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Abstract

The expected utility theorem of Von Neumann and Morgenstern (1947)
has been a milestone in economics, describing rational behavior by two
axioms on a weak preference on lotteries on a finite set of outcomes: the
Independence Axiom and the Continuity Axiom. For a weak preference
fulfilling the Independence Axiom, I prove that continuity is equivalent to
the existence of a set indifferent lotteries spanning a hyperplane.

Let X be a finite set of cardinality n and let  L := ∆(X) be the set of lotteries
over X , which is a mixture space and can be seen as a simplex and a subset of
R

n−1.1 I consider a weak preference relation � on  L, i.e., � is complete and
transitive. As usual, ∼ and ≻ denote the symmetric and asymmetric parts of
�, indicating indifference and a strict preference. For a fixed P ∈  L the strictly
better, indifferent and strictly worse sets are defined as  L≻P := {R ∈  L | R ≻
P},  L∼P := {R ∈  L | R ∼ P},  L≺P := {R ∈  L | P ≻ R}.

Classical expected utility theory is based on two more axioms - independence
and continuity. The Independence Axiom asserts that the preference ranking of
two lotteries P and Q remains the same if equally mixed with any third lottery
R.

Axiom 1 (Independence Axiom). For all P,Q,R ∈  L and α ∈ (0, 1] we have

P � Q ⇐⇒ αP + (1 − α)R � αQ + (1 − α)R. (IA)

Continuity ensures that there are “no jumps” in the preference and thus rule
out lexicographic orderings.
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1An element P ∈  L is identified with the vector (P (x1), . . . , P (xn−1)) ∈ R
n−1 and can be

recovered from it via P (xn) = 1 −
∑

n−1

i=1
P (xi).

1

http://arxiv.org/abs/2411.17883v1


Axiom 2 (Continuity Axiom). For all P ∈  L,  L≻P and  L≺P are open.

For a weak preference relation on  L that fulfills the Independence Axiom, I
show that continuity is equivalent to the existence of a set of indifference points
that span a hyperplane in R

n−1.

Axiom 3 (indifferent points). There exist P1, . . . , Pn−1 ∈  L∼P1
that span a

hyperplane in R
n−1.

In other words, the set of directional vectors {Pk − P1}
n−1

k=2
is linearly inde-

pendent in R
n−1. In the special case of n = 3, Axiom 3 simply requires the

existence of two indifferent lotteries,i.e., P1 6= P2, P1 ∼ P2.

Theorem 1. Let � be a weak preference on  L = ∆(X) that fulfills the Inde-
pendence Axiom 1. Then the following statements are equivalent:

(i) � is continuous, i.e., Axiom 2 holds.

(ii) There exist P1, . . . , Pn−1 ∈  L∼P1
that span a hyperplane in R

n−1, i.e.,
Axiom 3 holds.

As an immediate consequence, we obtain the following variant of the ex-
pected utility theorem.

Corollary 1. For a binary preference relation � on  L = ∆(X), the following
statements are equivalent:

(i) � is a weak preference and fulfills Axioms 1 and 3.

(ii) � is a weak preference and fulfills Axioms 1 and 2.

(iii) There exists a utility function u : X → R such that � is represented by the
functional

U(P ) :=
∑

x∈X

P (x) · u(x).

Remark 1. On  L there are weak preferences that fulfill Axiom 3, but not the
Continuity Axiom 2. For instance, let X = {x1, . . . , xn} and let �lex denote
the lexicographic ordering on  L that prioritizes the weight on x1. Define the
preference P � Q : ⇐⇒ P (x1) = Q(x1) = 1

2
or P �lex Q. Then, � is complete,

transitive and fulfills Axiom 3, but is not continuous.
Consequently, Axiom 3 does not generally imply continuity on the simplex.
Continuity is thus either stronger than Axiom 3 or the two axioms cannot be
generally compared.
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A Proofs

For completeness sake, I provide a self-contained proof that Axiom 3 implies the
Continuity Axiom 2 for a weak preference that fulfills the Independence Axiom
1. To this end, some well-known auxiliary lemmata are provided.

Our first observation identifies indifference classes as convex subsets of  L.

Lemma A1. The set  L∼P is convex for every P ∈  L.

Proof of Lemma A1. Let Q,Q′ ∈  L∼P and α ∈ (0, 1). By the (IA) we have

αQ + (1 − α)Q′ ∼ αP + (1 − α)Q′ ∼ αP + (1 − α)P = P.

Hence,  L∼P is closed under taking convex combinations.

Note that Lemma A1 reveals that the convex hull conv(P) of any set indif-
ferent lotteries P ⊆  L∼P is contained in  L∼P .
Let p1, . . . , pm be points in R

n−1. Recall that the affine hull of p1, . . . , pm in
R

n−1 is

aff(p1, . . . , pm) : =

{
m∑

k=1

λk · pk

∣
∣
∣
∣
∣

m∑

k=1

λk = 1, λk ∈ R

}

(1)

=

{

p1 +

m∑

k=2

λk · (pk − p1)

∣
∣
∣
∣
∣
λk ∈ R

}

. (2)

From expression (1) it is easy to see that the convex hull conv(p1, . . . , pm) is
contained in the affine hull by simply restricting the coefficients λk to be non-
negative. Expression (2) represents the affine hull as the translation of the
vector space, spanned by the set of directional vectors {pk − p1}

m
k=2, by (and

thus through) p1.
The following observation shows that all lotteries in the affine hull defined

by a set of indifferent lotteries is contained in the corresponding indifference
class.

Lemma A2. Let P1, . . . , Pm ∈  L∼P1
. Then aff(P1, . . . , Pm) ∩  L ⊆  L∼P1

.

Proof of Lemma A2. Let A := aff(P1, . . . , Pm). If Pk is contained in the affine
hull of the remaining points, we can discard it from the set of considered points.
Assume thus that A is an affine space of dimension m − 1, i.e., the vectors
Pk − P1 for k = 2, . . . ,m are linearly independent in R

n−1. Especially, the
representation of any element P ∈ A in the form of expression (1) is unique. If
m = 1, conv(P1) = A∩  L = {P1} ⊆  L∼P1

. Assume thus m ≥ 2 in the following.
Consider now any P =

∑m

k=1
λkPk ∈  L,

∑m

k=1
λk = 1. If λk ≥ 0 for

all k = 1, . . . ,m, we have P ∈ conv(P1, . . . , PM ) and thus P ∈  L∼P1
by

Lemma A1. Assume thus that λk < 0 for at least one k ∈ {1, . . . ,m} and
let k∗ ∈ arg mink λk and λ∗ := −λk∗ , which is positive. Set P :=

∑m

k=1
1

m
Pk ∈

3



conv(P1, . . . , Pm) ⊆  L∼P1
. Define Q(α) := αP +(1−α)P , which can be written

as Q(α) =
∑m

k=1

(
α
m

+ (1 − α)λk

)
· Pk. For α∗ := mλ∗

1+mλ∗
, the coefficients of

Q := Q(α∗) are all non-negative and the one for k∗ is equal to zero. Thus,
Q ∈ conv(P1, . . . , Pm) ⊆  L∼P1

and Q 6= P . By Q ∼ P ∼ P1 and applying the
(IA), we find Q = α∗P +(1−α∗)P ∼ α∗Q+(1−α∗)P and thus P ∼ Q ∼ P1.

The following observation shows that translations of indifference sets remain
indifference sets.

Lemma A3. Let P,Q ∈  L. Then {R + (Q− P )|R ∈  L∼P } ∩  L ⊆  L∼Q.

Proof of Lemma A3. Note that Q ∈ {R + (Q − P )|R ∈  L∼P } ∩  L. If the set is
a singleton, there is nothing to prove. Let now Q 6= Q′ = P ′ + (Q − P ) ∈  L for
some P ′ ∈  L∼P . Define Z := 1

2
P + 1

2
Q′ = 1

2
P ′ + 1

2
Q. Since P ∼ P ′, we have

Z ∼ 1

2
P + 1

2
Q and thus Q′ ∼ Q by the (IA).

The line between two points p, q ∈ Rn−1 is defined by

line(p, q) := {q + t · (p− q)| t ∈ R} , (3)

and partitions into points to the left of q (t < 0), between p, q (t ∈ [0, 1]) and to
the right of p (t > 1). The following observation classifies how a strict preference
translates to all points on the line connecting two lotteries.

Lemma A4. Let P,Q ∈  L, P ≻ Q and Pt := Q + t · (P − Q) ∈ line(P,Q).
Then, P0 = Q,P1 = P and







Q ≻ Pt , t < 0,

P ≻ Pt ≻ Q , 0 < t < 1,

Pt ≻ P , 1 < t.

(4)

Proof of Lemma A4. The cases for t = 0, 1 are clear. Case t ∈ (0, 1): Since
P ≻ Q we have by the (IA) that P ≻ Pt = tP + (1− t)Q ≻ Q. Case 1 < t: P is
equal to the convex combination αPt + (1 − α)Q for α := 1

t
. Assume by means

of contradiction that P � Pt. Then, by applying the (IA) twice, we find the
contradiction P � αPt + (1 − α)P ≻ αPt + (1 − α)Q = P . Case t < 0: Now, Q
is the convex combination αPt + (1 − α)P for α := 1

1−t
. Assume by means of

contradiction that Pt � Q. Then, by applying the IA, we find the contradiction
Q = αPt + (1 − α)P ≻ αPt + (1 − α)Q � Q.

I now show that Axiom 3 implies the Continuity Axiom 2.

Theorem A1. Let P1, . . . , Pn−1 ∈  L∼P1
such that {Pk − P1}

n−1

k=2
are linearly

independent in R
n−1. Then, � is continuous.

Proof of Theorem A1. Let HP1
:= aff(P1, . . . , Pn−1) which is a hyperplane of

R
n−1 by the assumption on the Pk. Hence, there exists a normal vector ~n ∈

R
n−1 such that HP1

=
{
q ∈ R

n−1
∣
∣ 〈q − P1, ~n〉 = 0

}
, where 〈·, ·〉 is the usual

scalar product of Rn−1.
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Consider any P ∈  L. To prove continuity of �, I show that  L≻P is open.
That  L≺P is open follows analogously.

To this end, I study the hyperplane parallel to HP1
that passes through P

and partitions R
n−1 (and thus  L through intersection) in three convex parts:

H+

P :=
{
q ∈ R

n−1
∣
∣ 〈q − P, ~n〉 > 0

}
, HP :=

{
q ∈ R

n−1
∣
∣ 〈q − P, ~n〉 = 0

}
and

H−

P :=
{
q ∈ R

n−1
∣
∣ 〈q − P, ~n〉 < 0

}
. If  L≻P = ∅, there is nothing to prove.

Assume thus that there is P ∗ ∈  L≻P . Since HP ⊆  L∼P by Lemma A3, I can
assume P ∗ ∈ H+

P (otherwise consider −~n instead). I claim  L≻P = H+

P , which
is an open set and is thus going to conclude the proof.

“⊆”: Let Q ∈  L≻P and assume by means of contradiction Q ∈ H−

P . Then,
by continuity of the scalar product, there exists α ∈ (0, 1) such that αP ∗ + (1−
α)Q ∈ HP ⊆  L∼P , which violates αP ∗ + (1 − α)Q ≻ P by the (IA).

“⊇”: Let Q ∈ H+

P . Consider the hyperplanes HQ, HP∗ parallel to HP and
passing through Q,P ∗. If 〈P ∗−P, ~n〉 ≥ 〈Q−P, ~n〉, Q lies between HP and HP∗ .
Connecting P and P ∗, there exists and α ∈ [0, 1) with αP +(1−α)P ∗ ∈ HQ∩  L,
which is thus indifferent to Q by Lemma A3. By Lemma A4, we thus have
P ∗ � Q ≻ P . Finally, if 〈Q−P, ~n〉 > 〈P ∗ −P, ~n〉, P ∗ lies between HP and HQ.
Connecting P and Q, we find an α ∈ (0, 1) with αP+(1−α)Q ∈ HP∗∩ L ⊆  L∼P∗ .
Applying Lemma A4, we find Q ≻ P ∗ ≻ P .

We now conclude with the proof of Theorem 1 and Corollary 1

Proof of Theorem 1 and Corollary 1. By Theorem A1, a weak preference that
fulfills the Independence Axiom 1 and Axiom 3 is continuous. By the classical
result of von Neumann-Morgenstern, conditions (ii) and (iii) are equivalent. It
thus suffices to show that (iii) implies the existence of indifferent points that
span a hyperplane, i.e., Axiom 3. To this end, let X = {x1, . . . , xn}, define
u :=

∑n

k=1
1

n
· u(xk) and consider the following system of linear equations for

p = (p1, . . . , pn) ∈ R
n.

(
u(x1) u(x2) . . . u(xn)

1 1 . . . 1

)

︸ ︷︷ ︸

=:M

·








p1
p2
...
pn








=

(
u

1

)

,

Note that P := ( 1

n
, 1

n
, . . . , 1

n
) is a particular solution. Since rank(M) ≤ 2, the

kernel ker(M) of the linear map induced by M is a vector space of at least
dimension n− 2 and the solution set of the system is given by P + ker(M). Let
b2, . . . , bn−1 be a basis of ker(M). Since all entries of P are positive, there is an
ε > 0 such that P1 := P , Pk := P + ε · bk, k = 2, . . . , n− 1 spans a hyperplane
of points that are indifferent with utility level u.
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