive form” is replaced with “stochastic pseudo-
extensive form” everywhere.

By this lemma, completeness implies that choices are fully determined by their structure along
any tree Tω, ω ∈ Ω, their immediate predecessor sets, and the informational structure along Ω given
by F and C . More precisely, any Ci, i ∈ I, is determined by the set of all c ∩Wω , c ∈ Ci, ω ∈ Ω,
the family of sets P (c), c ∈ Ci, and the families F i and C i.

1.5. Strategies

In classical game and decision theory, a strategy is an agent’s complete contingent plan of action
(see e.g. [49]). As explained in [3], this can be viewed as a sequential version of acts in the theory
of choice under uncertainty going back to Savage ([57]). Acts map (given) “states” to (chosen)
“consequences”.

[3] takes the view that states are given by moves and consequences by available choices. Concern-
ing “states”, there is, however, a point of possible confusion which implies that there are different
ways acts are formulated in the dynamic setting. One may argue that the point is not really the set
of moves, but the information an agent has about them. In [3], as “states” are identified with moves,
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acts are required to assign identical consequences on information endogenous information sets. Al-
though the present paper formally takes the perspective that endogenous information sets appear
as the most precise interpretation of states, it perceives both viewpoints as equally convincing and
equivalent.

On the other side, the refined partitions approach sees (local) “consequences” at a state as
members of a partition of the set of (global) consequences (alias outcomes), that is, as choices in
the sense of the present text. We see again that action is already implicitly described by choices,
and no further structure of action labels or the like is needed, compare the discussion in the previous
subsection.

In order to ensure consistency (alias adaptedness) with respect to endogenous information in
the mentioned sense, a strategy needs to assign to any of the agent’s endogenous information sets a
choice that is available at it. In addition, by restricting to adapted choices the local compatibility,
or measurability, of acts with respect to exogenous information can be assured. This leads to the
following definition.

Definition 1.13. Let (F, π,X, I,F ,C , C) be a stochastic pseudo-extensive form and i ∈ I an
agent. A strategy for i is a map si : Pi → Ci such that for all p ∈ Pi, si(p) ∈ Ai(p).

Let Si denote the set of strategies for i, and let S =×i∈I
Si. A strategy profile is an element of

S.

As mentioned before, there are other ways of formally defining strategies which moreover seem
more traditional. These interpret moves as states and impose restrictions on strategies in terms of
(endogenous) information sets. As the setting of stochastic pseudo-extensive forms includes both
moves and random moves, we obtain the following two temporary definitions. Let i ∈ I.

An X-strategy for i is a map si : X i → Ci such that:

1. for all x ∈ X i, we have si(x) ∈ Ai(x);

2. for all x, x′ ∈ X i with Ai(x) = Ai(x′), si(x) = si(x′).

Clearly, this is equivalent to saying that for all c ∈ Ci,

{x ∈ X i | si(x) = c} ∈ {∅, P (c)}.

This definition is a direct formal generalisation of the corresponding definition in [3, Subsection 5.2]
and exactly coincides with it in case of singleton Ω.

An X-strategy for i is a map si : Xi → Ci such that:

1. for all x ∈ Xi, we have si(x) ∈ Ai(x);

2. for all x, x′ ∈ Xi with Ai(x) = Ai(x′), si(x) = si(x′).

Denote the set of X-strategies for i by Si
X and the set of X-strategies for i by Si

X.
Furthermore, consider the natural surjections

X i
։ X

i
։ Pi, (1.5.1)

with respect to which any map with domain Pi induces a map with domain Xi and any map with
domain Xi induces a map with domain X i, respectively. Then we have the following result.

Proposition 1.14. Let (F, π,X, I,F ,C , C) be a stochastic pseudo-extensive form, and i ∈ I an
agent. Then the maps in Equation 1.5.1 induce bijections

Si
∼=

−→ Si
X

∼=
−→ Si

X .
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Therefore, in the following, if si is a strategy, both its corresponding X- and X-strategy are
denoted by si as well.

Remark 1.15. Let (F, π,W ,X, I,F ,C , C) be a stochastic pseudo-extensive form and i ∈ I an
agent. Any strategy for agent i is adapted in the sense that for all x ∈ Xi the choice si(x) is
adapted, that is, for all reference choices c′ ∈ Cx, and all x′ ∈ Xi that si(x) is available at:

x′−1(P (si(x) ∩ c′)) ∈ F
i
x′ .

This abstract adaptedness is a consequence of the structure of the underlying stochastic pseudo-
extensive form. It is not part of the definition of a strategy and, in that sense, not a primitive of
the theory.

In the case of action path stochastic pseudo-extensive forms this property is seen to correspond
exactly to the adaptedness in the language of the theory of stochastic processes (see Subsection 2.2
and [53, Subsection 4.4]).

It is a standard procedure in game and decision theory to extend acts (alias strategies) so that
they become maps from states to lotteries over consequences. As discussed in [6], this is consistent
with the theory of subjective probability. It is an elementary insight of game theory that, contrary to
what one may naively infer from the single-agent situation, additional randomisation may improve
coordination. In the dynamic setting, where states can be seen as endogenous information sets and
consequences as available choices, this extension leads to the abstract notion of behaviour strategies.
From an abstract point of view, a behaviour strategy is a complete contingent plan of lotteries over
action. That is, the agent can draw an action at random at any endogenous information set. In
contrast to this, an abstract mixed strategy is a lottery over complete contingent plans of action,
that is, over strategies (which are then said “pure”, in order to distinguish). That is, the agent
can draw a “pure” strategy at random before the start and then commits to it from the beginning
until the end. While for mixed strategies correlation over different endogenous information sets
is possible, the lottery draws of a behaviour strategy at distinct endogenous information sets are
independent.

Following von Neumann and Morgenstern, lotteries are interpreted as probability measures.
The term “lottery” describes a typically unpredictable procedure of determining a consequence,
for instance, the procedure consisting of observing the winner of a horse race. Yet, a probability
measure describes only the statistical distribution of such a procedure’s result whatever the meaning
of “statistical” (frequentist, subjectivist, or other). It thus needs a way of transforming this abstract
distribution into a procedure of the above-mentioned sort. In the literature, there are conflicting
ways of doing so.3

The basic interpretation starts as follows: go to the horse race in question and observe the result.
But then, one might either act blindly according to it or revise the own strategy in view of that
new information. The point here is whether the horse race’s result is stochastically independent of
all exogenous information the agent has at that moment, and in particular, whether the agent has
to commit to its result (as if another agent behaved within a mandate given by the original agent,
or as if the horse race were some unconscious cognitive process).

The second interpretation which does not require commitment can be implemented using an
exogenous scenario space, as discussed in [11, 12]. In particular, it can be implemented in stochastic
extensive forms by using strategies as defined above and profiles thereof. The randomisation is given
in terms of exogenous scenarios, beliefs on these, and the dependence alias correlation structure

3About the interpretation of randomised strategies, see the detailed discussion in [48].
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across endogenous information sets and agents.4 In that sense, strategy profiles in stochastic exten-
sive forms are profiles of correlated strategies whose correlation device and information structure are
given by the exogenous scenario space, the exogenous information structures of the agents and be-
liefs. Also note that for the fundamental solution concept of Nash equilibrium (and its derivatives)
the difference between the two interpretations above evaporates (there, commitment to the result of
randomisation conforms to personal interest); hence, restricting on the second interpretation does
not seem to imply a restriction.

1.6. Simple examples

In this subsection, we recall the three simple examples of stochastic decision forests, including
the exogenous information structures admitting recall, reference choices structures, and adapted
choices for them introduced in [53]. As we demonstrate here, these data do indeed yield stochastic
extensive forms. The stochastic decision forest of the basic example is illustrated in [53, Figure 1]
which is reprinted as Figure A.1 in the appendix. It indicates pars pro toto how finite stochastic
extensive form problems can be formalised.

Formally, let (Ω,E ) be the discrete exogenous scenario space with exactly two scenarios, say
Ω = {ω1, ω2}, ω1 6= ω2, and E = PΩ. Let W = Ω × {1, 2}2 and x0, x1, x2 : Ω → P(W ) given
by x0(ω) = {ω} × {1, 2}2 and xk(ω) = {(ω, k)} × {1, 2}, for ω ∈ Ω and k = 1, 2. Further, let
F = {xk(ω) | ω ∈ Ω, k = 0, 1, 2} ∪ {{w} | w ∈ W}, and π : F → Ω be the map sending any node to
the first entry of an arbitrary choice among its elements. The corresponding decision tree (T,≥T) is
illustrated in [53, Figure 2] and reprinted as Figure A.2 in the appendix. For the sake of simplicity,
we consider only one agent i, i.e. I = {i}.

Regarding exogenous information, it is shown in [53, Lemma 3.2] that there are exactly five
exogenous information structure admitting recall, given by the following families F i = (F i

x )x∈X:

1. F i
x = {Ω, ∅} for all x ∈ X: at all moves, it is unknown which scenario is realised;

2. F i
x0

= {Ω, ∅} and one of the following three cases is true:

(a) F i
x1

= F i
x2

= P(Ω): only at the second move, it becomes known which scenario is
realised, irrespective of which one is the second move;

(b) F i
x1

= P(Ω), F i
x2

= {Ω, ∅}: x1 is the only move at that the realised scenario is revealed;
an agent with this exogenous information may have interest in choosing (if possible) x1

rather than x2 in order to learn, modelling the trade-off exploration vs. exploitation; that
way, problems with partial information and adaptive control can be modelled;

(c) F i
x2

= P(Ω), F i
x1

= {Ω, ∅}: analogous to the preceding situation;

3. F i
x = P(Ω) for all x ∈ X: at all moves, the realised scenario is known.

Concerning choices, we formally generalise the following definitions made in [53]. Let M be the
set of maps Ω → {1, 2}. For k ∈ {1, 2} and f, g ∈ M , [53] defines

cf• = {(ω, k′,m′) ∈ W | k′ = f(ω)},

ckg = {(ω, k′,m′) ∈ W | k′ = k, m′ = g(ω)},

c•g = {(ω, k′,m′) ∈ W | m′ = g(ω)}.

4This is discussed in more detail in Section 3, once beliefs have been introduced.
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ck•, c•m, and ckm are defined by identifying k,m ∈ {1, 2} with the constant maps on Ω with values
k and m, respectively. Further, are defined C i

x0
= {c1•, c2•}, C i

x1
= C i

x2
= {c•1, c•2}. We recall that

the partitioned structure of these sets, reflecting the discreteness of the situation, should be noted.
Next, consider the following table which is slightly different from the one in [53, Subsection 4.3]

because we are now interested in the consistency requirements defining stochastic extensive form,
rather than just in providing a list of adapted choices. The table here reads as follows: Each
line specifies a set of subsets of W for one of the five exogenous information structures (eis) from
[53, Lemma 2.3] and recalled above; these subsets are classified according to whether they will
correspond to choices at the beginning of the “first period” (at time 0) or of the ”second period”
(at time 1), if perceived as action path sdf according to [53, Lemma 2.17]:

eis 1st period 2nd period
1. ck• : k ∈ {1, 2} ckm : k,m ∈ {1, 2}
1. ck• : k ∈ {1, 2} c•m : m ∈ {1, 2}

2.(a) ck• : k ∈ {1, 2} ckg : k ∈ {1, 2}, g ∈ M
2.(a) ck• : k ∈ {1, 2} c•g : g ∈ M
2.(b) ck• : k ∈ {1, 2} c1g, c2m : m ∈ {1, 2}, g ∈ M
2.(c) ck• : k ∈ {1, 2} c1m, c2g : m ∈ {1, 2}, g ∈ M

3. cf• : f ∈ M ckg : k ∈ {1, 2}, g ∈ M
3. cf• : f ∈ M c•g : g ∈ M

Lemma 1.16. Let I be a singleton, i ∈ I, F i be any of the five preceding families, F = (F i), C i

as defined above, C = (C i), and Ci be a set of choices corresponding to it via the preceding table,
C = (Ci). Then, the tuple F = (F, π,X, I,F ,C , C) defines a stochastic extensive form on (Ω,E ).

Remark 1.17. Note that for the exogenous information structure 2.(b), the set

C̃i =
{

ck• | k ∈ {1, 2}
}

∪
{

c•m | m ∈ {1, 2}
}

gives not rise to a stochastic extensive form because Axiom 5 is violated. A similar remark can be
made regarding 2.(c). In other words, the exogenous information available at time 1 would reveal
the current random move though the endogenous information at that node would not do so (the
endogenous information set would contain both random moves at time 1). Axiom 5 stipulates that
such an inconsistency must not arise.

Next, the variant of the simple example from [53] is recalled. It starts from the preceding
example, but identifies the elements (ω1, 2, 1) and (ω1, 2, 2) inW which provides a stochastic decision
forest with a random move that is not defined on all of Ω, as illustrated in [53, Figure 3], reprinted
in Figure A.3 in the appendix. Formally, this leads one to consider W ′ = W \{(ω1, 2, 1), (ω1, 2, 2)}∪
{(ω1, 2)}, x′

0 = x0, x′
1 = x1, and x′

2 : {ω2} → P(W ′) given by x′
2(ω2) = {(ω2, 2)} × {1, 2}. The set

of random moves is denoted by X′ = {x′
0, x

′
1, x

′
2}. The domains are given by Dx′

0
= Ω, Dx′

1
= Ω,

Dx′

2
= {ω2}, and the set of nodes is given by F ′ = {x′(ω) | x′ ∈ X′, ω ∈ Dx′}∪{{w′} | w′ ∈ W ′}. The

projection π′ : F ′ → Ω is the map sending any node to the first entry of an arbitrary choice among
its elements. The corresponding decision tree (T′,≥T′) is illustrated in [53, Figure 4], reprinted in
Figure A.4 in the appendix.

It is shown in [53, Lemma 3.3] that there are exactly three exogenous information structures
admitting recall, given by the three following families (F ′i

x′ )x′∈X′ . In all three cases, one has F ′i
x′

2

=

{{ω2}, ∅}. Furthermore:

1. F ′i
x′

0

= F ′i
x′

1

= {Ω, ∅}: again, there could be an exploitation vs. exploration trade-off (compare

the cases 2(c) above);
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2. F ′i
x′

0

= {Ω, ∅}, F ′i
x′

1

= P(Ω): this is similar to case 2(a) above;

3. F ′i
x′

0

= F ′i
x′

1

= P(Ω): the realised scenario is known at any move (similar to case 3 above).

Concerning choices, the following definitions are made in [53]. Again, M denotes the set of maps
Ω → {1, 2}. For k ∈ {1, 2} and f, g ∈ M , [53] defines

c′
f• = {(ω, k′,m′), (ω, k′) ∈ W | k′ = f(ω)},

c′
kg = {(ω, k′,m′) ∈ W | k′ = k, m′ = g(ω)},

c′
•g = {(ω, k′,m′) ∈ W | m′ = g(ω)}.

c′
k•, c′

•m, and c′
km are defined by identifying k,m ∈ {1, 2} with the constant maps on Ω with values

k and m, respectively. Further, are defined C ′i
x′

0

= {c′
1•, c

′
2•}, C ′i

x′

1

= C ′i
x′

2

= {c′
•1, c

′
•2}.

Next, consider the following table. Its interpretation is completely analogous to the one from
the basic version of the simple example.

eis 1st period 2nd period
1. c′

k• : k ∈ {1, 2} c′
km : k,m ∈ {1, 2}

2. c′
k• : k ∈ {1, 2} c′

kg : k ∈ {1, 2}, g ∈ M

3. c′
f• : f ∈ M c′

kg : k ∈ {1, 2}, g ∈ M

Lemma 1.18. Let I ′ be a singleton, i ∈ I ′, F ′i be any of the three preceding families, F ′ = (F ′i),
C ′i as defined above, C = (C ′i), and C′i be the set of choices corresponding to it via the preceding
table, C′ = (C′i). Then, the tuple F′ = (F ′, π′,X′, I ′,F ′,C ′, C′) defines a stochastic extensive form
on (Ω,E ).

Remark 1.19. Note that for all three exogenous information structures and any g ∈ M , c′
•g cannot

be the choice of an agent for some stochastic extensive form on (F ′, π′,X′). This is because the
exogenous information available at time 1 necessarily reveals the current random move, while the
endogenous information at any move at time 1 does not for c′

•g (the endogenous information set
of that choice would contain both random moves at time 1). Axiom 5 stipulates that such an
inconsistency must not arise.

The third example is a representation of Gilboa’s interpretation of the absent-minded driver
phenomenon in [32] whose sdf, exogenous information structures and adapted choices are well
known from [53]. For this, let (Ω,E ) an exogenous scenario space and ρ : Ω → {1, 2} be an E -
P{1, 2}-measurable surjection. Further, let ξ1, ξ2 be [0, 1]-valued random variables. Suppose that
(Ω,E ) is rich enough to admit a probability measure under that (ρ, ξ1, ξ2) is independent whose
marginals are uniformly distributed on {1, 2} and [0, 1], respectively. Further, let D,H,M be three
different symbols meaning “disastrous region”, “home” and “motel” as in the original story from
[52]. Let W = Ω × {D,H,M} and x1, x2 be maps defined on the whole of Ω given by

xk(ω) =

{

{ω} × {D,H,M}, if ρ(ω) = k,

{ω} × {H,M}, if ρ(ω) = 3 − k,
k ∈ {1, 2}.

F is defined as the union of the images of x1 and x2 and the set of all singleton sets in W . π : F → Ω
maps any element of F to the first component of its elements. (F,⊇) and (T,≥T) are illustrated in
Figure A.5. Note that (T,≥T) is not even a forest, though x1 and x2 are maximal elements.
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Further, let I = {1, 2} and F i
xi

= σ(ξi), that is, the agents have no information other than their
private signals ξi. Let, for i ∈ I:

Exi = [ρ−1(i) × {D}] ∪ [ρ−1(3 − i) × {H}]}
︸ ︷︷ ︸

=“exit”

, Cti = [ρ−1(i) × {H,M}] ∪ [ρ−1(3 − i) × {M}]
︸ ︷︷ ︸

=“continue”

,

and Cxi
= {Exi,Cti}. Futhermore, for any E ∈ F i

xi
, let

ci(E) = (WE ∩ Exi) ∪ (WE∁ ∩ Cti),

the choice of “agent” to exit in the event E and to continue in the opposite event E∁. E might
be thought about as an event independent of ρ, allowing for individual “randomisation”. Let
Ci = {ci(E) | E ∈ F i

xi
}. That is, at both random moves xi, i ∈ I = {1, 2}, the active agent i

has two basic choices: “exit” and “continue”, between that i can randomise according to private
information. C i defines a reference choice structure on {xi} and that Ci is a set of F i-C i-adapted
choices, for both i ∈ I. Let F = (F i)i∈I , C = (C i)i∈I , and C = (Ci)i∈I .

Theorem 1.20. (F, π,X, I,F ,C , C) defines a stochastic extensive form with perfect recall and
imperfect information.

2. Action path stochastic extensive forms

In most pieces of the literature, dynamic games are defined by supposing a notion of time
and specifying outcomes as certain paths of action at instants of time. [3, Subsection 2.2] pro-
vides a broad overview for this, including classical textbook definitions as in [31], infinite bilateral
bargaining in discrete time as in [56], repeated games, the long cheap talk game in [14], and a
decision-theoretic interpretation of differential games as in [26]. In this series of papers the author
desires to generalise this by, first, allowing for a large class of outcome paths and, second, adding a
truly stochastic dimension. As an application, studied in the third paper, this will be used to add,
in a precise approximate sense, stochastic control in not only in discrete, but also in continuous
time (see, e.g. [51, 17, 44]) and stochastic differential games (see, e.g. [21]) without restrictions on
the noise in question.

In [53, Subsections 2.4, 3.4, 4.4], a first part of this approach has been formalised in one abstract
and general framework in terms of stochastic decision forests, that allows for general exogenous
stochastic noise, therefore going strictly beyond the “nature” agent setting. The author insists on
what has been said there, namely that “this framework is based on a specific structure pertaining to
all of these examples, namely time. Interestingly, time is not included in the abstract formulation
of decision forests, and it serves as a particularly strong similarity structure for trees and even
branches of one and the same tree” ([53, Subsection 2.4, p. 15]). In this section, the construction
is recalled and then it is shown under what conditions, how, and in what sense it gives rise to a
stochastic extensive form.

2.1. Preliminaries: Action path stochastic decision forest data

We start with recalling the construction by summarising [53, Subsections 2.4, 3.4, 4.4]. Let
(T,≤) be a total order admitting a minimum which we denote by 0. Further, let I be a non-empty
finite set, (Ai)i∈I be a family of non-empty metric spaces, and A =

∏

i∈I A
i be their topological

product, with canonical projections pi : A → Ai, i ∈ I. Of course, the case of singleton I is included
in this setting.

Let (Ω,E ) be an exogenous scenario space. Let W ⊆ Ω × AT be such that for all ω ∈ Ω, there
is f ∈ AT with (ω, f) ∈ W . An outcome will thus be a pair of an exogenous scenario and a path
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f : T → A of “action”, and any scenario is required to admit at least one outcome. For any t ∈ T
and w̃ = (ω, f) ∈ Ω × AT, let

xt(w̃) = xt(ω, f) = {(ω′, f ′) ∈ W | ω′ = ω, f ′|[0,t)T = f |[0,t)T}.

Let F = {xt(w) | t ∈ T, w ∈ W} ∪ {{w} | w ∈ W}. Further, let π : F → Ω be the unique function
mapping any x ∈ F to the first item of one choice of its elements.

For (t, f) ∈ T × AT, let Dt,f = {ω ∈ Ω | |xt(ω, f)| ≥ 2}. This will turn out as the event that
xt(., f) is a move. We consider the following assumptions:

– Assumption AP.SDF0. For all t ∈ T and f ∈ AT, Dt,f ∈ E .

– Assumption AP.SDF1. For all w ∈ W and all t, u ∈ T with t 6= u and xt(w) = xu(w), we
have xt(w) = {w}.

– Assumption AP.SDF2. For all ω ∈ Ω and f̃ ∈ AT, and for all subsets T′ ⊆ T satisfying
xt(ω, f̃) ∈ F for all t ∈ T′, there is f ∈ AT with (ω, f) ∈ W and f |[0,t)T = f̃ |[0,t)T for all t ∈ T′.

– Assumption AP.SDF3. For all t ∈ T and f, g ∈ AT such that Dt,f , Dt,g 6= ∅ and Dt,f ∩
Dt,g = ∅, there is u ∈ [0, t)T such that Du,f ∩Du,g 6= ∅ and f |[0,u)T 6= g|[0,u)T .

For an interpretation of these conditions, the reader is referred to [53, Subsection 2.4]. Further, let
X be the set of maps

xt(f) : Dt,f → F, ω 7→ xt(f)(ω) = xt(ω, f),

ranging over all t ∈ T, f ∈ AT with Dt,f 6= ∅.
The tuple (I,A,T,W ) is called action path sdf data on (Ω,E ) iff Assumptions AP.SDFk, k =

0, 1, 2, 3, are satisfied. By [53, Theorem 2.15], given action path sdf data denoted as above, (F, π,X)
defines an order consistent and maximal sdf on (Ω,E ). (F, π,X) is said to be the action path sdf

induced by the given action path sdf data. A =
∏

i∈I A
i is called action space, T its time axis, I

the action index set and Ai the i-th action space factor of the action path sdf data, and a fortiori,
of the induced action path sdf.

For the remainder of this subsection, suppose that Assumptions AP.SDFk, k = 0, 1, 2, 3, are
satisfied so that (F, π,X) is an action path sdf on the exogenous scenario space (Ω,E ), with time
axis T, action index set I and action space factors (Ai)i∈I . For any x ∈ F , let

Tx = {t ∈ T | ∃w ∈ x : x = xt(w)}.

By [53, Lemma 2.9], Tx is a singleton for any move x ∈ X . Let t : X → T be the map assigning to
any move x ∈ X the unique element t(x) of Tx. By [53, Lemma 2.16], it is strictly decreasing and
constant on the images of all random moves. Hence, it induces a strictly decreasing map X → T
which is also denoted by t. Sometimes, it is useful to extend these maps to F and T in the following
way. Let T̂ = T∪ {T} and extend ≤ by letting t ≤ T for all t ∈ T̂.5 Further, let t(y) = t(y) = T for
all y ∈ F \X and y ∈ T \ X. Clearly, these extensions are still strictly decreasing.

The reader is referred to [53, Lemma 2.17, Example 2.13, 2.14, 2.18] for a list of examples of
action path stochastic decision forests (including timing problems, stochastic versions of “differential
games” in the sense of [3], discrete-time problems, the simple examples from Subsection 1.6).

5We recall that this is a standard set-theoretic construction, introduced by von Neumann. In our context, it might
seem suggestive and traditional to write ∞ for the element T ∈ T̂. This, however, can be misleading at times, since
T could already contain elements defined by limits, such as limit ordinals.
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Concerning exogenous information structures for the action path sdf (F, π,X), let us recall
here that given an exogenous information structure admitting recall and f ∈ AT such that all
t ∈ T satisfy Dt,f = Ω, (Fxt(f))t∈T defines a filtration in the usual sense of probability theory (a
special case of [53, Lemma 3.4]). Conversely, exogenous information structures with recall can be
constructed by taking the filtration generated by a process depending in a non-anticipative way on
the action path. For formal details, the reader is referred to [53, Subsection 3.4].

In stochastic extensive forms, action is described by choices and action labels are not necessary.
In action path sdf, however, outcomes are paths of points in a space A which we call actions, and
so choices are to be defined as certain sets of action paths. In order to close this loop and make
both operations dual to each other, a choice is defined by a specific range of values in A at a given
time, given a certain set of past trajectories of “actions” (as elements of A). This is what has been
proposed in [53, Subsection 4.4] and the following builds upon.

Let t ∈ T. For any set A<t ⊆ A[0,t)T and any family At = (At,ω)ω∈Ω ∈ P(A)Ω of subsets of A,
let

c(A<t, At) = {(ω, f) ∈ W | f |[0,t)T ∈ A<t, f(t) ∈ At,ω}.

Following [53, Subsection 4.4], for any t ∈ T, Ct is defined as the set of all c(A<t, At) ranging over
all A<t ⊆ A[0,t)T and all families At = (At,ω)ω∈Ω ∈ P(A)Ω of subsets of A satisfying the following
assumptions:

– Assumption AP.C0. c(A<t, At) 6= ∅.

– Assumption AP.C1. For all w ∈ c(A<t, At), there is w′ ∈ xt(w) \ c(A<t, At).

– Assumption AP.C2. For all f ∈ AT with f |[0,t)T ∈ A<t, we have

xt(ω, f) ∩ c(A<t, At) 6= ∅

for all or for no ω ∈ Dt,f .

For a detailed interpretation and analysis of these conditions, see [53, Subsection 4.4, especially
Lemmata 4.7, 4.8, 4.9], where it has been shown that the set of immediate predecessors of elements
of Ct can be easily calculated, that all elements of c ∈ Ct define complete and non-redundant
choices, and that the time t(x) of all random moves x ∈ X that c is available at is equal to t.

2.2. Information, history structures, and adapted choices

The next steps consist in determining reference choice structures and adapted choices for any
i ∈ I. While reference choice structures and adapted choices in [53, Subsection 4.4] have been
studied with respect to their consistency with respect to exogenous information, it remains to clarify
their consistency with endogenous information. In action path sdfs, endogenous information at
time t can be modelled via partitions of histories prior to that t, as is clarified in the sequel.

For this, we introduce new notation. For i ∈ I, t ∈ T, any subset Tt ⊆ T with [0, t)T ⊆ Tt, and
all f ∈ ATt , let Di

t,f be the set of ω ∈ Ω such that there are f ′, f ′′ ∈ AT with (ω, f ′), (ω, f ′′) ∈ W ,

f ′|[0,t)T = f |[0,t)T = f ′′|[0,t)T and pi ◦f ′(t) 6= pi ◦f ′′(t). This set will turn out as the event that, given
the historic path f |[0,t)T , agent i can choose. Clearly, Di

t,f ⊆ Dt,f , if T = Tt. In Proposition 2.4

this is stated in higher generality and it is seen that equality holds true unless Di
t,f = ∅. Given

action path sdf data (I,A,T,W ) and i ∈ I, let X̃
i

= {xt(f) | t ∈ T, f ∈ AT : Di
t,f 6= ∅}.

Definition 2.1. Let (I,A,T,W ) be action path sdf data on an exogenous scenario space (Ω,E )

as before and F = (F i)i∈I be a family of exogenous information structures F i = (F i
x )

x∈X̃
i on X̃

i
,

i ∈ I. A history structure for i, given (I,A,T,W,F ) is a family Hi = (Hi
t)t∈T such that:
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1. for each t ∈ T, Hi
t is a partition of the set of all f ∈ A[0,t)T such that Di

t,f 6= ∅,

2. for all t ∈ T, A<t ∈ Hi
t, and f, f ′ ∈ A<t we have F i

xt(f) = F i
xt(f ′).

The elements of Hi serve as a basis for the model of endogenous information sets in terms of
partitions of histories, consistent with exogenous information. Axiom 2.1.1 is meant to ensure that
for any i ∈ I and t ∈ T, any element of Hi

t partitions the set of possible histories for moves of i at
time t. Axiom 2.1.2 postulates the consistency with respect to exogenous information. Note that
F i

xt(f) = F i
xt(f ′) implies Dt,f = Dt,f ′ .

In the following, we fix, for any i ∈ I, an exogenous information structure F i = (F i
x )

x∈X̃
i and

let F = (F i)i∈I . In addition, we fix a family H = (Hi)i∈I of history structures Hi for i, given

(I,A,T,W,F ), i ∈ I. For all t ∈ T, i ∈ I, and x ∈ X̃
i

with t(x) = t, let C i
x the set of all sets

c(A<t, At) as above such that

1. A<t ∈ Hi
t;

2. At = (At,ω)ω∈Ω such that there is Ai
t ∈ B(Ai) satisfying, for all ω ∈ Ω,

At,ω =

{

(pi)−1(Ai
t), ω ∈ Dx,

∅, ω /∈ Dx;

3. c(A<t, At) ∈ Ct; and

4. for all ω ∈ Dx, x(ω) ∩ c(A<t, At) 6= ∅.

These properties are referenced as (C i
x .1) etc. In contrast to [53, Subsection 4.4], we have now

specified the history structure implicit in C i
x . c(A<t, At) allows for choosing a measurable set of

actions in the i-th action space factor at the random move x given an endogenous past A<t at time
t, as specified by H. By [53, Proposition 4.10], C i = (C i

x )
x∈X̃

i defines a reference choice structure
for any i ∈ I.

Remark 2.2. By [53, Lemma 2.17], the “simple examples” for stochastic decision forests discussed
also in Subsection 1.6 can be represented as action path sdf. However, the reference choice struc-
tures considered in [53, Lemmata 4.3, 4.5], and recalled in Subsection 1.6, are not those obtained
by the previous construction. Actually, the previous construction is obtained from the former by
element-wise intersecting with the known endogenous past.

Let us spell this out for the basic version. Denote by C AP the action path construction and
by C orig the “original” definition from [53], recalled in Subsection 1.6. Then, recalling the table in
Subsection 1.6, describing the different combinations of exogenous information structures, reference
choice structures and sets of choices:

1. C AP
x0

= C
orig
x0

, and

2. for both k = 1, 2:

(a) if there is a bullet in the second period, that is, for the second, fourth or eighth line of
the table, then: C AP = C orig

(b) else, that is, for the first, third, fifth, sixth, seventh line, then:

C
AP
xk

= {c ∩ im xk | c ∈ C
orig
xk

} = {c ∩ ck• | c ∈ C
orig
xk

}.
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While the action path construction is more accurate in that it precisely conditions on the piece
of endogenous information the agent really has, the sets of adapted choices are identical under
both specifications of the reference choice structure. After all, reference choice structures are about
B(Ai) rather than about A[0,t)T . In [53], therefore, it was not relevant to make that distinction,
and for the simple examples it does not really matter. In general, however, the general construction
given for action path sdf data given above is preferable, because available actions may vary across
different pasts A<t so that a reference choice for a given past may no more be a choice for another
past.

Next, the actual choices prospective agents make are introduced, and, again, we do so with
explicit reference to H. Let i ∈ I, A<t ∈ Hi

t, D ∈ E , and g : D → Ai. Let Ai,g
t = (Ai,g

t,ω)ω∈Ω be
given by

Ai,g
t,ω =

{

{a ∈ A | pi(a) = g(ω)}, ω ∈ D,

∅, ω /∈ D.

Let c(A<t, i, g) = c(A<t, A
i,g
t ). Very similarly to what has been said in [53, Subsection 4.4], if this

set is an element of Ct, it models the choice to take, given an endogenous history in A<t, the action
g(ω) in the i-th action space factor in scenario ω ∈ D at time t.

Further assumptions are needed to construct a stochastic (pseudo-) extensive form out of all this.
First, as we wish to interpret action indices as agents, simultaneous actions in different action space
factors should be independent from each other. Furthermore, we require in fine that scenariowise
choices available at a move x = x(ω), for some (x, ω) ∈ X• Ω can be extended a) to a representative
class of elements of C i

x and b) to adapted choices of the form c(A<t, i, g). In this sense, this requires
W to be measurable with respect to the Borel σ-algebra on A. In addition, separation assumptions
with respect to W are proposed that makes it possible to separate outcomes via choices in the
relevant way.

In the following, let us call a set M stable under non-trivial intersections iff for all A,B ∈ M
with A ∩B 6= ∅, we have A ∩B ∈ M. This property is equivalent to saying that M ∪ {∅} is stable
under intersections. For example, any partition has this property.

– Assumption AP.SEF0. For all subsets J ⊆ I, all t ∈ T, all (fj)j∈J ∈ (AT)J and ω ∈ Ω
with (ω, fj) ∈ W for all j ∈ J and fj|[0,t)T = fj′ |[0,t)T for all j, j′ ∈ J , there is f ∈ AT such
that

∀j ∈ J :
[

pj ◦ f(t) = pj ◦ fj(t), (ω, f) ∈ xt(ω, fj)
]

.

– Assumption AP.SEF1. For all i ∈ I, t ∈ T, f ∈ AT such that Di
t,f 6= ∅ and the unique

A<t ∈ Hi
t with f |[0,t)T ∈ A<t, there is a generator G (Ai) of B(Ai) stable under non-trivial

intersections such that for all G ∈ G (Ai), upon letting Ai,G
t = (Ai,G

t,ω )ω∈Ω be given by Ai,G
t,ω =

(pi)−1(G) for ω ∈ Dt,f and Ai,G
t,ω = ∅ for ω /∈ Dt,f , we have

c(A<t, A
i,G
t ) ∈ C

i
xt(f).

– Assumption AP.SEF2. For all i ∈ I, t ∈ T, f ∈ AT, ω ∈ Di
t,f with (ω, f) ∈ W , and the

unique A<t ∈ Hi
t satisfying f |[0,t)T ∈ A<t, there is a map g : Dt,f → Ai such that pi ◦ f(t) =

g(ω), c(A<t, i, g) ∈ Ct, c(A<t, i, g) is F i-C i-adapted, and for all (ω′, f ′
<t) ∈ Dt,f ×A<t there

is f ′ ∈ AT satisfying (ω′, f ′) ∈ c(A<t, i, g) and f ′|[0,t)T = f ′
<t.

– Assumption AP.ψ-SEF3. For all f, f ′ ∈ AT and t0 ∈ T with f(t0) 6= f ′(t0) and ω ∈ Ω
such that (ω, f), (ω, f ′) ∈ W , there are t ∈ T and i ∈ I such that t ≤ t0, pi ◦ f(t) 6= pi ◦ f ′(t)
and ω ∈ Di

t,f ∩Di
t,f ′ .
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– Assumption AP.SEF3. For all f, f ′ ∈ AT with f 6= f ′ and ω ∈ Ω such that (ω, f), (ω, f ′) ∈
W , the set

{t ∈ T | f(t) 6= f ′(t)}

has a minimum.

Assumption AP.SEF1 is tightly linked to Assumption AP.C3 in [53, Subsection 4.4] (see Theo-
rem 2.8 later in this section). Hence, if we assume AP.SEF1, then by [53, Theorem 4.13], provided
that c = c(A<t, i, g) ∈ Ct, the F i-C i-adaptedness of the choice c(A<t, i, g) is equivalent to the

F i
x -measurability of g|Dx

for all x ∈ X̃
i

that c is available at. Note that Assumption AP.SEF3 is
satisfied if all f ∈ AT with (ω, f) ∈ W for some ω ∈ Ω are locally right-constant, with respect to
the order topology on T.6 This is necessarily true if (T,≤) is a well-order.

It has been discussed in some detail in [53, Subsection 4.4] that these choices can model depen-
dence on exogenous and endogenous information independently from each other. For instance, if
A<t = {f |[0,t)T} for some f ∈ AT such that Di

t,f 6= ∅, for an action index i ∈ I, the prospective agent
corresponding to i who can choose c(A<t, i, g) can make her or his choice dependent on whether
the past actions are described by f or not – while Fxt(f) could well be very coarse allowing only
a small amount of functions g, that is, a weak dependence on the exogenous scenario ω. Similar
remarks can be made in the opposite case and in mixed regimes. This means that “open” and
“closed loop” decision making and control can be understood with respect to endogenous and ex-
ogenous information independently: in the example just mentioned, the loop could be closed with
respect to endogenous information, but need not be with respect to exogenous information. See
[53, Subsection 4.4] for more details, Proposition 2.9 below for the link between H and the endoge-
nous information structure, and [53, Section 3] for more details regarding exogenous information
structures.

For each i ∈ I, let Ci be the set of all sets of the form c(A<t, i, g) where t ∈ T, A<t ∈ Hi
t, D ∈ E ,

g : D → Ai such that c(A<t, i, g) ∈ Ct, c(A<t, i, g) is F i-C i-adapted, and for all (ω, f<t) ∈ D×A<t

there is f ∈ AT with (ω, f) ∈ c(A<t, i, g) and f |[0,t)T = f<t. Let C = (Ci)i∈I . This concludes the
construction of the necessary data.

2.3. Action path stochastic extensive form data

We briefly fix some names for the objects just constructed, before showing that they provide
stochastic (pseudo-) extensive forms whose properties are directly related to corresponding proper-
ties of the data.

Definition 2.3. Let (Ω,E ) be an exogenous scenario space.

1. Action path stochastic pseudo-extensive form (ψ-sef) data on (Ω,E ) are defined to be a tuple

(∗) D =
(
I,A,T,W,F ,H

)

such that (I,A,T,W ) is action path sdf data on (Ω,E ), F = (F i)i∈I is a family of exogenous

information structures F i on X̃
i
, i ∈ I, and H = (Hi)i∈I is a family of history structures Hi

for i ∈ I, such that Assumptions AP.SEFk, k = 0, 1, 2, and AP.ψ-SEF3 are satisfied. If D is
action path ψ-sef data on (Ω,E ), then its entries are denoted as in (∗).

6By definition, f is locally right-constant iff for every non-maximal t ∈ T there is u ∈ T with t < u such that
f |[t,u)T

is constant.
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2. Action path stochastic extensive form (sef) data on (Ω,E ) are action path ψ-sef data satis-
fying Assumption AP.SEF3.

3. Suppose that D is action path ψ-sef data on (Ω,E ). Associate to it C = (C i)i∈I and
C = (Ci)i∈I in the way defined above. The tuple

F = (F, π,X, I,F ,C , C)

is said to be the sef candidate induced by D. The term “sef candidate” can be replaced with
“(pseudo-) stochastic extensive form” if F satisfies the respective property.

Before clarifying whether sef data induce sef, whether pseudo or not, respectively, we explain
the meaning of the sets Di

t,f . For this define, for all t ∈ T, all sets of time Tt ⊆ T with [0, t)T ⊆ Tt,

all f ∈ ATt , the set

D̂t,f = {ω ∈ Ω | ∃f ′, f ′′ ∈ AT : (ω, f ′), (ω, f ′′) ∈ W, f ′|[0,t)T = f |[0,t)T = f ′′|[0,t)T , f
′(t) 6= f ′′(t)}.

Proposition 2.4. Let (Ω,E ) be an exogenous scenario space, D be action path ψ-sef data on it
and F be the induced action path ψ-sef candidate. Then, the following statements hold true.

1. For all t ∈ T, sets of time Tt ⊆ T with [0, t)T ⊆ T, f ∈ ATt , we have

D̂t,f =
⋃

i∈I

Di
t,f .

2. For all t ∈ T and f ∈ AT, we have D̂t,f ⊆ Dt,f .

3. For all t ∈ T, f ∈ AT, and i ∈ I, we have:

[

Dt,f 6= ∅ and xt(f) ∈ Xi
]

⇐⇒ Di
t,f 6= ∅,

and if either side of the equivalence holds true, then Dt,f = Di
t,f .

Corollary 2.5. Let (Ω,E ) be an exogenous scenario space, D be action path ψ-sef data on it and

F be the induced action path ψ-sef candidate. Then, for all i ∈ I, X̃
i

= X
i.

Note, however, that it is easy to construct action path sef data with D̂t,f ( Dt,f for some
(t, f) ∈ T×AT, see Example Appendix B.5. Hence, the induced sef candidate satisfies

⋃

i∈I Xi ( X,
that is, provided it defines an sef (which it indeed does, by the following theorem), there are random
moves no agent is active at.

After these preparations, we can now state the central result of this section.

Theorem 2.6. Let (Ω,E ) be an exogenous scenario space and consider action path stochastic
(pseudo-) extensive form data D on it and let F be the sef candidate induced by D as in Defini-
tion 2.3. Then F is a stochastic (pseudo-) extensive form, respectively.

The reader is referred to Subsection 1.1 as well as [53, Examples 2.13, 2.14, 2.15, 3.5, 4.11,
4.12, 4.14] for concrete examples of stochastic decision forests, exogenous information structures,
and adapted choices in the action path case. In the third paper of the present series, specific
applications in the realm of continuous time will be discussed.

Next, we explicitly compute the sets of available choices and information sets for action path
ψ-sef.
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Proposition 2.7. Let (Ω,E ) be an exogenous scenario space, D be action path ψ-sef data on it,
F be the induced action path ψ-sef, and i ∈ I.

1. For all x ∈ X and t ∈ T, f ∈ AT with x = xt(f), we have:

Ai(x) = {c ∈ Ci | ∃A<t ∈ Hi
t ∃g : Dt,f → Ai : c = c(A<t, i, g), f |[0,t)T ∈ A<t}.

2. The function mapping any pair (t, A<t), where t ∈ T and A<t ∈ Hi
t, to

p = {xt(f) | f ∈ AT : f |[0,t)T ∈ A<t}

is well-defined, injective and has image Pi.

In the next theorem, which can be seen as a direct consequence of [53, Theorem 4.13], we clarify
how the structural assumption of adaptedness of choices relates to the measure-theoretic concept
of measurability of maps.

Theorem 2.8. Let (Ω,E ) be an exogenous scenario space, D be action path ψ-sef data on it, F be
the induced action path ψ-sef, and i ∈ I. Further, let t ∈ T, A<t ∈ Hi

t, D ∈ E and g : D → Ai be
a map such that c = c(A<t, i, g) ∈ Ct. Then we have:

1. c is a non-redundant and Xi-complete choice.

2. For all x ∈ Xi that c is available at, we have Dx ⊆ D.

3. c is F i-C i-adapted iff for all x ∈ Xi that c is available at, g|Dx
is F i

x -measurable.

The point of this theorem is to explain the usual measurability assumption on random action
in terms of the decision-theoretic concept of adapted choices.7

We conclude this subsection (and section) by classifying the endogenous information structure
of an action path sef in terms of H. For t, u ∈ T with t < u let pu,t be the restriction

A[0,u)T → A[0,t)T , f 7→ f |[0,t)T .

Theorem 2.9. Let (Ω,E ) be an exogenous scenario space, D be action path ψ-sef data on it, F be
the induced action path ψ-sef, and i ∈ I. Then the following statements hold true:

1. i admits perfect endogenous recall iff for all t, u ∈ T with t < u, all A<t ∈ Hi
t, all A<u ∈ Hi

u,
we have

– either: a) (Ppu,t)(A<u) ⊆ A<t and b) all f, f ′ ∈ A<u satisfy pi ◦ f(t) = pi ◦ f ′(t),

– or: (Ppu,t)(A<u) ∩A<t = ∅.

2. i has perfect endogenous information iff for all t ∈ T, all A ∈ Hi
t are singletons such that

A ∩A′ = ∅ for all j ∈ I \ {i} and A′ ∈ Hj
t .

That is, the finer Hi is, the more precise endogenous information agent i has, and vice versa;
and i admits perfect recall iff, under the identification introduced by the projection operator p, Hi

t

is essentially a flow of refined partitions in t and i recalls past decisions.

7Of course, this measurability requirement is not sufficient to imply c ∈ Ci in general, because, in addition, the
latter requires that for all (ω, f<t) ∈ D × A<t there is f ∈ AT with (ω, f) ∈ c(A<t, i, g) and f |[0,t)T

= f<t. Without

this requirement, first, c could be available at xt(f), but not at xt(f ′), for some f, f ′ ∈ AT with f |[0,t)T
, f ′|[0,t)T

∈ A<t,
and, second, D could be too large.
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3. Well-posedness and equilibrium

A crucial property of extensive forms is what the author suggests calling “well-posedness”,
namely, that conditional on any history, any strategy profile induces a unique outcome and that
any outcome can be attained this way. In this section, the concept of histories from [4, p. 219] is
reformulated within the setting of decision forests. We relate this to the new concept of random
histories in the case of stochastic decision forests (F, π,X) which, in the order consistent, surely
non-trivial, and maximal case, turn out as the histories of the associated decision tree (T,≥T)
and corresponds to the scenario-wise principal up-sets of random moves. Then, well-posedness is
formulated following [4] and characterised in terms of well-posedness of the scenario-wise classical
extensive forms. As a result, notions of preferences on strategy profiles and equilibrium concepts
can be defined in well-posed stochastic extensive forms because consequences of strategy profiles
always exist and are unique.

In the three final subsections, examples of well- and ill-posed stochastic extensive forms are
discussed, first of rather pedagogic nature, second in the case of action path outcomes. Moreover,
it is emphasised using examples why the nature representation of dynamic noise is not sufficient in
general, an issue that the theory of games in stochastic extensive form can resolve.

3.1. Histories

Let us start with extending the definition of histories from [4, p. 219] to decision forests, following
[5, Section 4.4]. For this, let us remind the reader that a subset h ⊆ N of a poset (N,≥) is upward
closed iff for all x ∈ h, we have ↑ x ⊆ h.

Definition 3.1 ([5]). Let (F,≥) be a decision forest. A history in (F,≥) is a non-empty, non-
maximal and upward closed chain. The set of histories in (F,≥) is generically denoted by H .

Actually, two histories may be equivalent in that they have the same sets of maximal chains
containing them, respectively. This motivates the following lemma and definition.

Lemma 3.2. Let (F,≥) be a decision forest and let h ∈ H be a history.

1. There is a unique upward closed chain h in (F,≥) a) satisfying h ⊆ w for all maximal chains
w in (F,≥) with h ⊆ w and b) maximal with respect to set inclusion among all chains in
(F,≥) satisfying Property a).

2. We have
h =

⋂

{↑ x | x ∈ F : h ⊆↑ x}.

3. For any further history h′ ∈ H, we have h′ = h iff for any maximal chain w in (F,≥) we
have

h′ ⊆ w ⇐⇒ h ⊆ w.

4. We have h = h ∪ {inf h} if h admits an infimum, and h = h otherwise.

Definition 3.3. Let (F,≥) be a decision forest and let h ∈ H be a history. h is said the closure of
h. h is said closed iff h = h.

From the perspective of outcome generation, it seems to suffice to describe historical dependence
in terms of closed histories. This is confirmed by Lemma 3.8 in the following subsection.

Within the realm of stochastic decision forests the exogenous information agents can condition
on is described based on random moves rather than on moves. This is particularly true in the order
consistent case which motivates the following concept of histories compatible with random moves.
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Definition 3.4. Let (F, π,X) be an order consistent stochastic decision forest on an exogenous
scenario space (Ω,E ). A (closed) random history in (F, π,X) is a map h with domain Dh ∈ E \ {∅}
such that h(ω) is a (closed, respectively) history in (Tω,⊇) for all ω ∈ Dh and such that for all
x ∈ X admitting ω ∈ Dx ∩Dh with x(ω) ∈ h(ω), we have Dx ⊇ Dh and x(ω′) ∈ h(ω′) for all ω′ ∈ Dh.
The set of random histories in (F, π,X) is generically denoted by H.

Lemma 3.5. Let (F, π,X) be a stochastic decision forest on an exogenous scenario space (Ω,E ).
Then is an injection X →֒ H associating to any move x ∈ X the closed history ↑ x. Moreover, if
(F, π,X) is order consistent, there is an injection X →֒ H associating to any random move x ∈ X

the closed random history
h : Dx → H, ω →↑ x(ω).

Via these injections, we consider X as a subset of H and, if applicable, X as a subset of H.
Moreover, if (F, π,X) is surely non-trivial, then, via the natural injection Ω → X, ω 7→ Wω , Ω can
be seen as a subset of X and thus of H , too.

The following proposition establishes that random histories in an order consistent, surely non-
trivial, and maximal sdf and histories in the induced decision tree compatible with at least one
scenario naturally correspond to each other.

Proposition 3.6. Let (F, π,X) be an order consistent, surely non-trivial, and maximal stochastic
decision forest on an exogenous scenario space (Ω,E ) and (T,≥T) be the induced decision tree.
Denote the set of histories in (T,≥T) by HT. Let f be the map with domain H associating to any
h ∈ H the set of x ∈ X such that there is ω ∈ Dx ∩ Dh with x(ω) ∈ h(ω). Then, the following
statements hold true.

1. The image of f is given by the set of a) all hT ∈ HT that are non-maximal chains in (X,≥X),
and b) all maximal chains hT in (X,≥X) admitting non-empty D ∈ E \{∅} with D ⊆

⋂

x∈hT
Dx

such that for any ω ∈ D there is w ∈ Wω with w ∈
⋂

x∈hT
x(ω).

2. f is faithful in that for all h1,h2 ∈ H with f(h1) = f(h2) there is h ∈ H with Dh1
∪Dh2

⊆ Dh

and h|Dhk
= hk for both k = 1, 2.

3. For any closed random history h ∈ H, f(h) is a closed history in (T,≥T).

3.2. Induced outcomes and well-posedness

In extensive form theory, the outcome of strategic interaction is defined as the consequence of
local decision making compatible with the rules defined by the tree and choice structures. More
precisely, “the” outcome w compatible with a strategy profile s, given a history h, is characterised
by the fact that it is not discarded by any of the strategy profile’s choices at moves x succeeding the
history h and containing w. Yet, beyond the realm of standard finite or discrete-time situations,
such an outcome need not exist, or there may be several of them, and there may even be outcomes
that can never be attained that way (see, i.a. [62, 64, 4]). In a well-posed extensive form model of
decision making, these three problems must not arise.

From a decision-theoretic point of view, this implies two things. First, it is relevant to formally
define well-posedness of (stochastic) extensive forms. This is done in the following definition. As
the theory exposed here is based on the refined partitions approach developed by Alós-Ferrer and
Ritzberger (see, e.g. [5]), this definition here is necessarily structurally similar to the definitions in
[4, p. 228] and [5, pp. 102, 105, 106]. For the sake of accessability, a notation similar to that used
in these texts is used here as well.

Second, additional assumptions are required to make an extensive form well-posed. This is
discussed below the following definition.
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Definition 3.7. Let F = (F, π,X, I,F ,C , C) be a stochastic pseudo-extensive form on an exoge-
nous scenario space (Ω,E ).

1. Let R = R(F) be the map assigning to all triples w ∈ W , s ∈ S, h ∈ H with w ∈
⋂
h the set

R(w, s | h) =
⋂ {

si(x) | x ∈ X, i ∈ J(x) : w ∈ x ⊆
⋂

h
}

.

Given such data, w is said compatible with s given h iff w ∈ R(s, w | h).

2. F is called well-posed iff

(a) for all h ∈ H and all w ∈
⋂
h, there is s ∈ S such that w is compatible with s given h;

(b) for all s ∈ S and all h ∈ H , there is w ∈
⋂
h that is compatible with s given h;

(c) for all s ∈ S and all h ∈ H , there is at most one w ∈
⋂
h that is compatible with s given

h, and in this case, R(w, s | h) = {w}.

3. Suppose that F is well-posed. Then, for any strategy profile s ∈ S and history h ∈ H , the
unique outcome w ∈

⋂
h compatible with s given h is said outcome induced by s given h,

and denoted by w = Out(s | h). The corresponding map Out(. | .) : S × H → W is called
(induced) outcome map.

Note that R(w, s | h) describes the set of outcomes that are compatible with both the outcome
– or decision path associated to – w and the strategy profile s given the history h. By definition, w
is compatible with s given h iff it is compatible with itself and s given h. A minimum requirement
on the result of strategic interaction in terms of s and given history h is not to be discarded by s,
given h, that is, to be compatible with s given h.

Property 2(a) means that given any history h, any outcome yet undiscarded (by h) can be
compatible with some strategy profile. If the other two existence and uniqueness properties are
satisfied so that the outcome map can be defined at all, Property 2(a) is equivalent to that for
any history h ∈ H we have im Out(. | h) =

⋂
h. Property 2(b) describes existence of compatible

outcomes for all strategy profiles given any history. Property 2(c) describes uniqueness of compatible
outcomes w for all strategy profiles s given any history h and, moreover, of outcomes compatible
with such triplets (w, s, h).

Note that in the special case of classical extensive forms this corresponds to the definition of “in-
duced” outcomes and conditional versions of conditions (A0), (A1), (A2) in [5, Chapter 5, pp. 102,
105, 106] though the term “well-posed” is not used therein, to the best of the author’s knowledge.
As explained above, it is of utmost importance to understand when a stochastic extensive form is
well-posed, and a main contribution of [4, 2], comprehensively presented in [5], is to characterise
this in the case of classical extensive forms, namely in terms of order-theoretic properties of the
underlying decision tree.

The next lemma confirms formally that, as claimed in the preceding subsection, it is sufficient
to restrict to closed histories in what concerns outcome generation.

Lemma 3.8. Let F = (F, π,X, I,F ,C , C) be a stochastic pseudo-extensive form on an exogenous
scenario space (Ω,E ). Furthermore, let s ∈ S be a strategy profile, h ∈ H be a history, and
w ∈ W =

⋃
F be an outcome. Then,

R(w, s | h) = R(w, s | h).

Next, we discuss under what conditions an extensive form is well-posed. First, we consider the
property whether any undiscarded outcome can be attained.
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Theorem 3.9. For any stochastic extensive form F, Property 3.7.2(a) is satisfied.

In case of classical extensive forms and the unconditional version of Property 3.7.2(a), this basic
fact has already been established in [5, Theorem 5.1].

Furthermore, we classify existence and uniqueness. For this, the classification from the classical
case in [4, 2] and [5] is applied. Therefore, it remains to describe existence and uniqueness in terms
of adequate existence and uniqueness properties for suitable classical extensive forms. In fact, these
classical pseudo-extensive forms are given by the scenario-wise truncations of the given stochastic
pseudo-extensive form:

Proposition 3.10. Let (F, π,X, I,F ,C , C) be a stochastic (pseudo-) extensive form on some ex-
ogenous scenario space (Ω,E ) and ω ∈ Ω. Then, (Tω, I, Cω) is a classical (pseudo-) extensive form,
respectively, where Cω = (Ci

ω)i∈I and

Ci
ω = {c ∩Wω | c ∈ Ci} \ {∅}, i ∈ I.

We turn to the central theorem of this subsection translating well-posedness properties of
stochastic pseudo-extensive forms into the language of classical extensive forms.

Theorem 3.11. Let F = (F, π,X, I,F ,C , C) be a stochastic pseudo-extensive form on an exoge-
nous scenario space (Ω,E ). Then F satisfies Properties 3.7.2(a), 3.7.2(b), 3.7.2(c), well-posedness,
iff for all ω ∈ Ω, the classical pseudo-extensive form (Tω, I, Cω) does so8, respectively.

This theorem makes it possible to apply the classification results from [4, 2], see [5] for a
comprehensive monographic treatment. For this, we recall four important notions from these works
(see, e.g. [5, Definitions 4.2, 5.1]).9 Let (F,≥) be a decision forest. For any history h in (F,≥), a
continuation is the complement w \ h of h in a maximal chain alias decision path w containing h.
(F,≥) is said

1. weakly up-discrete iff for all non-terminal nodes x ∈ F any maximal chain in ↓ x \ {x} has a
maximum;

2. up-discrete iff any non-empty chain has a maximum;

3. coherent iff every history without minimum has at least one continuation with a maximum;

4. regular iff for all non-maximal x ∈ F , the history ↑ x \ {x} has an infimum.

See [4, 2] and [5] for a discussion and examples. We only give a brief overview here. Weak up-
discreteness requires the existence of successor nodes, while up-discreteness even demands all chains
to be well-ordered with respect to ≥.10 The latter is equivalent to the existence of a maximum
for every continuation of every history ([5, Lemma 5.4]). Roughly speaking, coherence ensures
the existence of (inductive) limit candidates and regularity requires such a limit to be uniquely
identifiable. Weak up-discreteness, coherence, and regularity are mutually independent of each
other. See [4] and [5] for more details.

We obtain the following two corollaries:

8Precisely, some and any stochastic pseudo-extensive form with set of nodes Tω , set of agents I, and family of
sets of individual choices Cω = (Ci

ω)i∈I does so. Clearly, these properties do only depend on Tω , I, and Cω in the
singleton-Ω case.

9Without loss of generality, we reformulate them for decision forests.
10This might be confusing because typically well-orders are considered with respect to ≤, rather than ≥.
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Corollary 3.12. Let F be a decision forest over a set W such that for any x ∈ X and w ∈ x, we
have

x )
⋃ {

y ∈↓ x \ {x}
∣
∣
∣ w ∈ y

}

. (3.2.1)

Then, the following statements are equivalent:

1. Every stochastic pseudo-extensive form F with decision forest F satisfies Property 3.7.2(b).

2. (F,⊇) is weakly up-discrete and coherent.

In the context of classical extensive forms in [4, 5], the fact that for all x ∈ X and w ∈ x
Equation 3.2.1 is described by the sentence that F has available choices. It characterises the mere
possibility of defining a stochastic pseudo-extensive form on it. See [5, Subsection 4.5] for more
details. By [4, Corollary 1] (or identically, [5, Corollary 4.1]), weak up-discreteness of (F,⊇) implies
that property. In particular, the implication “2 ⇒ 1” holds true without additionally requiring
available choices.

Corollary 3.13. Let F be a stochastic extensive form on an exogenous scenario space (Ω,E ). Then,
the following statements are equivalent:

1. F is well-posed.

2. (F,⊇) is weakly up-discrete, coherent, and regular.

3. (F,⊇) is up-discrete and regular.

Hence, the consistency requirements of stochastic extensive forms suffice to fully characterise
well-posedness in terms of easily verifiable order-theoretic properties of the underlying decision
forest F .

While in classical extensive forms subgames are defined in terms of moves, the obvious analogon
in stochastic extensive form is given by random moves, that is, the sections of moves that, poten-
tially, exogenous information is revealed and choices are available at. From this perspective, it is
important to understand the link between random moves and histories, similarly to the classical
theory (as discussed also in, e.g. [5, p. 106]). Moreover, in the order consistent case, the link be-
tween random moves and random histories is interesting since the latter correspond to the relevant
histories in the induced decision tree (T,≥T), by Proposition 3.6.

Proposition 3.14. Let F = (F, π,X, I,F ,C , C) be a well-posed stochastic extensive form on an
exogenous scenario space (Ω,E ). Then for any closed history h ∈ H there is x ∈ X with h =↑ x.
Moreover, if (F, π,X) is order consistent, then for any closed random history h there is x ∈ X such
that Dh ⊆ Dx and for all ω ∈ Dx, h(ω) =↑ x(ω).

We see that in well-posed stochastic extensive forms, closed histories always have minima. From
the perspective of outcome generation, it suffices to consider closed histories, by Lemma 3.8. Hence,
sections of closed histories whose minima constitute random moves are the crucial object for repre-
senting subgames. In the order consistent case, moreover, this corresponds exactly to closed random
histories.

3.3. Expected utility preferences

In a well-posed stochastic extensive form F, dynamic decision making can be analysed by com-
paring consequences of strategy profiles, given any random move x. By Proposition 3.14 and
Lemma 3.8, this is equivalent to conditioning on collections of closed histories whose infima con-
stitute random moves, and in the order consistent case, this is equivalent to conditioning on closed
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random histories. Actually, an agent can only condition on its information set. Hence, agent i ∈ I
is ultimately interested in the maps

Out(s | .) : p ×Dp → W, (x, ω) 7→ Out(s | x(ω)),

ranging over all strategy profiles s ∈ S and all endogenous information sets p ∈ Pi.
In the following, a general concept of analysis is presented. We begin with a concept of comparing

consequences. This concept is only an example, though a quite central and general one, and not
generic. It implements the idea of expected utility in its basic form (which itself exhibits strong
links to preference-based rational choice under uncertainty, [57, 6, 34, 37]). On it, as is discussed
later, a theoretical equilibrium concept can be based, that covers (subgame-) perfect versions of
Nash, correlated and Bayesian equilibrium. For this, dynamic consistency of “comparison” is central
which is why this is discussed in some detail in the following.

Definition 3.15. Let F be a well-posed stochastic extensive form on an exogenous scenario space
(Ω,E ).

1. A belief system on F is a family Π = (pi,p,Pi,p,Pi,p)i∈I, p∈Pi such that, for any i ∈ I and any
p ∈ Pi, Pi,p is a σ-algebra in p, Pi,p is a probability measure on E |Dp

, and pi,p : Dp → p is
an E |Dp

-Pi,p-measurable map.

2. A taste system on F is a family U = (ui,p)i∈I, p∈Pi of maps ui,p : W → R.

3. An expected utility (eu) preference structure on F is a tuple Pr = (Π, U,W ) where

– Π is a belief system on F,

– U is a taste system on F, and

– W is a σ-algebra on W ,

such that, we have, for all i ∈ I and p ∈ Pi:

(a) ui,p is W -Borel-measurable;

(b) Outs
i,p : Dp → W, ω 7→ Out(s | pi,p(ω), ω) is E |Dp

-W -measurable for all s ∈ S;

(c) ui,p ◦ Outs
i,p is Lebesgue-quasi-integrable11 with respect to Pi,p for all s ∈ S;

(d) the map ψp : W → p ∪ {∅} assigning to any w ∈ W the unique12 random move x ∈ p

such that w ∈
⋃

im x if it exists and ∅ else, is measurable with respect to W and the
σ-algebra on p ∪ {∅} generated by Pi,p.

In other words, an eu preference structure fixes beliefs (probability measures and random draws
pi,p on endogenous information sets p, inducing probabilities (pi,p)∗Pi,p on p), tastes (utility func-
tions, or payoffs), and a measurability structure on outcomes, such that tastes and outcome gener-
ation is measurable (3(a), 3(b)), expected utility can be computed (3(c), which is always satisfied
if ui,p is bounded below), and the sets of outcomes in W describing endogenous information sets
are measurable (3(d)). Moreover, these data are given conditional on all agents and all of their
endogenous information sets because beginning at any of these, a well-posed stochastic extensive
form is induced, defining a decision situation in its own right.13 In the perfect information case,

11That is, the negative part or the positive part is Lebesgue-integrable.
12If two immediate predecessors in X of a choice can be compared, then they are equal, see Lemma 1.11. As the

evaluation on Xi • Ω is injective, x must be unique.
13We omit the formal argument behind this statement, in the interest of brevity.
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these exactly correspond to classical subgames. An analysis of the original stochastic extensive
form might necessitate an analysis of these induced sef, in order to rule out non-credible threats,
for instance (which motivated the concept of subgame-perfect equilibrium in [59]).

Once fixed, an eu preference structure is considered common knowledge among all agents, at
least in the following example of a rationality and equilibrium concept.14 For a rational agent whose
rationality is common knowledge, then, it seems plausible that beliefs on two different information
sets are consistent with respect to the outcome generation map induced by the given strategy
profile. This is a version of the Harsanyi doctrine ([38, 39, 40, 11]), according to which differences
in posterior beliefs should only result from differences in information. We suggest using a dynamic
variant asking for common priors “locally” between any two given information sets, therefore taking
into account consistency off the equilibrium path.

One can also argue that rational agents whose rationality is common knowledge, tastes are
necessarily consistent for any individual agent across endogenous information sets. Indeed, consider
an agent i performing equilibrium analysis. Why should i make contingent plans for action at two
different, but possibly related endogenous information sets at which tastes differ meaning that
the consequences of action are evaluated differently? Put equivalently, supposing a specific form
of rationality might lead us to split dynamically inconsistent “agents” into “multiple selves” (see
[32, 65]). These notions of consistency are formalised as follows.

Definition 3.16. Let F be a well-posed stochastic extensive form on an exogenous scenario space
(Ω,E ), Π be a belief system and U be a taste system on F. Moreover, let W be a σ-algebra on W .

1. Let Π and W satisfy Assumptions 3(b) and 3(d) in Definition 3.15, and let s ∈ S be a strategy
profile. The pair (Π, s) is said dynamically consistent iff for all sets J ⊆

⋃

i∈I{i} × Pi with
at most two elements,

(a) for all (i, pi), (j, pj) ∈ J , all ω ∈ Dpi
with

(∗) ψj,pj
◦ Outs

i,pi
(ω) 6= ∅, and pi,pi

(ω)(ω) ⊇ ψj,pj
◦ Outs

i,pi
(ω)(ω)

satisfy
pj,pj

(ω) = ψj,pj
◦ Outs

i,pi
(ω);

(b) for all (i, pi), (j, pj) ∈ J the set

Ei,j = {ω ∈ Dpi
∩Dpj

| pi,pi
(ω)(ω) ⊇ pj,pj

(ω)(ω)}

is an event, i.e. satisfies Ei,j ∈ E ;

(c) there is a common prior for J , that is, a probability measure P on (Ω,E ) such that for
all ((i, pi), (j, pj)) ∈ J2 with (i, pi) 6= (j, pj) we have P(Dpi

∪Dpj
) = 1, and the events

E¬i,j = Dpj
\ Ei,j , Es

i,j = {ω ∈ Ei,j | ψj,pj
◦ Outs

i,pi
(ω) 6= ∅}

and any E ∈ E |Dpj
satisfy

Pj,pj
(E) · P(E¬i,j ∪ Es

i,j) = P((E¬i,j ∪Es
i,j) ∩E).

2. U is said dynamically consistent iff for all i ∈ I, there is a map ui : W → R such that for any
p ∈ Pi, we have ui,p = ui.

14Without that assumption, one would want to assume beliefs of higher order etc.
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3. Provided Pr = (Π, U,W ) is an eu preference structure, and given a strategy profile s ∈ S,
(Pr, s) it is said dynamically consistent iff both (Π, s) and U are dynamically consistent.

Some of the technical details of the definition may require some verbal explanation. Given
i, j ∈ I, pi ∈ Pi, pj ∈ Pj as above, then ψj,pj

◦ Outs
i,pi

(ω) equals a) the random move in pj reached
by strategy profile s when starting in information set pi in scenario ω and random move pi,pi

(ω), if
it exists (which is the case precisely iff (∗) holds true); b) the unique x ∈ Xj such that x(ω) strictly
precedes pi,pi

(ω)(ω) in case it exists (which is the case of the left-hand side in (∗) being true, but
not the right-hand side); c) the empty set meaning that neither of the preceding two things exist,
that is, in scenario ω, pj does not precede pi nor is pj reached through s starting from pi, given the
belief of being at move pi,pi

(ω) in pi.
Moreover, Ei,j is the set of scenarios at that information set pi precedes information set pj ,

according to the “random move beliefs” pi,pi
and pj,pj

; E¬i,j is the set of scenarios in Dpj
at that

pi does not precede pj in that sense, and thus, where probabilities cannot be explained by outcome
generation given pi; and Es

i,j is the set of scenarios at that pj is actually reached via s given pi,
according to pi,pi

. Note that, if Property 1(a) is satisfied, then, by the Heraclitus Property in
Lemma 1.11,

Es
i,j = {ω ∈ Dpi

∩Dpj
| ∃x ∈ pj : pi,pi

(ω)(ω) ⊇ x(ω), ψj,pj
◦ Outs

i,pi
(ω) 6= ∅}.

Thus, dynamic consistency of (Π, s) requires that for all two information sets of some agents,
which can but need not be identical, first, in all scenarios ω where the second is reached via s
starting from the first and given the belief about actual position within the first, the belief at the
second evaluated in ω equals exactly the attained random move; second, the set Ei,j of scenarios at
that information set pi, according to the “belief” pi,pi

, precedes information set pj in any way, is an
event; third, there is a common prior P on (Ω,E ) such that for both distinct pairs ((i, pi), (j, pj))
the posterior Pj,pj

is equal to the conditional probability given the event that pi does not precede
pj , or it does and s leads from pi to pj, always according to the belief pi,pi

on the realised random
move in pi. Note that this can be a trivially void statement for one of the two pairs, but not for
both because

E¬i,j ∪ Es
i,j ∪E¬j,i ∪ Es

j,i = Dpi
∪Dpj

,

and P is concentrated on Dpi
∪Dpj

. However, Part 1(c) can be a void statement in some situations,
for instance, if

Pi,pi
(Ei,j) = 1, Pi,pi

(Es
i,j) = 0.

In that case, P = ι∗Pi,pi
, where ι is the inclusion map Dpi

→֒ Ω, does the job. This corresponds to
the case where, essentially, at pi, pi is believed to precede pj although the outcome of s is believed to
almost never reach pj out of pi. Then, the relation between the beliefs Pi,pi

and Pj,pj
is unaffected

by condition 1(c) applied to {(i, pi), (j, pj)}.
The definition above is very general, and it simplifies in specific situations. For instance, in

many situations endogenous information sets can be ordered in the weak sense that for all i, j ∈ I
and pi ∈ Pi and pj ∈ Pj admitting ω ∈ Dpi

∩ Dpj
, x̂i ∈ pi and x̂j ∈ pj such that x̂i(ω) ⊇ x̂j(ω),

then Dpi
⊇ Dpj

and for all ω ∈ Dpj
and xj ∈ pj , there is xi ∈ pi with xi(ω) ⊇ xj(ω). In that case,

for distinct (i, pi), (j, pj) as in the hypothesis of 1(c), we have for (i, pi) preceding (j, pj) as in the
preceding sentence that E¬j,i ∪ Es

j,i = Dpi
. Hence, for any E ∈ E |Dpi

,

P(E) = Pi,pi
(E) · P(Dpi

) = Pi,pi
(E).

Thus, condition 1(c) reduces to the unidirectional Bayesian updating rule given by

Pj,pj
(E) · Pi,pi

(E¬i,j ∪ Es
i,j) = Pi,pi

((E¬i,j ∪ Es
i,j) ∩ E), E ∈ E |Dpj

.
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If, moreover, perfect endogenous information is given, and pi = {xi}, pj = {xj} with xi >X xj , we
have Ei,j = Dxj

, E¬i,j = ∅, so that condition 1(c) reduces to the statement:

Pj,pj
(E) · Pi,pi

(ψj,pj
◦ Outs

i,pi
6= ∅) = Pi,pi

({ψj,pj
◦ Outs

i,pi
(ω) 6= ∅} ∩ E), E ∈ E |Dpj

.

From this discussion it becomes obvious that dynamic consistency of belief systems is not a very
strong notion if endogenous information sets are “small” relative to the amount of random moves
eligible for forming an endogenous information set, provided the exogenous scenario space is large
and belief probability measures are non-atomic, because then Pi,pi

(ψj,pj
◦ Outs

i,pi
6= ∅) is likely to

be zero in most of the cases.
If these conditions are satisfied, the problem is actually even deeper: there may be essentially

no non-trivial way for making Outs
i,pi

measurable. Consider action path sef data with A = [0, 1],
T = {0, 1}, and perfect endogenous information on the exogenous scenario space given by the unit
interval Ω = [0, 1] with Borel σ-algebra E = B([0, 1]). Suppose that the agent i active at the root
x0 has full information available, i.e. F i

x0
= E . Let g : Ω → A be the identity on [0, 1] and h : A → A

be a non-measurable function. Then, the strategy profile s mapping x0 to the random action g and
the move x1(f), where f ∈ AT with f(0) = a, to the deterministic (alias constant “random”) action
h(a), for any a ∈ [0, 1], has a problematic outcome map: pi,{x0} maps any ω ∈ Ω to x0, and hence
Outs

i,{x0}(ω) = (ω, (0, ω), (1, h(ω))). If we wished to allow for utility functions on W depending in a

non-trivial, Borel-measurable on the third component of an outcome w ∈ W = Ω×AT, for instance,
the map u : W → [0, 1] mapping any w = (ω, f) to f(1), then h = u ◦ Outs

i,{x0} would have to be

measurable – which it is not.15

We thus clearly see that in well-posed stochastic extensive forms there is a tension between
non-triviality of endogenous information (agents having information about past behaviour) and
non-triviality of eu preference structures (non-atomic beliefs thereby requiring uncountable Ω, and
complex utility functions). The main point, however, is not about the existence of such a tension,
but the fact that it is precisely described in terms of formal conditions and existing non-trivial
examples, like action path sef data. Precisely, the tension does not imply that discrete structures
are necessary for extensive form theory to be sensible and non-empty. On the contrary, from
the preceding discussion and the remainder of the present section it becomes clear that relevant
well-posed action path sef data with coarse endogenous information sets may well admit non-
trivial eu preference structures, with non-atomic beliefs and interesting utility functions. Although
this eventually breaks downs if endogenous information becomes finer, these observations suggests
an approximation theory, by approximating sef with fine endogenous information with refining
sequences of sef with coarse endogenous information.

3.4. Dynamic rationality and equilibrium

Having provided a model of beliefs and tastes with natural and sufficient measurability prop-
erties, a general concept of “dynamic rationality” for well-posed stochastic extensive forms can be
formulated (see, e.g. [49, Section 9.C]).16 It is based on the classical idea of best response to correct
beliefs about other agents’ strategies, conditional on all induced decision situations given through
endogenous information sets, given the specified beliefs and tastes about endogenous and exogenous

15From the purely mathematical perspective, this problem has been known for long from the perspective of ran-
domisation. Mathematically, the preceding example is largely similar to Aumann’s “attacker–defender” example in
[10] and its version in [5, Example 6.7]. We refer to the Subsection 3.5 for a discussion of this aspect and the related
literature. However, we take a somewhat different view on the problem on the level of decision theory, as explained
in the following paragraph.

16Note that the term “sequential” is replaced with the more suitable and general one of “dynamic”.
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events which are common knowledge. As mentioned earlier, the conditioning on induced stochastic
extensive forms is supposed to model the dynamic aspect of decision making (decisions are taken
at any information set). As a prime example of this, this may rule out empty threats. As outlined
in the motivation of dynamic consistency, by adding the latter, an equilibrium concept of general
scope obtains.

Definition 3.17. Let F be a well-posed stochastic extensive form on an exogenous scenario space
(Ω,E ), and let Pr = (Π, U,W ) be an eu preference structure on F. For any i ∈ I, any p ∈ Pi, let
Ei,p denote the conditional expectation operator with respect to Pi,p given F i

p, that is,

Ei,p = EPi,p [. | F
i
p],

where Eµ denotes the Lebesgue integral operator with respect to a given measure µ. For any
strategy profile s ∈ S, i ∈ I and p ∈ Pi, let πi,p(s) = Ei,p[ui,p ◦ Outs

i,p].

A strategy profile s ∈ S is said dynamically rational given Pr iff for all i ∈ I, all p ∈ Pi, and all
s̃ ∈ S with s̃−i = s−i, we have

πi,p(s) ≥ πi,p(s̃).

Let s ∈ S be a strategy profile. Then, (s,Pr) is said in equilibrium iff it is dynamically rational
given Pr and (Pr, s) is dynamically consistent.

As discussed in the following remark, this equilibrium concept is a generalised model of perfect
Bayesian equilibrium, including several other well-known classical concepts within one extensive
form framework.

Remark 3.18 (Perfect Bayesian, subgame-perfect Nash and correlated equilibrium). Let F be a
well-posed stochastic extensive form on an exogenous scenario space (Ω,E ) and Pr = (Π, U,W ) be
an eu preference structure. Let s ∈ S.

1. Let us consider the static case, that is, X is a singleton. Denote its unique element by
x. Dynamic consistency and perfect recall is trivially satisfied, of course. In Harsanyi’s
setting of [39], s is a “Bayesian equilibrium point” iff (s,Pr) is in equilibrium according to the
preceding definition. In the current game-theoretic language, (F,Pr) yields a generalisation of
Bayesian games and the equilibrium property corresponds to a generalisation of Bayesian Nash
equilibrium17 with respect to the “information structure” given by the exogenous scenario
space (Ω,E ), with common prior P = Pi,{x} shared by all agents i ∈ I, and the individual
“signal” σ-algebras (F i

x )i∈I . By weakening the dynamical consistency requirement on (Π, s)
to hold only if i = j, see Definition 3.16, one obtains the more general case with subjective
priors Pi = Pi,{x}, i ∈ I. In particular, with (Ω,E ) serving as a correlation device, s can
be seen as a correlated equilibrium, with respect to the subjective priors Pi – though this
equilibrium is typically formulated with respect to a common prior (see the discussion in
[12]). As a special case, we obtain the Nash equilibrium ([50], in mixed and in pure strategies,
see Subsection 3.5 for a possible meaning of this).

2. The preceding point generalises to the dynamic setting. Then, we obtain a non-trivial gener-
alisation of perfect Bayesian equilibrium for a generalised model of dynamic Bayesian games
(see, e.g. [31, 49]). It is a non-trivial generalisation of Bayesian games and perfect Bayesian
equilibrium, because general exogenous dynamic uncertainty can be handled that can not

17According to [49, 28]. In Aumann’s setting of [11], this is simply called “equilibrium point”. Following the
framework of [12], this might be called “Bayes rational at almost all states of the world”.
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be seen as the outcome of a nature agent’s decision making (for instance, Brownian noise in
continuous time).

3. Under the hypothesis of perfect information, we obtain the subgame-perfect equilibrium ([59]).
If only perfect endogenous information and perfect recall are supposed instead of perfect
information, we obtain a non-trivial generalisation of subgame-perfect equilibrium to the case
of imperfect exogenous information.

Next, we comment on the multiple-selves approach to dynamic decision making.

Remark 3.19 (Multiple selves). Dynamic rationality rules out empty threats, eventually corre-
sponding to certain plans that are optimal today, but suboptimal tomorrow.18 In the case of a
dynamically inconsistent taste system, it may also rule out plans that are suboptimal today, but
optimal tomorrow.

A classical attempt for resolving both points is the so-called multiple selves approach (going back
to [65], at least; see [52, 32] in the context of the absent-minded driver story). One idea behind
this says that strategically it does not make much sense to suppose an agent making contingent
plans for the future, for its future self has the ability to revise it. In the inconsistent case, he might
really do this. From that perspective, by definition, an agent should only act once. According to
this principle, the following analysis can be performed in our setting.

Let F be a well-posed stochastic extensive form on an exogenous scenario space (Ω,E ) and
Pr = (Π, U,W ) be an eu preference structure. Let s ∈ S.

Replace F with the stochastic extensive form

F = (F, π,X, Î, F̂ , Ĉ , Ĉ),

and Pr = (Π, U,W ) with P̂r = (Π̂, Û ,W ), where

– Î = {(i, p) | i ∈ I, p ∈ Pi};

– F̂
(i,p)
x = F i

p for all i ∈ I, p ∈ Pi, x ∈ p;19

– Ĉ
(i,p)
x = C i

p , for all i ∈ I, p ∈ Pi, x ∈ p;

– Ĉ(i,p) = Ai(p), for all i ∈ I, p ∈ Pi;

– Π̂ is the family assigning to any (i, p) ∈ Î and the only endogenous information set of that
agent, p, the triple (pi,p,Pi,p,Pi,p);

– Û is the family assigning to any (i, p) ∈ Î and the only endogenous information set of that
agent, p, the function ui,p.

That is, each agent is split into separate “incarnations” of itself at all of its endogenous information
set. We do not bother the reader with the verification of the claim that this yields again a well-
posed stochastic extensive form on (Ω,E ) and an eu preference structure on it. Note that the new
structure trivially satisfies perfect recall and dynamic consistency of the taste system.

Now, dynamic rationality and equilibrium as defined above can be analysed in (F̂, P̂r).

18More precisely, suboptimal in some possible future which the threat – non-credibly – attempts to deter others
from bringing about.

19One can show that with the choices Ĉ defined below, the set of random moves for (i, p) is given by X̂
(i,p)

= p.
We recall that it does not matter how F and C are chosen outside of this set. This footnote hence also applies to
the following point.
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The expected utility framework, as implemented above, is attractive for several reasons, includ-
ing its equivalence to a class of well-chosen rationality axioms on decision making. Nevertheless, it
has been challenged on diverse grounds: in view of explicit experimental evidence, for its theoret-
ical lack of aversion of Knightian uncertainty, for the assumption of complete preferences, for its
tendency to overlook gain-loss-asymmetry, and other things ([27, 8, 42, 34, 58, 18, 37], for overviews
see [33, 29]). Stochastic extensive form theory is not made for expected utility, and alternative pref-
erence structures or ways of modelling decision making may be defined on it as well. The author
has chosen the classical expected utility framework because of its historic importance, its current
use and the fact that the proposed alternatives often depart from it.

At this point, the author wants to mention that the terms “decision problem” and “game” are
not introduced formally because their use in the literature is not unambiguous, and probably for
good reasons. Sometimes, these terms just describe a phenomenon of strategic interaction or a non-
formalised description of it (e.g. one can know the absent-minded driver’s decision problem without
knowing its extensive form description using graphs as proposed in [52]). Sometimes, these terms
are meant as a formal description of states, consequences, agents and choices (as in [3] where the
term “extensive decision problem” is used for the classical pseudo extensive forms of the present
text). Sometimes, these terms are used only if, in addition to the formal description of states,
consequences, agents and choices, payoffs, utilities, beliefs, preferences or the like are provided (as
typically the case in stochastic control theory). In other contexts, one might be even more radical
and argue that in order to be a game it must be played, that the play must be in equilibrium, and
that there cannot be any other equilibrium (because the model could not explain why the latter
is not played). Implicitly, such an argument also requires well-posedness. From this perspective,
a game (with stochastic extensive form characteristics) would be a well-posed stochastic extensive
form equipped with an equilibrium concept such there exists a unique equilibrium. The present
text does not suggest any of these views being superior compared to others, and its concepts are
compatible with all of them.

3.5. Randomisation

Randomisation, that is, extending the exogenous scenario space and the information structure
on it, is a common procedure in many fields. It underlies Nash’s idea of equilibrium existence
by introducing lotteries over strategies (the latter called “pure” because deterministic, that is,
essentially defined on a singleton exogenous scenario space); it is a fundamental way of representing
choice under uncertainty through the theory of expected utility following [66, 57, 6, 11]; it underlies
the implementation of decision rules as Bayesian equilibria and the revelation principle in mechanism
design; it underlies the weak solution concept for stochastic differential equations, stochastic control
problems and stochastic differential games. Mixed (and then also behaviour and pure strategies)
can be defined in the spirit of [11]. Certainly, this is not the right place to develop a general theory
of randomisation of stochastic extensive forms. Let us restrict to some comments.

In the non-stochastic setting of finite games à la Nash, randomness enters only for “mixing”
individual strategies and not as a correlation device. This typically happens under the common
prior assumption, and so all strategies are objective. When one assumes that under the com-
mon prior the exogenous information structures of different agents are mutually independent, all
strategy profiles are necessarily mixed. If, moreover, one assumes that the exogenous information
available at different endogenous information sets is mutually independent, then any strategy profile
is behavioural.

By contrast, the point of most stochastic games lies in correlation given, for instance, by what
one calls a state process that agents may have partial information about. Then pure, behavioural
and mixed strategies are rather the exception than the rule. This is even more so if one does
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not assume common priors (see again the discussion in [11, 12]). Yet, similarly to the content of
[11, Assumption II], one might wish E and Π such as to assure reasonable options of behavioural
strategy profiles s (for instance, such that Pi,p is non-atomic on F

i,s
p for all i ∈ I, p ∈ Pi).

Yet, the “more” randomisation is possible, the finer must be E , hence, the less probability
measures on it. Actually, this problem is not only related to randomisation, but also to tastes:
the less trivial taste shall be, the finer must be W , thus the finer must be Pi,p and E , and again,
the smaller must be the set of admissible beliefs Pi,p. It is well-known from the case of classical
extensive forms that without finiteness (or countability) assumptions, this creates a non-trivial
trade-off between the richness of both randomisation procedures and tastes and this trade-off is
well understood (Aumann in [7, 9, 10], also see the discussion by Alós-Ferrer and Ritzberger in [5,
Subsection 6.4.3], in particular Example 6.7 therein). In Subsection 3.3, we have re-interpreted this
trade-off in terms of a tension between non-triviality of endogenous information and non-triviality
of eu preference structures.

3.6. Simple examples

Let us first consider some equilibria for a randomised version of the stochastic extensive forms
F from Subsection 1.6, Lemma 1.16. Obviously, already in this simple case, there is a large range
of possibilities, which moreover are well-known and analysed in other formalisations. Thus, the
following selection can only be illustrative of the generality of our approach, and attempts to clarify
its mechanics.

Example 3.20. We consider a randomised version in that we let (Ω,E ) be a general exogenous
scenario space and ρ : Ω → {1, 2} an E -P{1, 2}-measurable surjection. We suppose it rich enough to
admit real-valued random variables ξk, k = 0, 1, 2 and a probability measure under which these four
random variables are independent, ρ is 1

2 -Bernoulli-distributed, and each ξk is uniformly distributed
on [0, 1]. The ξk represent randomisation devices available at the random moves xk, respectively.

We let I be a singleton, T = {0, 1}, A = {1, 2}, and W = Ω × AT, and consider the associated
action path sdf (F, π,X) which gives us the sdf from the first simple example (see [53, Lemma 2.17])
if ρ is also injective and ωk denotes the preimage of k ∈ {1, 2} under ρ. Note that an element of W
is essentially a triple (ω, k,m) ∈ Ω × {1, 2} × {1, 2}. In reminiscence of the notation used for the
simple example, denote the root of (X,≥X) by x0 and let, for k ∈ {1, 2}, xk be a shorthand for the
random move mapping any ω ∈ Ω to xk(ω) = Ω × {k} × {1, 2} (which is nothing else than x1(f)
for any f : T → A with f(0) = k when written in action path notation).

In view of Remark 3.19 on the multiple selves approach, we let Î = {i, j} be a set with two
distinct elements, representing two agents, i acting at time 0, and j at time 1 – so to speak, two
independent copies of the unique action index ∈ I above. Consider the map u : W → R given
by u(ω, f) = (−1)ρ(ω)+f(0)+f(1), which is a generalised form of the payoff known from “matching
pennies”, with two pennies whose two sides show 1 and 2, and where the fact whether matching
means win or lose depends on the realisation of the random variable ρ.

Suppose that the taste system U satisfies with ui = −u and uj = u. We fix a prior belief,
alias a probability measure on (Ω,E ), P such that ρ and ξk, k = 0, 1, 2, are P-independent, and
P(ρ = 1) = p for given p ∈ [0, 1]. Given a strategy profile s ∈ S, let us call an eu preference
structure Pr suitable iff its taste system is U , Pi,{x0} = P and (Π, s) is dynamically consistent. Note
that such a Π can be constructed out of the data P and s in any case, though not necessarily in a
unique way. Also note that for any s ∈ S and x ∈ X, si(x) can be identified with its random action
alias an F i(x)-measurable, A-valued random variable. The independence of the signals means that
we only consider “mixed” strategies in the traditional sense (no correlation) which is not a much of
a restriction here anyway because of the zero-sum structure.
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1. First suppose that the agents’ information and choices are essentially given by the first line
of the table defining C in Subsection 1.6, so that, in particular, F essentially corresponds to
case 1, i.e. no information about ρ, and, at time 1, agent j recalls i’s decision made at time
0. That is, F i

x0
= σ(ξ0), F

j
xk

= σ(ξk), for k = 1, 2, and Hj
1 = {{(0, 1)}, {(0, 2)}}.

Let s ∈ S be a strategy profile. If p = 1
2 , then for any s ∈ S and any suitable eu preference

structure Pr, (s,Pr) is in equilibrium, with expected utility zero. If p > 1
2 , then for s ∈ S and

any suitable eu preference structure Pr, (s,Pr) is in equilibrium iff

Pj,{x1}[sj(x1) = 2] = Pj,{x2}[sj(x2) = 1] = 1.

Its expected utility is 1 − 2p for i and 2p − 1 for j, since j can fully react to i’s action
whatever the latter is (even if i did randomise and even though j cannot observe i’s personal
randomisation signal ξ0). If p < 1

2 , conversely, then for s ∈ S and any suitable eu preference
structure Pr, (s,Pr) is in equilibrium iff

Pj,{x1}[sj(x1) = 1] = Pj,{x2}[sj(x2) = 2] = 1.

Its expected utility is 2p− 1 for i and 1 − 2p for j.

2. If we follow the second line of the table, the exogenous information structure remains similar,
but agent j cannot observe the choice made by agent i – which is more similar to the original
“matching pennies” game. Then, again, F i

x0
= σ(ξ0), but F

j
x1

= F
j
x2

= σ(ξ1, ξ2) and

Hj
1 = {{0} × A}, as the agent receives the same signal at x1 and x2. Let p = {x1, x2}.

Let s ∈ S and Pr be a suitable eu preference structure. If p = 1
2 , then (s,Pr) is in equilibrium

without further restriction. If p 6= 1
2 , then (s,Pr) is in equilibrium iff

P[si(x0) = 1] = Pj,p[sj(p) = 1] =
1

2
.

In any case, equilibrium expected utility is equal to 0 for both agents.

3. Let us next consider the situation where agent j has a further advantage by having full
exogenous information, which corresponds to line 4, and in particular eis 2.(a). That is,
F i

x0
= σ(ξ0), but F

j
x1

= F
j
x2

= σ(ρ, ξ1, ξ2) and Hj
1 = {{0} × A}. Let again p = {x1, x2}.

Let s ∈ S and Pr be a suitable eu preference structure. Let α = P[si(x0) = 1] and for k = 1, 2
let βk ∈ [0, 1] a number such that P[sj(p) = 1 | ρ = k] = βk, P-almost surely. Then the
expected utility of i, given si(x0) is equal to

πi,{x0}(s) = −(−1)si(x0)
(
p(2β1 − 1) + (1 − p)(1 − 2β2)

)
,

and the expected utility of j given ρ and sj(p) is equal to

πj,p(s) = (1 − 2α)(−1)ρ+sj (p).

We conclude that (s,Pr) is in equilibrium iff

α =
1

2
, p(2β1 − 1) + (1 − p)(1 − 2β2) = 0.

For if α = 1
2 , then any strategy for j is a best response, but mixing is a best response for i only

if the right-hand side equality is satisfied. If α > 1
2 , then sj is a best response iff sj(p) = 3−ρ,
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P-almost surely. In this case, β1 = 0 and β2 = 1, so that p(2β1 − 1) + (1 − p)(1 − 2β2) = −1.
But then any best response si by i satisfies si(x0) = 2 P-almost surely, whence α = 0, a
contradiction. A similar contradiction arises when assuming equilibrium with α < 1

2 .

Expected utility in equilibrium is almost surely zero for both agents. Hence, the informational
advantage for j (as compared to the preceding point) does not pay out.

4. Let us now vary the preceding examples and consider a case where agent i can determine
what exogenous information agent j obtains, which is a variation on the theme of exploration
and exploitation. For this, we transcribe the fifth line with eis 2.(b). That is, F i

x0
= σ(ξ0),

but F
j
x1

= σ(ρ, ξ1), F
j
x2

= σ(ξ2) and Hj
1 = {{(0, 1)}, {(0, 2)}}.

Let s ∈ S and Pr be a suitable eu preference structure. Let α = P[si(x0) = 1], and for k = 1, 2
let βk ∈ [0, 1] a number such that Pj,{x1}[sj(x1) = 1 | ρ = k] = βk, Pj,{x1}-almost surely, and
let γ = Pj,{x2}[sj(x2) = 1]. Expected utilities are given by

πi,{x0}(s) = −(−1)si(x0)
(

1{si(x0) = 1}
(
p(2β1 − 1) + (1 − p)(1 − 2β2)

)

+ 1{si(x0) = 2} (1 − 2γ)(1 − 2p)
)

for i, and

πj,{x1}(s) = −(−1)ρ+sj(x1), πj,{x2}(s) = (1 − 2p)(−1)sj(x2)

for j.

We conclude that (s,Pr) is in equilibrium iff

α · p(1 − p) = 0, β1 = 0, β2 = 1,

{

γ = 0, if p < 1
2 ,

γ = 1, if p > 1
2 .
.

Note that α · p(1 − p) = 0 means nothing else than: if ρ is believed to be truly random, then
α = 0. In the deterministic case (p = 0 or p = 1), no restriction on α needs to be imposed;
agent i is completely indifferent in equilibrium.

The proof is straightforward by backwards induction. The best response property of s for
agent j implies that β1 = 0 and β2 = 1, and

{

γ = 0, if p < 1
2 ,

γ = 1, if p > 1
2 .
.

Then, given this strategy of agent j, the expected utility of agent i writes as

πi,{x0}(s) = −(−1)si(x0)
(

− 1{si(x0) = 1} + 1{si(x0) = 2} |1 − 2p|
)

= −|1 − 2p|s
i(x0)−1,

and the best responses of i are obviously the ones claimed above.

Expected utility in equilibrium is almost surely −|1 − 2p| for i and |1 − 2p| for j. If j had
access to full information about ρ at x1 as well, it would be easy to see, j could realise
the expected utility of 1 in equilibrium. In the present asymmetric case, however, provided
0 < p < 1, agent i can force j to the random move with less exogenous information, reducing
j’s expected equilibrium utility. Hence, j cannot realise more expected utility in equilibrium
than in the situation with no relevant information on ρ at all (see the first case above).
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To close this subsection, let us consider the absent-minded driver stochastic extensive form
discussed earlier, see Theorem 1.20. Following [52], we let taste u of both agents by identically
given by

(∗) u(ω,D) = 0, u(ω,H) = 4, u(ω,M) = 1,

for ω ∈ Ω, and in equilibrium we suppose some form of dynamic consistency of strategy profile and
belief. Here, we use the equilibrium notion introduced in the present text, restricting to those belief
systems Π whose common prior for {(1, {x1}), (2, {x2})} is given by a fixed probability measure P
with respect to that (ρ, ξ1, ξ2) are independent and ξ1, ξ2 are both uniformly distributed on [0, 1].

Note that for any such P and any strategy profile s ∈ S, there is a belief system Π such that
(Π, s) is dynamically consistent and P is a common prior for {(1, {x1}), (2, {x2})}. Moreover, Π
then necessarily satisfies (ξi)∗Pi,{xi} = (ξi)∗P, for both i ∈ I; or in other words:

Pi,{xi}(E) = P(E), for all E ∈ F
i
xi
.

Π is essentially uniquely determined (i.e. “along the equilibrium path”).
Also note that a strategy profile s ∈ S corresponds to a pair (E1, E2) of events Ei ∈ F i

xi
via

si(xi) = ci(Ei), i ∈ I, and this correspondence is a bijection S → F 1
x1

×F 2
x2

. In the sequel, we thus
identify strategy profiles with their respective images under this bijection. Ei is the event of agent
i exiting, i ∈ I.

Hence, fix u and P as above. Given s ∈ S, represented by (E1, E2) as above, and p ∈ [0, 1], call
an eu preference structure suitable iff ui,{xi} = u for both i ∈ I, (Π, s) is dynamically consistent,
and

P(ρ = 1) =
1

2
, P(E1) = P(E2) = 1 − p.

Thus, 1
2 is the prior probability of {ρ = 1}, and p is the prior probability of continuing at either

intersection, given the intersection. In particular, we deliberately focus on equilibria with 1) prior P
under that ρ is uniformly distributed, and 2) P(E1) = P(E2). This selection of equilibria is natural
in view of the symmetry of the problem, all the more in the case of a physical person split into two
abstract agents. The indifference principle (a.k.a. principle of insufficient reason) further underpins
that choice.

Theorem 3.21. Consider the absent-minded driver sef introduced previously, defined on exogenous
scenario space (Ω,E ). Let p ∈ [0, 1], let s ∈ S be a strategy profile and let Pr be a suitable eu

preference structure. Then, (s,Pr) is in equilibrium iff p = 2
3 .

Hence, we find that the absent-minded driver paradox from [52] evaporates, confirming the ex
ante optimal strategy of continuing independently with probability 2

3 at each intersection, which is
in a similar way the conclusion in [15, 32] as well.

3.7. Well-posedness of action path stochastic extensive forms

Action path sef data provide a large class of well-posed stochastic extensive forms. In this
framework, the three order-theoretic properties characterising well-posedness of a stochastic exten-
sive form are implied by well-orderedness of time, as the following result shows in high generality.

Theorem 3.22. Let F be the stochastic extensive form induced by action path sef data with well-
ordered time T. Then, F is well-posed.

This theorem has important implications. Stochastic decision problems and games in discrete
time or with time structure like in the long cheap talk game can be equipped with general stochastic
noise, within an extensive form theory. On the other hand, nothing is said about continuous time;
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and indeed, in [4], it has been shown that certain classical action path pseudo-extensive forms in
continuous time are not well-posed. This however does not preclude any action path classical or
stochastic extensive form in continuous time from being well-posed, as shown in [1]. Thus well-
ordered time is a sufficient, but not a necessary condition for well-posedness. This is tightly related
to the question of the decision-theoretic meaning of “stochastic differential games”. These two
points are discussed in the third part of the present series.

3.8. Discussion on nature representations

Traditionally, stochastic games in discrete time are modelled in what the author suggests calling
nature representation. That is, in a traditional extensive form model, using an additional agent
called “nature” with perfect recall using a fixed mixed strategy. In the terminology of this article,
this would entail an action path stochastic extensive form, in order to allow for that randomisation,
and an agent with perfect recall. Provided the action space is regular enough (a Borel space), in
that setting, any probability measure on discrete-time path space can be represented as the outcome
of “nature’s” strategy. This follows from classical disintegration results in probability theory (see
[43, Chapter 3]).

In continuous time, however, this representation can fail because the nature representation does
not always yield a well-posed stochastic extensive form. There are exceptions: for instance, locally
right-constant jump processes can be implemented like this (see the third paper for a remark on how
to do so using stochastic action-reaction sef). An example of failure, however, is Brownian motion.
Brownian motion is supported on paths of low regularity, paths that are far from being locally
right-constant. Hence, a straightforward nature representation would suggest to take the action
path pseudo-extensive form data W = Ω × AT, for a suitable exogenous scenario space (Ω,E ),
A = R, T = R+, and singleton I = {“nature”}, such that “nature” admits perfect endogenous
recall. By Theorem 2.9, perfect (endogenous) recall requires H“nature”

t to contain only singletons,
t ∈ T. The corresponding decision forest is not weakly up-discrete, and, indeed, using well-known
counterexamples from [62, 64, 5], one can easily see that the induced action path pseudo-sef is not
well-posed.

This issue might be circumvented by accepting the “nature” agent to admit imperfect recall. For
instance, in the just-mentioned example one may instead consider the other extreme, i.e. assume
H“nature”

t to be a singleton for all t ∈ T. Then, we easily obtain well-posedness (compare [5,
Example 5.5], which can be directly adapted for a single agent). However, while the modeller
might fix “nature’s” strategy, he or she cannot fix the personal agents’ ones. Strategies would be
functions of information sets, and therefore, adaptedness of “personal” agents’ strategies would lack
an explanation in the case of the non-discrete “nature” action space A. While it seems already odd
that the “nature” agent is forced to be forgetful on the grounds of extensive form well-posedness,
we argue that the category of perfect recall is irrelevant for generating exogenous randomness
or information in the first place. Moreover, the nature representation does not help to explain
adaptedness of the actual, “personal” agents’ strategic behaviour. We conclude that stochastic
extensive forms provide a strict generalisation of existing extensive form theory: it contains classical
extensive forms, and although many stochastic extensive forms can be nature-represented in classical
extensive form, this is not the case for an important class of extensive forms with interesting noise,
such as Brownian motion.

Conclusion

It is possible to implement general stochastic processes as background noise on refined partitions-
based extensive forms without encountering outcome generation problems for a “nature” agent,
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while allowing for a rigorous decision-theoretic interpretation of the relationship between endoge-
nous and exogenous information and choices. This is an improvement over the existing state of the
art in both refined partitions-based decision and game theory (e.g. [5, 1]) and stochastic control
and differential games theory (e.g. [51, 44, 21, 22]). This has been achieved by abandoning the
assumption of a “nature” agent and instead constructing a theory of stochastic extensive forms
based on stochastic decision forests. This provides a consistent theory of refined partitions-based
dynamic choice under uncertainty, adapted to a mechanism of exogenous information revelation
that generalises filtrations from probability theory. Moreover, the measurability assumptions on
choices typically made in the literature can be understood as a conceptual necessity rather than a
technical one. Randomisation – whether behavioural, mixed and correlated – arises naturally and
can be explained within this context.

The stochastic extensive form defines the rules. Then, given arbitrary “subgames” – identified
as random moves and closely linked to closed (random) histories – agents can freely choose, using
elementary Savage acts as strategies, thereby generating outcomes. Well-posed stochastic extensive
forms are ultimately those for which this structure becomes fully meaningful. Well-posedness can
be classified transparently, analogous to the results found in [4]. Furthermore, dynamic rationality
and a generalised form of perfect Bayesian equilibrium can be defined on this basis, providing
an abstract, general, and interpretable solution concept. We note that stochastic extensive forms
resemble a generalisation of dynamic Bayesian games; however, a key aspect of the former is their
independence from any nature representation. As a consequence, they can accomodate complex
exogenous randomness, such as Brownian motion and beyond.

The present article demonstrates that general probability, the extensive form and choice under
uncertainty can be unified into a simple, abstract concept of broad generality, requiring minimal
special structure to formulate familiar concepts of rationality and equilibrium in a consistent man-
ner. Moreover, we observe that the boundaries to this abstract concept are delimited in terms
of a trade-off: between the flexibility of choice and the richness of information on the one hand,
and well-posedness and the existence of appropriate (e.g. eu) preference structures and solution
concepts on the other.

The generality of this idea is emphasised by the many applications covered. In the text many
simple pedagogical examples are provided. Moreover, we note that the theory allows to model the
absent-minded driver’s story without decision-theoretic paradox, very much as in Gilboa’s approach
to the problem. However, the universality of the theory is perhaps best highlighted by the general
model of action path stochastic extensive forms presented in this article, defined by a small number
of easily verifiable conditions. This model can serve as a unified decision-theoretic foundation for
a broad class of stochastic decision problems, particularly in well-ordered time. Moreover, as will
be demonstrated in the third paper, it constitutes one step toward explaining stochastic decision
problems in continuous time approximately.

In the literature on continuous-time and differential games, whether stochastic or not, there
has been discussion on how the concept of subgame-perfect Nash equilibrium can be faithfully
implemented. A particular example of this is the timing game, and a well-known approach to
addressing this issue has been developed in [30, 54, 63]. Since this strand of the literature avoids
using extensive forms, ad hoc definitions of this equilibrium concept are employed, which, from a
decision-theoretic perspective, do not constitute an equilibrium concept of an extensive form game
in continuous time whatsoever, but rather one based on stacked strategic form games, justified by an
approach in “discrete time with an infinitesimally fine grid” ([61, 62]). Moreover, in the stochastic
case, the question arises as to whether one should be able to condition on histories stopped at
stopping times with respect to the filtration-like exogenous information available, a question which
has been identified and addressed in [54]. Another open question is why this is decision-theoretically
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appropriate, and whether an answer can be given in terms of extensive form theory.
In the third paper of the present series, these issues will be investigated from the perspective

of stochastic extensive form theory, using the action path formulation. This approach promises
to provide a foundation for subgame-perfect – and, from a more general stochastic perspective,
perfect Bayesian equilibrium – in continuous time, within a general stochastic setting, in a specific
approximate sense, but strictly stronger than what has been done in the cited works. Instead
of interpreting “continuous-time games” as “games” in “discrete time with an infinitesimally fine
grid”, they will be viewed as limits of well-posed games in continuous time. This approximation
will apply at the level of trees and choices, not merely of payoffs. While payoffs are derived objects,
trees and choices are primitives and constitute the crucial decision-theoretic components. Only such
a procedure can demonstrate why a concept like that of stochastic differential games is well-placed
within the framework of stochastic extensive forms – be it by a limiting process. Therefore, such
an approximation will be instrumental in understanding the decision making process described by
the model.
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Appendix A. Figures

x0(ω1)

x1(ω1) x2(ω1) x1(ω2)

x0(ω2)

x2(ω2)

{w112}{w111} {w122}{w121} {w211} {w212} {w221} {w222}

Figure A.1: A simple stochastic decision forest represented as a directed graph, with wℓkm = (ωℓ, k, m), for (ℓ, k, m) ∈
{1, 2}3. Moves are indicated by circles.

x0

x1 x2

{w212}{ω2}{w112}{ω1}{w111}{ω1} {w211}{ω2} {w122}{ω1} {w221}{ω2}{w121}{ω1} {w222}{ω2}

Figure A.2: The decision tree (T, ≥T) for the simple stochastic decision forest, with wℓkm = (ωℓ, k, m), for (ℓ, k, m) ∈
{1, 2}3. (Random) moves are indicated by circles. Elements of T \ X, of the form {(ω, {w})} and seen as maps
ω 7→ {w}, are denoted by {w}{ω}.
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Figure A.3: A variant of the simple stochastic decision forest in Figure A.1 represented as a directed graph, with
w′

ℓkm
= (ωℓ, k, m), for all triples (ℓ, k, m) ∈ {1, 2}3 with (ωℓ, k, m) ∈ W ′, and w′

12 = (ω1, 2). Moves are indicated by
circles.

x′
0

x′
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{w′
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111}{ω1} {w′
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221}{ω2} {w′

222}{ω2}

Figure A.4: The decision tree (T′, ≥T′ ) for the variant of the simple stochastic decision forest, with w′
ℓkm

= (ωℓ, k, m),

for all triples (ℓ, k, m) ∈ {1, 2}3 with (ωℓ, k, m) ∈ W ′, and w′
12 = (ω1, 2). (Random) moves are indicated by circles.

Elements of T′ \ X′, of the form {(ω, {w′})} and seen as maps ω 7→ {w′}, are denoted by {w′}{ω}.

x1(ω1){w1D}

x2(ω1){w1H}

{w1M}

x2(ω2) {w1D}

x1(ω2) {w1H}

{w1M}

x1{w1D}{ω1}

{w1H}{ω1}
{w1M }{ω1}

x2 {w2D}{ω2}

{w2H}{ω2}
{w2M }{ω2}

Figure A.5: The absent-minded driver sdf, following Gilboa: (F, ⊇) represented as a directed graph, in case ρ is
injective, with ωℓ = ρ−1(ℓ), wℓS = (ωℓ, S), for all ℓ ∈ {1, 2} and symbols S such that (ω, S) ∈ W (left), (T, ≥T) where
elements of T \ X, of the form {(ω, {w})} and seen as maps ω 7→ {w}, are denoted by {w}{ω} (right). Non-minimal
elements are indicated by circles, respectively.
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Appendix B. Proofs

Appendix B.1. Section 1

Lemma Appendix B.1. Let F be a stochastic pseudo-extensive form on some exogenous scenario
space (Ω,E ), and i ∈ I. Then,

X i = {x(ω) | x ∈ Xi, ω ∈ Dx}.

Proof. Let x ∈ X i. Then, by Axiom 1.3.3(b), there is x ∈ X and ω ∈ Dx with x = x(ω). Hence,
Ai(x) ⊆ Ai(x), by definition of Ai(.). As Ai(x) 6= ∅ by assumption, Ai(x) 6= ∅, whence x ∈ Xi.

Conversely, let x ∈ Xi and ω ∈ Dx. Then, Ai(x(ω)) = Ai(x) 6= ∅, by Xi-completeness of all
elements of Ci. Hence, x(ω) ∈ X i.

Letting X
i • Ω = {(x, ω) ∈ X • Ω | x ∈ X

i}, the lemma states that X i = P ev(Xi • Ω), just as
X = P ev(X • Ω) and F = P ev(T • Ω).

Proof of Proposition 1.8. Let F = (F, π,X, I,F ,F , C) be a tuple as in Definition 1.7 satisfying
Axioms 1.7.k, k = 1, . . . , 5, but not necessarily Axiom 1.7.6.

(Ad 1): First, any c ∈ Ci is non-empty. Hence, there is ω ∈ Ω with c ∩ Wω 6= ∅. By
non-redundancy, P (c) ∩ Tω 6= ∅, whence P (c) 6= ∅.

Next, let x ∈ X i. Hence, Ai(x) 6= ∅ so that there is c ∈ Ci such that x ∈ P (c).
Then, let c, c′ ∈ Ci such that P (c) ∩ P (c′) 6= ∅. Then, by Axiom 1.7.1, P (c) = P (c′).

(Ad 2): First, note that Ai(x) 6= ∅ for all x ∈ X i, by definition.
As Ai(x(ω)) = Ai(x) for all x ∈ Xi and ω ∈ Dx, Lemma Appendix B.1 easily implies that

{Ai(x) | x ∈ X i} = {Ai(x) | x ∈ Xi}.

Let c ∈ Ci. As c is non-empty, there is ω ∈ Ω with c ∩ Wω 6= ∅. By non-redundancy,
P (c) ∩ Tω 6= ∅. Hence, there is x ∈ Tω ⊆ F with x ∈ P (c). It follows easily from the definition of
P (c) that x ∈ X , whence c ∈ Ai(x), i ∈ J(x), and x ∈ X i.

Let x, x′ ∈ X i such that Ai(x) ∩ Ai(x′) 6= ∅. Let c ∈ Ai(x) ∩ Ai(x′). Hence x, x′ ∈ P (c). Let
c′ ∈ Ai(x). Then x ∈ P (c) ∩ P (c′). Hence, using Axiom 1.7.1 we obtain x′ ∈ P (c) = P (c′). Thus,
c′ ∈ Ai(x′). We conclude that Ai(x) ⊆ Ai(x′). The same argument can be repeated with the roles
of x and x′ reversed, whence in total Ai(x) = Ai(x′).

(Ad 3): Let c, c′ ∈ Ci. By Axiom 1.7.1, P (c) = P (c′) is true iff there is x ∈ P (c) ∩ P (c′). Such
an x must be a move by definition of immediate predecessors. Hence, this statement is equivalent
to saying that c, c′ ∈ Ai(x).

(Ad 4): Let x, x′ ∈ X i. Using Part 2 just proved before, Ai(x) = Ai(x′) is equivalent to the
existence of c ∈ Ai(x) ∩Ai(x′), or put equivalently, x, x′ ∈ P (c) for some c ∈ Ci.

(Ad 5): It suffices to show that there is a unique equivalence relation ∼ on Xi satisfying x ∼ x′

iff Ai(x) = Ai(x′), for all x, x′ ∈ Xi. Uniqueness is trivial. Concerning existence, there clearly is
a binary relation ∼ with the preceding property. Moreover, reflexivity, symmetry, and transitivity
are trivial. Hence, ∼ is an equivalence relation.

(Ad 6): Let Φ be the map with domain Pi given by

∀p ∈ Pi : Φ(p) =
⋃

x∈p

im x.
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Concerning the claim about both the codomain and the image of Φ, we prove the following
helpful statement:

(∗) ∀p ∈ Pi∀x0 ∈ p∀c0 ∈ Ai(x0) : Φ(p) = P (c0).

For the proof, let p ∈ Pi, x0 ∈ p, and c0 ∈ Ai(x0). By definition of Pi, Ai(x) = Ai(x′) 6= ∅ for
all x, x′ ∈ p. By Parts 3 and 2, proven above, we obtain that

(†) ∀x, x′ ∈ p∀c ∈ Ai(x)∀c′ ∈ Ai(x′) : P (c) = P (c′).

First, let x ∈ Φ(p). Take x ∈ p and ω ∈ Dx such that x = x(ω). As x ∈ p, there is c ∈ Ai(x).
By (†), P (c) = P (c0), whence x ∈ P (c) = P (c0). This shows that Φ(p) ⊆ P (c0).

Second, let x ∈ P (c0). By Axiom 1.3.3(b), there is x ∈ X and ω ∈ Dx such that x = x(ω). Thus
c0 ∈ Ai(x) and x ∈ Xi. By Part 4, proven before, Ai(x) = Ai(x0) must hold true. As x0 ∈ p, we
infer that x ∈ p as well. This shows that P (c0) ⊆ Φ(p). We conclude that Φ(p) = P (c0), and the
proof of (∗) is complete.

Now, regarding the codomain of Φ, let p ∈ Pi. As Pi is a partition, p is non-empty. Hence, we
can choose x0 ∈ p. As x0 ∈ Xi, there is c0 ∈ Ai(x0). By (∗), Φ(p) = P (c0). Hence, the codomain is
of the claimed form.

Next, we determine the image of Φ. Let c0 ∈ Ci. By Part 1, proven before, there is x0 ∈ X i

such that x0 ∈ P (c0). By Lemma Appendix B.1, there are x0 ∈ X
i and ω ∈ Dx with x0 = x0(ω). In

particular, c0 ∈ Ai(x0). By construction of Pi, there is p ∈ Pi such that x0 ∈ p. Then, statement
(∗) implies that Φ(p) = P (c0). Hence, the image of Φ is given by the set of all P (c), c ∈ Ci.

It remains to prove injectivity. Let p, p′ ∈ Pi such that Φ(p) = Φ(p′). As shown just before,
there is c ∈ Ci such that Φ(p) = P (c) = Φ(p′). By Part 1, there is x ∈ P (c). Hence, there are
representatives x ∈ p and x′ ∈ p′ of both endogenous information sets and ω ∈ Dx ∩ Dx′ such that
x(ω) = x = x′(ω). By Parts 2 and 4, we infer that Ai(x) = Ai(x′), whence p = p′. We conclude
that Φ is injective.

(Ad 7): Let p ∈ Pi and x, x′ ∈ p. Then, by definition of Pi, Ai(x) = Ai(x′) 6= ∅. Hence, by
Axiom 1.7.5, F i

x = F i
x′ and C i

x = C i
x′ . As a consequence, Dx =

⋃
F i

x =
⋃

F i
x′ = Dx′ .

Lemma Appendix B.2. Let F be a stochastic pseudo-extensive form on some exogenous scenario
space (Ω,E ) and i ∈ I an agent. If i has perfect endogenous (exogenous) information, then i admits
perfect endogenous (exogenous, respectively) recall.

Proof of Lemma Appendix B.2. Let F be a ψ-sef, and i ∈ I an agent.

(Ad endogenous case): Suppose that i has perfect endogenous information. Let c, c′ ∈ Ci and
ω ∈ Ω such that c ∩ c′ ∩ Wω 6= ∅. By non-redundancy and [53, Lemma 4.1], we get P (c ∩ Wω) =
P (c) ∩ Tω 6= ∅, and similarly P (c′ ∩ Wω) = P (c′) ∩ Tω 6= ∅. Proposition 1.8, Part 6, and the fact
that i has perfect information, we infer the existence of x, x′ ∈ X i such that

P (c ∩Wω) = P (c) ∩ Tω = {x}, P (c′ ∩Wω) = P (c′) ∩ Tω = {x′}.

Directly from the definition of immediate predecessors, we infer that x ⊇ c∩Wω and x′ ⊇ c′ ∩Wω .
Hence, x ∩ x′ 6= ∅. By the representation by decision paths inherent in the definition of decision
forests (compare Definition 1.2, and with more details [53, Definition 1.3]), we have x ⊇ x′ or
x′ ⊇ x.

Without loss of generality, we assume that x ⊇ x′. If x = x′, then P (c) ∩ P (c′) 6= ∅, whence by
Axiom 1.7.1 P (c) = P (c′) and c ∩Wω = c′ ∩Wω .

If x ) x′, then Axiom 1.7.4 implies the existence of c̃ ∈ Ai(x) such that c̃ ⊇ x′. As c ∈ Ai(x),
Proposition 1.8, Part 3 implies P (c) = P (c̃). Moreover, c̃ ⊇ x′ ⊇ c′ ∩Wω, whence

c ∩ c̃ ∩Wω ⊇ c ∩ c′ ∩Wω 6= ∅.
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Axiom 1.7.1 yields c ∩Wω = c̃ ∩Wω. We conclude that c ∩Wω ⊇ c′ ∩Wω .

(Ad exogenous case): Suppose that i has perfect exogenous information. Then, for any x, x′ ∈ Xi

with x ≥X x′ and any E ∈ F i
x , we have E ∈ E and, hence, E ∩Dx′ ∈ E |Dx′

= F i
x′ .

Proof of Lemma 1.11. The proof is completely analogous to the proofs of [3, Proposition 13] and
[5, Proposition 4.1]. Nevertheless, we give a proof here, both because of the different formal setting
and for the reader’s convenience.

(Ad 1): Let x, x′ ∈ X such that Ai(x) ∩Ai(x′) 6= ∅ and x ⊇ x′. In particular, i ∈ J(x) ∩ J(x′).
If x 6= x′, then, by Axiom 4 there would be c′ ∈ Ai(x) such that c′ ⊇ x′. By Proposition 1.8, Part 2,
Ai(x) = Ai(x′), and thus c′ ∈ Ai(x′) as well. In other words, x′ ∈ P (c′). Hence, by definition of
the immediate predecessor operator, there would be y′ ∈↓ c′ such that

↑ x′ =↑ y′\ ↓ c′.

As x′ ∈↓ c′, this is a contradiction. Hence, the assumption was false and we conclude that x = x′.

(Ad 2): Let x, x′ ∈ X such that Ai(x) ∩Ai(x′) 6= ∅ and x ≥X x′. In particular, x, x′ ∈ X
i. Then,

there is ω ∈ Dx′ , and we have x(ω) ⊇ x′(ω) and Ai(x(ω)) ∩Ai(x′(ω)) 6= ∅. By the statement of the
first part, just proven before, we get x(ω) = x′(ω). Since x, x′ ∈ Xi and evaluation Xi • Ω → X is
injective, we obtain x = x′.

Proof of Lemma 1.12. Let F = (F, π,X, I,F ,C , C) be a tuple satisfying the conditions defining a
stochastic pseudo-extensive form on some exogenous scenario space (Ω,E ) possibly except Axiom 6,
according to Definition 1.7. For any i ∈ I, let Ĉi be as defined in the lemma’s statement.

(Helpful statement (iii)): To start, let us prove that Properties 1.12.(i) and 1.12.(ii) can be
strengthened. Namely:

(iii) For all i ∈ I, all ĉ ∈ Ĉi and ω ∈ Ω with ĉ∩Wω 6= ∅, there is c ∈ Ci such that ĉ∩Wω = c∩Wω

and P (ĉ) = P (c).

For the proof, let i ∈ I, ĉ ∈ Ĉi and ω ∈ Ω be such that ĉ∩Wω 6= ∅. By definition of Ĉi, Property (i),
there is c ∈ Ci such that ĉ ∩Wω = c ∩Wω. By [53, Lemma 4.1], we have

P (c) ∩ Tω = P (c ∩Wω) = P (ĉ ∩Wω) = P (ĉ) ∩ Tω,

and by non-redundancy of ĉ these sets are non-empty. Let Pi the partition of X
i according to

Remark 1.9 and Proposition 1.8, Part 5. Then, there is p ∈ Pi such that

P (c) ∩ Tω = {x(ω) | x ∈ p : ω ∈ Dx}.

As ĉ is an Xi-complete choice and ω ∈ Dx = Dp for all x ∈ p by Remark 1.9 and Proposition 1.8,
Part 7, we obtain that

P (ĉ) ⊇ {x(ω′) | x ∈ p, ω′ ∈ Dx} = P (c).

By definition of Ĉi, Property (ii), there is c1 ∈ Ci such that P (ĉ) ⊆ P (c1). Hence, ∅ 6= P (c) ⊆ P (c1)
and thus, by Axiom 1.7.1, P (c) = P (c1), whence P (c) = P (ĉ) which proves (iii).

(Ad Properties 1.12.1 and 1.12.2): Both properties follow from the trivial inclusion Ci ⊆ Ĉi

for all i ∈ I and Property (iii).

(Ad basic properties in Definition 1.7) For each i ∈ I, Ĉi is a set of choices, by construction.
For the remainder of the proof, the operators and sets associated to Ĉ and (F, π,X) will be

denoted with a hat on top. That is, for Ĉ and (F, π,X), denote the set of choices in Ĉi available at
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a move x ∈ X or random move x ∈ X by Âi(x) or Âi(x), respectively. Furthermore, for x ∈ X and
x ∈ X, let

Ĵ(x) = {i ∈ I | Âi(x) 6= ∅}, Ĵ(x) = {i ∈ I | Âi(x) 6= ∅},

and, for i ∈ I, let

X̂ i = {x ∈ X | i ∈ Ĵ(x)}, X̂
i

= {x ∈ X | i ∈ Ĵ(x)}, X̂
i
• Ω = {(x, ω) ∈ X̂

i
× Ω | ω ∈ Dx}.

Then, clearly, all x ∈ X , x ∈ X, and i ∈ I satisfy Ai(x) ⊆ Âi(x) and Ai(x) ⊆ Âi(x), J(x) = Ĵ(x)

and J(x) = Ĵ(x). In particular, X i = X̂ i and Xi = X̂
i
.

As a consequence, F is a family of exogenous information structures on X̂
i
, i ∈ I, and C is a

family of reference choice structures on X̂
i
, i ∈ I. By hypothesis, for any i ∈ I, any element of Ĉi

is F i-C i-adapted, and the evaluation X̂
i
• Ω = Xi • Ω → X is injective.

(Ad Axiom 1.7.1): Let i ∈ I and ĉ, ĉ′ ∈ Ĉi such that P (ĉ) ∩P (ĉ′) 6= ∅. Then, by Property (iii),
there are c, c′ ∈ Ci with P (c) = P (ĉ) and P (c′) = P (ĉ′). Hence, by Axiom 1.7.1 applied to F,

P (ĉ) = P (c) = P (c′) = P (ĉ′).

Furthermore, let ω ∈ Ω such that ĉ ∩ ĉ′ ∩ Wω 6= ∅. According to Property (iii), c and c′ can be
chosen such that ĉ∩Wω = c∩Wω and ĉ′ ∩Wω = c′ ∩Wω. In particular we get c∩ c′ ∩Wω 6= ∅. As
P (c) = P (c′), Axiom 1.7.1 applied to F yields

ĉ ∩Wω = c ∩Wω = c′ ∩Wω = ĉ′ ∩Wω.

(Ad Axiom 1.7.2): Let x ∈ X and (ĉi)i∈J(x) ∈×i∈J(x)
Ĉi. Let ω = π(x). Then, by definition

of Ĉ, there is (ci)i∈J(x) ∈×i∈J(x)
Ci such that for all i ∈ J(x) we have ĉi ∩ Wω = ci ∩ Wω . As

x ∈ Tω, we have Wω ⊇ x, whence

x ∩
⋂

i∈J(x)

ĉi = x ∩
⋂

i∈J(x)

(ĉi ∩Wω) = x ∩
⋂

i∈J(x)

(ci ∩Wω) = x ∩
⋂

i∈J(x)

ci 6= ∅,

because F satisfies 1.7.2.
(Ad Axiom 1.7.3): Let y, y′ ∈ F with π(y) = π(y′) and y ∩ y′ = ∅. Let ω = π(y). Then, by

Axiom 1.7.3 applied to F, there are i ∈ I and c, c′ ∈ Ci with c ⊇ y, c′ ⊇ y′ and c ∩ c′ ∩ Wω = ∅.
By Property (iii) of Ĉi, there are ĉ, ĉ′ ∈ Ĉi such that ĉ ∩Wω = c ∩Wω and ĉ′ ∩Wω = c′ ∩Wω and
P (ĉ) = P (c) as well as P (ĉ′) = P (c′). Hence,

ĉ ⊇ ĉ ∩Wω = c ∩Wω ⊇ y ∩Wω = y,

and similarly, ĉ′ ⊇ y′. Moreover,

ĉ ∩ ĉ′ ∩Wω = c ∩ c′ ∩Wω = ∅.

(Ad Axiom 1.7.3’): For the proof of this axiom’s validity, suppose that F satisfies Axiom 1.7.3’.
We ought to show that F̂ does as well.

Let y, y′ ∈ F with π(y) = π(y′) and y ∩ y′ = ∅. Let ω = π(y). Then, by Axiom 1.7.3’ applied
to F, there are x ∈ X , i ∈ I and c, c′ ∈ Ci with x ∩ c ⊇ y, x ∩ c′ ⊇ y′, c ∩ c′ ∩ Wω = ∅ and
x ∈ P (c) ∩ P (c) ∩ Tω. By Property (iii) of Ĉi, there are ĉ, ĉ′ ∈ Ĉi such that ĉ ∩Wω = c ∩ Wω and
ĉ′ ∩Wω = c′ ∩Wω , and P (ĉ) = P (c) as well as P (ĉ′) = P (c′). Hence,

x ∩ ĉ = x ∩ ĉ ∩Wω = x ∩ c ∩Wω = x ∩ c ⊇ y,
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and similarly, x ∩ ĉ′ ⊇ y′. Moreover,

ĉ ∩ ĉ′ ∩Wω = c ∩ c′ ∩Wω = ∅,

and x ∈ P (c) ∩ P (c′) ∩ Tω = P (ĉ) ∩ P (ĉ′) ∩ Tω.

(Ad Axiom 1.7.4): Let x ∈ X , i ∈ J(x) and y ∈↓ x \ {x}. By Axiom 1.7.4 applied to F, we
obtain c ∈ Ai(x) with c ⊇ y. Let ω = π(x). Property (iii) of Ĉ ensures the existence of ĉ ∈ Ĉi such
that ĉ ∩Wω = c ∩Wω and P (ĉ) = P (c). Hence, x ∈ P (ĉ) alias ĉ ∈ Âi(x). Moreover,

ĉ ∩W = c ∩Wω ⊇ y ∩Wω = y.

(Ad Axiom 1.7.5): Let i ∈ I and x, x′ ∈ X such that Âi(x) ∩ Âi(x′) 6= ∅. Hence, there is ĉ ∈ Ĉi

such that x(ω), x′(ω′) ∈ P (ĉ) for some (and any) ω ∈ Dx and ω′ ∈ Dx′ . Following Property (iii)
of Ĉ, there is c ∈ Ci such that P (ĉ) = P (c). Hence, c ∈ Ai(x) ∩ Ai(x′), whence F i

x = F i
x′ and

C i
x = C i

x′ .

(Ad Axiom 1.7.6): Let i ∈ I and ĉ′ an F i-C i-adapted choice satisfying Properties 1.7.6(i)
and 1.7.6(ii), that is:

(i) any ω ∈ Ω with ĉ′ ∩Wω 6= ∅ admits ĉ ∈ Ĉi with ĉ′ ∩Wω = ĉ ∩Wω,

(ii) and there is ĉ ∈ Ĉi with P (ĉ′) = P (ĉ),

Let ω ∈ Ω be such that ĉ′ ∩Wω. Take ĉ ∈ Ĉi with ĉ′ ∩Wω = ĉ ∩Wω. By definition of Ĉ, there is
c ∈ Ci with ĉ ∩Wω = c ∩Wω, whence ĉ′ ∩Wω = c ∩Wω .

Further, take ĉ ∈ Ĉi such that P (ĉ′) = P (ĉ). By Property (iii) of Ĉ there is c ∈ Ci such that
P (ĉ) = P (c), implying P (ĉ′) ⊆ P (c).

We conclude that ĉ′ ∈ Ĉi which shows that the axiom is satisfied by F′.

Proof of Proposition 1.14. Let i ∈ I. Denote the surjections X i
։ Xi and Xi → Pi by pX,X;i and

pX,P;i respectively. By Proposition 1.8, we have for all x ∈ X i and x ∈ Xi:

Ai(x) = Ai(pX,X;i(x)), Ai(x) = Ai(pX,P;i(x)).

Moreover, for all x, x′ ∈ X i we have

(pX,P;i ◦ pX,X;i)(x) = (pX,P;i ◦ pX,X;i)(x
′) ⇐⇒ Ai(x) = Ai(x′),

and similarly, for all x, x′ ∈ Xi we have

pX,P;i(x) = pX,P;i(x
′) ⇐⇒ Ai(x) = Ai(x′).

The claim follows from this using the universal property of the quotient in the category of sets.

Proof of Lemma 1.16. Let (F, π,X, I,F ,C , C) be a tuple satisfying the hypothesis of the lemma.
Let i be the unique element of I. Recall the table defining C.

According to [53, Lemma 2.6], (F, π,X) defines a stochastic decision forest on (Ω,E ). By [53,
Lemma 3.2], F i defines an exogenous information structure for it. By [53, Lemma 4.3], C i defines
a reference choice structure for it, and by [53, Lemma 4.4], the elements of Ci are F i-C i-adapted
choices.

(Ad Axiom 1.7.1): The immediate predecessor sets of all choices in Ci have been explicitly
calculated in [53, Lemma Appendix A.3]. It follows from the results of that lemma that for all
c, c′ ∈ Ci, P (c) and P (c′) can only non-trivially intersect if c and c′ are denoted in the same column
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of the table. Given this, closer inspection of the table reveals that if P (c) and P (c′) non-trivially
intersect, then P (c) = P (c′), and c ∩Wω and c′ ∩Wω are either disjoint or equal, for all ω ∈ Ω.

(Ad Axiom 1.7.2): There is only one agent i ∈ I here, hence this axiom is trivially satisfied.
Indeed, if x ∈ X and c ∈ Ci such that i ∈ J(x), then x ∈ P (c). Hence, there is y ∈↓ c such that
↑ x =↑ y\ ↓ c. Hence, x ∩ c ⊇ y ∩ c = y 6= ∅.

(Ad Axiom 1.7.3’): Let y, y′ ∈ Tω for some ω ∈ Ω with y ∩ y′ = ∅. Then, y and y′ are moves
at time 1 or terminal nodes. As Tω is a finite tree, there is a ⊇-minimal x ∈ F with x ⊇ y ∪ y′. In
particular, x must be a move with π(x) = ω. Let i ∈ I. For any possible values of x and y, there
are c, c′ ∈ Ai(x) such that x ∩ c ⊇ y and x ∩ c′ ⊇ y′, as evident from the table and [53, Lemma
Appendix A.3].

(Ad Axiom 1.7.4): Let x ∈ X , i ∈ J(x), and y ∈↓ x \ {x}. As evidenced by the table and [53,
Lemma Appendix A.3], there is c ∈ Ai(x) such that c ⊇ y.

(Ad Axiom 1.7.5): Upon consulting the table, we infer using [53, Lemma Appendix A.3] that
x1 and x2 are the only two random moves sharing an available choice c, and this only in the cases
given by th second, fourth, and eighth line of the table. In these cases, we have indeed F i

x1
= F i

x2

(eis = 1, 2(a), or 3). We also have C i
x1

= C i
x2

.

(Ad Axiom 1.7.6): Let c′ be an F i-C i-adapted choice satisfying 1.7.6(i) and 1.7.6(ii). From the
latter two properties and [53, Lemma Appendix A.3], we infer that 1) P (c′) = im x0 and c′ = cf•

for some f ∈ M , or 2a) we are in line two, four, or eight and P (c′) = im x1 ∪ im x2 and c′ = c•g

for some g ∈ M , or 2b) we are in line one, three, five, six, or seven and P (c′) ∈ {im x1, im x2} and
c′ = ckg for some k = 1, 2 and g ∈ M . Given this, the F i-C i-adaptedness implies that c′ has to be
one of the entries in the given line of the table, thus an element of Ci.

Proof of Lemma 1.18. The proof of this lemma is highly analogous to that of Lemma 1.16 just
above. Let (F ′, π′,X′, I ′,F ′,C ′, C′) be a tuple satisfying the hypothesis of the lemma. Let i be
the unique element of I ′. Recall the table defining C′.

According to [53, Lemma 2.7], (F ′, π′,X′) defines a stochastic decision forest on (Ω,E ). By [53,
Lemma 3.3], F ′i defines an exogenous information structure for it. By [53, Lemma 4.5], C ′i defines
a reference choice structure for it, and by [53, Lemma 4.6], the elements of C′i are F ′i-C ′i-adapted
choices.

(Ad Axiom 1.7.1): The immediate predecessor sets of all choices in C′i have been explicitly
calculated in [53, Lemma Appendix A.4]. It follows from the results of that lemma that for all
c, c′ ∈ C′i, P (c) and P (c′) can only non-trivially intersect if c and c′ are denoted in the same
column of the table. Given this, closer inspection of the table reveals that if P (c) and P (c′) non-
trivially intersect, then P (c) = P (c′), and c ∩ Wω and c′ ∩ Wω are either disjoint or equal, for all
ω ∈ Ω.

(Ad Axiom 1.7.2): There is only one agent i ∈ I ′ here, hence this axiom is trivially satisfied.
Exactly the same abstract argument can be used as in the proof of Lemma 1.16, Part 1.7.2, just
above.

(Ad Axiom 1.7.3’): Let y, y′ ∈ T ′
ω for some ω ∈ Ω with y ∩ y′ = ∅. Then, y and y′ are moves

at time 1 or terminal nodes. As Tω is a finite tree, there is a ⊇-minimal x ∈ F with x ⊇ y ∪ y′.
In particular, x must be a move with π(x) = ω. Let i ∈ I. For any possible values of x and y,
there are c, c′ ∈ Ai(x) such that x ∩ c ⊇ y and x ∩ c′ ⊇ y′, as evident from the table and [53,
Lemma Appendix A.4].

(Ad Axiom 1.7.4): Let x ∈ X , i ∈ J(x), and y ∈↓ x \ {x}. As evidenced by the table and [53,
Lemma Appendix A.4], there is c ∈ Ai(x) such that c ⊇ y.
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(Ad Axiom 1.7.5): Upon consulting the table, we infer using [53, Lemma Appendix A.4] that
there are no two random moves sharing an available choice c. Hence, this axiom is trivially satisfied.

(Ad Axiom 1.7.6): Let c′ be an F ′i-C ′i-adapted choice satisfying 1.7.6(i) and 1.7.6(ii). From
the latter two properties and [53, Lemma Appendix A.4], we infer that 1) P (c′) = im x′

0 and c′ = c′
f•

for some f ∈ M , or 2) P (c′) ∈ {im x′
1, im x′

2} and c′ = c′
kg for some k = 1, 2 and g ∈ M . Given this,

the F ′i-C ′i-adaptedness implies that c′ has to be one of the entries in the given line of the table,
thus an element of C′i.

Proof of Theorem 1.20. It has been demonstrated in the “Simple examples” subsections in [53] that
(F, π,X) is a stochastic decision forest, that F i is an exogenous information structure, that C i is
a reference choice structure, and that Ci is a set of F i-C i-adapted choices, for both i ∈ I.

(Ad Axiom 1.7.1): Recall that, for all i ∈ I = {1, 2}, E ∈ F i
xi

, we have

P (ci(E)) = im xi,

and {im x1, im x2} defines a (though not “order consistent”) partition of X . Hence, for c, c′ ∈ Ci,
P (c) and P (c′) can only non-trivially intersect if c and c′ are available at the same random move,
and in that case, P (c) = P (c′). If this is the case, then for all ω ∈ Ω, c∩Wω and c′ ∩Wω can both
only equal “exit” or “continue” in scenario ω, i.e. Exi ∩Wω or Cti ∩Wω, and thus are either equal
or disjoint.

(Ad Axiom 1.7.2): At any move, there is exactly one active agent i ∈ I, hence this axiom is
trivially satisfied. Exactly the same abstract argument can be used as in the proof of Lemma 1.18,
Part 1.7.2, just above.

(Ad Axiom 1.7.3’): Let y, y′ ∈ Tω for some ω ∈ Ω with y ∩ y′ = ∅. Then, {(ω,D)} ∈ {y, y′},
or, {{(ω,H)}, {(ω,M)}} = {y, y′}. In the first case, take x = xρ(ω)(ω), and in the second, take
x = x3−ρ(ω)(ω). In both cases, we can take the two choices c and c′ to “continue” and to “exit”, or
conversely, that are available at x, i.e. x ∈ P (c) ∩ P (c′) ∩Wω , such that c ∩ x ⊇ y and c′ ∩ x ⊇ y′.
By construction, c ∩ c′ = ∅.

(Ad Axiom 1.7.4): Let x ∈ X , i ∈ J(x), and y ∈↓ x \ {x}. Then x = xi(ω), for some ω ∈ Ω.
If ρ(ω) = i, y can be any terminal node in Tω; else, y ∈ {{(ω,H)}, {(ω,M)}}. By appropriately
choosing c to be either “continue” or “exit”, we clearly get c ⊇ y in any of these cases.

(Ad Axiom 1.7.5): As X1 and X2 are singletons, this condition is trivially satisfied.

(Ad Axiom 1.7.6): Let i ∈ I = {1, 2} and c′ be an F i-C i-adapted choice satisfying 1.7.6(i)
and 1.7.6(ii). We infer that P (c′) = im xi from the latter one. By the first condition, c′ must consist
in “‘continue” or “exit” in every scenario. By adaptedness, and the definition of C i, both “continue”
and “exit” must be chosen on F i

xi
-measurable events. Hence, c′ = ci(E) for some E ∈ F i

xi
. Thus,

c′ ∈ Ci.

Appendix B.2. Section 2

As a preparation for proving Theorem 2.6, we consider the following lemmata. The first lemma
relates the domain D of the “random action” g to the domain of those random moves that the
corresponding choice is available at in view of the second lemma.

Lemma Appendix B.3. Let D be action path ψ-sef data on an exogenous scenario space (Ω,E ),
i ∈ I, and c ∈ Ci. Let t ∈ T, A<t ∈ Hi

t, D ∈ E , g : D → Ai such that c = c(A<t, i, g). Then, for
any f ∈ AT with f |[0,t)T ∈ A<t, we have

D = Dt,f .
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Proof. Let f ∈ AT be such that f |[0,t)T ∈ A<t.

Let ω ∈ D. By the definition of Ci and the fact that c ∈ Ci, there is f̃ ∈ AT such that (ω, f̃) ∈ c
and f̃ |[0,t)T = f |[0,t)T . As c ∈ Ct, Assumption AP.C1 implies that ω ∈ Dt,f̃ = Dt,f . We conclude
that D ⊆ Dt,f .

As c 6= ∅, according to Assumption AP.C0, we infer that D 6= ∅. Let ω ∈ D as above, whence
ω ∈ Dt,f . Then, as above,

(ω, f̃) ∈ xt(ω, f) ∩ c.

By Assumption AP.C2, all ω′ ∈ Dt,f satisfy xt(ω
′, f) ∩ c 6= ∅ and must therefore be elements of D.

Hence, Dt,f ⊆ D.

Lemma Appendix B.4. Let D be action path ψ-sef data on an exogenous scenario space (Ω,E ),
i ∈ I, and c ∈ Ci. Let t ∈ T, A<t ∈ Hi

t, D ∈ E , g : D → Ai be such that c = c(A<t, i, g). Then,

P (c) = {xt(ω, f) | (ω, f) ∈ D × AT : f |[0,t)T ∈ A<t}

= {xt(ω, f) | (ω, f) ∈ Ω × AT : ω ∈ Dt,f , f |[0,t)T ∈ A<t}.

Proof. It suffices to prove the first equality because the second one follows from it in view of
Lemma Appendix B.3.

As c ∈ Ct by assumption, we have

P (c) = {xt(w) | w ∈ c},

by [53, Lemma 4.8]. Now, let w = (ω, f) ∈ Ω ×AT. Then, by the definition of c, w ∈ c implies that
f |[0,t)T ∈ A<t and ω ∈ D. Conversely, if f |[0,t)T ∈ A<t and ω ∈ D, then there is f̃ ∈ AT such that

w̃ = (ω, f̃) ∈ c and f̃ |[0,t)T = f |[0,t)T since c ∈ Ci. Hence, xt(w) = xt(w̃) ∈ P (c).

Proof of Proposition 2.4. (Ad 1): This follows directly from the fact that for a′, a′′ ∈ A we have
a′ = a′′ iff for all i ∈ I, pi(a′) = pi(a′′).

(Ad 2): Let t ∈ T, f ∈ AT and ω ∈ D̂t,f . Then there are f ′, f ′′ ∈ AT such that (ω, f ′), (ω, f ′′) ∈
W , f ′|[0,t)T = f |[0,t)T = f ′′|[0,t)T and f ′(t) 6= f ′′(t). Hence, (ω, f ′) and (ω, f ′′) provide two distinct
elements of xt(ω, f), whence ω ∈ Dt,f .

(Ad 3): Let t ∈ T, f ∈ AT and i ∈ I. Then the assertion that Dt,f 6= ∅ and xt(f) ∈ Xi hold
true is equivalent to the one that there are ω ∈ Ω and c ∈ Ci such that xt(ω, f) ∈ P (c).

To show the implication “⇒”, suppose that there are such ω and c. Then, by Lemmata
Appendix B.4 and Appendix B.3, we can represent c using A<t ∈ Hi

t and g : Dt,f → Ai as
c = c(A<t, i, g). As c ∈ Ct by hypothesis, by Assumption AP.C1, there is f ′ ∈ AT such that
(ω, f ′) ∈ W , f ′|[0,t)T = f |[0,t)T and pi ◦ f ′(t) 6= g(ω). On the other hand, by Lemma Appendix B.4,

the fact that xt(ω, f) ∈ P (c) implies that there is f ′′ ∈ AT satisfying (ω, f ′′) ∈ W , f ′′|[0,t)T = f |[0,t)T

and pi ◦ f ′′(t) = g(ω). Hence, ω ∈ Di
t,f .

As the preceding argument can be made for any ω ∈ Dt,f it follows that under the assumption
“Dt,f 6= ∅ and xt(f) ∈ Xi”, we have Dt,f ⊆ Di

t,f . In view of Parts 1 and 2, we obtain Dt,f = Di
t,f .

To show the other implication “⇐”, suppose that there is ω ∈ Di
t,f . Hence, there is f ′ ∈ AT

with f ′|[0,t)T = f |[0,t)T and (ω, f ′) ∈ W . Hence, ω ∈ Di
t,f = Di

t,f ′ . Since ω ∈ Di
t,f ′ ⊆ Dt,f ′ ,

Assumption AP.SEF2 combined with Lemma Appendix B.4 directly yields the existence of c ∈ Ci

with xt(ω, f) = xt(ω, f
′) ∈ P (c).

Example Appendix B.5. Consider singleton Ω, T = R+ with standard order, singleton I, let
A = R and W be the set of pairs (ω, f) ∈ Ω × AT such that f(0) = 0 and f is right-constant, that
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is, for all t ∈ T, there is ε > 0 such that f |[t,t+ε) is single-valued. Then, (I,A,T,W ) clearly satisfies
the Assumptions AP.SDFk, k = 0, . . . , 3.

Further, let i ∈ I, F i
x = E = PΩ for all x ∈ X̃

i
, F i = (F i

x )
x∈X̃

i , F = (F i)i∈I , and Hi
t =

{
{f ∈

A[0,t) | Di
t,f 6= ∅}

}
, for the unique action index i ∈ I and all t ∈ T, Hi = (Hi

t)t∈T, H = (Hi)i∈I .
Then, (I,A,T,W,F ,H) clearly satisfies the Assumptions AP.SEFk, k = 0, . . . , 3.

However, we clearly have D0,f = Ω 6= ∅ = D̂0,f , for all f ∈ AT.

Proof of Theorem 2.6. Let D action path ψ-sef data on an exogenous scenario space (Ω,E ), and
let F be the induced sef candidate.

(Ad basic properties in Definition 1.7): According to [53, Theorem 2.15], (F, π,X) defines an
order consistent stochastic decision forest on (Ω,E ). Moreover, by Corollary 2.5, for all i ∈ I,

X̃
i

= Xi. Hence, F defines a family of exogenous information structures on Xi, i ∈ I, and, by [53,
Proposition 4.10], C defines a family of reference choice structures on Xi, i ∈ I. By construction,
for each i ∈ I, the elements of Ci are F i-C i-adapted choices. Moreover, by order consistency and
[53, Proposition 2.4], evaluation Xi • Ω → X is injective.

(Ad Axiom 1.7.1): Let i ∈ I and c, c′ ∈ Ci such that P (c) ∩P (c′) 6= ∅. Represent c and c′ using
t, t′ ∈ T, A<t ∈ Hi

t, A
′
<t′ ∈ Hi

t′ , D,D′ ∈ E , g : D → Ai and g′ : D′ → Ai such that

c = c(A<t, i, g), c′ = c(A′
<t′ , i, g′).

In view of Lemma Appendix B.4, there are (ω, f) ∈ D × AT and (ω′, f ′) ∈ D′ × AT such that
f |[0,t)T ∈ A<t, f

′|[0,t′)T ∈ A′
<t′ , pi ◦ f(t) = g(ω), pi ◦ f ′(t) = g′(ω′), and

xt(ω, f) = xt′(ω′, f ′).

By applying π, we obtain ω = ω′. By applying the “time” map t, we obtain t = t′. By the definition
of nodes in action path sdf, we get f |[0,t)T = f ′|[0,t)T . Hence, A<t∩A′

<t 6= ∅. By Assumption AP.H1,
A<t = A′

<t. By Lemma Appendix B.3 we get D = D′, and by Lemma Appendix B.4, we obtain
P (c) = P (c′).

We remain in the situation where P (c) = P (c′) and consider ω ∈ Ω such that c ∩ c′ ∩Wω 6= ∅.
Then, ω ∈ D and g(ω) = g′(ω), which implies c ∩Wω = c′ ∩Wω.

(Ad Axiom 1.7.2): Let x ∈ X and (ci)i∈J(x) ∈ ×i∈J(x)
Ci. Represent x using t = t(x) ∈ T

and w = (ω, f) ∈ W , as x = xt(w). For any i ∈ J(x), represent ci using Ai
<t ∈ Hi

t, D
i ∈ E , and

gi : Di → Ai, as c = c(Ai
<t, i, g

i).
For all i ∈ J(x), we have x ∈ P (ci). By Lemma Appendix B.4, this implies that, for all

i ∈ J(x), (ω, f |[0,t)T) ∈ Di × Ai
<t. Hence, for any i ∈ J(x) there is fi ∈ AT with (ω, fi) ∈ ci and

fi|[0,t)T = f |[0,t)T ∈ Ai
<t.

Then, by Assumption AP.SEF0 there is f̃ ∈ AT such that for all i ∈ J(x), pi ◦ f̃(t) = pi ◦ fi(t) =
gi(ω) and (ω, f̃) ∈ xt(ω, fi) = xt(ω, f). We conclude that

(ω, f̃) ∈ x ∩
⋂

i∈J(x)

ci.

(Ad Axiom 1.7.3): Let y, y′ ∈ F with y ∩ y′ = ∅ and π(y) = π(y′). Denote ω = π(y). There are
f, f ′ ∈ AT and t0 ∈ T such that a) (ω, f) ∈ y, (ω, f ′) ∈ y′, and f(t0) 6= f ′(t0) and b) t0 < t(y)∧t(y′).

By Assumption AP.ψ-SEF3, there are t ∈ T and i ∈ I such that pi ◦ f(t) 6= pi ◦ f ′(t), ω ∈
Di

t,f ∩ Di
t,f ′ , and t ≤ t0. There is a unique pair A<t, A

′
<t ∈ Hi

t such that f |[0,t)T ∈ A<t and

f ′|[0,t)T ∈ A′
<t. By Assumption AP.SEF2 and definition of C, there are g, g′ : Dt,f → Ai such that,
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with c = c(A<t, i, g) and c′ = c(A′
<t, i, g

′), we have (ω, f) ∈ c ∈ Ci and (ω, f ′) ∈ c′ ∈ Ci. In
particular, c ∩ c′ ∩ Wω = ∅. Moreover, ω ∈ Dt,f ∩ Dt,f ′ , and thus Lemma Appendix B.4 implies
that c (c′) is available to agent i at the random moves xt(f) (xt(f

′), respectively).
It remains to prove that c ⊇ y and c′ ⊇ y′. In view of the problem’s symmetry, it suffices to

give a proof of the first inclusion. The inclusion c ⊇ y holds true by construction if y is a singleton.
Else, there is u ∈ T such that y = xu(ω, f). By construction, t ≤ t0 < t(y) = u, whence t < u.
Hence, we can argue as follows. If w ∈ y, then there is f̃ ∈ AT with f̃ |[0,u)T = f |[0,u)T such that

w = (ω, f̃). In particular, f̃ |[0,t)T = f |[0,t)T and f̃(t) = f(t), so that w = (ω, f̃) ∈ c as well. We
conclude that c ⊇ y.

(Ad Axiom 1.7.3’): To show this property, we assume that D is sef data, so that even Assump-
tion AP.SEF3 is satisfied.

Let y, y′ ∈ F with y ∩ y′ = ∅ and π(y) = π(y′). Denote ω = π(y). There are f, f ′ ∈ AT such
that (ω, f) ∈ y and (ω, f ′) ∈ y′, and f 6= f ′. Hence, by Assumption AP.SEF3 there is t ∈ T such
that f |[0,t)T = f ′|[0,t)T and f(t) 6= f ′(t). There is i ∈ I such that pi ◦ f(t) 6= pi ◦ f ′(t). Hence,
ω ∈ Di

t,f . There is unique A<t ∈ Hi
t such that f |[0,t)T ∈ A<t. By Assumption AP.SEF2 and

definition of C, there are g, g′ : Dt,f → Ai such that, with c = c(A<t, i, g) and c′ = c(A<t, i, g
′), we

have (ω, f) ∈ c ∈ Ci and (ω, f ′) ∈ c′ ∈ Ci. In particular, c ∩ c′ ∩Wω = ∅. Moreover, ω ∈ Dt,f , and
thus Lemma Appendix B.4 implies that c and c′ are available to agent i at the random move xt(f).

It remains to prove that xt(ω, f) ∩ c ⊇ y and xt(ω, f) ∩ c′ ⊇ y′. By symmetry of the problem,
it suffices to give a proof for the first inclusion. As xt(ω, f) ∩ y 6= ∅, both nodes are contained in
some decision path alias maximal chain in (F,⊇) and are thus comparable. The same holds true
for xt(ω, f) and y′. If we had y ⊇ xt(ω, f), then y and y′ would be comparable since in (F,⊇)
principal up-sets are chains. But this would imply y ∩ y′ 6= ∅, a contradiction. Hence, xt(ω, f) ) y.
The second part of the inclusion, namely c ⊇ y, holds true by construction if y is a singleton. Else,
there is u ∈ T such that y = xu(ω, f). As xt(ω, f) ) y, the strict monotonicity of t implies that
t < u. Hence, we can argue as follows. If w ∈ y, then there is f̃ ∈ AT with f̃ |[0,u)T = f |[0,u)T such

that w = (ω, f̃). In particular, f̃ |[0,t)T = f |[0,t)T and f̃(t) = f(t), so that w = (ω, f̃) ∈ c as well. We
conclude that xt(ω, f) ∩ c ⊇ y.

(Ad Axiom 1.7.4): Let x ∈ X , i ∈ J(x) and y ∈↓ x \ {x}. Let ω = π(x). There is f ∈ AT such
that (ω, f) ∈ y. Then, there is t ∈ T such that x = xt(ω, f). As i ∈ J(x), we have xt(f) ∈ Xi and
ω ∈ Dt,f . By Proposition 2.4, we infer that ω ∈ Di

t,f . Hence, by Assumption AP.SEF2, there are

g : Dt,f → Ai and A<t ∈ Hi
t with f |[0,t)T ∈ A<t such that c = c(A<t, i, g) satisfies (ω, f) ∈ c ∈ Ci.

By Lemma Appendix B.4, x = xt(ω, f) ∈ P (c), whence c ∈ Ai(x).
Let w ∈ y. Then there is f̃ ∈ AT such that w = (ω, f̃). If y is a singleton, then f̃ = f , whence

w ∈ c. If y is not a singleton, then there is u ∈ T such that y = xu(ω, f). By strict monotonicity of
t, we have t < u. In the very same way as we did in the proof of the previous axiom, we infer that
f̃ |[0,t)T = f |[0,t)T and f̃(t) = f(t), whence (ω, f̃) ∈ c. To conclude, we have shown that c ⊇ y.

(Ad Axiom 1.7.5): Let i ∈ I and x, x′ ∈ X such that Ai(x)∩Ai(x′) 6= ∅. Hence, there are ω ∈ Dx,
ω′ ∈ Dx′ and c ∈ Ci such that x(ω), x′(ω) ∈ P (c). There are A<t ∈ Hi

t, D ∈ E , g : D → Ai such
that c = c(A<t, i, g). By Lemma Appendix B.4, there are f, f ′ ∈ AT with f |[0,t)T , f

′|[0,t)T ∈ A<t

such that x(ω) = xt(ω, f) and x′(ω′) = xt(ω
′, f ′). As the left-hand sides are moves, Dt,f and Dt,f ′

are non-empty, and by Definition 1.3.4(a), we get x = xt(f) and x′ = xt(f
′). By Definition 2.1.2,

we obtain
F

i
x = F

i
xt(f) = F

i
xt(f ′) = F

i
x′ .

Note that this implies
(∗) Dx = Dx′ .
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It remains to show that C i
x = C i

x′ . In view of the problem’s symmetry, it suffices to show
the inclusion “⊆”. Let c1 ∈ C i

xt(f). Then there are Ã<t ∈ Hi
t and Ai

t ∈ B(Ai) such that with

At as in (C i
x .2), we have c1 = c(Ã<t, At), c1 ∈ Ct, and for all ω̃ ∈ Dx, x(ω̃) ∩ c1 6= ∅. Hence,

f |[0,t)T ∈ Ã<t ∩A<t, and thus Ã<t = A<t by Definition 2.1.1.
In view of (∗), it remains to show Property (C i

x .4) for x′, that is, for all ω̃ ∈ Dx′ , we have
x′(ω̃) ∩ c1 6= ∅. Let ω̃ ∈ Dx′ . Then ω̃ ∈ Dx. Hence, there is f̃ ∈ AT such that (ω̃, f̃) ∈ x(ω̃) ∩ c1.
By Assumption AP.C1, there f̃1 ∈ AT such that (ω̃, f̃1) ∈ x(ω̃) \ c1. Hence, ω̃ ∈ Di

t,f̃
, and thus,

by Assumption AP.SEF2, there is c2 ∈ Ci such that a) (ω̃, f̃) ∈ c2, and b) there is f̃ ′ ∈ AT

satisfying (ω̃, f̃ ′) ∈ c2 and f̃ ′|[0,t)T = f ′|[0,t)T . As a consequence, (ω̃, f̃ ′) ∈ x′(ω̃), f̃ ′|[0,t)T ∈ A<t,

and pi ◦ f̃ ′(t) = pi ◦ f̃(t), whence (ω̃, f̃ ′) ∈ c1. We have thus shown the existence of an element of
x′(ω̃) ∩ c1.

(Ad Axiom 1.7.6): Let i ∈ I and c′ an F i-C i-adapted choice satisfying Properties 6(i) and 6(ii)
in Definition 1.7.

By the latter one, there is c ∈ Ci with P (c) = P (c′). There is t ∈ T, A<t ∈ Hi
t, D ∈ E , and

g : D → Ai such that c = c(A<t, i, g).
Note that the non-redundancy of both c and c′ and [53, Lemma 4.1] imply that

(⋆)
D = {ω ∈ Ω | c ∩Wω 6= ∅} = {ω ∈ Ω | P (c) ∩ Tω 6= ∅}

= {ω ∈ Ω | P (c′) ∩ Tω 6= ∅} = {ω ∈ Ω | c′ ∩Wω 6= ∅}.

Let us define a function g′ : D → Ai as follows. Let ω ∈ D. Then, in view of (⋆) and Prop-
erty 6(i), there is cω ∈ Ci with c′ ∩Wω = cω ∩Wω. Such cω satisfies

P (c) ∩ Tω = P (c′) ∩ Tω = P (cω) ∩ Tω 6= ∅,

by [53, Lemma 4.1] and non-redundancy of the choices involved. We obtain, as shown shortly
afterwards, that any cω ∈ Ci with c′ ∩Wω = cω ∩Wω must admit a representation

(∗) cω = c(A<t, i, gω)

for some gω : D → Ai such that for all (ω′, f ′
<t) ∈ D × A<t there is f ′ ∈ AT with f ′|[0,t)T = f ′

<t

and (ω′, f ′) ∈ cω. As cω ∩ Wω 6= ∅, gω(ω) is independent of the choice of cω ∈ Ci such that
c′ ∩Wω = cω ∩Wω. Hence, we can and do define g′(ω) by the equation

g′(ω) = gω(ω).

To see the existence of a representation as in (∗), represent cω – which is an element of Ci by
assumption – as c(A<t;ω, i, gω) for some A<t;ω ∈ Hi

t, Dω ∈ E with ω ∈ Dω, and gω : Dω → Ai,
such that for all (ω′, f ′

<t) ∈ Dω × A<t;ω there is f ′ ∈ AT with f ′|[0,t)T = f ′
<t and (ω′, f ′) ∈ cω.

Then, there is an element x ∈ P (c) ∩ Tω = P (cω) ∩ Tω, which by Lemma Appendix B.4 applied to
both c and cω, can be represented as x = xt(ω, f) with f ∈ AT such that f |[0,t)T ∈ A<t ∩ A<t;ω.
Hence, by Definition 2.1.1, A<t = A<t;ω. Moreover, by Lemma Appendix B.3 applied to c and cω,
we get D = Dt,f = Dω. This proves the existence of the representation (∗). In particular, g′ is
well-defined.

We now claim that
(†) c′ = c(A<t, i, g

′).

It suffices to show that for all ω ∈ Ω, we have

c′ ∩Wω = c(A<t, i, g
′) ∩Wω.
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This is clear for ω ∈ D∁, by (⋆) and by definition of c(A<t, i, g). If on the other hand ω ∈ D, then
there is cω ∈ Ci with cω ∩Wω = c′ ∩Wω that can be represented as in (∗), and we have

c′ ∩Wω = cω ∩Wω = c(A<t, i, gω) ∩Wω = c(A<t, i, g
′) ∩Wω ,

by (∗) and the definition of g′. This proves (†).
It remains to show that

(a) c′ ∈ Ct, and

(b) for all (ω, f<t) ∈ D ×A<t there is f ∈ AT with (ω, f) ∈ c′ and f |[0,t)T = f<t.

Regarding (a), Assumption AP.C0 is satisfied for c′ because it is satisfied for c. Indeed, as c 6= ∅ by
assumption, there is ω ∈ Ω such that c ∩Wω 6= ∅. Hence, there is ω ∈ Ω satisfying P (c) ∩ Tω 6= ∅
by non-redundancy. Thus,

P (c′) ∩ Tω = P (c) ∩ Tω 6= ∅,

whence c′ 6= ∅.
For Assumption AP.C1, let w ∈ c′ and let ω ∈ Ω be such that w ∈ Wω. Let cω ∈ Ci such that

cω ∩Wω = c′ ∩Wω. Then, w ∈ c′ ∩Wω = cω ∩Wω . As cω ∈ Ct, there is

w′ ∈ xt(w) \ cω = (xt(w) ∩Wω) \ cω = (xt(w) ∩Wω) \ c′ ⊆ xt(w) \ c′.

For Assumption AP.C2, let f ∈ AT with f |[0,t)T ∈ A<t such that xt(ω0, f) ∩ c′ 6= ∅ for some
ω0 ∈ Dt,f . Hence, c′ ∩ Wω0

6= ∅, which implies ω0 ∈ D. Then, there is cω0
∈ Ci such that

cω0
= c(A<t, i, gω0

), for some gω0
: D → Ai as in (∗), cω0

∩Wω0
= c′ ∩Wω0

and xt(ω0, f) ∩ cω0
6= ∅.

As cω0
∈ Ci, Lemma Appendix B.3 implies that D = Dt,f , and Lemma Appendix B.4 implies that

xt(ω0, f) ∈ P (cω0
). As a consequence,

xt(ω0, f) ∈ P (cω0
) ∩ Tω0

= P (c′) ∩ Tω0
= P (c) ∩ Tω0

,

where the first equality follows from [53, Lemma 4.1] and the fact that cω0
∩Wω0

= c′ ∩Wω0
. Hence,

xt(ω0, f) ∈ X i and xt(f) ∈ Xi. By completeness of c, we get that c is available at the random move
xt(f).

Let ω ∈ Dt,f . Then, ω ∈ D. Thus, there is cω ∈ Ci as in (∗) such that cω ∩Wω = c′ ∩Wω and

xt(ω, f) ∈ P (c) ∩ Tω = P (c′) ∩ Tω = P (cω) ∩ Tω,

which we can show using the same argument as above. By Lemma [53, Lemma 4.8], we have
P (cω) = {xt(w) | w ∈ cω}. Hence, there is f̃ ∈ AT with f̃ |[0,t)T = f |[0,t)T such that (ω, f̃) ∈ cω. Fix

such an f̃ . We infer that
(ω, f̃) ∈ cω ∩Wω = c′ ∩Wω .

Hence, (ω, f̃) ∈ xt(ω, f) ∩ c′. We have thus completely proven that c′ ∈ Ct.
Regarding (b), let (ω, f<t) ∈ D×A<t. Then, by (∗), there is cω ∈ Ci such that there is f ∈ AT

with f |[0,t)T = f<t and
(ω, f) ∈ cω ∩Wω = c′ ∩Wω ⊆ c′.

We conclude that c′ ∈ Ci, and the proof is complete.

Proof of Proposition 2.7. (Ad 1): Let t ∈ T and f ∈ AT such that Dt,f 6= ∅. Let x = xt(f).
Furthermore, let c ∈ Ci, and represent it by u ∈ T, A<u ∈ Hi

u, D ∈ E , and g : D → Ai via
c = c(A<u, i, g).
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Then, c ∈ Ai(x) iff x(ω) ∈ P (c) for some and all ω ∈ Dx. By Lemmata Appendix B.3
and Appendix B.4, this is equivalent to t = u, f |[0,t)T ∈ A<u = A<t and D = Dt,f .

(Ad 2): Call the presumed map introduced in the claim ϕ.
To see that ϕ defines a map indeed, it suffices to show that for any pair (t, A<t) as in the

proposition and any f ∈ AT with f |[0,t)T ∈ A<t we have Dt,f 6= ∅. Indeed, by 2.1.1, Di
t,f 6= ∅, and

thus, by Proposition 2.4, Dt,f 6= ∅.
Regarding injectivity of ϕ, we show the following stronger statement: For any two pairs (t, A<t)

and (u,A′
<u), as in the statement, such that the respective values p = ϕ(t, A<t) and p′ = ϕ(u,A′

<u)
non-trivially intersect, it must hold true that t = u and A<t = A′

<u. Indeed, if p ∩ p′ 6= ∅, then
both A<t and A′

<u are non-empty, there are f, f ′ ∈ AT with f |[0,t)T ∈ A<t, f
′|[0,u)T ∈ A′

<u with
xt(f) = xu(f ′). Applying the “time” map t to both sides yields t = u, whence A<t ∩ A′

<u 6= ∅.
Thus, by Definition 2.1.1, A<t = A′

<u.
Regarding the claim about the image, we recall that according to the preceding step, the values

of ϕ are pairwise disjoint. As elements of Hi
t are non-empty for all t ∈ T, the values of ϕ are

non-empty. Moreover, using Proposition 2.4.3 and Definition 2.1.1, we infer that the image imϕ of
ϕ defines a partition of Xi.

It remains to show that this partition equals Pi. For showing this, let x, x′ ∈ Xi. x and x′ belong
to the same element of imϕ iff there are t ∈ T, A<t ∈ Hi

t, f, f
′ ∈ AT such that f |[0,t)T , f

′|[0,t)T ∈ A<t,
x = xt(f) and x′ = xt(f

′). Note that this implies that Di
t,f , D

i
t,f ′ 6= ∅. By definition of the latter

events, for all ω ∈ Di
t,f and ω′ ∈ Di

t,f , f, f ′ can even be chosen such that (ω, f), (ω′, f ′) ∈ W .

Hence, in view of Assumption AP.SEF2 and the definition of Ci, this is equivalent to the
existence of c ∈ Ci that can be represented as c = c(A<t, i, g) by A<t ∈ Hi

t and g : D → Ai, for
some t ∈ T and D ∈ E , such that there are f, f ′ ∈ AT satisfying f |[0,t)T , f

′|[0,t)T ∈ A<t, x = xt(f),
x′ = xt(f

′), as well as Dt,f = D = Dt,f ′ . The latter is implied by Lemma Appendix B.3.
By Part 1, this statement is equivalent to Ai(x) ∩ Ai(x′) 6= ∅. By Proposition 1.8.2, this is

equivalent to Ai(x) = Ai(x′) which, by definition, is equivalent to x, x′ ∈ p for some p ∈ Pi. We
conclude that Pi = imϕ.

Proof of Theorem 2.8. Let the data be given as in the proposition’s statement, that is, let (Ω,E )
be an exogenous scenario space, D be action path ψ-sef data on it, F be the induced action path
ψ-sef, i ∈ I, t ∈ T, A<t ∈ Hi

t, D ∈ E and g : D → Ai be a map such that c = c(A<t, i, g) ∈ Ct.
Then Parts 1, 2, and 3.(⇐) follow directly from parts 1, 2, and 3 in [53, Theorem 4.13]. It thus

remains to prove Part 3.(⇒). To prove this, it suffices to show that [53, Assumption AP.C3] is
satisfied for (A<t, i, g) and C i, in view of part 4 in [53, Theorem 4.13].

To show this, let x ∈ Xi be such that c is available at x. There is (t, f) ∈ T×AT with x = xt(f)
and Dt,f 6= ∅. As x ∈ Xi, we have, by Proposition 2.4, Di

t,f 6= ∅.

Thus, by Assumption AP.SEF1 there is a generator G (Ai) of B(Ai), stable under non-trivial

intersections, such that for all G ∈ G (Ai), we have c(A<t, A
i,G
t ) ∈ C i

x (with the notation from that
assumption). This proves that [53, Assumption AP.C3] is satisfied, thus completing the proof.

Proof of Theorem 2.9. Let (Ω,E ) be an exogenous scenario space, D be action path ψ-sef data on
it, F be the induced action path ψ-sef, and i ∈ I.

(Ad 1.⇒): Suppose that i admits perfect endogenous recall, and let t, u ∈ T with t < u,
A<t ∈ Hi

t and A<u ∈ Hi
u. Note first that A<u 6= ∅, by definition (2.1.1). Hence, (Ppu,t)(A<u) 6= ∅.

Thus, we cannot have (Ppu,t)(A<u) ∩ A<t = ∅ and (Ppu,t)(A<u) ⊆ A<t at the same time. It
therefore remains to show the following assertion:

(∗)

[

(Ppu,t)(A<u)∩A<t 6= ∅ =⇒
[

(Ppu,t)(A<u) ⊆ A<t, ∀f, f ′ ∈ A<u : pi◦f(t) = pi◦f ′(t)
]
]

.
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Let us therefore consider A<u ∈ Hi
u and A<t ∈ Hi

t such that (Ppu,t)(A<u) ∩A<t 6= ∅.
From this, we infer that there is f ∈ AT such that f |[0,u)T ∈ A<u and f |[0,t)T ∈ A<t. As a

consequence, by Definition 2.1.1, both Di
t,f 6= ∅ and Di

f,u 6= ∅. By Proposition 2.4.3, we obtain

Di
t,f = Dt,f and Di

f,u = Df,u. In particular, we obtain

Di
f,u = Df,u ⊆ Dt,f = Di

t,f .

Let ω ∈ Di
f,u. Upon modifying f at time u and later times, we can assume that (ω, f) ∈ W .

By Assumption AP.SEF2 and the definition of C, there are gω
t : Dt,f → Ai and gω

u : Df,u → Ai

such that pi ◦ f(t) = gω
t (ω), pi ◦ f(u) = gω

u (ω), and, with cω
t = c(A<t, i, g

ω
t ) and cω

u = c(A<u, i, g
ω
u ),

cω
t , c

ω
u ∈ Ci. In particular, (ω, f) ∈ cω

t ∩ cω
u ∩Wω. Hence, as i admits perfect endogenous recall, we

have cω
t ∩Wω ⊇ cω

u ∩Wω or cω
t ∩Wω ⊆ cω

u ∩Wω . As ω ∈ Di
f,u and (ω, f) ∈ W , there is f ′ ∈ AT with

(ω, f ′) ∈ xu(ω, f) such that pi ◦ f ′(u) 6= pi ◦ f(u) = gω
u (ω). Hence, (ω, f ′) ∈ (cω

t ∩Wω) \ (cω
u ∩Wω).

We conclude that all ω ∈ Di
f,u satisfy

(†) cω
t ∩Wω ⊇ cω

u ∩Wω.

We now show that (Ppu,t)(A<u) ⊆ A<t. For this, let f<u ∈ A<u. There is an ω ∈ Df,u, and
thus, as cω

u ∈ Ci, there is f ′ ∈ AT with (ω, f ′) ∈ cω
u and f ′|[0,u)T = f<u. Then, by (†), (ω, f ′) ∈ cω

t .
In particular, pu,t(f<u) = f ′|[0,t)T ∈ A<t. This shows the claimed inclusion.

Next, let f<u, f
′
<u ∈ A<u. Again, there is ω ∈ Df,u, and as cω

u ∈ Ci, there are f, f ′ ∈ AT with
(ω, f), (ω, f ′) ∈ cω

u , f |[0,u)T = f<u, and f ′
[0,u)T

= f ′
<u. By (†), we have

pi ◦ f<u(t) = pi ◦ f(t) = gω
t (ω) = pi ◦ f ′(t) = pi ◦ f ′

<u(t).

(Ad 1.⇐): Suppose the right-hand condition on Hi to be satisfied. Let c, c′ ∈ Ci and ω ∈ Ω
such that c ∩ c′ ∩ Wω 6= ∅. We have to show that c ∩ Wω and c′ ∩ Wω can be compared by set
inclusion.

Represent c, c′ ∈ Ci using t, u ∈ T, A<t ∈ Hi
t, A

′
<u ∈ Hu

t , Dt, Du ∈ E , and gt : Dt → Ai,
gu : Du → Ai such that c = c(A<t, i, gt) and c′ = c(A′

<u, i, gu). By hypothesis, there is f ∈ AT with
(ω, f) ∈ c ∩ c′.

Without loss of generality, we can assume that t ≤ u. First, consider the case “t = u”. Then,
f |[0,t)T ∈ A<t ∩ A′

<u. Hence, by Definition 2.1.1, A<t = A′
<u. Moreover, gt(ω) = pi ◦ f(t) =

pi ◦ f(u) = gu(ω). Hence, c ∩Wω = c′ ∩Wω .
In the other case “t < u”, f |[0,t)T ∈ (Ppu,t)(A

′
<u) ∩ A<t. Thus, by hypothesis, (Ppu,t)(A

′
<u) ⊆

A<t. We claim that c ∩Wω ⊇ c′ ∩Wω . To show this, let w′ ∈ c′ ∩Wω. Represent w′ = (ω, f ′) for
some f ′ ∈ AT. In particular, f ′|[0,u)T ∈ A′

<u. We infer that f ′|[0,t)T = pu,t(f
′|[0,u)T) ∈ A<t, and,

since f |[0,u)T ∈ A′
<u, pi ◦ f ′(t) = pi ◦ f(t) = gt(ω). Hence, since w′ ∈ W , we get w′ ∈ c ∩Wω.

(Ad 2): By definition, i has perfect endogenous information iff a) all p ∈ Pi are singletons and
b) for all j ∈ I \{i} we have Xi∩Xj = ∅. By Proposition 2.7.2, a) is equivalent to the statement that
for all t ∈ T, all A ∈ Hi

t are singletons. By Proposition 2.7.1, and in view of Assumption AP.SEF2,
b) is equivalent to the statement that for all t ∈ T, all j ∈ I \ {i}, all A ∈ Hi

t and all A′ ∈ Hj
t , we

have A ∩A′ = ∅.

Appendix B.3. Section 3

Proof of Lemma 3.2. Let (F,≥) be a decision forest and h ∈ H be a history. Let W (h) the set of
all maximal chains w with h ⊆ w, which is non-empty by the Hausdorff maximality principle.

(Ad 1): Let h0 =
⋂
W (h), i.e. the intersection of all maximal chains w with h ⊆ w. As h ⊆ h0,

h0 6= ∅. As an intersection of chains, h0 is a chain. Concerning upward-closure, let x ∈ h0 and let
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w ∈ W (h). Then x ∈ w. As (F,≥) is a forest, ↑ x is a chain. As w is a chain containing x, ↑ x∪w
is a chain as well. As w is a maximal chain, ↑ x ⊆ w. Hence, ↑ x ⊆ h0.

Furthermore, by construction, h0 clearly satisfies Property a). Regarding Property b), let h1

be a history satisfying a), that is, h1 ⊆ w for all maximal chains w with h ⊆ w. Then, h1 ⊆ h0 by
definition of h0.

Regarding uniqueness, let h an upward closed chain satisfying a) and b). Then, h0 ⊆ h by b)
applied to h and a) applied to h0; and h ⊆ h0 by b) applied to h0 and a) applied to h. Hence,
h0 = h.

(Ad 2): For every w ∈ W (h), there is x ∈ w with h ⊆↑ x, because h is non-maximal and
upward closed. As ↑ x ⊆ w, we infer

⋂

{↑ x | x ∈ F : h ⊆↑ x} ⊆
⋂

W (h).

On the other hand, for every x ∈ F with h ⊆↑ x there is a maximal chain w with ↑ x ⊆ w, because
(F,≥) is a forest and by the Hausdorff maximality principle. In particular, w ∈ W (h). Moreover,
for any y ∈ w\ ↑ x, we have W (x) 6= W (y), because (F,≥) is a decision forest. As x ≥ y and
h ⊆↑ x, we then have W (y) ( W (x) ⊆ W (h). Hence, for such y, there is w′ ∈ W (h) with y /∈ w′.
Thus

⋂
W (h) = w ∩

⋂
W (h) ⊆↑ x. We conclude that

⋂

W (h) ⊆
⋂

{↑ x | x ∈ F : h ⊆↑ x}.

From Part 1, it follows directly that h =
⋂
W (h) which then implies the claim.

(Ad 3): Note that the right-hand condition is equivalent to W (h) = W (h′). If this is true, then,
in view of Part 1 just proven, h =

⋂
W (h) =

⋂
W (h′) = h′. Conversely, if h = h′, and w ∈ W (h),

then h′ ⊆ h′ = h ⊆ w, hence w ∈ W (h′). Thus, W (h) ⊆ W (h′). Repeating the argument with h
and h′ swapped, yields W (h) = W (h′).

(Ad 4): Let Bh the set of lower bounds of h, i.e.

Bh = {y ∈ F | ∀x ∈ h : x ≥ y}.

The statement is equivalent to saying that h = h if Bh has no maximum, and h = h ∪ {maxBh}
otherwise. It is this latter statement that is proven in the following.

First, suppose that Bh has no maximum. It suffices to show that F \ h ⊆ F \ h, because h ⊆ h
by construction. Let x ∈ F \h. If x /∈ Bh, then x /∈ h, because h is a chain containing h. It remains
to consider the case where x ∈ Bh \ h. By hypothesis, there is x′ ∈ Bh with x � x′. By Part 2,
x /∈ h.

Second, suppose that Bh has a maximum. Let x ∈ F such that h ⊆↑ x. Then, x ∈ Bh,
whence maxBh ∈↑ x. Hence, by Part 2, maxBh ∈ h. As h ⊆ h by construction, we obtain
h ⊇ h ∪ {maxBh}. Conversely, if x ∈ h \ h, then x ∈ w \ h for any w ∈ W (h). As W (h) 6= ∅ and h
is an upward closed chain, x ∈ Bh. Furthermore, for any y ∈ Bh, h ⊆↑ y, by definition. Thus, by
Part 2 just proven, x ∈↑ y, i.e. x ≥ y. Thus, x = maxBh. We conclude that h = h∪ {maxBh}.

Proof of Lemma 3.5. (Ad range): Let x ∈ X . Then ↑ x is a non-empty, upward closed chain, and
it is non-maximal because x is not terminal. Clearly, x = inf ↑ x and x ∈↑ x, so that ↑ x is closed by
3.2. Further, let x ∈ X and (F, π,X) be order consistent. If there is x′ ∈ X admitting ω ∈ Dx ∩Dx′

with x′(ω) ⊇ x(ω), then by order consistency, Dx′ ⊇ Dx and x′(ω′) ⊇ x(ω′) for all ω′ ∈ Dx.

(Ad injectivity): First, let x, x′ ∈ X be such that ↑ x =↑ x′. Then, x ⊇ x′ ⊇ x, whence x = x′.
Second, let x, x′ ∈ X be such that Dx = Dx′ and ↑ x(ω) =↑ x′(ω) for all ω ∈ Dx. Then, by the first
part of the proof, x(ω) = x′(ω) for all ω ∈ Dx, whence x = x′.
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Lemma Appendix B.6. Let (F, π,X) be an order consistent, surely non-trivial, and maximal
stochastic decision forest on an exogenous scenario space (Ω,E ). Let h be a random history with
domain Dh, ω ∈ Dh, and f(h) = {x ∈ X | ∃ω′ ∈ Dx ∩Dh : x(ω′) ∈ h(ω′)}. Then, we have:

h(ω) = {x(ω) | x ∈ f(h)}.

Proof. Given the data (F, π,X), h, ω, f from the lemma, let x ∈ X. Then x ∈ f(h) iff there is
ω′ ∈ Dx ∩Dh such that x(ω′) ∈ h(ω′). As h is a random history, this latter statement is equivalent
to saying that Dx ⊇ Dh and for all ω′ ∈ Dh we have x′(ω′) ∈ h(ω′). By the same argument, though,
this latter statement is equivalent to saying that Dh ⊆ Dx and x(ω) ∈ h(ω).

Proof of Proposition 3.6. (Ad 1): Let h ∈ H. Recall that, by definition, f(h) = {x ∈ X | ∃ω ∈
Dx ∩Dh : x(ω) ∈ h(ω)}.

There is ω ∈ Dh and h(ω) is non-empty. There is, thus, x ∈ X with ω ∈ Dx and x(ω) ∈ h(ω)
because X covers X . Hence, x ∈ f(h). We therefore see that f(h) is non-empty.

Let x, x′ ∈ f(h). Then, Dx ∩ Dx′ ⊇ Dh which is non-empty. Hence, there is ω ∈ Dh with
x(ω), x′(ω) ∈ h(ω). As h(ω) is a chain, x(ω) and x′(ω) are related via ⊇. Up to changing the roles
of x and x′, we obtain x(ω) ⊇ x′(ω), and thus, by order consistency, x ≥X x′. Thus, f(h) is a chain.

Let x ∈ f(h) and x′ ∈ X such that x′ ≥X x. Then, Dx′ ⊇ Dx ⊇ Dh, and for all ω ∈ Dh we have
x′(ω) ⊇ x(ω). As h(ω) is upward closed, x′(ω) ∈ h(ω) for all ω ∈ Dh. Hence, x′ ∈ f(h), and f(h) is
upward closed.

Regarding non-maximality, we first note that for any ω ∈ Dh, there is y ∈ F \ h(ω) with x ) y
for all x ∈ h(ω), by non-maximality of h(ω). In that case we infer that, for all x ∈ f(h), ω ∈ Dx

and x(ω) ∈ h(ω), whence x(ω) ) y.
If a) there is ω ∈ Dh and y ∈ X \ h(ω) with x ) y for all x ∈ h(ω), then there is x′ ∈ X with

y = x′(ω), whence x >X x′. Then, we conclude that f(h) is a non-maximal chain in (X,≥X) and
that f(h) ∈ HT.

If, however, b) there is no such pair (ω, y), then f(h) is a maximal chain in (X,≥X) and for any
ω ∈ Dh, there is a terminal node y ∈ F \ h(ω) with x ) y for all x ∈ h(ω). We infer that there is
a random terminal node y : {ω} → {y}, and x >T y = {(ω, y)}. Hence, Dh ⊆

⋂

x∈hT
Dx and for any

ω ∈ Dh, there is wω ∈ Wω with y(ω) = {wω} whence wω ∈
⋂

x∈hT
x(ω). Moreover, Dh 6= ∅, which

implies that f(h) is not a maximal chain in (T,≥T). Dh ∈ E by hypothesis. We have shown that
f(h) is contained in the set described in the claim by the disjunction of conditions a) and b).

For the converse statement, let hT be an element of the set described in the claim by the
disjunction of conditions a) and b). First, suppose a) that hT ∈ HT is a non-maximal chain in
(X,≥X). Then, there is x1 ∈ X with x >X x1 for all x ∈ hT. Let D = Dx1

. Second, suppose b) that
hT is a maximal chain in (X,≥X) admitting non-empty D ∈ E \ {∅} with D ⊆

⋂

x∈hT
Dx such that

for any ω ∈ D there is w ∈ Wω with w ∈
⋂

x∈hT
x(ω).

In both cases, we have a non-empty event D and we define a map h with domain D by letting

(∗) h(ω) = {x(ω) | x ∈ hT},

for all ω ∈ D. We claim that h ∈ H and that f(h) = hT.
Regarding the first of these claims, the domain D is by construction a non-empty event. More-

over, for any ω ∈ D, h(ω) ∈ H . Indeed, let ω ∈ D. Then, as hT is a non-empty chain, h(ω) is
so, too, by definition of ≥T. Moreover, let x ∈ h(ω) and x′ ∈↑ x. Then, there is x ∈ hT with
x = x(ω), and x′ ∈ X . Accordingly, there is x′ ∈ X with x′ = x′(ω). Thus, by order consistency,
x′ ≥X x. As hT is upward closed, x′ ∈ hT, whence x′ = x′(ω) ∈ h(ω). Hence, h(ω) is upward
closed. Furthermore, h(ω) is not maximal as a chain. To show this, we distinguish the two cases
from before. In case a), x >T x1 by construction, in particular, x(ω) ) x1(ω) for all x ∈ hT. In case
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b), x(ω) ) wω for all x ∈ hT. Hence, h(ω) is not maximal as a chain in (F,⊇). This shows that
for any ω ∈ D, h(ω) ∈ H . Further, let x ∈ X admit ω ∈ Dx ∩D with x(ω) ∈ h(ω). Then, by order
consistency and [53, Proposition 2.4], x ∈ hT. Hence, Dx ⊇ D and x(ω′) ∈ h(ω′) for all ω′ ∈ D. It
is thus proven that h ∈ H.

Regarding the second of the two claims above, namely that f(h) = hT, let x ∈ X. By definition
of f , x ∈ f(h) holds true iff there is ω ∈ Dx ∩ Dh with x(ω) ∈ h(ω). By definition of h, the latter
is equivalent to saying that there is ω ∈ Dx ∩ D with x(ω) = x′(ω) for some x′ ∈ hT. By order
consistency and [53, Proposition 2.4], and by definition of D, this is equivalent to x ∈ hT. Thus,
f(h) = hT.

(Ad 2): Let h1,h2 ∈ H such that f(h1) = f(h2). Let ω ∈ Dh1
∩Dh2

.
Then, by Lemma Appendix B.6,

h1(ω) = {x(ω) | x ∈ f(h1)} = {x(ω) | x ∈ f(h2)} = h2(ω).

Hence, there is a map h on D = Dh1
∪Dh2

satisfying h|Dhk
= hk for both k = 1, 2. By construction,

D is a non-empty event and h(ω) is a history in (F,⊇) for any ω ∈ D. Moreover, we clearly
have f(h1) = f(h) = f(h2). Thus, if there are x ∈ X and ω ∈ Dx ∩ Dh with x(ω) ∈ h(ω),
then x ∈ f(h) = f(h1) = f(h2), and thus, Dx ⊇ Dh1

∪ Dh2
= Dh and for all ω′ ∈ Dh we have

x(ω′) ∈ h(ω′), since h1,h2 ∈ H.

(Ad 3): Let h ∈ H be a closed random history. We have to show that f(h) = f(h). In view of
Lemma 3.2 it remains to show that, if f(h) admits an infimum in (T,≥T), then inf f(h) ∈ f(h). Sup-
pose that f(h) has an infimum. There is ω ∈ Dh. From order consistency and Lemma Appendix B.6,
it follows directly that (inf f(h))(ω) is an (and the) infimum of h(ω) in (F,⊇). As h(ω) is a
closed history by hypothesis, we get (inf f(h))(ω) ∈ h(ω). Thus inf f(h) ∈ X, Dh ⊆ Dinf f(h), and
inf f(h) ∈ f(h).

Proof of Lemma 3.8. Let F be a stochastic pseudo-extensive form on an exogenous scenario space
(Ω,E ), s ∈ S, h ∈ H and w ∈ W . It suffices to show that for all x ∈ X , we have

x ⊆
⋂

h ⇐⇒ x ⊆
⋂

h.

This is trivial if h = h. Therefore, suppose that the latter is not the case. By Lemma 3.2, h has
an infimum and h = h ∪ {inf h}. As h ⊆ h, the implication “⇐” is evident. For the converse one,
suppose that x ⊆

⋂
h. In other words, x ⊆ y for all y ∈ h. By definition of the infimum, we infer

x ⊆ inf h =
⋂
h.

Lemma Appendix B.7. Let F be a stochastic pseudo-extensive form, i ∈ I, and si
0 : X i

0 → Ci be
a map on some set of i’s moves X i

0 ⊆ X i. Then si
0 is the restriction of an X-strategy iff

1. for all x ∈ X i
0, we have si(x) ∈ Ai(x);

2. for all x, x′ ∈ X i
0 with Ai(x) = Ai(x′), we have si(x) = si(x′).

Proof. Si is non-empty because Ai(p) 6= ∅ for all p ∈ Pi, by definition. Hence, in view of Propo-
sition 1.14 we can choose an X-strategy si

1. Then, define si as follows. Let x ∈ X i. If there is
x0 ∈ X i

0 with Ai(x) = Ai(x0), let si(x) = si
0(x0). Else, let si(x) = si

1(x). By Property 2, si is
well-defined.

By Property 1 and the fact that si
1 is an X-strategy, we clearly have si(x) ∈ Ai(x) for all x ∈ X i.

Moreover, if x, x′ ∈ X i satisfy Ai(x) = Ai(x′), there are two cases. First, if there is x0 ∈ X i
0 with

Ai(x) = Ai(x0), then we also have Ai(x′) = Ai(x0), hence si(x) = si
0(x0) = si(x′). Else, there is

no such x0. Then, neither is there x0 ∈ X i
0 with Ai(x′) = Ai(x0). Hence, si(x) = si

1(x) = si
1(x′) =

si(x′), because si
1 is an X-strategy.
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Proof of Theorem 3.9. Let h ∈ H and w ∈
⋂
h. Let i ∈ I and X i

0 = {x ∈ X i | w ∈ x ⊆
⋂
h}.

As F is a decision forest, ↑ {w} = {y ∈ F | w ∈ y} is a maximal chain. Let x ∈ X i
0. Then,

x ∈ X and, thus, ↑ x is not a maximal chain. As a consequence, there is y ∈↓ x \ {x} with w ∈ y,
and by Axiom 1.7.4, there is c ∈ Ai(x) with c ⊇ y. Let si

0(x) = c.
This defines a map si

0 : X i
0 → Ci with si

0(x) ∈ Ai(x) for all x ∈ X i
0. By the Heraclitus

property from Lemma 1.11, x, x′ ∈ X i
0 with x 6= x′ necessarily satisfy Ai(x) ∩ Ai(x′) = ∅. Hence,

by Lemma Appendix B.7, si
0 can be extended to an X-strategy si, which uniquely corresponds

to a strategy by Proposition 1.14. Letting s = (si)i∈I , we have s ∈ S and, by construction,
w ∈ R(s, w | h).

Proof of Proposition 3.10. Let F be a stochastic pseudo-extensive form on an exogenous scenario
space (Ω,E ), and let ω ∈ Ω. Let Cω be defined as in the claim. Let Ωω = {ω} and Eω = PΩω.

(Ad “Tω induces a stochastic decision forest”): Tω is a connected component of the decision
forest F . Hence, by [53, Theorem 1.7], it is a decision tree over Wω . With πω = π|Tω

and Xω being
the set of maps Ωω → X , (Tω, πω ,Xω) is a stochastic decision forest on (Ωω ,Eω).

(Ad “Cω is a family of sets of Xi
ω-complete choices and evaluation maps are injective”): Let

c ∈ Ci such that c ∩ Wω 6= ∅. There is a non-empty set Fc ⊆ F of nodes such that c =
⋃
Fc. As

c ∩ Wω =
⋃

(Fc ∩ Tω), Fc ∩ Tω is non-empty. Moreover, Fc ∩ Tω is a set of nodes in Tω. Hence,
c ∩Wω is a choice in (Tω, πω ,Xω).

Let Xω, Pω(.), Ai
ω(.), Jω(.), Xi

ω, etc. be associated to (Tω, πω,Xω) and Cω as X , P (.), Ai(.),
J(.), Xi etc. are associated to (F, π,X) and C. We infer that for any c ⊆ W we have

Pω(c ∩Wω) = P (c ∩Wω) = P (c) ∩ Tω, (B.1)

using the definition of P and Pω , as well as [53, Lemma 4.1]. Furthermore, note that for all x ∈ Xω

and x ∈ Xω we have

Ai
ω(x) = {c ∩Wω | c ∈ Ai(x)}, Ai

ω(x) = Ai
ω(x(ω)). (B.2)

As a consequence, we have

X i
ω = X i ∩ Tω, Xi

ω = (X i ∩ Tω)Ωω . (B.3)

Moreover, X
i
ω • Ωω = X

i
ω × Ωω, and the evaluation map from that set to Xω is clearly injective.

For any i ∈ I and x ∈ Xi
ω, let (Fω)i

x = Eω and (Cω)i
x = ∅. Let Fω = ((Fω)i)i∈I and

Cω = ((Cω)i)i∈I . Let
Fω = (Tω, πω,Xω, I,Fω,Cω, Cω).

(Ad “Fω and Cω define adequate eis and reference choice structures” and Axioms 5, 6): For
any i ∈ I, (Fω)i defines an exogenous information structure on Xi

ω and (Cω)i defines a reference
choice structure on Xi

ω. Trivially, any c ∈ Ci
ω is (Fω)i-(Cω)i-adapted. Axioms 5 and 6 are trivially

satisfied.

(Ad Axiom 1): Let i ∈ I and cω, c
′
ω ∈ Ci

ω such that Pω(cω) ∩ Pω(c′
ω) 6= ∅. There are c, c′ ∈ Ci

with cω = c ∩Wω and c′
ω = c′ ∩Wω. Hence, using Equation B.1, we infer P (c) ∩ P (c′) 6= ∅. Thus,

by Axiom 1 applied to F, we get P (c) = P (c′). Using Equation B.1, we obtain

Pω(cω) = P (c) ∩ Tω = P (c′) ∩ Tω = Pω(c′
ω).

Furthermore, Axiom 1 applied to c, c′, and ω implies that cω = c′
ω or cω ∩ c′

ω = ∅. Hence, Fω

satisfies Axiom 1.
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(Ad Axiom 2): Let x ∈ Tω and (ci
ω)i∈Jω(x) ∈ ×i∈Jω(x)

Ci
ω. Using Equation B.2, we get

Jω(x) = J(x). Hence, there is (ci)i∈J(x) ∈ ×i∈J(x)
Ci such that ci

ω = ci ∩ Wω for all i ∈ J(x).

Then, Axiom 2 applied to x and (ci)i yields:

x ∩
⋂

i∈Jω(x)

ci
ω = x ∩

⋂

i∈J(x)

ci 6= ∅.

(Ad Axiom 3): Let y, y′ ∈ Tω disjoint. By Axiom 3 applied to F, there are i ∈ I and c, c′ ∈ Ci

such that y ⊆ c, y′ ⊆ c′, and c∩ c′ ∩Wω = ∅. Then, cω = c∩Wω 6= ∅ and c′
ω = c′ ∩Wω 6= ∅, hence,

cω, c
′
ω ∈ Ci

ω , and y ⊆ cω, y′ ⊆ c′
ω, and cω ∩ c′

ω = ∅.

(Ad Axiom 3’): For this Axiom, suppose that F is even a stochastic extensive form. Let
y, y′ ∈ Tω disjoint. By Axiom 3’ applied to F, there are x ∈ X , i ∈ I and c, c′ ∈ Ci such that
y ⊆ x ∩ c, y′ ⊆ x ∩ c′, c ∩ c′ ∩ Wω = ∅, and x ∈ P (c) ∩ P (c′) ∩ Wω . Then, cω = c ∩ Wω 6= ∅ and
c′

ω = c′∩Wω 6= ∅, hence, cω, c
′
ω ∈ Ci

ω, and y ⊆ x∩cω , y′ ⊆ x∩c′
ω, cω ∩c′

ω = ∅, and x ∈ Pω(c)∩Pω(c′),
in view of Equation B.1.

(Ad Axiom 4): Let x ∈ Tω, i ∈ Jω(x), and y ∈↓ x \ {x}. Using Equation B.2, we get
Jω(x) = J(x). Hence, by Axiom 4 applied to F, there is c ∈ Ai(x) with c ⊇ y. Hence, by
Equation B.2, cω = c ∩Wω ∈ Ai

ω(x) and cω ⊇ y.

Proof of Theorem 3.11. The claimed equivalences follow directly from the following statements:

1. H =
⋃

ω∈ΩHω, where Hω is the set of histories in (Tω,⊇);

2. for all ω ∈ Ω and h ∈ Hω , we have
⋂
h ⊆ Wω ;

3. if si ∈ Si is an X-strategy for agent i ∈ I and ω ∈ Ω, then the map si
ω with domain X i ∩ Tω

defined by the assignment x 7→ si(x) ∩Wω defines an X-strategy in (Tω, I, Cω);

4. if conversely si
ω is an X-strategy for an agent i ∈ I in (Tω, I, Cω), for some ω ∈ Ω, then there

is an X-strategy si for i in F such that si
ω(x) = si(x) ∩Wω for all x ∈ X i ∩ Tω;

5. for all s ∈ S, ω ∈ Ω, h ∈ Hω and w ∈
⋂
h we have

R(w, s | h) ∩Wω = Rω(w, sω | h),

where sω = (si
ω)i∈I , si

ω is the restriction of si according to 3 for each i ∈ I, and Rω is the
map R(Fω) associated to the ψ-sef Fω according to Definition 3.7.

(Ad 1): For ω ∈ Ω, let Hω be the set of histories in (Tω,⊇). Then, similarly, H is the disjoint
union of all Hω, because histories are chains, and the connected components of (F,⊇) are given by
the collection of all Tω, ω ∈ Ω.

(Ad 2): For all ω ∈ Ω, Wω is the root of (Tω,⊇), whence the claim using Part 1.

(Ad 3): Let si ∈ Si is an X-strategy for agent i ∈ I and ω ∈ Ω. By Equation B.3 established in
the proof of Proposition 3.10 we have X i

ω = X i ∩ Tω. Moreover, if x ∈ X i ∩ Tω, then si(x) ∈ Ai(x)
by definition of si. Hence, by Equation B.2 established in the proof of Proposition 3.10, we get
si(x) ∩Wω ∈ Ai

ω(x).
Furthermore, for all x, x′ ∈ X i

ω with Ai
ω(x) = Ai

ω(x′) we have Ai(x) = Ai(x′). Indeed, if
x, x′ ∈ X i

ω satisfy Ai
ω(x) = Ai

ω(x′), then there is c ∈ Ci with x, x′ ∈ Pω(c∩Wω) = P (c∩Tω) ⊆ P (c),
by Proposition 1.8 and Equation B.1. Thus, by Proposition 1.8, Ai(x) = Ai(x′). As si is an X-
strategy, we obtain si(x) = si(x′). As a consequence, si(x) ∩Wω = si(x′) ∩Wω.
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(Ad 4): Conversely, let si
ω be an X-strategy for an agent i ∈ I in (Tω, I, Cω). Let X i

0 be a
representative system of the partition {Pω(cω) | cω ∈ Ci

ω}, see Proposition 1.8, Part 1. Then, by
definition of Ci

ω and by Equation B.2, there is a map s̃i
0 : X i

0 → Ci with s̃i
0(x) ∩ Wω = si

ω(x) and
s̃i

0(x) ∈ Ai(x), for all x ∈ X i
0. For all x, x′ ∈ X i

0 with Ai(x) = Ai(x′), we have Ai
ω(x) = Ai

ω(x′), by
Equation B.2. Thus, x, x′ ∈ Pω(cω) for some cω ∈ Ci

ω , by Proposition 1.8, Part 4, applied to Fω.
As X i

0 is a representative system, we infer x = x′, whence s̃i
0(x) = s̃i

0(x′).
Hence, by Lemma Appendix B.7 s̃i

0 can be extended to an X-strategy si for i on F. Let
x ∈ X i ∩ Tω. Then, by Equation B.3, x ∈ X i

ω and consequently there is cω ∈ Ci
ω with x ∈ Pω(cω).

There are x0 ∈ X i
0 with x0 ∈ Pω(cω) and c ∈ Ci with cω = c ∩ Wω. Hence, by Equation B.1,

x, x0 ∈ P (c) and x, x0 ∈ Pω(cω), which implies both Ai(x) = Ai(x0) and Ai
ω(x) = Ai

ω(x0), by
Proposition 1.8, Part 4. As si

ω and si are X-strategies, we infer that

si
ω(x) = si

ω(x0) = s̃i(x0) ∩Wω = si(x0) ∩Wω = si(x) ∩Wω .

(Ad 5): Let s ∈ S, ω ∈ Ω, h ∈ Hω and w ∈
⋂
h. Then,

R(w, s | h) ∩Wω =
⋂ {

si(x) ∩Wω | x ∈ X, i ∈ J(x) : w ∈ x ⊆
⋂

h
}

=
⋂ {

si
ω(x) | x ∈ Xω, i ∈ Jω(x) : w ∈ x ⊆

⋂

h
}

=Rω(w, s | h).

Indeed, x ∈ X and i ∈ J(x) satisfy w ∈ x ⊆
⋂
h iff x ∈ X i ∩ Tω and w ∈ x ⊆

⋂
h, because the

collection of Wω′ , ω′ ∈ Ω, equals the set of roots of the decision forest F , and is in particular a
partition of W ([53, Theorem 1.7]). But X i ∩ Tω = X i

ω by Equation B.3. Hence, x ∈ X i ∩ Tω is
equivalent to x ∈ Xω and i ∈ Jω(x).

Proof of Corollary 3.12. This is a direct consequence of Theorem 3.11 and [4, Theorem 2] (alias [5,
Theorem 5.2]).

Every ψ-sef with decision forest F satisfies Property 3.7.2(b) iff for every ψ-sef F with decision
forest F on an exogenous scenario space (Ω,E ), the induced classical ψ-sefs (Tω, I, Cω) do so for
all ω ∈ Ω, by Theorem 3.11. This is the case iff for all connected components T of F , all classical
ψ-sefs with decision tree T satisfy Property 3.7.2(b). Indeed, the “if” part is clear, and the “only
if” part is shown using the exogenous scenario space Ω given by the set of connected components
of (F,⊇) with E = PΩ.

By [4, Theorem 2], for all connected components T of F , all classical ψ-sefs with decision
tree T satisfy Property 3.7.2(b) (are “playable everywhere” in the language of [4]) iff all connected
components T of F are weakly up-discrete and coherent with respect to ⊇. But this is clearly
equivalent to (F,⊇) being weakly up-discrete and coherent.

Proof of Corollary 3.13. This is a direct consequence of Theorem 3.11, and [2, Theorem 6] and [2,
Corollary 5] (alias [5, Theorem 5.5 and Corollary 5.4]). For the remainder of the proof, let F be a
stochastic extensive form on an exogenous scenario space (Ω,E ).

(Ad equivalence of 1 and 2): F is well-posed iff for all ω ∈ Ω, (Tω, I, Cω) is well-posed, by
Theorem 3.11. By [2, Theorem 6], the latter is equivalent to the statement that for all ω ∈ Ω,
(Tω,⊇) is regular, weakly up-discrete, and coherent. Clearly, this is equivalent to (F,⊇) having
these three properties.

(Ad equivalence of 1 and 3): F is well-posed iff for all ω ∈ Ω, (Tω, I, Cω) is well-posed, by
Theorem 3.11. By [2, Corollary 5], the latter is equivalent to the statement that for all ω ∈ Ω,
(Tω,⊇) is regular, and up-discrete. Again, this is clearly equivalent to (F,⊇) having these two
properties.
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Lemma Appendix B.8. Let (F,≥) be a coherent and regular decision forest and h ∈ H a closed
history. Then, there is x ∈ F with h =↑ x.

Proof. Let h ∈ H be a closed history. It suffices to show that h has a minimum x since then h =↑ x,
because h is upward closed.

If h had no minimum, then by coherence there would be a continuation c with a maximum x.
Then h =↑ x \ {x}. Indeed, if y ∈ h, then y ) x because h ∪ c is a chain, h is upward closed, and
x /∈ h. Conversely, let z ∈↑ x \ {x}. For any y ∈ h, we would have y ⊇ z or z ⊇ y because ↑ x
would be a chain containing h; and for any y ∈ c we would have z ) y because x = max c. Hence
h ∪ c ∪ {z} would be a chain. By maximality of h ∪ c and z /∈ c, we would get z ∈ h.

Having established that h =↑ x \ {x}, we would infer from regularity, that h =↑ x \ {x} would
have an infimum. As h is supposed to be closed, it would contain its infimum and thus h would
have a minimum – a contradiction.

Proof of Proposition 3.14. Let F be a well-posed stochastic extensive form on an exogenous scenario
space (Ω,E ). The first claim follows directly from Corollary 3.13 and Lemma Appendix B.8. Next,
let h ∈ H be a closed random history and suppose that (F, π,X) is order consistent. By the first
part proven just above, for any ω ∈ Dh, there is xω ∈ Tω with h(ω) =↑ xω. For any ω ∈ Dh, xω ∈ X
because h(ω) is not a maximal chain, but upward closed. For every ω ∈ Dh, there is xω ∈ X with
ω ∈ Dxω

and xω = xω(ω).
Let ω, ω′ ∈ Dh. Then, as h is a random history, Dh ⊆ Dxω

∩ Dxω′
and xω(ω′) ∈ h(ω′). Thus,

xω(ω′) ⊇ xω′(ω′). By order consistency, then, xω ≥X xω′ . Repeating the argument after having
permuted ω and ω′ yields the converse inequality whence xω = xω′ .

Proof of Theorem 3.21. Let p ∈ [0, 1], s ∈ S and Pr be a suitable eu preference structure. Let
i, j ∈ {1, 2} with i 6= j and let s̃ ∈ S with s̃i = si. As above, s̃j can be identified with an exit event
Ẽj ∈ F

j
xj

.

Note that E¬i,j = {ρ = j}, Ei,j = {ρ = i}, and Es
i,j = {ρ = i} ∩ E∁

i . Hence, using the

P-independence of ρ and F i
xi

,

P(E¬i,j ∪ Es
i,j) = P(ρ = j) + P(ρ = i)(1 − P(Ei)) =

1

2
(1 + p).

Thus, for every E ∈ E , dynamic consistency of (Π, s) implies that

Pj,{xj}(E) = 2
P(({ρ = j} ∪ [{ρ = i} ∩ E∁

i ]) ∩ E)

1 + p
.

Easy computations using the P-independence of ρ, F i
xi

and F
j
xj

yield:

Pj,{xj}(ρ = j, Ẽ∁
j , Ei | F

j
xj

) =
(1 − p)1Ẽ∁

j

1 + p
,

Pj,{xj}(ρ = i, Ẽj | F
j
xj

) =
p1Ẽj

1 + p
,

Pj,{xj}(ρ = j, Ẽ∁
j , E

∁
i | F

j
xj

) =
p1Ẽ∁

j

1 + p
,

Pj,{xj}(ρ = i, Ẽ∁
j | F

j
xj

) =
p1Ẽ∁

j

1 + p
.
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Then,

πj,{xj} =Ej,{xj}

[

4 ·
(

1{ρ = j, Ẽ∁
j , Ei} + 1{ρ = i, Ẽj}

)

+ 1 ·
(

1{ρ = j, Ẽ∁
j , E

∁
i } + 1{ρ = i, Ẽ∁

j }
)

+ 0 · 1{ρ = j, Ẽj}
]

=
1

1 + p

(

1Ẽ∁
j

(
4(1 − p) + p+ p

)
+ 1Ẽj

4p
)

=
1

1 + p

(

1Ẽ∁
j

(
4 − 2p

)
+ 1Ẽj

4p
)

.

For p < 2
3 , this is maximised Pj,{xj}-almost surely by all Ẽj ∈ F

j
xj

with Pj,{xj}(Ẽj) = 0. If
(s,Pr) were in equilibrium, then, p = 1 − P(Ej) = 1, a contradiction.

For p > 2
3 , conversely, the above expression is maximised Pj,{xj}-almost surely by all Ẽj ∈ F

j
xj

with Pj,{xj}(Ẽj) = 1. If (s,Pr) were in equilibrium, then, p = 1 − P(Ej) = 0, a contradiction.

Hence, if (s,Pr) is in equilibrium, then p = 2
3 . Conversely, suppose that p = 2

3 . Then, by

the computation above, πj,{xj} = 8
5 , which is independent on the chosen strategy s̃j alias Ẽj . In

particular, s̃j is a best response to si. Switching the roles of i and j also shows that πi,{xi} = 8
5 so

that (s,Pr) is in equilibrium.

Proof of Theorem 3.22. Let D be action path stochastic extensive form data on an exogenous sce-
nario space (Ω,E ) with well-ordered time T and let F be the induced stochastic extensive form. In
view of Theorem 3.11, it suffices to show that the underlying decision forest F is up-discrete and
regular with respect to ⊇.

(Ad up-discreteness): Let c be a non-empty chain in (F,⊇). Then, as F is a decision forest,
⋂
c 6= ∅. Indeed, c is contained in some maximal chain of the form ↑ {w} for some w ∈ W , see [53,

Definition 1.3, Proposition 1.4]. Therefore, there is w = (ω, f) ∈
⋂
c, which is an element of W .

Hence, there is T′ ⊆ T with

c ∪ {{w}} = {xt(ω, f) | t ∈ T′} ∪ {{w}}.

If T′ is empty, then w = max c. If T′ is non-empty, then, by hypothesis, it has a minimum t0 with
respect to the well-order ≤ on T. Then, by the very definition of xt(ω, f) for t ∈ T′ and the fact
that they all contain w, we directly obtain xt0

(ω, f) = max c.

(Ad regularity): Let x ∈ F be non-maximal. If ↑ x \ {x} has a minimum, then it also has an
infimum. It therefore remains to consider the case where ↑ x\{x} has no minimum. For that proof,
let

Bx = {y ∈ F | ∀z ∈↑ x \ {x} : z ⊇ y}

denote the set of lower bounds of ↑ x \ {x}, a set that clearly contains x.
If x is terminal, then x = {w} for some w = (ω, f) ∈ W . Let y ∈ Bx and w′ ∈ y. Then

w′ = (ω, f ′) for some f ′ ∈ AT because ↑ x \ {x} is non-empty by non-maximality of x, implying
that x and y are elements of the same connected component. If we had f 6= f ′, then by hypothesis
there would be a minimal t ∈ T with f(t) 6= f ′(t). Thus, xt(ω, f) ∈ X , and as ↑ x \ {x} is
assumed to have no minimum, there would be u ∈ T with t < u and xu(ω, f) ∈↑ x \ {x}. But then
w′ /∈ xu(ω, f), in contradiction to w′ ∈ y ⊆ xu(ω, f), as y ∈ Bx. Hence, the assumption f 6= f ′
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was false and we must have f = f ′. Thus, w′ = w and y = {w} = x. We conclude that Bx = {x}.
Hence, Bx has a maximum and ↑ x \ {x} an infimum.

If x is not terminal, then x ∈ X and x = xt(x)(w) for some w = (ω, f) ∈ W . Let y ∈ Bx and

let w′ ∈ y. Then w′ = (ω, f ′) for some f ′ ∈ AT, for similar reasons as above. Then f ′ = f or
f ′ 6= f . In the latter case, the hypothesis implies the existence of minimal t ∈ T with f(t) 6= f ′(t).
If we had t < t(x), then there would be u ∈ T with t < u < t(x), since otherwise xt(ω, f)
would be a minimum of ↑ x \ {x} which does not exist by assumption. But then, just as above,
w′ /∈ xu(ω, f), in contradiction to w′ ∈ y ⊆ xu(ω, f), as y ∈ Bx. Hence, t(x) ≤ t which implies that
f ′|[0,t(x))T = f |[0,t(x))T . Hence, whether f = f ′ or not, it follows that w′ = (ω, f ′) ∈ x. We infer
that y ⊆ x. Thus, x is a maximum of Bx and an infimum of ↑ x \ {x}.
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