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Abstract

Vision-based pose estimation of articulated robots with
unknown joint angles has applications in collaborative
robotics and human-robot interaction tasks. Current frame-
works use neural network encoders to extract image fea-
tures and downstream layers to predict joint angles and
robot pose. While images of robots inherently contain rich
information about the robot’s physical structures, existing
methods often fail to leverage it fully; therefore, limiting
performance under occlusions and truncations. To address
this, we introduce RoboPEPP, a method that fuses informa-
tion about the robot’s physical model into the encoder us-
ing a masking-based self-supervised embedding-predictive
architecture. Specifically, we mask the robot’s joints and
pre-train an encoder-predictor model to infer the joints’ em-
beddings from surrounding unmasked regions, enhancing
the encoder’s understanding of the robot’s physical model.
The pre-trained encoder-predictor pair, along with joint an-
gle and keypoint prediction networks, is then fine-tuned for
pose and joint angle estimation. Random masking of in-
put during fine-tuning and keypoint filtering during evalu-
ation further improves robustness. Our method, evaluated
on several datasets, achieves the best results in robot pose
and joint angle estimation while being the least sensitive to
occlusions and requiring the lowest execution time.

1. Introduction

Estimating the pose and joint angles of an articulated robot
in the coordinate frame of an external camera is valuable
for facilitating collaborative applications wherein an agent
(e.g., a human or another robot) operates in a shared space
with the articulated robot [10, 20, 26, 29, 32, 36]. Tradi-
tional robot pose estimation methods assume known joint
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Figure 1. Comparison of an existing robot pose estimation
method [5] with our RoboPEPP framework. RoboPEPP integrates
joint masking-based pre-training (b.1) to enhance the encoder’s
grasp of the robot’s physical model, combined with downstream
networks, and keypoint filtering (b.2) to achieve high accuracy.

angles and capture multiple images with fiducial mark-
ers [12, 13, 25] attached to the robot’s end-effector to estab-
lish 2D-3D correspondences between the image pixels and
the robot’s frame. Recent advancements in deep learning
enable the prediction of 2D keypoints on robot joints from
a single image [14, 18, 24, 34]. However, the assumption
of known joint angles is not valid in many practical settings
such as in collaborative robotics and human-robot interac-
tion, where the joint angles may be unreliable or completely
unknown. This challenge of simultaneously estimating joint
angles and robot poses is particularly complex due to the
high degrees of freedom in robotic systems and the infi-
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nite space of potential robot poses and joint angle config-
urations. RoboPose [16] pioneered the field of robot pose
estimation with unknown joints by using an iterative render-
and-compare strategy. Later works [5, 35] enhanced the
efficiency by employing neural networks that predict joint
angles and robot poses in a single feed-forward pass. While
input images provide rich information about the robot’s
physical structures and constraints, existing methods fail to
leverage this fully, resulting in low performance in challeng-
ing scenarios like occlusions and truncations (i.e., instances
where only part of the robot is visible).

Recently, self-supervised learning [3, 7] has shown that
embedding predictive pre-training helps encoders develop a
deeper semantic understanding of images. Inspired by such
works, we propose RoboPEPP (Fig. 1), a robot pose estima-
tion framework that integrates a joint-masking-based pre-
training strategy to help the encoder better understand the
robot’s physical model. In this approach, the encoder ex-
tracts embeddings from the unmasked regions, which a pre-
dictor uses to estimate embeddings of the masked joints. In
other words, the encoder-predictor network is trained to pre-
dict the embeddings of the joints using the context around
them, thus improving the network’s understanding of the
robot’s structure. While this pre-trained encoder supports
various robotics tasks, we focus on robot pose estimation.

Following pre-training, the encoder and predictor are
fine-tuned using downstream layers for joint angle predic-
tion and 2D keypoint heatmap generation, allowing for end-
to-end training. We further enhance the model’s occlu-
sion robustness by randomly masking the input while fine-
tuning. During inference, the pixels with the highest values
in the heatmaps are identified as 2D keypoints, while cor-
responding 3D keypoints in the robot’s frame are computed
using the forward kinematics and predicted joint angles. For
cases where only part of the robot is visible in the image,
we apply confidence-based keypoint filtering. Finally, we
use the perspective-n-point (PnP) algorithm [19] on the fil-
tered 2D-3D correspondences to estimate the robot’s pose.
In summary, our contributions are:

• A robot pose and joint angle estimation framework with
embedding-predictive pre-training to enhance the net-
work’s understanding of the robot’s physical model.

• An efficient network for robot pose and joint angle esti-
mation using the pre-trained encoder-predictor alongside
joint angle and keypoint estimators, trained using ran-
domly masked inputs to enhance occlusion robustness.

• A confidence-based keypoint filtering method to handle
cases where only part of the robot is visible in the image.

• Extensive experiments showing RoboPEPP’s superior
pose estimation, joint angle prediction, occlusion robust-
ness, and computational efficiency.

2. Related Work
Classical methods for robot pose estimation typically in-
volve attaching fiducial markers, such as ArUco [13], April-
Tag [25], or ARTag [12], to the robot’s end-effector to ob-
tain easily detectable pixels in images. The corresponding
3D points in the robot’s base coordinate frame are calcu-
lated using the robot’s joint angles and forward kinematics.
Using these correspondences and the camera intrinsics, an
optimization problem is solved to find the robot-to-camera
transformation [15, 27, 37], referred to here as the robot
pose. This, however, requires multiple sets of correspon-
dences from images taken at different robot configurations.

To streamline this process, DREAM [18] introduced a
learning-based approach to detect multiple keypoint corre-
spondences from a single image, estimating the pose using
the PnP [19] algorithm. This method achieved performance
comparable to classical approaches while requiring a single
image. Building on this, PoseFusion [14] used multi-scale
feature fusion to improve keypoint prediction accuracy. G-
SAM [38] further improved robustness by adding a group-
ing and soft-argmax module, particularly useful when only
part of the robot is visible. CTRNet [24] introduced a self-
supervised sim-to-real approach, using differentiable PnP
solver [9] and mesh renderer [28] to predict robot masks,
which are compared against foreground segmentation for
training. To incorporate information from prior frames, SG-
TAPose [33] employed a temporal attention framework.

These approaches, however, assume known joint angles,
which is often impractical in real-world settings like collab-
orative robotics and human-robot interaction. To address
this, RoboPose [16] estimated pose with unknown joint an-
gles using an iterative render-and-compare approach, yield-
ing strong results but at the cost of computational efficiency.
An efficient framework [5] was later developed to predict
joint angles and pose in a single, real-time feed-forward
pass. RoboKeyGen [35] proposed another efficient method
by lifting 2D keypoints to 3D using a stable diffusion model.
While some frameworks [30, 31] used depth cameras for
pose prediction, we restrict the discussion to methods using
monocular RGB images, which are more widely accessible
and avoid the need for specialized sensors.

Current robot pose estimation methods [5, 16, 35] do not
fully utilize the rich features of the robot’s physical model
available in images. Meanwhile, self-supervised learning
frameworks [1–3, 6–8] have advanced encoder training to
extract robust image features with Joint-Embedding Pre-
dictive Architecture (JEPA) [3] using a masking-based pre-
training strategy to enhance the encoder’s semantic under-
standing of the image. Inspired by JEPA, we pre-train
an encoder-predictor pair by masking regions around the
robot’s joints and predicting embeddings of the masked re-
gions based on the surrounding context, thus enhancing the
encoder’s understanding of the robot’s physical model. The
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Figure 2. Overview of the RoboPEPP framework for robot pose and joint angle estimation. (a) Joint regions are masked to pre-train an
encoder-predictor pair using an embedding predictive architecture. (b) The pre-trained encoder-predictor network is fine-tuned for robot
pose estimation with Joint and Keypoint Prediction networks, using random masking during training to enhance occlusion robustness.
During evaluation, keypoints are filtered, and a PnP algorithm estimates the robot’s pose from the filtered 2D-3D correspondences.

pre-trained encoder-predictor pair is then fine-tuned along
with joint and keypoint prediction networks, applying ran-
dom masking during fine-tuning and confidence-based key-
point filtering at evaluation for improved robustness.

3. Methodology

Problem Description: Given a color image capturing an
articulated robot with n joints, our objective is to estimate
the joint angles Φ ∈ Rn and the robot-to-camera rigid trans-
formation matrix TC

R ∈ SE(3), with the robot frame being
defined at its base. The robot’s forward kinematics and the
camera’s intrinsic parameters are assumed to be known.
Method Overview: Our proposed framework (Fig. 2)
comprises two stages: self-supervised pre-training of an
encoder-predictor network (Sec. 3.1); and fine-tuning of the
pre-trained encoder-predictor alongside 2D keypoint detec-
tion and joint angle estimation networks (Sec. 3.2). Pre-
dicted joint angles and forward kinematics yield 3D joint
coordinates, which, combined with detected 2D keypoints,
are used in a PnP solver to estimate pose (Sec. 3.3). Dur-
ing evaluation, confidence-based keypoint filtering and self-
supervised fine-tuning on real-world data enhance accuracy.

3.1. Embedding Predictive Pre-Training
Building on embedding predictive architectures [3, 7], we
employ a masking-based pre-training strategy tailored for
robotic applications like pose and joint estimation. Masks
are selected to occlude the regions around four randomly
selected robot joints, or a random area if a joint is outside

the camera’s field of view. Each mask covers 15–20% of
the image with an aspect ratio between 0.75 and 1.5.

The original image consists of M patches, each sized
16 × 16 pixels. Let ui represent the i-th patch, where i ∈
{1, 2, . . . ,M}, and let B denote the set of indices for the
unmasked patches, with L = |B| < M . With patches uj ,
for j ∈ B, as the context, a Vision Transformer (VIT) [11]
encoder produces context embeddings wj ∈ Rd for j ∈ B.
These context embeddings are then passed to a VIT-based
predictor, which infers embeddings for all M patches of the
original image, denoted vi ∈ Rd for i ∈ {1, 2, . . . ,M}.

Meanwhile, a target backbone with the same architec-
ture as the encoder extracts embeddings v̄i ∈ Rd for i ∈
{1, 2, . . . ,M} directly from the original image. The em-
beddings for the masked patches, corresponding to indices
i ∈ B̄ (where B̄ denotes the set of masked patch indices),
are used to compute the L1 loss during training, given by:

Lpre-train =
1

|B̄|
∑
i∈B̄

∥vi − v̄i∥1. (1)

Backpropagating through the encoder-predictor network
and target backbone simultaneously risks trivial solutions,
like constant predictions across all networks. To avoid this,
we follow [3], backpropagating only through the encoder-
predictor branch and updating the target backbone with an
exponential moving average of the encoder’s weights.

Our approach differs from JEPA [3] by using context-
informed masking at joint locations. While JEPA learns
deeper semantic representations by randomly masking the
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input for tasks like object detection, we focus on encoding
the robot’s physical properties by specifically masking joint
regions. This trains the encoder to infer the robot’s joint-
related information based on the surroundings, emulating a
predictive understanding similar to how humans or animals
deduce missing information about physical structures.

3.2. Keypoint Detection and Joint Angle Estimation
The pre-trained encoder and predictor are then fine-tuned,
where they extract embeddings vi ∈ Rd for i ∈
{1, 2, . . . ,M} from images, which are used by the Joint Net
and Keypoint Net to predict joint angles and 2D keypoints,
respectively. To further increase occlusion robustness, ran-
dom masks covering up to 20% of the image are applied
during training. Consistent with Sec. 3.1, the predictor out-
puts all patch embeddings, including masked ones. This
framework is trained using the loss functions in Sec. 3.2.3.

3.2.1. Joint Net
Using the patch embeddings, vi, as input, the Joint Net pre-
dicts the angles for each of the robot’s n joints. A global
average pooling layer aggregates the patch embeddings vi
(for i ∈ {1, 2, . . . ,M}) into a single embedding vg ∈ Rd to
generate a global representation of the image. An iterative
MLP-based approach [5] is then used to refine the joint an-
gle predictions. Starting with a zero vector as the initial es-
timate Φinit, the joint angles are iteratively updated through
the MLP over G = 4 refinement steps (Fig. 3). The same
MLP layer is used across all iterations, progressively refin-
ing the predicted joint angles Φpred for improved accuracy.

3.2.2. Keypoint Net
The Keypoint Net uses the patch embeddings to predict
heatmaps for each of the k keypoints. The matrix V =
[v1, v2, . . . , vM ]T ∈ RM×d, contianing the patch embed-
dings, is reshaped into V̂ ∈ Rm×m×d, where m =

√
M .

With input image of 224 × 224 pixels and a patch size of
16 × 16 pixels, m = 14. The Keypoint Net takes V̂ as in-
put and applies four upsampling layers with output dimen-
sions shown in Table 1. Each upsampling layer includes a
transpose convolutional layer with a kernel size of 4, stride
of 2, and one-pixel wide zero padding, followed by batch
normalization, ReLU activation, and dropout. The channel
dimension is gradually reduced from d = 768 to 256 across
these layers. The output is then passed through a linear layer
that reduces the channel dimension to k, followed by a sig-
moid activation to produce heatmaps Hpred ∈ R224×224×k.
Typically, each keypoint is defined at a joint of the robot,
with an additional keypoint at the base, making k = n+ 1.

3.2.3. Loss Functions
For joint angles, we employ a mean squared error loss:

Ljoint =
1

n
∥Φpred − Φgt∥22 (2)

Figure 3. Joint Net: A global average pooling layer aggregates the
patch embeddings, v1, . . . , vM , into vg , which is then iteratively
refined using an MLP to estimate the joint angles.

Layer Spatial Size Channels
Input Size 14 × 14 768
Upsample 1 28 × 28 256
Upsample 2 56 × 56 256
Upsample 3 112 × 112 256
Upsample 4 224 × 224 256
Linear (Heatmaps) 224 × 224 k

Table 1. Layer Output Sizes in Keypoint Net: Patch embeddings
are progressively upsampled through four layers and the channel
dimension is reduced to k (the number of keypoint).

where Φpred and Φgt represent the predicted and ground
truth joint angles, respectively. To enhance training conver-
gence, mean-variance normalization is applied to Φgt. For
keypoint detection, we utilize the focal loss [21]:

Lkp = FocalLoss(Hpred, Hgt) (3)

where Hpred and Hgt denote the predicted and ground truth
heatmaps, respectively. Hgt is generated using unnormal-
ized Gaussian probability density functions centered at each
keypoint with a 2-pixel standard deviation.

The overall training loss is a weighted combination of
the two losses: L = Ljoint +α(t)Lkp., where α(t), depen-
dent on epoch t, balances their relative importance. Since
the joint angles are predicted in radians, Ljoint tends to be
much smaller than Lkp, especially in early training. To ad-
dress this, α(t) is initialized at 0.0001, increased to 0.01
after 5 epochs, 0.1 after 10 epochs, and finally to 1 after 40
epochs, ensuring a balanced curriculum for training.

3.3. Robot Pose Estimation
Keypoint Filtering: The final layer of the Keypoint Net
contains a sigmoid nonlinearity, that produces heatmaps
with pixel values between 0 and 1, representing keypoint
confidence at each pixel. The pixel with the highest confi-
dence indicates the keypoint location. However, when only
a portion of the robot is visible, some keypoints may lie out-
side the image, leading to low confidence scores across the
heatmap for these keypoints (Fig. 4). Selecting the pixel
with the highest confidence in such cases can be mislead-
ing, as no pixel accurately represent the true keypoint. To
address this, during evaluation, we apply a threshold, only
considering keypoints with confidence above it. For use
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Figure 4. The examples show predicted heatmaps for Joint 5
and the End-Effector overlaid on the original image. The End-
Effector, being positioned outside the field of view, produces
noisy heatmaps with lower confidence (measured by peak values).
Heatmap pixel values are normalized here for visual clarity.

with a PnP algorithm [19] for pose estimation, we require
a minimum of four 2D-3D correspondences. If fewer than
four keypoints remain after filtering, we iteratively reduce ϵ
by 0.025 until at least four keypoints are retained.
Pose Estimation: The robot’s pose is estimated using the
EPnP algorithm [19] with the filtered 2D-3D correspon-
dences and known camera intrinsics. As keypoints are de-
fined on joints, we obtain the 3D points corresponding to
the 2D keypoints using the robot’s forward kinematics and
predicted joint angles.
Sim-to-Real Self-Supervised Training: In addition to su-
pervised training for pose estimation, our method supports
self-supervised fine-tuning of the trained models on real-
world data to bridge the sim-to-real gap. Specifically, we
use a differentiable PnP algorithm [9, 24] and estimate the
robot’s pose and transform 3D joint locations from the robot
to the camera frame. These transformed points are pro-
jected onto the image plane, yielding the projected key-
points, Pproj ∈ Rk×2. We then minimize the mean squared
error between Pproj and the predicted keypoints Ppred

Lssl =
1

k

k∑
i=1

∥P i
pred − P i

proj∥22 (4)

where P i
pred and P i

proj are the ith keypoint in Ppred and
Pproj , respectively. During sim-to-real finetuning, we use
a lower learning rate than in the prior supervised train-
ing. Further, to prevent model collapse, the Keypoint Net’s
learning rate is set close to zero.
Region of Interest (RoI) Detection: During evaluation, we
utilize the GroundingDINO [22] object detection model to
automatically locate the region of interest around the robot.
The detected region is cropped and resized to 224 × 224

pixels. During training, we use ground truth bounding box
information. However, to ensure our model’s robustness to
region-of-interest detection, we employ a training curricu-
lum: we use the ground truth bounding boxes and expand
them by adding random offsets sampled from the uniform
distribution U(0, λ) to their edges, with λ progressing from
0 (first 30 epochs) to 30 pixels at epoch 30, 50 pixels at
epoch 50, 80 pixels at epoch 70, 100 pixels at epoch 90,
and 120 pixels at epoch 110. This approach encourages the
model to generalize effectively, even with noisy region-of-
interest detection during inference.

4. Experiments
4.1. Dataset and Implementation Details
We evaluate our framework on the DREAM dataset [18]
that includes three robots (Franka Emika Panda, Kuka
iiwa7, Rethink Baxter) and contains the following for each
robot: Panda – synthetic domain-randomized (DR) training,
DR test (Panda DR), photo-realistic test (Panda Photo), four
real-world test (Panda AK, XK, RS, ORB) sequences; Kuka
– synthetic DR training, DR test (Kuka DR), photo-realistic
test (Kuka Photo) sequences; Baxter – synthetic DR train-
ing and test (Baxter DR) sequences.

The encoder is pre-trained using our self-supervised em-
bedding predictive strategy (Sec. 3.1) for 200 epochs on the
DR training sequences of all robots, using AdamW [23] op-
timizer with an initial learning rate of 10−3. For end-to-
end fine-tuning (Sec. 3.2), models are trained separately for
each robot for 200 epochs with AdamW optimizer (learn-
ing rate 10−4). Sim-to-real fine-tuning is performed for 10
epochs. More details are in the supplementary material.

4.2. Results
4.2.1. Robot Pose Prediction
We evaluate RoboPEPP by computing the average dis-
tance [5, 16, 18], ADD = 1

n

∑n
0 ∥T̂C

R p̂
{R}
i − p

{C}
i ∥2 be-

tween predicted and ground truth joint positions in the cam-
era frame for each image, where T̂C

R is the predicted robot
pose in the camera frame, p̂{R}

i is the estimated position of
joint i in the robot’s frame (computed from predicted joints
and forward kinematics), and p

{C}
i is the ground truth joint

position in the camera frame (i = 0 signifies the robot base).
In Table 2, we report the area-under-the-curve (AUC)

of the average distance (ADD) across various thresholds,
where higher AUC values indicate greater accuracy. We
compare RoboPEPP with Real-Time Holistic Robot Pose
Estimation with Unknown States (referred to as HPE in
this manuscript) [5], RoboPose [16], and three variants
of DREAM [18], though the latter assume known joint
angles. To the best of our knowledge, RoboPose, HPE,
and RoboKeyGen [35] are the only approaches besides
RoboPEPP that predict robot pose with unknown joint
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Method
Known
Joint

Angles

Known
Bounding

Box

Panda Kuka Baxter

Synthetic Real Synthetic Synthetic

Photo DR AK XK RS ORB Photo DR DR
DREAM-F Yes No 79.5 81.3 68.9 24.4 76.1 61.9 - - -
DREAM-Q Yes No 74.3 77.8 52.4 37.5 78.0 57.1 - - 75.5
DREAM-H Yes No 81.1 82.9 60.5 64.0 78.8 69.1 72.1 73.3 -
HPE No Yes 82.0 82.7 82.2 76.0 75.2 75.2 73.9 75.1 58.8
RoboPose No No 79.7 82.9 70.4 77.6 74.3 70.4 73.2 80.2 32.7
HPE∗ No No 40.7 41.4 66.7 - 49.1 51.6 56.7 56.2 9.8
RoboPEPP (Ours) No No 84.1 83.0 75.3 78.5 80.5 77.5 76.1 76.2 34.4

Table 2. Comparison of robot pose estimation using AUC on the ADD metric. Best values among methods using unknown joint angles
and bounding boxes during evaluation are bolded. HPE∗ denotes HPE [5] evaluated with the same off-the-shelf bounding box detector as
RoboPEPP. HPE∗ was not evaluated on Panda XK since corresponding model weights were unavailable.

angles. However, RoboKeyGen evaluates on a different
dataset, and its code is unavailable, preventing direct com-
parison. Nonetheless, its reported AUC on similar datasets
is lower than ours. Moreover, HPE [5] assumes known
bounding boxes during evaluation, a condition often unreal-
istic in practice. Therefore, we also evaluate HPE with our
bounding box detection strategy (denoted HPE∗) in Table 2.

RoboPEPP yields the highest scores across all sequences
(except for Kuka DR where it remains competitive) among
methods with unknown joint angles and bounding boxes.
HPE [5], on the other hand, shows sensitivity to bounding
box selection, with its performance dropping when ground
truth bounding boxes are unavailable. Our analysis has
shown that using bounding boxes just 5 pixels wider than
ground truth reduces HPE’s accuracy by up to 25% on the
Panda Photo test set and by around 50% with 10-pixel wider
boxes. While both RoboPEPP and HPE are trained using
ground truth bounding boxes, RoboPEPP’s training strat-
egy (Sec. 3.3) reduces its dependency on them. Notably,
RoboPEPP outperforms HPE on most sequences even when
HPE has acces to known bounding boxes during evaluation.

A qualitative comparison of RoboPEPP with Robo-
Pose [16] and HPE [5] on Panda Photo test dataset (example
1) and the occlusion dataset of Sec. 4.2.3 (examples 2 and
3) is presented in Fig. 5. Each method uses the input im-
age to predict pose and joint angles, rendering a robot mesh
that is projected and overlaid onto the original image, where
closer alignment indicates higher prediction accuracy. Ex-
ample 1 depicts a case where only part of the robot is visible
and examples 2 and 3 show cases of occlusions (detailed
in Sec. 4.2.3). In these challenging scenarios, RoboPEPP
achieves highly accurate overlays while other methods are
less precise, as highlighted by the red rectangles. In Fig. 5,
HPE is used with ground truth bounding boxes.

4.2.2. Joint Prediction
In Table 3, we report the mean absolute error (in degrees)
for joint angle prediction on the Panda Photo, Panda DR,
Kuka Photo, and Kuka DR test datasets. The keypoints cor-
responding to the end-effector and the final joint (i.e., the

Method J1 J2 J3 J4 J5 J6 Avg.

Pa
nd

a Ph
ot

o RoboPose 7.7 3.5 4.3 3.4 7.3 8.1 5.7
HPE (Known BBox) 6.1 2.2 3.6 2.0 6.2 6.6 4.5
RoboPEPP 4.4 1.8 2.2 1.8 4.4 4.8 3.2

D
R

RoboPose 6.1 2.7 3.6 2.5 6.3 8.1 4.9
HPE (Known BBox) 6.2 2.2 3.9 1.9 5.9 6.6 4.4
RoboPEPP 4.9 2.3 2.7 2.2 4.9 5.4 3.8

K
uk

a Ph
ot

o RoboPose 4.9 5.1 6.7 6.0 10.8 9.6 7.2
HPE (Known BBox) 4.8 3.8 5.0 2.8 4.9 5.9 4.5
RoboPEPP 3.8 2.8 4.6 3.1 3.8 5.4 3.9

D
R

RoboPose 4.4 2.8 5.4 3.4 12.5 8.5 6.2
HPE (Known BBox) 4.6 3.6 4.9 2.8 5.2 6.1 4.5
RoboPEPP 3.7 3.5 5.1 3.5 4.1 6.2 4.3

A
vg

. RoboPose 5.8 3.5 5.0 3.8 9.2 8.6 6.0
HPE (Known BBox) 5.4 3.0 4.4 2.4 5.6 6.3 4.5
RoboPEPP 4.2 2.6 3.7 2.7 4.3 5.5 3.8

Table 3. Mean absolute error between the predicted and actual
joint angles (in degrees) for the Panda and Kuka synthetic test sets.

joint nearest to the end-effector) lie along the axis of ro-
tation of this joint, making their locations independent of
this joint’s angle. Consequently, we predict the angles of
all joints except the last one, assigning a random angle to it
during evaluation. Thus, Table 3 presents the mean absolute
error for the first six joint angles. We compare RoboPEPP
with HPE [5] and RoboPose [16]. RoboPEPP demonstrates
the lowest average joint prediction error on all datasets. Al-
though HPE utilizes known bounding boxes for region-of-
interest detection, RoboPEPP still outperforms HPE by over
15% on average across all datasets in Table 3. When HPE
is tested without ground truth bounding boxes, its perfor-
mance drops to an average error of 7.2 degrees.

4.2.3. Robustness to Occlusions
In addition to achieving high performance across various
metrics and datasets, RoboPEPP demonstrates robustness
to occlusions. To evaluate this, we compared the per-
formance of RoboPEPP with other methods [5, 16] on a
custom dataset, created by adding synthetic occlusions to
Panda Photo. Specifically, we overlaid black rectangular
or circular masks at random positions on the robot, ensur-
ing that the masks covered at least some part of the robot
(and not just the background). We generated four test se-
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Figure 5. Qualitative Comparison on Panda Photo (Example 1) and Occlusion (Example 2 and 3) datasets: Predicted poses and
joint angles are used to generate a mesh overlaid on the original image, where closer alignment indicates greater accuracy. Highlighted
rectangles indicate regions where other methods’ meshes misalign, while RoboPEPP achieves high precision.

Figure 6. AUC comparison of the distance metric under varying
occlusion levels, evaluated on the dataset in Sec. 4.2.3. Percent-
ages next to the lines indicate the relative drop in each method’s
performance compared to their performance without occlusions.

Figure 7. Execution time and computation analysis on the Panda
Photo test dataset with RoboPEPP showing best performance and
accuracy. The circle sizes in the plot represent model FLOPs.

quences with occlusion ratios of 0.1, 0.2, 0.3, and 0.4 on
the RoI area in each image, respectively. This approach
differs from the masking used during our training, where
the model is informed about the number of masked patches.
Here, the model processes occluded images as it would any
other input image, without any knowledge of the occlusion.

In Fig. 6, we plot the AUC of the ADD against the oc-
clusion ratio. The plot also includes the percentage decrease
in AUC relative to the respective model’s performance with-
out occlusion. RoboPEPP demonstrates superior robustness
to occlusion, achieving an AUC score of 35.1 even when
40% of the RoI is occluded, compared to 28.2 for HPE and
14.5 for RoboPose. Examples 2 and 3 in Fig. 5 provide
qualitative comparisons of RoboPEPP, HPE [5], and Robo-
Pose [16] on the occlusion dataset. RoboPEPP demon-
strates superior performance, even in challenging cases like
example 3, where most of the robot is occluded. In both
examples 2 and 3, RoboPose produces inaccurate results,
while HPE shows partial overlap but still exhibits notable
inaccuracies, highlighted by the red rectangles.

4.2.4. Percentage of Correct Keypoints
The accuracy of 2D keypoint detection affects the overall
performance of RoboPEPP. Therefore, in Table 4, we report
the percentage of correct keypoints (PCK) within thresholds
of 2.5, 5, and 10 pixels on the Panda Photo dataset. Since
HPE [5] and RoboPose [16] do not rely on 2D keypoint de-
tection for pose estimation, we include only DREAM [18]
as a baseline for comparison. RoboPEPP achieves high av-
erage PCK scores, with 0.43 @ 2.5 pixels, 0.73 @ 5 pix-
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(a) RoboPEPP’s joint-masking-based pre-training achieves the
best overall performance in robot pose estimation.

(b) Keypoint Filtering leads to improved
performance on all datasets.

(c) RoboPEPP’s sim-to-real fine-tuning im-
proves performance on real datasets.

Figure 8. Ablation studies on (a) Pre-Training, (b) Keypoint Filtering, and (c) Sim-to-Real fine-tuning on the Panda test datasets.

Dataset Method PCK @ (pixel)
2.5 5 10

DR DREAM 0.79 0.88 0.9
RoboPEPP 0.84 0.91 0.93

Photo DREAM 0.77 0.87 0.9
RoboPEPP 0.87 0.92 0.94

AK DREAM 0.36 0.65 0.9
RoboPEPP 0.16 0.62 0.93

XK DREAM 0.15 0.37 0.59
RoboPEPP 0.09 0.37 0.96

RS DREAM 0.24 0.83 0.96
RoboPEPP 0.31 0.82 0.97

ORB DREAM 0.28 0.67 0.83
RoboPEPP 0.28 0.73 0.96

Avg. DREAM 0.43 0.71 0.85
RoboPEPP 0.43 0.73 0.95

Table 4. Comparison of Percentage of Correct Keypoints (PCK)
at different pixel thresholds across the Panda test datasets.

els, and 0.95 @ 10 pixels. While DREAM outperforms
RoboPEPP on certain metrics, such as PCK@2.5 pixels on
the Panda AK and Panda XK, RoboPEPP demonstrates su-
perior accuracy across most other metrics and on average,
highlighting its robust keypoint detection performance.

4.2.5. Execution Time
To demonstrate the practical effectiveness of the proposed
RoboPEPP method, we compare execution times (in mil-
liseconds) in Fig. 7. The circle sizes in the figure correspond
to the relative number of floating-point operations (FLOPs)
required by each model. All evaluations were conducted
on a system equipped with an Nvidia RTX A4000 GPU,
an Intel(R) i9 CPU, and 128 GB RAM, using the Panda
Photo test dataset. Consistent with previous work [5], we
report only model execution time, excluding pre-processing
steps such as data loading and RoI detection. Despite hav-
ing a slightly higher FLOPs count than HPE [5], RoboPEPP
achieves the highest AUC ADD score and the fastest execu-
tion time, completing inference in just 23 milliseconds.

4.3. Ablation Studies
Embedding Predictive Pre-Training: To assess the im-
pact of embedding predictive pre-training in RoboPEPP, we
conducted an ablation study comparing three versions of
the model: a version of RoboPEPP without pre-training,

and a version pre-trained with random masking instead of
joint-specific masking, and standard RoboPEPP (i.e., pre-
trained with joint masking). For all experiments, we utilized
the same model architecture and training settings. The bar
graphs in Fig. 8a illustrate that pre-training significantly im-
proves performance. While the model trained with the de-
fault masking strategy demonstrated competitive results on
synthetic test datasets, the model trained with joint-specific
masking achieved better performance on real-world datasets
in general. Note that the real-world results shown here do
not include the sim-to-real fine-tuning of Sec. 3.3. Further,
on the occlusion dataset (Sec. 4.2.3) with a 0.4 occlusion
ratio, the model without pre-training achieves AUC of 22.6,
the one with random masking reaches 30, and RoboPEPP
achieves 35.1, highlighting the latter’s occlusion robustness.
Keypoint Filtering: In Fig. 8b, we demonstrate that the
integration of keypoint filtering (KP filtering) enhances per-
formance across all datasets by helping in filtering out key-
points that fall outside the camera’s field of view. Similar
to Fig. 8a, the real-world results presented in Fig. 8b do not
include any sim-to-real fine-tuning.
Sim-to-Real Fine-Tuning: In Fig. 8c, we show perfor-
mance gains from sim-to-real self-supervised training, with
the model’s accuracy improving by an average of ∼6 points
after fine-tuning. Our sim-to-real training requires only 10
epochs, with each epoch lasting around 2 minutes.

5. Conclusion

We introduced a novel framework RoboPEPP enhancing
robot pose and joint angle estimation using an embedding
predictive pre-training strategy. RoboPEPP uses a joint-
masking-based method to pre-train an encoder-predictor
pair to be integrated into downstream networks for joint and
pose predictions. Experimental results show RoboPEPP’s
superior performance, particularly in handling occlusions
due to the combined effects of pre-training and random
masking during fine-tuning. RoboPEPP’s training helps
fuse knowledge of the robot’s physical model within the en-
coder, making RoboPEPP effective for pose estimation and
versatile for broader applications such as system dynamic
prediction and imitation learning.
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Supplementary Material

A1. Encoder and Predictor Architectures
As described in Sec. 3.1, we use Vision Transformer
(ViT) [11] architectures for both the encoder and predictor,
similar to [3]. The input image, originally sized at 640×480
pixels, is cropped based on the region of interest, resized
to obtain 224 pixels along its longer side, and padded to
yield a 224 × 224 resolution. A convolutional layer with
a kernel size of 16 and a stride of 16 serves as the patch
embedding layer, converting the image into L patches of
size 16 × 16 each with a channel dimension of d = 768.
These patches are flattened, and learnable positional embed-
dings, initialized as 2D sinusoidal functions, are added to
the patches. The combined representations are then passed
through 12 transformer blocks. Each block contains multi-
headed self-attention with 12 heads, drop-path regulariza-
tion [17], layer normalization [4], and a multi-layer per-
ceptron (MLP). The output of the final transformer block
undergoes another layer normalization step, resulting in the
encoder output wj ∈ R768 for j ∈ {1, . . . , L}.

During evaluation, for the image of size 224× 224 and a
patch size of 16×16, the number of patches is computed as

L = M =
224

16
× 224

16
= 14× 14 = 196. (5)

However, during training, only the unmasked patches are
considered, so L < M , i.e., L < 196.

The predictor takes the encoder output and reduces the
embedding dimension of the patches from 768 to 384 using
a linear layer. It also adds positional embeddings, similar to
the encoder. During training, the L(< M) embeddings cor-
responding to the unmasked patches and (M−L) learnable
mask tokens are concatenated to represent all patches of
the original image, including the masked ones. These em-
beddings are then processed through 12 transformer blocks.
The final output’s dimension is increased to 768 to match
the encoder’s output dimension, resulting in the predictor
output vi for i ∈ {1, . . . ,M}.

The target backbone uses the same architecture as the
encoder but directly operates on all M = 196 patches dur-
ing training. It produces outputs v̄i for i ∈ {1, . . . ,M}.
As outlined in the manuscript, during embedding predictive
pre-training, an L1 loss between vi and v̄i is used to update
the weights of the encoder and predictor. Following [3],
the target backbone is updated using an exponential moving
average of the encoder’s weights.

A2. Training Settings
Embedding Predictive Pre-Training: The AdamW op-
timizer [23] with an initial learning rate of 10−4 is used
for embedding predictive pre-training. The learning rate

is linearly increased to 10−3 over the first 10 epochs and
subsequently decreased to 10−6 using a cosine annealing
scheduler. The network is pre-trained for a total of 200
epochs with a batch size of 320. Weight decay is linearly
increased from 0.04 to 0.4 during pre-training. For the ex-
ponential moving average (EMA) update of the target back-
bone’s weights, a momentum value of 0.996 is used, which
is linearly increased to 1.0 over the training process.
Keypoint Detection and Joint Angle Estimation: As de-
tailed in the manuscript, the pre-trained encoder-predictor
pair is fine-tuned along with the Keypoint Net and Joint Net.
An AdamW optimizer [23] is used with an initial learning
rate of 10−4, which is decreased to 10−8 using a cosine an-
nealing scheduler. The network is trained for a total of 200
epochs with a batch size of 140.
Sim-to-Real Self-Supervised Training: To bridge the sim-
to-real gap, the trained networks are fine-tuned on real
datasets with self-supervised training, as described in Sec.
3.3. An AdamW optimizer [23] is used with learning rates
of 10−7 for the encoder and predictor, 10−5 for the joint
network. The learning rate for the keypoint network is set
close to zero to prevent model collapse. These learning rates
are decreased by a factor of 108 over the training process.
Models are fine-tuned separately for each real-world dataset
for 10 epochs with a batch size of 64.

A3. Region of Interest Detection

We utilize the pre-trained GroundingDINO [22] object de-
tection model to identify the region of interest, as described
in Sec. 3.3. GroundingDINO is a highly accurate open-
set object detector that accepts an (image, text) pair as in-
put and outputs bounding boxes corresponding to regions
of the image described by the text query. For all real and
photo-realistic test datasets, we use the text query “robotic
arm.” However, for the Panda, Kuka, and Baxter domain-
randomized datasets, we use the query “robot” because
these images often contain multiple objects, some of which
resemble arms and can confuse the detection model. All
other parameters of GroundingDINO are left at their de-
fault values. To address scenarios where only a portion of
the robot is detected, we expand all the detected bounding
boxes, especially for real datasets. Increasing all the bound-
ing box sizes by 100 pixels on all sides generally yields
robust robot pose estimation results. However, some fine-
tuning of this parameter may be necessary for optimal per-
formance depending on the specific dataset. Nonetheless,
high performance is obtained even without fine-tuning.

A4. Dataset Details

We evaluate our method on the DREAM dataset [18], which
includes sequences from three robots: Franka Emika Panda
(Panda), Kuka iiwa7 (Kuka), and Rethink Robotics Bax-
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Figure A1. Example images from each of the training and test sequences from the DREAM dataset [18].

Known
Joint Angles

Known
Bounding Box

Real-World Sequences
Panda AK Panda XK Panda RS Panda ORB Average

DREAM-F Yes No 11413 491911 2077 95319 150180

DREAM-Q Yes No 78089 54178 27 64248 49136

DREAM-H Yes No 57 7382 24 25685 8287

HPE No Yes 19 24 25 25 23

RoboPose No No 34 22 26 30 28

HPE* No No 46 - 61 52 53

RoboPEPP (Ours) No No 29 22 23 27 26

Table A1. Comparison of robot pose estimation using mean ADD (in millimeters), with lower a value signifying better performance. The
best values among methods that use unknown joint angles and unknown bounding boxes during evaluation are bolded. HPE∗ denotes
HPE [5] evaluated with the same off-the-shelf bounding box detector as RoboPEPP. HPE∗ was not evaluated on Panda XK since corre-
sponding model weights were unavailable.

ter (Baxter). The dataset provides training and testing se-
quences in both synthetic and real-world settings, as de-
tailed in Table A2. The synthetic data comprises domain-
randomized (DR) and photo-realistic (Photo) sequences.
For real-world data, sequences of the Panda robot were
captured using Microsoft Azure Kinect (AK), Xbox 360
Kinect (XK), and Intel RealSense D415 (RS) cameras, with
the cameras positioned at fixed locations. Additionally, the
Panda ORB dataset was collected using a RealSense cam-
era but with varying camera placements. Example images
from each dataset sequence are illustrated in Fig. A1.

A5. Additional Results

A5.1. Mean ADD

In Table A1, we present the mean ADD (Average Distance)
values (ADD defined in Sec. 4.2.1) on the Panda real-world
datasets. Consistent with Table 2, we compare our method,
RoboPEPP, against DREAM [18], RoboPose [16], HPE [5],
and HPE∗ (HPE using our bounding box detection strat-
egy). RoboPEPP achieves the lowest mean ADD across all
real-world data sequences among methods that operate with
unknown joint angles and bounding boxes. DREAM [18],
which detects 2D keypoints and employs them in a PnP
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Dataset Real # Images
Tr

ai
ni

ng Panda Train DR × 104972
Kuka Train DR × 104977
Baxter Train DR × 104982

Te
st

in
g

Panda Photo × 5997
Panda DR × 5998
Panda AK ✓ 6369
Panda XK ✓ 4966
Panda RS ✓ 5944
Panda ORB ✓ 32315
Kuka Photo × 5999
Kuka DR × 5997
Baxter DR × 5982

Table A2. Number of images in each sequence of the dataset.

solver to estimate the robot pose, is highly sensitive to key-
point detection errors. Even a single incorrectly detected
keypoint can cause DREAM to fail in pose estimation, lead-
ing to high ADD.

A5.2. Ablation: Occlusion Robustness
In this section, we evaluate the methods from the Em-
bedding Predictive Pre-Training ablation studies (Sec. 4.3)
on the occlusion dataset described in Sec. 4.2.3. Specifi-
cally, we compare the following models: (1) a version of
RoboPEPP without pre-training, (2) a version pre-trained
with random masking instead of joint-specific masking, (3)
the standard RoboPEPP (pre-trained with joint masking),
and (4) a model pre-trained with joint masking but fine-
tuned without masking during the encoder-predictor fine-
tuning phase. As shown in Fig. A2, and similar to Fig. 6,
we plot the AUC of the ADD metric against the occlusion
ratio. Additionally, the percentage decrease in AUC rela-
tive to the performance without occlusion is annotated on
the plot. Among the methods, RoboPEPP achieves the best
performance across all occlusion ratios. While the frame-
work with random-masking-based pre-training and the one
fine-tuned without masking achieve performance compara-
ble to RoboPEPP under zero occlusion, their performances
degrade more rapidly as the occlusion ratio increases.

A6. Additional Qualitative Comparison
In this section, we provide additional examples of qualita-
tive comparisons. Fig. A3 presents examples from the oc-
clusion dataset discussed in Sec. 4.2.3. Fig. A4 shows com-
parisons on the Franka Photo dataset, while Fig. A5 high-
lights results on the real-world datasets Franka RS and AK.
Lastly, Fig. A6 focuses on real-world images of the Franka
robot collected in the lab under highly cluttered and oc-

Figure A2. AUC comparison of the distance metric under varying
occlusion levels, evaluated on the dataset in Sec. 4.2.3. Percent-
ages next to the lines indicate the relative drop in each method’s
performance compared to their performance without occlusions.

cluded conditions. For all examples, comparisons are made
against RoboPose [16] and HPE [5]. Rectangles are used
to emphasize areas where these methods perform poorly,
while RoboPEPP shows higher accuracy.
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Figure A3. Qualitative Comparison on Occlusion dataset: Predicted poses and joint angles are used to generate a mesh overlaid on the
original image, where closer alignment indicates greater accuracy. Highlighted rectangles indicate regions where other methods’ meshes
misalign, while RoboPEPP achieves high precision.
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Figure A4. Qualitative Comparison on Panda Photo dataset: Predicted poses and joint angles are used to generate a mesh overlaid
on the original image, where closer alignment indicates greater accuracy. Highlighted rectangles indicate regions where other methods’
meshes misalign, while RoboPEPP achieves high precision.

Figure A5. Qualitative Comparison on Panda RS (Example 1 and 2) and Panda AK (Example 3) datasets: Predicted poses and
joint angles are used to generate a mesh overlaid on the original image, where closer alignment indicates greater accuracy. Highlighted
rectangles indicate regions where other methods’ meshes misalign, while RoboPEPP achieves high precision.
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Figure A6. Qualitative Comparison on Additional Real-World Images: These images are collected in highly cluttered environments
with robot occlusions. Predicted poses and joint angles generate a mesh overlaid on the original image, where closer alignment indicates
greater accuracy. Highlighted rectangles indicate regions where other methods’ meshes misalign, while RoboPEPP achieves high precision.
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