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Abstract. Dynamic MRI enables a range of clinical applications, in-
cluding cardiac function assessment, organ motion tracking, and radio-
therapy guidance. However, fully sampling the dynamic k-space data is
often infeasible due to time constraints and physiological motion such as
respiratory and cardiac motion. This necessitates undersampling, which
degrades the quality of reconstructed images. Poor image quality not
only hinders visualization but also impairs the estimation of deforma-
tion fields, crucial for registering dynamic (moving) images to a static
reference image. This registration enables tasks such as motion correc-
tion, treatment planning, and quantitative analysis, particularly in appli-
cations like cardiac imaging and MR-guided radiotherapy. To overcome
the challenges posed by undersampling and motion, we introduce an end-
to-end deep learning (DL) framework that integrates adaptive dynamic
k-space sampling, reconstruction, and registration. Our approach begins
with a DL-based adaptive sampling strategy, optimizing dynamic k-space
acquisition to capture the most relevant data for each specific case. This
is followed by a DL-based reconstruction module that produces images
optimized for accurate deformation field estimation from the undersam-
pled moving data. Finally, a registration module estimates the deforma-
tion fields aligning the reconstructed dynamic images with a static refer-
ence. The proposed framework is independent of specific reconstruction
and registration modules allowing for plug-and-play integration of these
components. The entire framework is jointly trained using a combina-
tion of supervised and unsupervised loss functions, enabling end-to-end
optimization for improved performance across all components. Through
controlled experiments and ablation studies, we validate each component,
demonstrating that each choice contributes to robust motion estimation
from undersampled dynamic data.

1 Introduction

Magnetic Resonance Imaging (MRI) is an essential imaging modality due to its
non-invasive nature, absence of ionizing radiation, and exceptional soft tissue
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Fig. 1: Overview of our proposed pipeline: Utilizing initial dynamic (moving)
k-space data, an adaptive sampling model generates a pattern tailored to a
specific acceleration factor. This pattern is used to obtain undersampled moving
k-space measurements, which are then fed into a reconstruction model to recover
a high-fidelity moving image. Finally, the reconstructed dynamic image and a
reference image are input into a registration model to predict motion patterns
as registration fields.

contrast. Dynamic MRI serves a wide range of applications, including real-time
tasks such as cardiac function assessment, motion tracking of various organs,
and adaptive treatments in radiotherapy, making it indispensable in both diag-
nostic and treatment guidance. However, a major limitation of dynamic MRI is
its inherently slow acquisition process, which becomes particularly challenging
in real-time scenarios and is further exacerbated by voluntary or involuntary
physiological motions such as respiration [8] and heartbeat [20].

Such motion can interfere with the ability to fully sample the k-space—the
frequency domain data needed to reconstruct high-fidelity images in dynamic
scenarios. To achieve artifact-free image reconstruction, the Nyquist sampling
criterion (NC) [37] must be met, which specifies the minimum amount of data
required to avoid aliasing and loss of fine detail. Although fully sampling the
k-space per NC ensures spatial accuracy, it is often impossible. Thus, acceler-
ating MRI acquisition by undersampling the k-space (below NC) becomes the
only feasible approach. Even if dynamic acquisition is attainable in some cases,
such as ECG-triggered cardiac MRI acquisition [30], undersampling can decrease
operational costs and allow for more MRI scans.

Advancements in deep learning (DL) have markedly enhanced the recon-
struction of undersampled MRI [33,11,32], demonstrating significant advantages
over traditional methods like compressed sensing (CS) [29,15]. These methods
leverage data-driven, often convolution-based, models to reconstruct high-quality
images from limited k-space data, achieving superior reconstructions at high ac-
celerations, and more efficient computations than CS.

Beyond reconstruction, DL methods have emerged for adaptively (under)sampling
the MRI acquisition showing improved performance over non-adaptive learned,
fixed or random sampling schemes. Although most methods have been explored
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in the static case, only one DL approach has been devised specifically for dynamic
MRI [61].

Nonetheless, undersampling the k-space inherently compromises image qual-
ity, which complicates the preservation of fine spatial details and may limit the
accuracy of subsequent motion estimation and registration processes— essential
for dynamic MRI applications. In cardiac MRI, for example, registration aligns
images across phases to support motion correction, segmentation, etc, for com-
prehensive functional and structural assessment. [22]. In adaptive radiotherapy,
MRI-based registration allows precise tumor motion tracking, thereby enabling
accurate dose delivery while minimizing exposure to adjacent healthy tissues
[19].

Several traditional and DL-based methods exist for image registration in
medical imaging, with the goal of aligning a moving image to a reference frame
and estimating motion [24,5,10,9,40]. Within the scope of accelerated MRI,
some approaches have combined registration with a reconstruction step by co-
optimizing both processes [13,41,42], while others employ learned motion models
[53].

Motivated by the need for precise motion estimation in undersampled dy-
namic MRI, we introduce the first end-to-end DL-based framework that in-
tegrates adaptive undersampling, reconstruction, and registration for dynamic
MRI. An overview of our method is depicted in Fig. 1. Our contributions are as
follows:

– We introduce a novel end-to-end pipeline that integrates adaptive undersam-
pling, reconstruction, and registration for dynamic MRI—a comprehensive
approach that, to our knowledge, has not been explored in any similar DL-
based or traditional optimization framework.

– We present a detailed methodology covering all components of our approach,
ensuring reproducibility for each module. Code will be made available.

– We rigorously evaluate our framework under various configurations.
– We validate our approach on a cardiac cine dataset and demonstrate its

generalizability on out-of-distribution data (aorta dataset).

The rest of the paper is organized as follows: Section 2 covers background
and related work, Section 3 details our methodology, Section 4 presents our
experimental setup and results, and Section 5 offers a discussion and conclusions.

2 Background and Related work

2.1 Dynamic MRI Reconstruction

Dynamic MRI reconstruction aims to recover a moving image x ∈ Cn×nt from
acquired dynamic k-space data, where n = nx × ny denotes the spatial dimen-
sions, nc represents the number of scanner coils, and nt the temporal dimension
of the sequence. Given fully sampled data y ∈ Cn×nc×nt , the underlying image
sequence can be obtained by applying the inverse Fast Fourier Transform F−1,
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followed by the root-sum-of-squares (RSS) as follows:

x·,τ := RSS ◦ F−1(y·,·,τ ), τ = 1, · · · , nt, (1)

where,

RSS(w) =
( nc∑
k=1

|w·,k|2
)1/2 ∈ Rn, w ∈ Cn×nc . (2)

Here, |a| :=
√
real(a)2 + imag(a)2, denotes the modulus operator. To reduce the

MRI acquisition time, undersampling is applied to the k-space: ỹM := M(y).
Undersampling is characterized by a binary mask operatorM = (M1, · · ·Mnt) ∈
{0, 1}n×nt , which zeros-out non-acquired k-space samples as follows:

ỹM
i,k,τ =

(
M(y)

)
i,k,τ

:=

{
yi,k,τ if (Mτ )i = 1

0, if (Mτ )i = 0,

i = 1, · · · , n, k = 1, · · · , nc, τ = 1, · · · , nt.

(3)

The resulting forward model for each frame τ of the sequence is described by
the forward operator TMτ ,Sτ :

ỹM
·,·,τ = TMτ ,Sτ

(xτ ) := Mτ ◦ F ◦ CSτ
(x·,τ ), (4)

where CSτ denotes the coil sensitivity-encoding operator, which decomposes an

image into individual coil images using coil sensitivity profiles Sτ ∈ Cn2×nc that
represent the spatial sensitivity of each coil. This is expressed as:

CSτ
(z) =

(
S1
τz, · · · ,Snc

τ z
)
, for z ∈ Cn. (5)

A reconstruction for (4) can be formulated as a solution to a regularized least
squares optimization problem:

argmin
x′∈Cn×nt

nt∑
τ=1

1

2

∣∣∣∣TMτ ,Sτ
(x′

·,τ )− ỹM
·,·,τ

∣∣∣∣2
2
+H(x′), (6)

where H denotes an arbitrary regularization functional, which introduces prior
domain knowledge.

2.2 Deep Learning-based MRI Reconstruction

Deep learning methods have been widely applied to address accelerated MRI,
bypassing the need for handcrafted priors and computationally intensive opti-
mization techniques in CS. DL methods primarily fall into two categories: di-
rect mapping and unrolled optimization approaches [11]. Direct mapping DL
methods take undersampled images as input and learn to output reconstructed
images, a straightforward approach that typically requires a substantial amount
of training data. In contrast, unrolled optimization methods are inspired by
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compressed sensing techniques and leverage algorithms like gradient descent
[17,39,60], primal-dual descent [1], conjugate gradient [2], and ADMM [58] to
iteratively solve (6).

The availability of open-access k-space datasets from challenges such as
fastMRI [23], Multi-Coil MRI Reconstruction [6], and the recent CMRxRecon
2023 and 2024 [49,50], has empowered the community to pursue data-driven
approaches. Consequently, numerous DL-based reconstruction techniques have
been developed, primarily for static MRI acquisitions [14,39,60], with a recent
growing expansion into dynamic settings [63,46,56,27].

2.3 Adaptive MRI Acquisition

Several methods have been proposed to replace standard sampling patterns (e.g.,
equidistant, random uniform, Gaussian [59]) in DL-based MRI reconstruction
with learned approaches. These methods include training dataset-based sam-
pling optimization [3,65,38] and adaptive, case-specific patterns [4,16] jointly
learned with reconstruction networks. While most focus on static MRI, [61] ex-
tends adaptive sampling to dynamic (2D + time) imaging through an end-to-end
approach for adaptive dynamic undersampling and reconstruction (E2E-ADS-
Recon).

Unlike previous methods optimized for single acceleration factors, this ap-
proach is proposed to be flexible across various acceleration factors. It includes
two possible configurations for adapted undersampling: a phase-specific approach,
where distinct patterns are generated for each temporal phase, and a unified ap-
proach, applying a single pattern across all phases.

2.4 Deformable Image Registration

Deformable (non-rigid) registration aims to align a moving image zmov ∈ Rn×nt ,
to a fixed, static reference image zref ∈ Rn, by estimating spatial deformation
fields ϕ = (ϕ1, · · · ,ϕnt

) ∈ R2×n×nt .
The displacement field ϕτ maps the coordinates of zref to those of (zmov)τ ,

achieved through a warping operation, W : Rn × R2×n → Rn[5], enabling the
registration of zmov:

zreg =
{
W

(
(zmov)·,τ ,ϕτ

)}nt

τ=1
∈ Rn×nt . (7)

The objective is to determine an optimal deformation field, ϕ∗, that aligns the
moving image with the reference accurately. This is often posed as an unsuper-
vised minimization problem using a similarity measure Lsim:

ϕ∗ := argmin
ϕ

Lsim (zreg, zref) . (8)

Several approaches also leverage complementary (supervised) tasks to enhance
the registration process, incorporating segmentation accuracy losses when ground
truth delineations of target organs are available [18,5].

In this work we only employ a similarity measure as in (7) due to the absence
of such segmentations within our datasets.
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3 Methods

3.1 Deep Learning Framework

Sensitivity Profiles Estimation Following [39], we begin by estimating sen-

sitivity profiles for the multi-coil data, denoted as S̃ ∈ Cn2×nc×nt , using a
fully-sampled central region of the k-space, ỹMacs

mov corresponding to low frequen-
cies—the autocalibration signal (ACS). Consistent with [39], these estimates are
then input into a DL-based model, specifically a two-dimensional U-Net [35],
denoted as Sσ, which is trained to refine them:

Sk
τ := Sσ(S̃k

τ ), τ = 1, · · · , nt, k = 1, · · · , nc. (9)

The refined sensitivity profiles are subsequently normalized to satisfy:

nc∑
k=1

(Sk
τ )

∗Sk
τ = In ∈ Rn×n. (10)

Fig. 2: Adaptive Sampling Model (Aω) framework. Sensitivity profiles from the

sensitivity model (Sσ) and initial undersampled moving data (ỹM0

mov) are pro-
cessed by a U-Net-like encoder followed by a MLP, generating sampling proba-
bilities. These are rescaled for the specified acceleration R and binarized via a
straight-through estimator creating an adapted binary dynamic sampling mask.
Here we assume ỹM0

mov = ỹMacs

mov .

Adaptive Sampling Model An adaptive dynamic sampling (ADS) module,
inspired by the E2E-ADS-Recon framework [61], denoted as Aω, takes as input
initially undersampled moving data ỹM0

mov, acquired with an initial mask M0,
along with sensitivity profiles S and a target acceleration factor R. ADS consists
of cascades of 3D U-Net-like encoders and multi-layer perceptrons (MLPs) to
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generate sampling selection probabilities, which are binarized using a straight-
through estimator [7,62] to match the sampling budget and enable adaptive
sampling according to the target acceleration R.

This module outputs a binary mask operator M = (M1, · · · ,Mnt), which
guides the subsequent dynamic image reconstruction:

M := Aω(ỹ
M0

mov;S, R). (11)

By default, the ACS data ỹM0

mov = ỹMacs

mov initializes Aω, unless otherwise specified.

Reconstruction Model Our proposed pipeline (see Sec. 3.2) is agnostic to
the choice of reconstruction network, supporting any DL-based dynamic recon-
struction model. For the main experiments, we use the variable Splitting Half-
quadratic ADMM algorithm for Reconstruction of inverse-Problems (vSHARP)
[58], a model that demonstrated competitive performance in both reconstruction
quality and speed at the CMRxRecon challenge 2023 [49]. The vSHARP model
unrolls a DL-based optimization over T iterations. Denoted as Vθ, it accepts
an undersampled dynamic image x̃M

mov and sensitivity maps S to yield a refined
dynamic reconstruction:

x̂mov = Vθ(x̃M
mov;S), (x̃

M
mov)·,τ = RSτ

◦ F−1(ỹM
mov)·,·,τ . (12)

The operator RSτ
: Cn×nc → Cn represents the coil-combining operator using

Sτ :

RSτ
(v) :=

nc∑
k=1

(Sk
τ )

∗v·,k ∈ Cn, for v ∈ Cn×nc . (13)

Additional details on the reconstruction network are provided in Appendix A.

Registration - Motion Estimation Model As with Sec. 3.1, any deformable
image registration method—DL-based or otherwise—can be employed to esti-
mate deformation fields for each temporal phase of the moving image relative to
a reference image. For the main experiments, we use a lightweight approach by
using a two-dimensional U-Net [35], denoted as Rψ, which processes a concate-
nated along the channel dimension input of the (reconstructed) moving image
and the reference image xref ∈ Rn, rather than using, for instance, a 3D U-Net.
This setup configures the initial layer to accept nt + 1 input channels, with the
model outputting 2 × nt channels, representing the deformation fields for each
temporal phase of the moving image relative to the reference image:

ϕ = Rψ(w), w =
[
|x̂mov|,xref

]
∈ Rn×(nt+1). (14)

3.2 End-to-End Framework

Our end-to-end framework incorporates sensitivity estimation, adaptive sam-
pling, reconstruction, and registration in a sequential pipeline, as outlined in the
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Fig. 3: A 2D U-Net plays the role of the registration model. It takes as input
the reconstructed moving and reference images, concatenated along the chan-
nel dimension. The registration model outputs a sequence of registration fields
corresponding to the displacements/motion between the moving and reference
images.

Fig. 4: End-to-end pipeline of the proposed method. The process starts with coil
sensitivity profile estimation from ACS data. Next, the adaptive sampling model
selects optimized sampling patterns based on initial moving data (here equivalent
to ACS data) and sensitivities. The adaptively acquired data are then input into
the reconstruction model. Finally, the registration model outputs deformation
fields that align the reconstructed sequence to a reference accounting for motion.
A registered output (through warping) is used for loss computation.

previous sections. First, sensitivity profiles S are estimated and refined using Sσ.
These refined sensitivity maps S, together with the initial undersampled k-space
data ỹM0

mov, inform the adaptive sampling model Aω, which generates dynamic
sampling patterns M based on the specified acceleration factor R. The adap-
tively sampled moving data ỹM

mov is then processed by the reconstruction model
Vθ, to obtain a high-quality dynamic image. Finally, the registration model Rψ
calculates deformation fields to align the reconstructions with a reference frame,
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correcting for motion and ensuring temporal consistency across frames. The full
pipeline is presented in Algorithm 1 and illustrated in Figure 4.

Algorithm 1: End-to-end Adaptive Sampling, Reconstruction and Reg-
istration for Dynamic MRI

Input: ỹM0

mov, ỹ
Macs

mov ∈ Cn×nc×nt , R, yref ∈ Cn×nc

Output: ϕ ∈ R2×n×nt , [Optional] xreg ∈ Rn×nt

1 for τ ← 1 to nt do
2 for k ← 1 to nc do

3 Estimate S̃k
τ from (ỹMacs

mov )·,k.τ as in [39]

4 Sk
τ ← Sσ(S̃k

τ ) // Refine Sensitivities

5 Normalize s.t.
∑nc

k←1(S
k
τ )
∗Sk

τ ← In ∈ Rn×n

6 end

7 end

8 M← Aω(ỹ
M0

mov;S, R) // Adapt sampling pattern

9 ỹM
mov ←M(ymov) // Sample moving data with M

10 for τ ← 1 to nt do
11 (x̃M

mov)·,τ ← RSτ ◦ F−1(ỹM
mov)·,·,τ

12 end

13 x̂mov ← Vθ(x̃M
mov;S) // Reconstruct moving image

14 xref ← RSS ◦ F−1(yref)

15 w←
[
|x̂mov|,xref

]
// Concatenate along channel dim

16 ϕ←Rψ(w) // Compute registration field

17 [Optional] for τ ← 1 to nt do
18 (xreg)·,τ ←W

(
|x̂mov|·,τ ,ϕτ

)
// Warp mov. image

19 end

3.3 Training Loss Function

With the end-to-end framework established, the primary objective is to opti-
mize the registration task, specifically enhancing the accuracy of the deformation
fields. Although the reconstruction task is secondary, we expect that improving
the image reconstruction indirectly supports better motion estimation by pro-
viding high-fidelity inputs for alignment.

Let ỹM
mov ∈ Cn×nc×nt represent the undersampled moving data, acquired

using the predicted sampling set M from Aω. Also let ymov ∈ Cn×nc×nt and
yref ∈ Cn×nc denote the fully sampled (moving) and reference k-space measure-
ments. The total loss we aim to optimize is given by:

L := αLrec + βLreg, (15)
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where α, β > 0 weight the reconstruction and registration losses. The reconstruc-
tion loss is defined as:

Lrec = Lssim (|x̂mov|,xmov) +
∣∣∣∣|x̂mov| − xmov

∣∣∣∣
1
, (16)

with x̂mov = Vθ(ỹM
mov;S) representing the predicted moving image and xmov =

RSS ◦ F(ymov) denoting the ground truth. Here, Lssim := Lssim2D + Lssim3D

combines 2D and 3D structural similarity index measure (SSIM) losses [58],
calculated over individual slices and across the sequence, respectively. For the
registration loss Lreg, we focus on aligning the registered reconstructed moving
and reference images while ensuring a smooth deformation field. This includes a
similarity term for image alignment and a regularization term to constrain the
registration field:

Lreg = Lsim (xreg, {xref}nt

t=1) + Lsmooth(ϕ), (17)

where xreg =
{
W

(
|x̂mov|·,τ ,ϕτ

)}nt

τ=1
∈ Rn×nt and xref = RSS ◦ F(yref) ∈

Rn. Note that {xref}nt

t=1 ∈ Rn×nt denotes xref repeated nt times. For Lsim, we
apply the same loss functions as in (16), and ϕ = Rψ(

[
|x̂mov|,xref

]
) denotes the

registration field prediction.
The smoothness term, inspired by a diffusion regularizer [12,5], Lsmooth, aims

to regularize the registration field by penalizing abrupt changes, approximating
partial derivatives along each dimension through mean absolute finite differences:

Lsmooth(ϕ) =
1

2nnt

nt∑
τ

∑
p

∣∣∣∣∂ϕτ (p)

∂u1

∣∣∣∣+ ∣∣∣∣∂ϕτ (p)

∂u2

∣∣∣∣ , (18)

where ∂ϕτ (p)
∂ui

denotes the approximated partial derivatives.

4 Experiments

4.1 Datasets

We used the CMRxRecon 2023 cardiac cine dataset [49,48], which comprises
472 scans with fully sampled, ECG-triggered multi-coil (nc = 10) k-space data,
totaling 3,185 2D sequences, with the cardiac cycle segmented into 12 temporal
frames. For external validation, we used the aorta dataset from CMRxRecon 2024
[50], also ECG-triggered with nc = 10 coils and 12-frame cycles. The inference
subset comprises 111 scans and 1,332 sequences.

4.2 Undersampling

Undersampling was applied retrospectively in all experiments, with fully sampled
data used for loss calculation and evaluation. A 4% center fraction within the
ACS was retained. Training used arbitrary acceleration factors of 4×, 6×, or 8×,
and all three were evaluated during inference.
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4.3 Selection of Registration Reference

Each sequence contained 12 segments of the cardiac cycle. We selected the 6th

segment as registration reference yref ∈ Cn×nc , corresponding to the end-systolic
(contracted) phase, since this phase can be consistently triggered by ECG [31],
providing a stable anatomical structure. The remaining segments (nt = 11)
served as the moving image target ymov ∈ Cn×nc×nt , which were retrospectively
undersampled to create the undersampled moving input, ỹM

mov.

4.4 Evaluation

We assess estimated motion quality by evaluating the similarity of the registered
moving images (warped reconstructed images using predicted deformation fields)
to the reference image. We employ three image quality metrics: SSIM, PSNR,
and NMSE. For brevity, definitions are provided in in Appendix B. For each
metric m, we averaged results across all phases of the sequence:

m = 1
nt

∑nt

τ=1 m
(
W

(
|x̂mov|·,τ ,ϕτ

)
,xref

)
. (19)

4.5 Training and Optimization Details

Models were implemented in PyTorch [34] and trained on single NVIDIA A100
or H100 GPUs with the Adam optimizer (no weight decay) [66], a batch size
of 1, and a learning rate schedule with a 10k step size and 0.8 decay. After a
2k-iteration linear warm-up to reach a 3e-3 learning rate, training continued for
52k iterations. The best checkpoint, based on validation SSIM, was used for
inference.

4.6 Ablation and Component Analysis

Our proposed pipeline is the first to integrate adaptive sampling, reconstruction,
and registration into an end-to-end framework for dynamic MRI, making direct
comparisons with existing baselines impossible. Therefore, we evaluate each key
component within our approach through “controlled” comparisons and ablation
studies.

Baseline Setup Our baseline setup includes:
– Sensitivity Model: four scales (16, 32, 64, 128 filters).
– Adaptive Sampling Module: Identical to [61] in hyperparameters, but with

one cascade instead of two. Unless specified otherwise, adaptive sampling is
phase-specific. We employ ACS data for initialization (ỹM0

mov = ỹMacs

mov ).
– Reconstruction Model: vSHARP with T = 10 optimization steps utilizing

3D U-Nets with four scales (16, 32, 64, and 128 filters) and Tx = 6 data
consistency steps. Other parameters match [58].

– Registration Model: A 2D U-Net (see Section 3.1) with four scales (16, 32, 64,
and 128 filters).
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– End-to-end training loss calculation with α = β = 1, reflecting the expectation
that improving reconstruction quality will contribute to reliable registration
by reducing artifacts and inconsistencies that could otherwise impair motion
estimation.

In each experiment, only the evaluated component is modified, keeping all other
settings constant to isolate its effect.

Registration Component To assess our lightweight registration approach (con-
catenating moving and reference images along the channel dimension in a 2D
U-Net), we compare it against DL-based alternatives:
1) A standard registration method - VoxelMorph [5]
2) A vision transformer-based registration method following TransMorph [9]
3) Our proposed model using a larger U-Net

and traditional motion estimation methods:
4) Optical flow with iterative Lucas-Kanade (ILK) [25] and TV-L1 [64] solvers

from scikit-image [47]
5) DEMONS registration algorithm [43] provided by SimpleITK [28]
See Appendix B for the choice of hyperparameters.

Reconstruction Component To evaluate the choice of reconstruction network
(vSHARP) and showcase the pipeline’s modularity, we also test a state-of-the-
art model, the End-to-End Variational Network (VarNet) [39] (extended to 3D),
configured with 10 cascades and 3D U-Nets as regularizers (4 scales: 32, 64, 128,
256 filters).

Adaptive Sampling Component
– Initialization The ADS module relies on initial data ỹM0

mov to guide the ac-
quisition. In [61], equispaced initialization improved reconstruction quality;
we evaluate this for registration quality as well (initial data, include ACS
and accelerated at (R− 4)× where R is the target acceleration).

– Phase-specific vs Unified Sampling Phase-specific experiments generate
a unique adaptive pattern for each temporal phase, whereas unified settings
produce a single pattern for all phases.

– Learned vs Fixed Sampling We compare our pipeline by replacing the
adaptive sampling module with non-adaptive dataset-optimized [65], fixed
non-adaptive equispaced [59] (distinct pattern per frame in phase-specific
experiments; same for all frames in unified settings) and kt-equispaced [44]
(temporally interleaved trajectory, applicable only to phase-specific) sam-
pling schemes. Offset of patterns was randomly selected during training and
fixed (per case) during inference.

Weighting Parameters for Joint Loss To investigate how task weighting impacts
registration quality, we set the weighting parameters in (15) to α = 1, β = 3. This
allows us to examine the extent to which additional emphasis on the registration
task influences the final motion estimation.
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Joint vs. Decoupled Training To evaluate task interactions, we adopt a decou-
pled loss approach. For the registration loss Lreg, only the registration model
parameters (ψ) are updated, while holding all others constant (frozen). Con-
versely, for the reconstruction loss Lrec, only the parameters σ, ω, and θ of the
sensitivity, sampling, and reconstruction models are optimized, while ψ remains
fixed. This decoupling allows each task to be evaluated independently, compared
to our original joint, end-to-end training.

4.7 Experimental Results

We present average quantitative results for each experiment across both datasets
(cine - seen during training, aorta - unseen), displayed as line graphs (function of
acceleration factor) with ±0.1 standard deviations, along with average inference
times.
Detailed results are also in tabular form in Appendix C. Examples of qualitative
results are provided in Figure 10, with further examples in Appendix C.

(a) Cine test dataset.

(b) Aorta dataset (not seen during training).

Fig. 5: Comparison of registration performance across different methods.

Registration Component Figure 5 presents the registration performance of our
pipeline across various registration modules, evaluated on both datasets. Across
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all acceleration factors (4×, 6×, 8×), our proposed lightweight model consis-
tently outperforms traditional methods (OptFlow ILK, TV-L1, DEMONS) and
the two considered DL-based approaches (Voxelmorph, Transmorph) in all met-
rics on both datasets, indicating more accurate motion estimation. Notably, the
larger variant of our lightweight model did not improve registration. Addition-
ally, our pipeline with learned registration methods (including ours) achieves
significantly lower inference times than non-DL-based methods.

(a) Cine test dataset.

(b) Aorta dataset (not seen during training).

Fig. 6: Impact of reconstruction model on registration results.

Reconstruction Component Figure 6 shows that replacing vSHARP with Var-
Net yields lower registration metrics, suggesting vSHARP’s optimization-based
design better supports accurate motion estimation in our pipeline.

Adaptive Sampling Component In Figure 7 we compare the effects of phase-
specific versus unified adaptive sampling with both ACS initialization and equispaced-
fused ACS initialization. Phase-specific sampling consistently outperforms uni-
fied sampling across all metrics, particularly at higher accelerations, indicating
better registration quality with unique trajectories per phase. In contrast to
the reconstruction quality findings in [61], equispaced initialization did not no-
tably benefit registration quality. Figure 8 further shows that learned sampling
(adaptive, dataset-optimized) outperforms fixed schemes across all metrics with
minimal inference time impact, with dataset-optimized sampling showing a slight
advantage over adaptive.

Weighting Parameters for Joint Loss Although the reconstruction quality of the
moving image is not a primary focus, we examine the effect of varying loss weights
on both reconstruction and registration tasks in Figure 9. Results show that a
higher registration weight (β = 3) noticeably reduces reconstruction quality, yet
registration accuracy improves across all metrics and undersampling rates.
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(a) Cine test dataset.

(b) Aorta dataset (not seen during training).

Fig. 7: Impact of phase-specific vs unified adaptive sampling with ACS and eq-
uispaced initialization on registration results.

(a) Cine test dataset.

(b) Aorta dataset (not seen during training).

Fig. 8: Impact of learned vs fixed non-adaptive sampling schemes on registration
results.

Joint vs. Decoupled Training The results in Figure 9 further reveal that the joint
training approach performs slightly better in terms of both, reconstruction and
registration, than the decoupled method for equal weighting.
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(a) Reconstruction performance.

(b) Registration performance.

Fig. 9: Impact of joint vs decoupled training, and increased registration loss
weight (cine dataset).

5 Discussion and Conclusion

In this work we present a novel pipeline integrating adaptive (under)sampling,
reconstruction, and registration in an end-to-end framework for dynamic MRI.
Our experiments provide a thorough evaluation of each component, on both in
and out-of-distribution datasets, highlighting the flexibility and performance of
this approach.

Our results show that our motion estimation module achieves strong regis-
tration performance, measured by registered moving image’s similarity to the
reference, and provides efficient inference speeds compared to other considered
deep learning and traditional methods.

Similarly, when testing an additional reconstruction network (VarNet), re-
sults indicated that our pipeline performed better with vSHARP as the recon-
struction model, as evidenced by the registration outcomes.

While alternative hyperparameters for the registration component or utilizing
different reconstruction algorithms might yield different outcomes, our aim is not
to identify the optimal models but to underscore the modularity of our pipeline,
allowing for interchangeable reconstruction or registration modules in a plug-
and-play configuration.

Our evaluation of learned versus fixed sampling methods indicates that us-
ing an adaptive or optimized learned sampler leads to better registration field
estimation than equidistant sampling schemes. This aligns with [61], where adap-
tive sampling also improved reconstruction quality over fixed schemes, although
the difference between adaptive and optimized sampling remained minor here.
Additionally, phase-specific sampling patterns, rather than unified, improved
registration, while equispaced initialization did not enhance motion estimation,
contrasting with its positive impact on reconstruction found in [61].
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(a) Case I, R = 6.

(b) Case II, R = 8.

Fig. 10: Example results for two cases, shown at various temporal frames (τ)
relative to the reference image.

Finally, we compared joint versus decoupled training schemes. In the decou-
pled setup, task-specific losses were optimized by freezing the registration model
weights during reconstruction loss computation, and vice versa. While joint op-
timization yielded only modest improvements over decoupled training, its value
becomes clearer in our experiment with increased weighting on the registration
loss. In this setting, prioritizing registration led to improved registration metrics
despite a decline in reconstruction quality, highlighting how joint training allows
flexible task prioritization. Future work could explore setting α = 0, focusing
exclusively on registration to evaluate its standalone impact.

Since we compared registered reconstructed moving images (x̂mov) to the
reference, our results reflect both registration and reconstruction quality. Eval-
uating motion estimation independently by comparing registered ground truth
moving images (xmov)-using the predicted deformation fields-to the reference
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would provide a more objective assessment. Future research should also directly
assess registration accuracy with relevant methods [45,36].

A limitation of our study is the reliance on fully sampled dynamic/moving
k-space as ground truths, which are often unavailable due to motion constraints.
Although self-supervised learning (SSL) methods exist for reconstruction [51,54,52],
the adaptive sampling component requires access to a ground truth k-space. For
the registration component, however, since it is trained in an unsupervised man-
ner and only requires a fully sampled reference image, this issue is less prob-
lematic. Future work could explore SSL adaptations for the adaptive sampling
component.

A further limitation is that our approach is two-dimensional, estimating mo-
tion between dynamic 2D (moving) slices and a reference 2D slice. A 3D ap-
proach could capture inter-slice correlations, though it would require a 4D (3D
+ time) reconstruction network, which would be computationally intensive for
GPU memory during training (e.g., for back-propagation). Future work should
consider exploring such a 3D approach.

This study marks the first application of an end-to-end, DL-based pipeline
that jointly optimizes coil sensitivity estimation, adaptive sampling, reconstruc-
tion, and registration to enhance motion estimation between moving undersam-
pled and reference images. The results suggest that each component contributes
distinct benefits. Further research should investigate approaches that bypass
reconstruction altogether, aiming to estimate motion directly from adaptively
undersampled measurements for a more efficient workflow.
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Deep End-to-end Adaptive k-Space Sampling, Re-
construction, and Registration for Dynamic MRI
- Supplementary Material

A Methods - Additional Information

A.1 Sensitivity Profile Network

As detailed in the main text and following [39], the sensitivity profiles for the

multi-coil data, denoted as S̃ ∈ Cn2×nc×nt , are initially estimated using the fully
sampled central region of the k-space, ỹMacs

mov , corresponding to the low-frequency
autocalibration signal. This estimation is computed as:

S̃k
τ = F−1

(
(ỹMacs

mov )·,k,τ
)
⊘ RSS

(
F−1

(
(ỹMacs

mov )·,1,τ
)
, · · · ,F−1

(
(ỹMacs

mov )·,nc,τ

))
,

(A1)
where ⊘ represents element-wise (Hadamard) division, and RSS(·) computes the
root sum of squares.

These initial sensitivity estimates, consistent with the methodology in [39],
are further refined using a deep learning-based model. Specifically, a two-dimensional
U-Net [35], denoted as Sσ, is employed to enhance the sensitivity profiles:

Sk
τ := Sσ(S̃k

τ ), τ = 1, · · · , nt, k = 1, · · · , nc. (A2)

The refined sensitivity profiles are subsequently normalized to satisfy:

nc∑
k=1

(Sk
τ )

∗Sk
τ = In ∈ Rn×n. (A3)

A.2 Reconstruction Network - vSHARP

In our original pipeline, we employed the variable Splitting Half-quadratic ADMM
algorithm for Reconstruction of inverse Problems (vSHARP) as the reconstruc-
tion network. vSHARP is an unrolled, physics-guided deep learning framework
[58], which has demonstrated effectiveness in accelerated dynamic cardiac MRI
reconstruction. Notably, it was among the winning solutions of the CMRxRecon
2023 and 2024 challenges [55,57]. The vSHARP algorithm leverages the half-
quadratic variable splitting technique for the optimization problem defined in
(6), introducing an auxiliary variable z as follows:

min
x′ , z∈ Cn×nt

1

2

nt∑
τ=1

∣∣∣∣∣∣TMτ ,Cτ (x
′

·,τ )− ỹM
·,·,τ

∣∣∣∣∣∣2
2
+H(z) subject to x

′
= z. (A4)

Equation (A4) is then unrolled over T iterations using the Alternating Di-
rection Method of Multipliers (ADMM), comprising three main steps at each
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iteration: (i) denoising to refine the auxiliary variable z, (ii) data consistency
for the target image x, and (iii) updating the Lagrange multipliers m introduced
by ADMM:

zt+1 = argmin
z∈ Cn×nt

H(z) +
λt+1

2

∣∣∣∣∣∣∣∣xt − z+
mt

λt+1

∣∣∣∣∣∣∣∣2
2

:= Dθt+1

(
zt,xt,

mt

λt+1

)
,

(A5a)

xt+1 = argmin
x′ ∈ Cn×nt

1

2

nt∑
τ=1

∣∣∣∣∣∣TMτ ,Cτ (x
′

·,τ )− ỹM
·,·,τ

∣∣∣∣∣∣2
2
+ λt+1

∣∣∣∣∣∣∣∣x′
− zt+1 +

mt

λt+1

∣∣∣∣∣∣∣∣2
2

,

(A5b)

mt+1 = mt + λt+1
(
xt+1 − zt+1

)
. (A5c)

In (A5a), Dθt+1 denotes a convolutional DL-based image denoiser with train-
able parameters θt+1, and λt+1 is a trainable learning rate. At each iteration,
Dθt+1 processes the previous estimates of the three variables, yielding an up-
dated estimate for z. Equation A5b is numerically optimized using a differen-
tiable gradient descent scheme unrolled over Tx iterations. The update in (A5c)
involves a straightforward calculation. The initial estimates for x and z are de-
fined as follows:

x0
τ , z

0
τ = RSτ

◦ F−1
(
ỹM
τ

)
. (A6)

For m0, vSHARP employs a trainable network IθI
initialized using x0

τ :

m0 := Iθ
I
(x0). (A7)

Accordingly, the trainable parameters of the vSHARP reconstruction model are
defined as:

θ =
{
θ1, · · · ,θT ,θI , λ1, · · · , λT

}
. (A8)

B Experiments - Additional Information

B.1 Datasets

As outlined in the main text, the cardiac cine dataset from the CMRxRecon
2023 challenge [49,48] was used. This dataset includes 471 4D cardiac k-space
scans, resulting in 3,185 2D dynamic sequences. It features short- and long-axis
views across two-, three-, and four-chamber configurations. Each scan is fully
sampled, ECG-triggered, and acquired using multi-coil (nc = 10) setups. The
dataset spans 3–12 dynamic slices per case, with each cardiac cycle divided into
12 temporal frames. The dataset was split into 251, 100, and 100 4D volumes
for training, validation, and testing, respectively (comprising 1,710, 731, and 744
dynamic slices).
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For external validation, the aorta dataset from the CMRxRecon 2024 chal-
lenge [50] was employed. This dataset also contains fully sampled, ECG-triggered
multi-coil acquisitions segmented into 12 temporal frames. Transverse and sagit-
tal views of the aorta were provided, with the subset used for inference consisting
of 111 scans and 883 dynamic slices.

Figure 11 illustrates representative fully sampled reconstructed images from
each dataset, showcasing the diversity of anatomical views.

(a) Cine SAX. (b) Cine LAX. (c) Aorta SAG. (d) Aorta TRA.

Fig. 11: Representative fully sampled images across cardiac phases and views
from each dataset.

B.2 Undersampling

Learned Sampling Experiments utilized 1D line (rectilinear) sampling pat-
terns, retaining certain lines in the phase-encoding direction of the Cartesian
grid. For learned sampling patterns (adaptive or optimized), data were subsam-
pled using the following strategies:
1. Autocalibration Signal (ACS): The central k-space region was retained, cov-

ering 4% of the fully sampled data.
2. Equispaced Sampling: Applied with a target acceleration factor of (R −

4)×, where R is the target acceleration. ACS measurements (4% of the fully
sampled data) were included in this sampling pattern.
For adaptive sampling, the initial undersampled data informed the acquisi-

tion of additional data at the target acceleration factor. In optimized sampling
experiments, initialization was not strictly required but ensured inclusion of ACS
data.

Fixed Sampling For fixed (non-learned) sampling, we applied two distinct
strategies:
1. Equispaced: Lines were evenly spaced to achieve the target acceleration, with

the central offset randomized during training and fixed during inference.
Separate patterns were used for phase-specific experiments, while a unified
pattern was applied across all phases in unified experiments. Examples are
shown in Figure 12a and Figure 12b.
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(a) Phase-specific equis-
paced sampling pattern.
Each time-step represents
a scheme per each phase.
Each point represents a
line along the nx direc-
tion.

(b) Unified equispaced sampling
pattern.

(c) kt-Equispaced sam-
pling pattern. Each time-
step represents a scheme
per each phase. Each
point represents a line
along the nx direction.

Fig. 12: Representative examples of (fixed) sampling patterns.

2. kt-Equispaced: Used exclusively in phase-specific experiments, this strategy
followed the method in [44], where equispaced sampling was performed per
phase with temporal interleaving along the time dimension. An example of
this pattern is presented in Figure 12c.

B.3 Evaluation Metrics

Assume f ,d ∈ Rn, where f denotes a ground truth image and d a prediction.
Then the evaluation metrics we used are defined as follows:

– Structural Similarity Index Measure (SSIM)

SSIM(f , d) =
1

N

N∑
i=1

(2µfiµdi
+ c1)(2σfidi

+ c2)

(µ2
fi
+ µ2

di
+ c1)(σ2

fi
+ σ2

di
+ c2)

, (B1)

where fi,di, i = 1, ..., N represent 7× 7 square windows of f ,d, respectively,
and c1 = 0.01, c1 = 0.03. Additionally, µfi , µdi denote the means of each
window, σfi and σdi represent the corresponding standard deviations. Lastly,
σfidi

represents the covariance between fi and di.
– Peak signal-to-noise ratio (PSNR)

PSNR(f , d) = 20 log10

(
max(f)√

1
n

∑n
i (fi − di)2

)
. (B2)

– Normalized Mean Squared Error (NMSE)

NMSE(f , d) =
||f − d||22

||f ||22
=

∑n
i=1(fi − di)

2∑n
i=1 f

2
i

. (B3)
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B.4 Data Preprocessing and Postprocessing

Zero-padding Each 2D sequence comprised nt+1 = 12 cardiac cycle segments,
nc = 10 coils, and spatial dimensions varying between n′

x = {448, 512} and
n′
y = {132, 162, 168, 204, 246} for the cine dataset, and n′

x = 416 and n′
y = 168

for the aorta dataset. Here, n′
x, n

′
y represent the pre-padding shapes.

To accommodate the fixed input size required by the MLP component of
the adaptive sampling module [61], data were zero-padded to the largest spatial
dimensions, (nx, ny) = (512, 246). Specifically, fully sampled k-space data were
transformed to the image domain using the inverse FFT, zero-padded in the
image domain, and projected back to k-space using the FFT.

Normalization Data were normalized using the 99.5th percentile of the flat-
tened magnitude of the autocalibration signal k-space for each moving sequence:

s = quantile99.5

(
flatten(|yMacs

mov |)
)
.

Postprocessing Cropping Registered data were evaluated on a center-cropped
region (in the image domain) of size (n′

x/3, n
′
y/2), focusing on the region of in-

terest (cardiac or aorta) as specified by the CMRxRecon challenge organizers.

B.5 Hyperparameter Choices

Warping Transform The warping transform is implemented in PyTorch [34]
to ensure differentiability, following the spatial transformer framework described
in the literature [21,5]. More specifically, the aim is to deform an input image
I based on a displacement field v, yielding a warped image I ′. The process be-
gins by integrating the displacement field v over two steps using the scaling and
squaring method. Mathematically, this computes vintegrated = v + v ◦ v + . . .,
where ◦ denotes the composition of displacement fields. The integrated field
defines a smooth transformation that is used to update spatial coordinates, en-
suring the motion is captured accurately. The warped image is computed as
I ′(x) = I (x+ vintegrated(x)), where x represents pixel coordinates. The method
also normalizes the transformed grid to the range [−1, 1] to match the input ten-
sor’s dimensions, applies bilinear sampling for smooth interpolation, and uses a
binary mask to account for invalid or out-of-bound regions, ensuring the trans-
formation is robust and accurate.

Registration Comparisons We evaluated multiple registration approaches,
each configured with specific hyperparameters:
1. Voxelmorph with a 2D U-Net architecture comprising 4 scales with filter sizes

of 16, 32, 64, and 128 was employed. For each moving (dynamic) image, we
performed a forward pass for each temporal phase along with the reference
image, consistent with the original implementation in [5].image.
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2. Transmorph with a vision transformer model (ViT) inspired by the Swin
Transformer [26], configured with a patch size of 10 × 10, an embedding
dimension of 64, 8 layers, and 9 attention heads. The setup also includes
Global Position-Sensitive Attention (GPSA) intervals and locality strength
to focus on spatial regions. Each moving image phase is processed with the
reference image during the forward pass, adhering to the approach described
in [9].

3. Our proposed registration model using a larger U-Net with enhanced capac-
ity, featuring four scales with 32, 64, 128, and 252 filters at each scale.

4. Iterative Lucas-Kanade (ILK) optical flow method from scikit-image, con-
figured with a radius of 5, 3 warp iterations, prefiltering enabled, and without
Gaussian smoothing. All other parameters are based on the default settings
of the scikit-image in https://scikit-image.org/docs/stable/api/

skimage.registration.html#skimage.registration.optical_flow_ilk.
5. Total Variation L1 optical flow method from scikit-image, configured with

an attachment weight of 15, tightness parameter of 0.3, 3 warp iterations, 5
main iterations, and a tolerance of 1×10−2. All other parameters are based on
the default settings of the scikit-image in https://scikit-image.org/

docs/stable/api/skimage.registration.html#skimage.registration.

optical_flow_tvl1.
6. Demons registration method configured with 10 iterations, a Gaussian smooth-

ing standard deviation of 1.0, and smoothing applied to the displacement
field, following the standard settings of the SimpleITK Demons algorithm.
See https://simpleitk.org/doxygen/latest/html/classitk_1_1simple_
1_1DemonsRegistrationFilter.html.

https://scikit-image.org/docs/stable/api/skimage.registration.html#skimage.registration.optical_flow_ilk
https://scikit-image.org/docs/stable/api/skimage.registration.html#skimage.registration.optical_flow_ilk
https://scikit-image.org/docs/stable/api/skimage.registration.html#skimage.registration.optical_flow_tvl1
https://scikit-image.org/docs/stable/api/skimage.registration.html#skimage.registration.optical_flow_tvl1
https://scikit-image.org/docs/stable/api/skimage.registration.html#skimage.registration.optical_flow_tvl1
https://simpleitk.org/doxygen/latest/html/classitk_1_1simple_1_1DemonsRegistrationFilter.html
https://simpleitk.org/doxygen/latest/html/classitk_1_1simple_1_1DemonsRegistrationFilter.html
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C Additional Results

C.1 Additional Tables
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Table 1: Quantitative results for various configurations on the cardiac cine test
set (under phase-specific settings).
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Table 2: Quantitative results for various configurations on the cardiac cine test
set (under unified sampling settings).
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Table 3: Quantitative results for various configurations on the aorta inference
set (under phase-specific settings).
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Table 4: Quantitative results for various configurations on the aorta inference
set (under unified sampling settings).
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C.2 Addiational Figures

(a) Case I: Original setup, joint loss (α =
1, β = 1).

(b) Case I: Decoupled loss setup (α =
1, β = 1).

(c) Case I: Joint loss (α = 1, β = 3).
(d) Case II: Original setup, joint loss (α =
1, β = 1).

(e) Case II: Decoupled loss setup (α =
1, β = 1).

(f) Case II: Original setup, joint loss (α =
1, β = 3).

Fig. 13: Example results for two cases, shown at various temporal frames (τ)
relative to the reference image, for different loss function setups at R = 8.
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(a) Case I (cine): vSHARP R = 8. (b) Case I (cine): VarNet, R = 8.

(c) Case II (cine): vSHARP, R = 6. (d) Case II (cine): VarNet, R = 6.

(e) Case III (aorta): vSHARP, R = 4. (f) Case III (aorta): VarNet, R = 4.

Fig. 14: Example results for three cases, for shown at various temporal frames
(τ) relative to the reference image, for different choices of reconstruction network
at different accelerations.
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(a) Original setup. (b) Original setup with larger model.

(c) Voxelmorph. (d) Transmorph.

(e) Optical Flow ILK. (f) DEMONS.

Fig. 15: Example results I for a cardiac cine case, shown at various temporal
frames (τ) relative to the reference image, for different choices of registration
network at R = 8.
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(a) Original setup. (b) Original setup with larger model.

(c) Voxelmorph. (d) Transmorph.

(e) Oprical Flow ILK. (f) Optical Flow TVL1.

Fig. 16: Example results II for a cardiac cine case, shown at various temporal
frames (τ) relative to the reference image, for different choices of registration
network at R = 4.
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(a) Original setup. (b) Original setup with larger model.

(c) Voxelmorph. (d) Transmorph.

Fig. 17: Example results III for an aorta case, shown at various temporal frames
(τ) relative to the reference image, for different choices of registration network
at R = 6.
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(a) Unified sampling. (b) Unified sampling with initialization.

(c) Phase-specific sampling.
(d) Phase-specific sampling with initial-
ization.

Fig. 18: Example results I for a cardiac cine case, shown at various temporal
frames (τ) relative to the reference image, for different choices of adaptive sam-
pling at R = 8.
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(a) Unified sampling. (b) Unified sampling with initialization.

(c) Phase-specific sampling.
(d) Phase-specific sampling with initial-
ization.

Fig. 19: Example results II for a cardiac cine case, shown at various temporal
frames (τ) relative to the reference image, for different choices of adaptive sam-
pling at R = 6.
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