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Abstract.With the present and soon-to-be breakthrough of optical interferometry, countless objects shall be within
reach of interferometers; yet, most of them are expected to remain only marginally resolved with hectometric
baselines.
In this paper, we tackle the problem of deriving the properties of a marginally resolved object from its optical
visibilities. We show that they depend on the moments of flux distribution of the object: centre, mean angular
size, asymmetry, and curtosis. We also point out that the visibility amplitude is a second-order phenomenon,
whereas the phase is a combination of a first-order term, giving the location of the photocentre, and a third-order
term, more difficult to detect than the visibility amplitude, giving an asymmetry coefficient of the object. We then
demonstrate that optical visibilities are not a good model constraint while the object stays marginally resolved,
unless observations are carried out at different wavelengths. Finally, we show an application of this formalism to
circumstellar discs.

Key words. Methods: data analysis; techniques: interferometric

1. Introduction

Optical systems are fundamentally limited in angular res-
olution by their spatial extent because of diffraction. Very
soon, the idea of combining light coming from two “dis-
tant” telescopes was investigated in order to overcome the
limitation in size of single pupils. Michelson (1891, 1920);
Michelson & Pease (1921) derived the angular diameters
of some solar-system bodies and stars by measuring the
contrast of the fringes (called visibility amplitude) ob-
tained when interfering light comes from two apertures:
this contrast is maximum when these apertures are clos-
est and decreases with the distance between telescopes
(called the baseline). The baseline at which the fringes
disappear holds information on the angular extent of the
source. After some time, the mid-seventies saw the come-
back of optical interferometry with Hanbury Brown et al.
(1974); Labeyrie (1975), but it long stayed confined to
bright and simple objects, mostly stellar diameters and
multiple systems. It is all the more frustrating as the the-
ory of interferometry allows image reconstruction and as
radio arrays achieved this goal within a few decades of ex-
istence: the atmospheric turbulence and the nature of light
both lead to complex optical designs and have slowed the
development of optical interferometry. Moreover, the shift
of the fringes (called phase) is completely blurred by the
atmosphere, so techniques to retrieve phase information
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—necessary for imaging capacities— needed additional in-
vestigation.

Recently, the Palomar Testbed Interferometer (PTI,
Colavita et al. 1999) and the Infrared Optical Telescope
Array (IOTA, Carleton et al. 1994) allowed us to
probe circumstellar matter in star-forming regions
(Malbet et al. 1998; Akeson et al. 2000; Malbet & Berger
2002b; Akeson et al. 2002), giving some constraints on the
geometry of these objects. With the advent of the Very
Large Telescope Interferometre (VLTI, Glindemann et al.
2000) and the (KI, Colavita 2001) we are expecting a
much higher accuracy with their large pupils (8–10m),
and good constraints on objects thanks to the num-
ber of baselines available and partial phase informa-
tion; yet they will not allow direct image reconstruc-
tion very soon because recombination will be first per-
formed with two or three telescopes. The Navy Prototype
Optical Interferometre (NPOI, Armstrong et al. 1998),
the CHARA array (ten Brummelaar et al. 2000), and
the Cambridge Optical Aperture Synthesis Interferometer
(COAST, Haniff et al. 2000) provide imaging capacities
with a multi-telescope recombination, but with a lower
sensitivity that renders faint object science difficult.

We are clearly entering a phase in which more
than an apparent diameter is measured but no imag-
ing is performed; in this context, observers and mod-
ellers use interferometric observations as a constraint
on models (Malbet & Berger 2002b; Akeson et al. 2002;
Lachaume et al. 2001, e.g.), but their link with the ge-
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ometry of the object remains unclear; it is still quite
common to think in terms of diameter. For instance,
Monnier & Millan-Gabet (2002) link the uniform disc
equivalent diameter derived from the IR interferometric
observations of young stellar objects with the physical ra-
dius of their supposed inner hole. The phase also raises
problems of geometrical interpretation. Since it is blurred
by the atmosphere, one uses the closure phase to retrieve
partial information on it1: the principle is to add the
phases over a triplet of baselines provided by three tele-
scopes, which allows one to cancel atmospheric terms. It is
generally used either in image reconstruction, at NPOI for
instance, or as a model constraint. Geometrically speak-
ing, it is a diagnosis of asymmetry, but its accurate mean-
ing is seldom made clear enough.

In this paper, we connect the visibility amplitude and
phase with the geometry of the object, which allows us to
retrieve information in a model-independent fashion. In
Sect. 2, we establish a series development of these quan-
tities involving the moments of the flux distribution, the
first ones being the location of the photocentre, the spatial
extent (diameter), and the asymmetry coefficient (skew-
ness). It appears as a generalisation of the widespread di-
ameter measurement. We then draw the consequences of
the formalism in terms of observation and modelling. In
Sect. 3 we apply this development to circumstellar discs
with two examples: the case of an object characterised by
more than one diameter (star, thermal flux and scattered
light) and the measurement of the radial temperature law
in these discs.

2. Visibility and object geometry

The Zernicke-van Cittert theorem links the complex visi-
bility V to the normalised flux distribution I of the object:

V (u) =

∫∫

I(α) exp (−2πiu·α) d2α, (1)

where u is linked to the projected baseline B and the
wavelength λ by u = λ−1

B, and α the angular location
on the sky. Optical interferometry usually deals with the
square amplitude |V |2 and the phase φ, given by

|V |2 = (ReV )2 + (ImV )2, (2a)

tanφ = (ImV )/(ReV ). (2b)

In interferometry two extreme cases are usually dealt with:
on the one hand, an object is fully resolved if its angular
size is of the order of B/λ as it would be with a single
dish telescope of size B. In that case, the visibility is arbi-
trary and highly depends on the shape of the target. On
the other hand, a point-like source is not resolved and its
visibility is V = 1. Between these two cases, the object is
said to be marginally resolved and V is close to unity; its

1 Other techniques are also the use of a close object as a
phase reference or the differential phase with spectroscopy, but
we shall not discuss them in this paper.

size is a fraction of B/λ. In such a case, most of the flux
is located in a zone where |u ·α| ≪ 1, so we carry out a
series development to derive the real and imaginary parts
of V :

ReV (u) =

∫∫

I(α)
(
1− 2π2(u·α)2

)
d2α, (3a)

ImV (u) =

∫∫

I(α)

(

2π(u·α)−
4

3
π3(u·α)3

)

d2α. (3b)

These expressions drive us to define the n-th moment of
the flux distribution as a symmetric tensor unambiguously
defined by

Mn ·u1 · · ·un =

∫∫

I(α)(α·u1) · · · (α·un) d
2
α (4)

for any set of vectors u1, · · · , un. (The expressions for
the first two moments are given in a Cartesian frame in
Appendix A). With such a definition, the real and imagi-
nary parts of V become

ReV (u) = 1− 2π2
M2 ·u·u, (5a)

ImV (u) = 2πM1 ·u−
4

3
π3

M3 ·u·u·u, (5b)

which, after a few calculations, give

|V |2 = 1− 4π2
[
M2 ·u·u− (M1 ·u)

2
]
, (6a)

φ = −2π(M1 ·u) +
4

3
π3 [M3 ·u·u·u

−3(M1 ·u)(M2 ·u·u) + 2(M1 ·u)
3
]
.

(6b)

These formulae are quite annoying because the visibil-
ity amplitude apparently depends on the location of the
photocentre of the object, given by the first moment M1

(see Appendix A), and therefore on the pointing accu-
racy of the instrument. In order to cancel this apparent
dependence, we define the moments in respect to the pho-
tocentre of angular location α0 by

M
′

n ·u1 · · ·un =

∫∫

I(α)(α −α0)·u1

· · · (α−α0)·un d
2
α

(7)

and perform a frame change on Eqs. (6a,6b) to obtain

|V |2 = 1− 4π2 (M ′

2 ·u·u) +O(u4), (8a)

φ = −2π (M1 ·u) +
4

3
π3 (M ′

3 ·u·u·u) +O(u5). (8b)

In some applications, a higher-order development is
needed; it is given in Appendix B.

Since the phase is not directly measured because of at-
mospheric turbulence, the closure phase is used instead.
With three telescopes labelled 1, 2, and 3 simultaneously
providing the baselines u12, u23, and u31, the closure
phase reads

φ̄ = φ(u12) + φ(u23) + φ(u31). (9)

Applying Eq. 8b, we derive a concise expression:

φ̄ =
4

3
π3 (M ′

3 ·u12 ·u23 ·u31) +O(u5). (10)
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Fig. 1. Link between the shape of a flux distribution and its first moments: mean diameter D, asymmetry coefficient
S (skewness), and curtosis K.
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Fig. 2. Link between the flux distribution I(α, β), the visibility amplitude |V |, and the closure phase φ̄ for a marginally
resolved object. The three aligned telescopes, numbered 1 to 3, and the baselines are projected onto the sky. Third-order
terms and lower have been kept.

2.1. Resolving an object: size, asymmetry and curtosis

We consider three aligned telescopes labelled from 1 to
3, providing the baselines u12, u23, and u31 in a direc-
tion given by a normal vector i, as represented in Fig. 2.
The main characteristics of an object we shall consider are
its mean diameter, its asymmetry and its curtosis defined

along i; they respectively are

D =
√

M ′

2 ·i·i, (11)

S =
M

′

3 ·i·i·i

(M ′

2 ·i·i)
3/2

, (12)

K =
M

′

4 ·i·i·i·i

(M ′

2 ·i·i)
2
− 3. (13)

They are of common use in statistics. Figure 1 displays
their link with the shape of a one dimensional distribu-
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Fig. 3. Variation of the square visibility amplitude and closure phase with the angular size of a marginally resolved
object for a 100m baseline in K, and the detectability of these quantities. Left panel: square visibility amplitude vs.
angular size; middle panel: closure phase vs. angular size; right panel: minimum object size needed to detect either the
spatial extent or the asymmetry vs. the instrumental precision on |V |2. On the first left two view graphs the detection
levels for 0.5% and 5% accuracy on |V |2 measurements are displayed. We assumed a fairly asymmetric object with
S = 0.5, as well as ∆φ̄ = ∆V .

tion: the diameter D is the square root of the variance,
giving the mean spatial extent; the skewness S increases
with the asymmetry of the distribution and is zero for a
symmetrical one; K indicates whether the flux is concen-
trated in the peak of the distribution or in its wings and
is zero for a normal distribution. With these notations,

|V (u)|2 = 1− 4π2(Du)2 +
4

3
π4

[
(K + 6)(Du)4

]
, (14)

φ̄ =
4

3
π3S(Dū)3, (15)

where the mean baseline ū is given by the geometrical
mean of the three baselines:

ū = 3

√

(u12 ·i)(u23 ·i)(u31 ·i). (16)

A summary of these results, in a less formal way, is given
in Fig. 2.

The main implication of these results is that the visibil-
ity amplitude drop is a second-order phenomenon (D2u2)
while the closure phase is a third-order one (SD3u3). As a
consequence, closure phase is much harder to detect than
the visibility amplitude in a marginally resolved object.
Figure 3 displays the profile of the visibility amplitude and
closure phase as a function of the baseline for a marginally
resolved object with a high asymmetry S = 0.5, as well as
the minima of detection for these quantities as a function
of the measurement accuracy. It appears that the asymme-
try is detected for angular sizes 3 to 6 times larger than
the spatial extent or —which is equivalent— for 3 to 6
times larger baselines.

2.2. Validity of the approximation

The above development presents two limitations: on the
one hand, it assumes that all moments are defined and,
on the other hand, the first few terms of the series are no

longer a good approximation when the object is resolved
enough.

In the case of a power law distribution I(α) ∝ α−q, of-
ten encountered when scattered light dominates, the high-
order moments are not defined. Therefore the above devel-
opment is no longer valid. For instance, Lachaume et al.
(2001) have shown that a disc with scattering presents
a quick drop of the visibility amplitude near the origin
u = 0, that definitely does not present the smooth pro-
file |V |2 = 1 − 4(πDu)2. In Sect. 3.1, we shall see how
to treat scattering at a large scale, while using the above
formalism for other flux contributions.

Another important point is the range of validity. The
left panel of Fig. 4 compares the exact visibility of differ-
ent types of objects with the second-order estimate (first
terms of Eq. 14) as a function of the baseline: as expected,
the approximation is correct for under resolved objects
with V ≈ 1 but gets poorer with larger baselines. The
validity of the approximation depends on whether a dif-
ference can be made between the estimate and the exact
value, in other terms whether the accuracy of the mea-
surement is better than the precision of the estimate. The
right panel of the same figure displays the visibility at
which the instrument accuracy allows us to measure the
deviation from the estimate; it appears not to be much
dependent on the geometry of the object. With a typical
2% accuracy on |V |2, the estimate is valid for |V |2 & 0.8.

Figure 5 is similar to Fig. 4 but for the closure phase.
For a typical binary with ∆.2, it displays the exact closure
phase and the third order estimate given in Eq. (15) as
a function of the baseline. The right panel indicates the
visibility at which a differentiation between them can be
made as a function of the instrumental accuracy. With the
typical 2% precision on |V |2, the estimate of the phase is
valid for |V |2 & 0.45.

When the accuracy allows us to see the deviation from
the third-order estimates, some following orders can be
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Fig. 4. Comparison between the exact visibility amplitude of an object and its second-order estimate. Different geome-
tries have been assumed to show that little dependence is found: a symmetrical binary (dashes), a ring (dash-dot-dot),
and a Gaussian disc (dots). The left panel displays the second-order estimate (solid line) and the exact visibilities
of the different objects vs. the baseline. The right panel displays the visibility amplitude for which an observational
difference can be made between the estimate and the exact value vs. the instrumental precision; it is the limit of
validity for this estimate.
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Fig. 5. Comparison between the exact closure phase of an asymmetrical binary (∆mag = 1.2) and its third-order
estimate. Left panel: closure phase vs. mean baseline. Right panel: minimum visibility for which no observational
difference can be made between the estimate and the exact phase vs. instrument accuracy.

measured and the subsequent moments of the distribution
can be accessed. This can be a means to retrieve model-
independent spatial information.

2.3. Model-fitting of observations

Theoretically speaking, the knowledge of visibility and clo-
sure phase at all baselines smaller than B would allow
image reconstruction with an infinite resolution (by us-
ing the analycity of the visibility); so, marginal resolution
should not be a problem. This point presents a small but
irretrievable flaw: it assumes that there is no noise in the
data. When the finite precision of measurements is taken
into account, the accuracy on the reconstructed image or
model is impaired and also, the number of parameters
constrained in a marginally resolved object. If the visibil-

ity amplitude alone is available, only the quadratic form
V 2 = 1 − 4π2

M
′

2 ·u ·u can be accessed, because the de-
viation from this law cannot be measured, as shown in
Sect. 2.2.

We first consider an observation carried out at a sin-
gle wavelength and use the coordinates (u, v) of u in a
Cartesian frame. The visibility amplitude and phase then
are

V = 1− 4π2(M ′0

2u
2 + 2M ′1

2uv +M ′2

2v
2), (17)

φ = 1−
4

3
π3(M ′0

3u
3 + 3M ′1

3u
2v + 3M ′2

3uv
2 +M ′3

3v
3),

(18)

where M ′k
n is a component of the n-th moment M

′

n.
Its expression in the Cartesian frame can be found in
Appendix A. If visibility amplitude alone is considered,
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Fig. 6. Point-like source model fitting: number of sources constrained by interferometric observations of a marginally
resolved object vs. number of wavelengths used. Left panel: the fluxes at different wavelengths are not correlated.
Right panel: the sources are assumed to emit a black-body spectrum.

the system can be described with three parameters (the

M ′k
2); a model able to fit any second-order moment will

fit any data. As a consequence, a marginally resolved ob-
ject observed in visibility amplitude, whatever the baseline
coverage is, can be modelled by

– a ternary system of unresolved stars,
– a Gaussian elliptic disc,
– a uniform stellar photosphere and an unresolved star.

If closure phase information is available, then four ad-
ditional parameters describe the object (the M ′k

3). A
marginally resolved object observed in both visibility and
closure phase can be modelled by a system able to repro-
duce the second- and third-order moments, that is

– a system of four unresolved stars,
– a Gaussian elliptic disc and an unresolved star,
– a uniform stellar photosphere and two unresolved

stars.

It appears that interferometry does not allow us to dis-
entangle quite different scenarios when the object is
marginally resolved. This fact is well-known by observers:
under resolved observations cannot distinguish between a
uniform and a limb-darkened stellar disc; neither could
the first observations of FU Ori by Malbet et al. (1998)
exclude either the disc or the binary scenario. As a rem-
edy, one can use the technique in combination with other
types of observations, as another model constraint.

Nevertheless, a multi-wavelength interferometric ap-
proach can bring more constraints. We consider a Np

point-like source model to be fitted to visibility ampli-
tudes at Nλ wavelengths. The fluxes and locations of the
Np−1 first sources constrain the last one, because the flux
distribution is normalised and centered; therefore there
are (Np − 1) locations and Nλ(Np − 1) fluxes, that is
(Nλ + 2)(Np − 1) free parameters. Observations provide
3Nλ moments of the flux distribution. The characteristic

number of point-like sources constrained by the measure-
ments is given by the equality between the number of free
parameters and that of moments, so that

Np =

⌈
3Nλ

Nλ + 2
+ 1

⌉

. (19)

The left panel of Fig. 6 displays the number of sources
constrained as a function of the number of wavelengths ac-
cessed, either observing visibility amplitudes only or both
amplitudes and closure phases. It appears that amplitudes
and phases can constrain up to 6 point-like sources with
Nλ & 10. If we now consider that the sources emit a
black-body spectrum —or whatever spectrum determined
by a temperature and a bolometric flux— there are only
2(Np − 1) fluxes. The number of point-like sources con-
strained then becomes

Np =

⌈
3Nλ

4
+ 1

⌉

. (20)

The right panel of Fig. 6 shows that the assumption of
a black-body spectrum allows us to constrain as many
point-like sources as wanted, provided that the number of
wavelengths is large enough. For instance, Nλ = 10 allows
us to constrain 9 sources with the visibility amplitudes
and 14 if phases are also available.

In conclusion, a multi-wavelength approach allows us
to fit more parameters and therefore to distinguish be-
tween different scenarios (disc, multiple system, etc.)

3. Application to circumstellar discs

Circumstellar discs are a good target for interferometers
because they scale from a few tens of AU (where they
mostly emit thermal light in the infrared) to a few hun-
dreds of AU (where they present scattered light in the
infrared) at a typical distance of 150pc or more. Two is-
sues of interest are: observing their thermal light, because
it comes from the first AUs from the star where planets are
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supposed to form, and deriving their radial temperature
law, because it appears as a good diagnosis of the phe-
nomena involved (irradiation, flaring, viscous dissipation,
etc.). In Sect. 3.1 we show how to take into account both
the thermal and scattered light, which happen to present
different interferometric signatures. In Sect. 3.2, we estab-
lish a connection between the temperature law and the
wavelength dependence of the visibility.

3.1. Stellar, thermal and scattered light

Describing an accretion disc as a marginally resolved ob-
ject is inaccurate because thermal light occurs at a large
scale and accounts for up to 10% of the total flux. In order
to keep the above formalism, we split the image into three
components: stellar contribution, thermal emission of the
disc, and scattered light. To each contribution, one can
associate a corresponding visibility:

V⋆ = 1− 2π2D2
⋆u

2, (21)

Vth = (1− 2π2D2
thu

2) exp

(

i
4

3
SthD

3
thu

3

)

, (22)

Vs =

{

1 if u = 0

0 otherwise,
(23)

where D⋆ is the mean diameter of the star, Dth that of
the thermal emission of the disc, and Sth the skewness of
distribution of the thermal emission.

We assumed that both the star and the thermal emis-
sion of the disc are marginally resolved, that the scatter-
ing emission is fully resolved as soon as the baseline is
non-zero, and that the star is too small and symmetric to
present a phase. Within the approximation that all com-
ponents have the same photocentre, we derive the total
visibility

Vtot =
F⋆V⋆ + FthVth + FsVs

Ftot

, (24)

where Ftot is the total flux, F⋆ that of the star, Fth that of
the thermal emission, and Fs that of scattered light. Fig. 7
presents a schematic view of the visibility curve for an
accretion disc and compares it to that of the thermal light
alone. It appears that one point of visibility is not enough
to derive the diameter of the disc, as authors usually do,
when either the star or scattered flux are present.

3.2. Temperature profile

From visibilities at different wavelengths,
Malbet & Berger (2002a) showed that the tempera-
ture profile of an accretion disc can be derived. In the
context of a massive disc, the flux is dominated by
thermal light so that

1− |V (λ)|2 = (2πD(λ)B/λ)
2
. (25)

To solve this problem, we need a link between the disc
extent D(λ) and the temperature profile. The disc extent
is given by the second-order moment M ′

2 determined from
the radial flux distribution of the disc

F (r) = Bλ (T (r)) . (26)

We chose a self-similar solution for the sake of simplicity

T (r) ∝ r−q . (27)

For a disc presenting an inclination i, the components of
the moments then write (see Appendix C for a demon-
stration):

M ′0

2 = M ′2

2 cos
2 i, (28a)

M ′1

2 = 0, (28b)

M ′2

2 ∝ λ2/q, (28c)

so that

D(λ) ∝ λ2/q, (29)

1− |V |2 ∝ λ2/q−2. (30)

Using two close enough wavelengths λ1 and λ2, we deduce
an estimate of q:

q =
1

1 +
1

2

log[(1 − |V1|
2)/(1− |V2|

2)]

log[λ2/λ1]

. (31)

This result appears as a particular case of the multi-
wavelength approach (see Sect. 2.3), that allows us to fit
more parameters than one visibility at a single wavelength
does. Malbet & Berger (2002a) obtained a similar result
by a more empirical argument: they state that the ap-
parent diameter of a disc is proportional to the radius at
which Bλ(T (r)) is maximal. It actually conceals the self-
similarity.

Note that the result no longer holds when the disc
presents an inner hole. Figure 8 displays the value qapp de-
duced from Eq. (31) with the H and K bands for a typical
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Fig. 8. Apparent temperature law, given by the exponent qapp as a function of the disc inner truncation (left) and

the stellar radius (right). Solid line: active disc with q = 0.75 and an accretion rate of 3 × 10−5 Ṁ/yr; dashed line:
flared passive disc with q = 0.5 and the same effective temperature at 1AU. The star is a black-body at temperature
5000K. The two visibilities are taken in H and K.

FU Ori disc. The parameters of the disc model are given
in Appendix D. When the inner gap becomes larger than
a few stellar radii, the error on q, |qapp − q| can be larger
than 0.1. Malbet & Berger (2002a) find qapp ≈ 0.64 for
FU Ori; with a typical value R∗ = 6R⊙ (Lachaume et al.
2001), we can estimate q ≈ 0.5 from the curves.

The stellar radius has also an influence because of the
unresolved stellar flux, yet, it remains small for FU Ori
discs (see Fig. 8). In the case of a T Tauri star, the error
could be much larger, because the contribution of the star
to the total flux becomes important.

4. Conclusion

We have developed a formalism that connects the visibility
amplitude and phase of a marginally resolved object with
its geometry, namely the moments of the flux distribution.
It can prove particularly useful when constraining models
that present analytical moments and allows us to retrieve
model-independent spatial information in all cases. It also
establishes that the closure phase of a marginally resolved
source is a third-order term and the visibility a second-
order one; therefore, the phase is much harder to detect
than the drop in visibility amplitude.

From the formalism, we were also able to estimate
the number of parameters relevantly fitted to interfero-
metric measurements. Unless observations are carried out
at several wavelengths and the model assumes a black-
body-like emission, only a few parameters can be fitted
to marginally resolved objects, whatever the number of
visibility points taken: three point-like source with visibil-
ity amplitudes only, and a fourth one if closure phase is
also measured. This limitation is removed when the ob-
ject is more resolved, that is, if the baselines are longer
or if the instrumental accuracy is increased, which allows
us to measure the deviation of the visibility and phase
from their low-order estimates. This work can therefore

be seen as a plea for larger baselines than the CHARA ar-
ray provides, or high accuracy with IOTA/IONIC or the
forthcoming VLTI and Keck.

We then applied this theoretical work to circumstel-
lar discs, by separating the star, the thermal emission of
the disc, and the scattered light, the two first ones be-
ing well described by their moments. It also allows us to
derive, with some hypotheses, information on the radial
temperature law in these objects, even if they are under-
resolved, but requires that measurements should be taken
at two or more wavelengths. This can be applied to other
field. For instance, limb-darkened stellar photospheres can
be probed even with underresolved targets: the equivalent
diameter is dependent on the wavelength and one could,
with an appropriate model, measure this darkening.

With high precision measurements and/or multiple
wavelengths one can access a large number of moments of
the flux distribution, which theoretically allows image re-
construction. This is clearly a path that one should inves-
tigate in the near future. As a particular case, we believe
it is possible to retrieve the radial temperature profile of
supposedly symmetrical objects, as as been initiated with
FU Ori. The method could also prove useful to constrain
the location of stellar spots with high accuracy measure-
ments: the link between the location of these spots and
the first order moments of the flux is much clearer than
the information given by image reconstruction techniques.
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der a heavy stack on my desk. Computations and graphics
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an improved presentation of these results.
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Appendix A: Moments in Cartesian coordinates

We use a Cartesian frame in which α has coordinates
(α, β) throughout this appendix.

The first moment is a vector

M1 = (M0
1 ,M

1
1 ) (A.1)

giving the location of the photocentre in respect to the
origin of the frame.

M0
1 =

∫∫

I(α, β)α dα dβ, (A.2a)

M1
1 =

∫∫

I(α, β)β dα dβ. (A.2b)

The second-order moment is a matrix

M2 =

(
M0

2 M1
2

M1
2 M2

2

)

(A.3)

yielding information on the spatial extent of the object.
Its components are

M0
2 =

∫∫

I(α, β)α2 dα dβ, (A.4a)

M1
2 =

∫∫

I(α, β)αβ dα dβ, (A.4b)

M2
2 =

∫∫

I(α, β)β2 dα dβ. (A.4c)

The n-th order moment is a tensor of order n contain-
ing 2n elements. Since it is symmetrical it is given by only
n+ 1 terms, that we note Mk

n for 0 ≤ k ≤ n:

Mk
n =

∫∫

I(α, β)αn−kβk dα dβ. (A.5)

Appendix B: V and φ series development

We define

J1 = Mn ·u, (B.1)

Jn = M
′

n ·u · · ·u
︸ ︷︷ ︸

n times

, for n ≥ 2. (B.2)

The visibility amplitude and phase are then expressed as:

V = 1− 4π2 J2 +
4π4

3

(
J4 + 3J2

2

)

−
8π6

45

(
J6 − 10J2

3 + 15J4J2
)

+
4π8

315

(
J8 + 35J2

4 − 56J3J5 + 28J6J2
)

+O(u10),

(B.3)

ϕ = 2π J1 −
4π3

3
J3 +

4π5

15
(J5 − 10J3J2)

−
8π7

315

(
J7 + 219J3J

2
2 − 21J2J5 − 35J3J5

)

+
4π9

2835

(
J9 + 2520J3J2J4 + 560J3

3 − 36J7J2

−84J3J6 − 126J5J4 + 756J5J
2
2 − 7560J3J

3
2

)

+O(u11).

(B.4)

Appendix C: Moments of a self-similar disc

We consider a face-on disc with a radial temperature law
T (r) ∝ r−q, where r is the angular distance from the
centre. The flux distribution then reads

F (r) =
C1

λ5
(
exp C2

λr−q − 1
) , (C.1)

where C1 and C2 are constants. The reduced moments are

M ′0

2 =
1

F

∫∫

F (x, y)x2 dxdy, (C.2)

M ′1

2 =
1

F

∫∫

F (x, y)xy dxdy, (C.3)

M ′2

2 =
1

F

∫∫

F (x, y)y2 dxdy, (C.4)

where F is the total flux given by

F =

∫∫

F (r)2πr dr. (C.5)

For the sake of simplicity, we introduce the integral

Is =

∫

F (r)2πrs dr. (C.6)

By switching to polar coordinates in Eq. (C.2) + Eq. (C.4)
and with the help of symmetry, we derive

M ′0

2 = I3/(2I1), (C.7)

M ′1

2 = 0, (C.8)

M ′2

2 = I3/(2I1). (C.9)

We perform the change of variables u = C2/(λr
−q) in

Eq. (C.6) to find

Is ∝ λs/q−4. (C.10)

So,

M ′0

2 = M ′2

2 ∝ λ2/q. (C.11)

Since M ′1
2 = 0,

1− |V |2 =
M ′0

2B
2
u +M ′2

2B
2
v

λ2
, (C.12)

where (Bu, Bv) = λu is the projected baseline. Therefore

1− |V |2 ∝ λ2/q−2. (C.13)

If the disc is not face-on, the second-order moment along
the minor axis is shrinked by a factor cos2 i, where i is the
inclination; but the above demonstration still holds.
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Appendix D: Power-law accretion disc model

The FU Ori disc model has been determined with an ef-
fective temperature T (r) = Kr−q. The influence of the
central gap or of the star highly depends on the con-
stant K. In the standard viscous disc model (q = 3/4)
by Shakura & Sunyaev (1973),

K =
4

√

3GM∗Ṁ

8σπ
, (D.1)

where M∗ stands for the mass of the star and Ṁ for the
accretion rate. If a deviation from q = 3/4 is observed,
we should carry out a proper modelling of the involved
phenomena. For the sake of simplicity, we assumed that
K is always determined by the viscous temperature at
1AU, so that

T (r) =
K

(1AU)−q

( r

1AU

)−q

. (D.2)

We took

M∗ = 1M⊙, (D.3a)

Ṁ = 3 × 10−5M⊙/yr. (D.3b)
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