
ar
X

iv
:a

st
ro

-p
h/

03
09

33
7v

2 
 1

6 
Se

p 
20

03
Draft version October 28, 2018
Preprint typeset using LATEX style emulateapj v. 4/9/03

BEYOND THE DAMPING TAIL:
CROSS-CORRELATING THE KINETIC SUNYAEV-ZEL’DOVICH EFFECT WITH COSMIC SHEAR
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ABSTRACT

Secondary anisotropies of the CMB have the potential to reveal intricate details about the history of
our universe between the present and recombination epochs. However, because the CMB we observe is
the projected sum of a multitude of effects, the interpretation of small scale anisotropies by future high
resolution experiments will be marred by uncertainty and speculation without the handles provided
by other observations. The recent controversy over the excess small scale anisotropy detected by
CBI and the BIMA array is a foretaste of potential challenges that will be faced when interpreting
future experiments. In this paper we show that cross correlating the CMB with an overlapping weak
lensing survey will isolate the elusive kinetic Sunyaev-Zel’dovich Effect from secondary anisotropies
generated at higher redshifts. We show that if upcoming high angular resolution CMB experiments,
like PLANCK/ACT/SPT, cover the same area of sky as current and future weak lensing surveys,
like CFTHLS/SNAP/LSST, the cross correlation of cosmic shear with the kSZ effect will be detected
with high signal to noise ratio, increasing the potential science accessible to both sets of surveys. For
example, if ACT and a CFHTLS like survey were to overlap this cross-correlation would be detected
with a total signal to noise ratio greater than 220, reaching 1.8 per individual multipole around
l ∼ 5000. Furthermore, this cross-correlation probes the three point coupling between the underlying
dark matter and the momentum of the ionized baryons in the densest regions of the universe at
intermediate redshifts. Similar to the tSZ power spectrum, its strength is extremely sensitive to the
power spectrum normalization parameter, σ8, scaling roughly as σ

7
8 . It provides an effective mechanism

to isolate any component of anisotropy due to patchy reionization and rule out primordial small scale
anisotropy.

Subject headings: cosmology: theory – cosmology: observation – cosmology: weak lensing – cosmology:
peculiar velocities – galaxies: formation – galaxies: evolution

1. introduction

The Wilkinson Microwave Anisotropy Probe
(WMAP) 1 has ushered in an era of unprecedented
accuracy for measurements of the cosmic microwave
background (CMB) anisotropy. Future high angular
resolution experiments like PLANCK2, the Atacama
Cosmology Telescope (ACT)3, and the South Pole Tele-
scope (SPT)4 will measure arc-minute scale (ℓ & 1000)
anisotropies at the µK level. The primary anisotropies
generated at the epoch of recombination and measured
by WMAP (Spergel et al. 2003) involve calculations in
linear perturbation theory and are on sound theoretical
footing (see however Bean et al. 2003, and references
therein for a discussion of alternative models). However,
secondary anisotropies, caused by highly nonlinear struc-
tures and involving complicated dissipative baryonic
physics, are still a subject of theoretical speculation
In considering secondary anisotropies, a practical

distinction must be made between anisotropies that
have a CMB-like thermal spectrum, and the anisot-
ropies with a non thermal frequency dependence, most
notably the thermal Sunyaev-Zel’dovich effect (tSZ)
(Sunyaev & Zel’dovich 1980). Although challenging and
imperfect, it should be possible to isolate these ther-

1 http://map.gsfc.nasa.gov/
2 http://astro.estec.esa.nl/SA-general/Projects/Planck
3 http://www.hep.upenn.edu/∼angelica/act/act.html
4 http://astro.uchicago.edu/spt

mal contributions from a temperature map using the
specific frequency and spatial dependence of the latter
(Bouchet & Gispert 1999; Tegmark & Efstathiou 1996).
After these non-thermal components have been removed,
the dominant sources of secondary anisotropies are ex-
pected to be — from degree to arc-minute scales —
the Rees-Sciama effect (RS)(Rees & Sciama 1968), the
weak gravitational lensing of the CMB itself, the kinetic
Sunyaev-Zel’dovich (kSZ) effect and possibly patchy
reionization (Sunyaev & Zel’dovich 1980 and Santos et
al. 2003 for recent references). Given a “frequency
cleaned” temperature map containing the sum of these
secondary effects, it would be desirable to study each
component individually in order to evaluate their con-
sistency with theoretical predictions. If the CMB tem-
perature were studied in conjunction with another low
redshift tracer of the cosmological density field, the pres-
ence or absence of correlations between the two might
provide a mechanism to isolate the various components.
The recent detection of excess small scale anisotropy

is a nice illustration of the preceding discussion and pro-
vides a foretaste of the potential challenges that will be
faced when interpreting the secondary anisotropies de-
tected by future experiments. At angular scales of a sev-
eral arc-minutes at multipoles beyond the damping tail
(ℓ & 2000), the CBI experiment (Mason et al. 2003)
and the BIMA array (Dawson et al. 2002) have both
detected temperature anisotropy at a level of ∼ 500µK2

http://arxiv.org/abs/astro-ph/0309337v2
http://www.hep.upenn.edu/~angelica/act/act.html
http://astro.uchicago.edu/spt
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with significance of & 3σ. Although a natural interpre-
tation of this excess power is tSZ, the strength of the
signal requires that the power spectrum normalization
parameter take on a value σ8 ≈ 1 in the upper range
allowed by current CMB and Large Scale Structure data
(Bond et al. 2003; Komatsu & Seljak 2002). Further-
more, the required value is likely even higher because
the measured anisotropy, if thermal SZ, was likely di-
luted by radio point source subtraction (Holder 2002).
Both the CBI and BIMA experiments observe at low fre-
quencies ∼ 30 GHz well into the Rayleigh-Jeans region
of the thermal SZ frequency spectrum, so at present the
non-thermal frequency signature of the tSZ effect cannot
be exploited to determine the nature of this excess. This
has led to considerable speculation about other sources
of arc-minute scale anisotropy possibly arising from the
epoch of reionization or the early universe. While the
kSZ effect and patchy reionization are not expected to
produce small scale anisotropies at the level detected, it
has been suggested that the excess power is due to SZ
fluctuations from high-z & 10 star formation (Oh et al.
2003), primordial voids created by bubble nucleation
during the inflationary epoch (Griffiths, Kunz, & Silk
2003), or broken scale invariance in the primordial power
spectrum produced by inflation (Cooray & Melchiorri
2002). Cross correlating the CMB temperature maps
measured by CBI and BIMA with a low redshift tracer
of the density field would provide a mechanism to de-
termine whether the small scale excess was generated in
the local universe. The detection of a correlation with
galaxies would favor tSZ or radio source contamination
rather than the more speculative alternatives.
Cosmologists will likely face similar uncertainties in the

future for experiments that will have the frequency cov-
erage required to produce frequency cleaned temperature
maps that effectively remove the tSZ. Cross correlation
with a local density tracer could provide the most ef-
fective means to determine the source of the anisotropy.
For example, the patchy reionization signal or some ex-
otic form of small scale anisotropy generated by infla-
tion will not correlate with low redshift density tracers;
whereas, the kinetic SZ effect should correlate strongly,
which brings us to the subject of this work. Weak grav-
itational lensing, or the coherent distortion of images of
faint background galaxies by the foreground matter dis-
tribution (see Van Waerbeke & Mellier 2003, for a re-
cent review), is a tracer of the local density field, with the
added advantage that it probes the dark matter directly,
foregoing the complications caused by issues of bias in
galaxy surveys. In this paper we compute the correla-
tion between weak gravitational lensing and the kinetic
Sunyaev-Zel’dovich effect and evaluate the prospects of
future experiments to measure it.
Although the cross-correlations between secondary an-

isotropies and weak gravitational lensing of the CMB it-
self, has been considered previously (Spergel & Gold-
berg 1999, Goldberg & Spergel 1999, Cooray & Hu 2000,
Takada & Sugyama 2002, Verde & Spergel 2002), the po-
tential correlation signals between the CMB and galaxy
weak lensing, or “cosmic shear” has been somewhat ne-
glected. In particular, we focus on previously unexplored
small angular scales beyond the “damping tail,” which
will be probed by the aforementioned future experiments.
The overlap of angular scales between secondary an-

isotropies of the CMB and cosmic shear is illustrated in
figure 1. Error bars are shown for current and future
CMB experiments and weak lensing surveys. Theoret-
ical estimates for primary and secondary anisotropies
are shown in the left panel, and predictions for the
power spectrum of the weak lensing convergence field is
shown at right. Seljak, Burwell, & Pen (2001) calculated
the correlation between cosmic shear and the thermal
Sunyaev-Zel’dovich effect (tSZ). Once the tSZ signal is
removed by frequency cleaning, the Rees-Sciama effect,
CMB lensing, kinetic SZ, and possibly patchy reioniza-
tion remain. Hu (2002) considered the correlation be-
tween cosmic shear and both the linear ISW effect and
CMB lensing. As is visible in the figure, the nonlinear
correction to the ISW effect, known as the Rees-Sciama
effect is important on small scales ℓ & 300, and we
compute the correlation between cosmic shear and the
Rees-Sciama effect in a companion paper (Doré et al.
2003). For ℓ & 3000, the kinetic SZ spectrum intersects
the lensed CMB damping tail, and will likely dominate
the anisotropy spectrum, (we have plotted the maximal
patchy reionization signal for illustration).
Below we calculate the fully nonlinear cross correlation

between cosmic shear and the kinetic SZ effect. This cal-
culation is complicated by the fact that the kSZ effect
is proportional to the velocity of the ionized baryons,
∆T/T ∼ v; hence, any two point correlation with a den-
sity tracer will be negligible for an isotropic velocity field.
This is simply the statement that the over-density field δ
is just as likely to correlate with a cluster moving toward
us as one moving away from us, and thus the average
correlation vanishes. In fact, the isotropy of the velocity
field guarantees that any statistic of odd powers of the
velocity field is highly suppressed relative to even statis-
tics (Monin & Yaglom 1971, Scannapieco 2000, Castro
2003). Thus, we must work with a three point statistic
– two kSZ points and one weak lensing — and we con-
sider a “collapsed” configuration. That is we calculate
the two point function of weak lensing and the filtered
CMB temperature squared, which condenses three point
information into an easily measurable power spectrum.
We model the observables in § 2 and calculate the an-

gular auto power spectra of weak lensing and kinetic SZ
which are shown fig. 1. Special attention is paid to the
approximations and analytical techniques used to cal-
culate these auto power spectra in the fully nonlinear
regime. The cross-correlation signals are calculated in
§ 3. In § 4 we attempt to qualitatively understand why
cosmic shear is correlated with the square of kinetic SZ,
and the dependence of the correlation signal on the power
spectrum normalization is explored in § 5. A signal to
noise ratio analysis is performed in § 6, to quantify the
prospect for detecting this correlation for current and
future experiments. We discuss our results, discuss limi-
tations, and conclude in § 7.
Throughout this paper we consider only flat cosmolo-

gies. As our fiducial model we choose the best fit WMAP
(only) model of Spergel et al. (2003), with Ωm = 0.270,
ΩΛ = 0.73, h = 0.72, ns = 0.97, σ8 = 0.84 and τ = 0.17.

2. modeling the observables

We define in this section the needed general equa-
tions before introducing the effect that will be discussed
throughout this paper. We calculate their angular auto
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Fig. 1.— Left: Expected signal and errors for the coming PLANCK and ACT CMB experiments (see §6 for precise assumptions). The
Bordeaux wine color refers to PLANCK whereas the cream one refers to ACT. The cosmic variance is computed assuming the primordial
power spectrum only, which is obviously an lower limit. The thick solid line denotes the primordial CMB signal with (up) or without (down)
the lensing contribution. The thick short-dashed line denotes the ISW effect (low ℓ) and the non-linear RS effect (high ℓ). Note the angular
transition between both. The thick long-dashed line denotes the expected thermal SZ contribution according to (Komatsu & Seljak 2002).
The thick double-dot-dashed line corresponding to the expected kSZ, whereas the dot-dashed line corresponds to a possible component
induced by patchy-reionisation (note that the overall amplitude is rather model-dependent and that we here assume the strongest signal
(Santos et al. 2003)). The thin solid line denotes the sum of all those contributions. Right:Expected signal and error for the coming
CFHTLS, SNAP and LSST experiments (see §6 for precise assumptions). We consider here only shot noise due to intrinsic ellipticities and
cosmic variance, and assume that both dominates over systematics at any scale. We assume for this illustration only that this 3 surveys
measure the same convergence power spectrum. We thus neglect the effects of the different sources populations. From darker to lighter,
the 3 depicted error boxes correspond to CFHTLS, SNAP and LSST.

power spectra and sketches their cross-correlation. The
calculations in this section are complicated by the fact
that the three dimensional fields whose power spectra
and bispectra we desire are highly nonlinear. Special
attention is paid to the approximations and analytical
techniques used to calculate these nonlinear power spec-
tra.

2.1. Angular Power Spectra in the Flat Sky
Approximation

We will be interested in the angular power spectra of
fields on the sky X(n̂) which are weighted line-of-sight
projections of three dimensional fields which we denote
δX ,

X(n̂) = fX ⋆
(

∫

dη WX(η)δX(ηn̂, η)
)

(1)

where WX(η) is the weight function for the field X and
fX is a real space isotropic filter with which we convolve
this field. We define the conformal “look back” time as
η = τ0−τ , which can also be interpreted as the comoving
distance. Here τ is the conformal time dτ = (1/a), τ0,
which can also be interpreted as the comoving distance
from the observer. Here and throughout we set c = 1
For small sections of the sky or high multipole mo-

ments, it is a good approximation to treat the sky as flat.
In this flat-sky approximation, the Fourier moments of
this field on the sky are

X̃(ℓ) =

∫

d2n X(n̂)e−iℓ·n̂ (2)

Combining with eq. (1) gives

X̃(ℓ) = fX(ℓ)

∫

dη

η2
WX(η)

∫

dkz
2π

δ̃(k⊥ = ℓ/η, kz)e
ikzη,

(3)
where fX(ℓ) is the Fourier transform of fX .
As in the all sky case, the cross correlation (or auto

power spectrum) for any two fields, X and Z is defined
by

〈X̃∗(ℓ)Z̃(ℓ)〉 = (2π)2δD(ℓ+ ℓ
′)CXZ(ℓ), (4)

and similarly the power spectrum between two three di-
mensional fields δX and δZ is

〈δ̃X(k, η)δ̃Z(k, η)〉 = (2π)3δD(k+ k′)PXZ(k, η), (5)

Where δD is the Dirac delta function.
For the relationship between these flat-sky Fourier

modes and the spherical harmonic coefficients Xℓm and
a proof of the correspondence between the angular power
spectrum CXZ

ℓ and CXZ(ℓ), see e.g. White et al. (1999)
or Appendix C of Hu (2000).
Combining eqs. (3), (4), and (5), the correlation be-

tween X and Z is

〈X̃∗(ℓ)Z̃(ℓ′)〉=(2π)2fX(ℓ)fZ(ℓ)

∫

dη
WX(η)

η2

×

∫

dη′
WZ(η′)

η′2

∫

dkz
2π

eikz(η−η′)

δD(ℓ/η + ℓ
′/η′)PXZ(

√

(ℓ/η)2 + k2z),(6)

Provided that the window functions W (η) are slowly

varying, k ≫ ẆX/WX , we can work in the Limber ap-
proximation (Kaiser 1992), allowing us to neglect radial
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modes relative to perpendicular modes, kz ≪ ℓ/η, and
we arrive at

∆2
XZ(ℓ)=

π

ℓ
fX(ℓ)fZ(ℓ)

∫

d ln η η2WX(η)WZ (η)

×∆2
XZ(k = ℓ/η, η) (7)

where the we have introduced the dimensionless angular

power spectrum ∆2
XZ(ℓ) =

ℓ2

2πC
XZ
ℓ , and the dimension-

less 3-d power spectrum ∆2
XZ(k, η) = k3/2π2PXZ(k, η).

In the following section, we list the relevant window
functions and discuss the phenomenological techniques
used to calculate the three dimensional power spectra in
the fully nonlinear regime. Note that until § 6, we set
fX(ℓ) = 1.

2.2. Weak Gravitational Lensing

The distortion of background source galaxies by the
foreground matter distribution is completely described
by the convergence field κ(n̂) in the weak lensing ap-
proximation, which is a weighted projection of the den-
sity field along the line of sight

κ(n̂) =

∫ τ0

0

dηWκ(η) δ(ηn̂, η), (8)

where the kernel is given by (for a flat cosmology)

Wκ(η) =
3Ωm0H

2
0η

2a

∫ τ0

η

dη′
η′ − η

η′
S(η′) , (9)

and S(η′) describes the normalized radial distribution of
sources

S(η) = pz(z)
dη

dz
, (10)

with pz(z) being the normalized source redshift distribu-
tion

∫

dzpz(z) = 1, which in principle can be measured
from the weak lensing survey. For definiteness, we use

pz (z) =
1

2z30
z2e−z/z0. (11)

This redshift distribution peaks at 2z0, has mean red-
shift 〈z〉 = 3z0, and has been used in previous studies
of cosmic shear (Wittman et al. 2000). The values of
z0 that we use to represent current and future surveys,
along with the other specifications are listed in table 2.
In order to evaluate the weak lensing power spec-

trum we need an expression for the fully nonlinear
power spectrum of the over-density field Pδδ(k). Fit-
ting formula for the nonlinear power spectrum have been
studied extensively (Hamilton et al. 1991; Ma 1998;
Peacock & Dodds 1996; Smith et al. 2003). We use the
scaling formula of Smith et al. (2003) for the nonlinear
power spectrum, which is accurate at better than the
10% level.
The angular power spectrum Cκ

ℓ of the cosmic shear
is shown in fig. 1. Error bars are shown for current and
future surveys which will have different source redshift
distributions, although for illustration, we show only the
case z0 = 0.5.

2.3. The kinetic SZ effect

CMB photons diffusing to us from the surface of
last scattering are up-scattered by the electron plasma

bound in the gravitational potentials of dark matter ha-
los. The motion and density variations of those scat-
terers will imprint a specific thermal temperature fluc-
tuation pattern on the CMB, ΘkSZ = ∆TkSZ/T0, both
because of the Doppler effect and of variations in opacity
(Sunyaev & Zel’dovich 1980),

ΘkSZ (n̂) =

∫ τ0

0

dη g (η) n̂ · p(n̂η, η) (12)

where we have introduced the momentum density

p(n̂η, η) = (1 + δ(n̂η, η)
)

v(n̂η, η) (13)

and the visibility function, g. The latter can be expressed
in terms of the Thomson optical depth, τ(η) =

∫ η

0
τ̇ (η)dη,

where τ̇ (η) = a(η)nexeσT with σT the Thomson scat-
tering cross section, ne the electron density and xe the
ionization fraction. Thus

g (η) =
dτ

dη
e−τ = xeτH (1 + z)2 e−τ , (14)

where
τH = 0.0691 (1− Yp)Ωbh, (15)

is the Thomson scattering optical depth to the Hubble
distance today, assuming full hydrogen ionization, and
Yp is the primordial helium fraction. We assume further
that reionization occurs instantaneously, i.e. xe = 1 at
all times after the reionization epoch, zri. Then we have
(Griffiths, Barbosa, & Liddle 1999)

τ(zri) =
2

3

τH
Ωm

[

√

1− Ωm + Ωm (1 + zri)
3
− 1

]

(16)

for a flat universe.
As was first pointed out by Kaiser (1984), cancella-

tion of successive peaks and troughs for small wavelength
modes prevents a significant kinetic SZ effect from con-
tributing to the CMB anisotropy at linear order. This
can be understood in the context of the ’Limber’ (Kaiser
1992) or ’weak coupling’ (Hu & White 1996) approxima-
tions. They dictate that only modes with wave-vectors
perpendicular to the line of sight contribute to the pro-
jection of a given random field, because uncorrelated ra-
dial waves cancel in the line of sight projection. Gravity
generates potential velocity flows, so that radial veloc-
ities have no wave-vector component perpendicular, in
Fourier space, to the line of sight; consequently, the lin-
ear Doppler effect p ∼ v vanishes.
Ostriker & Vishniac (1986) showed that the same will

be not be true for density modulated velocity flows,
p ∼ δv, which can have a non-vanishing curl. Thus
wave-vectors perpendicular to the line of sight gener-
ate fluctuations parallel to the line of sight. At sec-
ond order in perturbation theory, this is known as
the Ostriker-Vishniac effect (Dodelson & Jubas 1995;
Hu & White 1996; Ostriker & Vishniac 1986; Vishniac
1987); whereas, the full nonlinear signal is referred to
as the kinetic-SZ (kSZ) effect. This full non-linear
contribution has been studied in detail both analyti-
cally (Hu 2000; Ma & Fry 2001; Zhang et al. 2003) and
numerically (da Silva et al. 2001; Gnedin & Jaffe 2001;
Springel et al. 2001; Zhang et al. 2003).
Although the amplitude of the expected signal is un-

certain, the maximal signal can be calculated if we as-
sume that the electrons trace the dark matter exactly.
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Then we can write for the power spectrum of the radial
momentum component pn̂ (Hu 2000; Ma & Fry 2000)

Ppn̂pn̂
(k) ≈

1

2
Pp⊥p⊥

(k) ≈
1

3
v2rmsP

nl
δδ . (17)

where Pp⊥p⊥
is the power spectrum of the vortical com-

ponent of the momentum field p⊥. This assumes the
dominant contribution to the power spectrum of the ra-
dial momentum comes from nonlinear densities coupling
to linear bulk velocity flows (Hu 2000; Ma & Fry 2001;
though see also Zhang et al. 2003). The right panel
of fig. 3 shows the 3-d auto power spectrum Ppn̂pn̂

at
z = 0.5. The projection of this power spectrum with
eq. (7) gives the angular kSZ power spectrum, which is
shown in fig. 1.

3. the kinetic sz weak lensing correlation

In this section we compute the correlation between the
kinetic SZ effect and weak gravitational lensing. This cal-
culation is complicated by the fact that the simple two
point correlation 〈κΘ〉, will vanish because ΘkSZ ∼ v,
and the velocity field is isotropic. This is just the state-
ment that the over-density field δ is just as likely to cor-
relate with a cluster moving toward us as one moving
away from us, and the average correlation vanishes. The
isotropy of the velocity field guarantees that statistics
of odd powers of the velocity field are highly suppressed
relative to even statistics (Monin & Yaglom 1971, Scan-
napieco 2000, Castro 2003).
Thus a non-vanishing correlation requires that we work

with a three point statistic: two kSZ points, so that our
statistic is even in the velocity, and one point weak lens-
ing. We consider the simplest case of a “collapsed” three
point function — the cross correlation between the kappa
field and the square of the kSZ, 〈κΘ2〉—which condenses
three point information into an easily measurable angu-
lar power spectrum.
Squaring the temperature field couples multipoles at

all scales, and in particular, power from multipoles out-
side the range where the kSZ is dominant, will swamp
the signal. To prevent our quadratic temperature statis-
tic from being polluted by the beam and primary anisot-
ropies, we must filter the temperature before squaring

Θ̃f (ℓ) = f(ℓ)Θ̃(ℓ) (18)

This simple convolution before squaring is a special case
of a more general class of filters for quadratic tempera-
ture statistics studied by Hu (2002).

3.1. Limber approximation for the bispectrum

In the flat sky approximation, the square of the filtered
temperature fluctuation can be written as a convolution
in (2D) Fourier space,

Θ̃2
f(ℓ

′) =

∫

d2ℓ′′

(2π)
2 Θ̃f (ℓ

′′)Θ̃f (ℓ
′ − ℓ

′′), (19)

and the weak lensing kinetic SZ squared correlation is

〈κ̃(ℓ)Θ̃2
f (ℓ

′)〉 =

∫

d2ℓ′′

(2π)
2 〈κ̃(ℓ)Θ̃f (ℓ

′′)Θ̃f (ℓ
′ − ℓ

′′)〉 (20)

with

〈κ̃(ℓ)Θ̃f (ℓ
′′)Θ̃f (ℓ

′ − ℓ
′′)〉 = (2π)2f(ℓ)f(|ℓ′ − ℓ

′′|)

×

∫

dη
Wκ (η)

η2

∫

dη′
g (η′)

η′2

∫

dη′′
g (η′′)

η′′2

×

∫

dkz
2π

eikz(η−η′)

∫

dk′z
2π

eik
′′

z (η′′
−η′) (21)

× δD(ℓ/η + ℓ
′′/η′′ + (ℓ′ − ℓ

′′)/η′)

× Bδpn̂pn̂
(ℓ/η + kz , ℓ

′′/η′′ + k′′
z , (ℓ

′ − ℓ
′′)/η′ − (kz + k′′

z )),

where we have introduced the hybrid bispectrum

〈δ̃ (k1) p̃n̂ (k2) p̃n̂ (k3)〉 =

(2π)
3
Bδpn̂pn̂

(k1,k2,k3) δD (k1 + k2 + k3) . (22)

The expression in eq. (22) can be simplified in the Lim-
ber approximation for the bispectrum (Buchalter et al.
2000), valid for the small angles considered here. We can
again ignore radial modes kz ≪ ℓ/η, giving

〈 κ̃(ℓ)Θ̃f (ℓ
′′)Θ̃f (ℓ

′ − ℓ
′′)〉 ≈ (2π)2δD(ℓ+ ℓ

′)f(ℓ′′)f(|ℓ′ − ℓ
′′|)

×

∫

dη

η4
Wκ (η) [g (η)]

2
Bδpn̂pn̂

(

ℓ/η, ℓ′′/η, (ℓ′ − ℓ
′′)/η

)

(23)

Plugging this into eq. (20) gives

〈κ(ℓ)Θ2
f (ℓ

′)〉 = (2π)
2
δD

(

ℓ+ ℓ
′
)

CκΘ2

f (ℓ) (24)

with

CκΘ2

f (ℓ) =

∫

dη

η2
Wκ (η) [g (η)]

2
T (k = ℓ/η, η), (25)

and where we have defined

T (k, η) ≡

∫

d2q

(2π)
2 f(qη)f(|k+q|η)Bδpn̂pn̂

(k,q,−k− q) .

(26)
This power spectrum in eq. (25) can be thought of

as a Limber projection of the “power spectrum” T (k, η)
which is an integral over all planar triangle configura-
tions of the bispectrum (k,q,−k− q), with one of the
sides of length k. It depends only on the norm of k by sta-
tistical isotropy and effectively collapses the three point
information contained in Bδpn̂pn̂

(Cooray 2001b). We
henceforth refer to eq. (26) as the triangle power spec-
trum.

3.2. The hybrid bispectrum Bδpn̂pn̂

In order to calculate the weak lensing kinetic SZ
squared correlation, we must evaluate the hybrid bispec-
trum Bδpn̂pn̂

of the density and radial momentum com-
ponent. Here we proceed by analogy with previous an-
alytical studies of the kSZ power spectrum. The power
spectrum of the radial momentum component is

〈pn̂ (k) pn̂ (k
′)〉 = (2π)

3
δD (k+ k′)Ppn̂pn̂

(k) . (27)

Hu (2000) and then the joint numerical and analytical
work of Ma & Fry (2000) suggested that the dominant
contribution comes from non-linear densities coupling to
linear bulk velocity flows. Furthermore, because of the
cancellations that occur in the projection (Kaiser 1984),
only the curl component of the projected momentum p
- i.e. the component perpendicular to n̂ in the Fourier
domain that we thus note p⊥- will contribute to the kSZ
temperature fluctuation, so that

Ppn̂pn̂
(k) ≈

1

2
Pp⊥p⊥

(k) ≈
1

3
v2rmsP

nl
δδ . (28)
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where v2rms is the volume averaged velocity dispersion

v2rms =

∫

d3k

(2π)
3Pvv (k) . (29)

We follow this analytical line of reasoning and make
the following ansatz

Bδpn̂pn̂
≈

1

3
v2rmsB

nl
δδδ , (30)

which presumes that the dominant contribution to the
bispectrum in eq. (22) comes from large scale bulk
velocity flows coupling to the three point function of
the nonlinear density field. Note that at the 2 points
level, analogous approximations can be motivated in a
halo model context (Cooray & Sheth 2002; Sheth et al.
2003). Note however that it was also claimed, even if
not clearly illustrated, that the curl component of the
momentum induced by the vorticity in the non-linear
velocity field itself might not be completely negligible
(Zhang et al. 2003). If this were of some importance,
then our evaluation would underestimate the signal of
interest.
We are interested in the high-k, non-linear behav-

ior of T (k), thus we need to evaluate the integral in
eq. (26) with the fully nonlinear bispectrum of the den-
sity field. We use for this purpose the fitting function
of Scoccimarro & Couchman (2001) for the bispectrum,
i.e.

Bnl
δδδ = 2F eff

2 (k1,k2)P
nl
δδ (k1)P

nl
δδ (k2) + cyclic (31)

where

F eff
2 (k1,k2) =

5

7
a (neff , k1) a (neff , k2)

+
1

2

k1 · k2

k1k2

(

k1
k2

+
k2
k1

)

b (neff , k1) b (neff , k2)

+
2

7

(

k1 · k2

k1k2

)2

c (neff , k1) c (neff , k2) . (32)

The fitting functions are given by

a (neff , k)=
1 + σ−0.2

8 (z)
√

0.7 Q3 (neff) (q/4)
neff+3.5

1 + (q/4)neff+3.5 ,

b (neff , k)=
1 + 0.4 (neff + 3) qneff+3

1 + qneff+3.5
, (33)

c (neff , k)=
1 +

(

4.5
1.5+(neff+3)4

)

(2q)
neff+3

1 + (2q)neff+3.5 ,

where neff is the effective spectral index of the power
spectrum,

neff (k) ≡
d lnP

d ln k
. (34)

The quantities q, Q, and σ8 (z) are defined by

q ≡
k

knl
with

k3

2π2
P lin
δδ (knl, z) = 1, (35)

Q (neff) =
4− 2neff

1 + 2neff+1
, (36)

and

σ8 (z) =

∫

d3k

(2π)
3P

lin
δδ (k, z)W (kR) (37)

where W (kR) is the usual Fourier transform of a top-hat
of radius R = 8 h−1 Mpc.
The functions a (neff , k), b (neff , k), and c (neff , k) in

eq. (34) interpolate between the one loop perturba-
tive expansion and highly non-linear regimes for general
CDM cosmological models. It can be seen that for large
scales, i.e. k ≪ knl, a = b = c = 1 and the tree level
perturbation theory expression is recovered, whereas on
small scales, i.e. k ≫ knl, a = σ−0.2

8 (z)
√

0.7 Q3 (neff)
and b = c = 0, so that the bispectrum becomes indepen-
dent of triangle configuration.

3.3. The Triangle Power Spectrum

In this section we evaluate the triangle power spec-
trum for the simplest case where the filter functions are
set to unity, f(ℓ) = 1. In this case, a simple approxima-
tion exists in the high k limit that dramatically simplifies
the computation and provides and intuitive understand-
ing of the source and strength of the correlation. The
full computation will be performed in for the purpose
of computing the signal to noise ration in §6, one the
appropriate filter is introduced.
The integral in eq. (26) will have three terms corre-

sponding to the three permutations of the wave vectors
in eq. (31)

T (k) =
1

3
v2rms [T1 (k) + T2 (k) + T3 (k)] (38)

where

T1 (k)=2P (k)

∫

d2q

(2π)
2 F eff

2 (k,q)Pnl
δδ (q) (39)

T2 (k)=2P (k)

∫

d2q

(2π)2
F eff
2 (k,−k− q)Pnl

δδ (|k+ q|)

T3 (k)=2

∫

d2q

(2π)
2 F eff

2 (q,−k− q)Pnl
δδ (q)Pnl

δδ (|k+ q|) .

We first remark that T2 = T1 after a simple transla-
tion of the integration variable. Then, T1 can be eval-
uated exactly in polar coordinates because the angular
integration factorizes out of the radial integration

T1 (k)=
P nl
δδ (k)

7π

[

5 a (k)

∫

dq q a (q)P nl
δδ (q)

+ c (k)

∫

dq q c (q)P nl
δδ (q)

]

, (40)

where we abbreviate a (neff , k) as a (k), and likewise for
b and c. The remaining term T3, can be written

T3 (k)=2

∫

d2q

(2π)
2

[

5

7
a (q) a (|k+ q|)

−
1

2
b (q) b (|k+ q|)

(

q

|k+ q|
+

|k+ q|

q

)

( q

k
+ µ

)

+
2

7
c (q) c (|k+ q|)

( q

k
+ µ

)2
]

P nl
δδ (q)P

nl
δδ (|k+ q|)

(41)

with µ ≡ k̂ · q̂.
As mentioned previously, we are interested in the high-

k, non-linear behavior of T (k) as the weak lensing kinetic
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SZ squared correlation will only be significant on small
angular scales. The dominant contributions to the inte-
grals in eq. (40) will be for q near the peak of Pnl

δδ (q)
where a (q) ∼ b (q) ∼ c (q) ∼ 1 . Thus in the high-k
limit the integrand is significant only for q ≪ k, and
we can drop terms of order O (q/k). A similar approx-
imation has been used previously to calculate the mode
coupling integrals for the kinetic SZ power spectrum (Hu
2000a; Ma & Fry 2001; Cooray 2001). In this approxima-
tion T3 = T1, and we get, introducing the dimensionless
power spectra, ∆2

T
and ∆2

nl

∆2
T =

k3

2π2
T and ∆2

nl =
k3

2π2
P nl
δδ , (42)

the following simple result

∆2
T (k, z) =

1

3
v2rms (z) ∆

2
nl (k, z) E3 (k, z) (43)

where we defined the three point enhancement of the
power spectrum

E3 (k, z)=
6π

7

[

5 a (k, z)

∫

d ln q a (q, z)
∆2

nl (q, z)

q

+ c (k, z)

∫

d ln q c (q, z)
∆2

nl (q, z)

q

]

. (44)

Here the time dependence has been explicitly included
in the functions above as a reminder. With these defini-
tions, we obtain the final expression for the weak-lensing
kSZ squared power spectrum

ℓ2

2π
CκΘ2

l =
π

ℓ

∫

dη ηWκ (η) [g (η)]2 ∆2
T (k = ℓ/η, η) .

(45)

This intuitive result states that CκΘ2

l is given by
a ’Limber’ projection of the triangle power spectrum,
∆2

T
(k, z), which condenses information from all planar

triangle configurations of the hybrid density-momentum
bispectrum with side length k. The form of the triangle
power spectrum in eq. (43) has as simple interpretation.
It is similar to the kSZ power spectrum in eq. (28), in
that it arises from density modulations of a large scale
bulk flow. However, here we are dealing with three point
modulations, which are enhanced by the non-linear cou-
pling of small scale modes to large scale power. This
mode coupling is encapsulated in the integrals over the
power spectrum in E3 (k, z). The dimensionless triangle
power spectrum eq. (43) is shown in the right panel of
fig. (3), along with the kSZ auto power spectrum eq. (28).
Note that they have similar orders of magnitude.

4. understanding the correlation

Before calculating the signal to noise for the aforemen-
tioned cross correlations, we attempt to understand the
degree to which the secondary anisotropies are correlated
with weak lensing.
The strength of the angular correlation between any

two random fields X and Y is quantified with the cross-
correlation coefficient

CorrXY (ℓ) =
CXY

ℓ
√

CXX
ℓ CY Y

ℓ

(46)

As we are dealing with angular correlations of pro-
jected three dimensional fields (see eq. (7)), this cross-
correlation coefficient will depend both on the extent to

which the window functions WX(η) and WY (η) overlap,
and the strength of of the cross power spectrum PXY

relative to the auto power spectra PXX and PY Y .
If we change the integration variables from η to k =

ℓ/η, we can rewrite eq. (7) for the angular power spec-
trum, as an integral over wavenumber

∆2
XY (ℓ) =

∫

d ln k Hℓ(k)∆
2
XZ(k, η = ℓ/k) (47)

where

HXY
ℓ (k) ≡

π

ℓ

(

ℓ

k

)2

WX(ℓ/k)WY (ℓ/k) (48)

With the above two equations, we can think of any cross
correlation as a weighted integral of the cross power spec-
trum, ∆2

XY , with the projection ’kernel’ HXY
ℓ (k). The

kernels HXX
ℓ (k) and HY Y

ℓ (k) indicate the scales probed
by X and Y respectively, while the cross kernel HXY

ℓ (k)
indicates their degree of overlap.
The cross correlation coefficient for the kSZ2-weak

lensing correlation is plotted in fig. 3. Computing this
required the auto power spectrum of the kSZ tempera-

ture fluctuation squared CkSZ2

ℓ (see §5 eq.( 53)). The
level of correlation is significant, approaching ∼ 0.8 at
the arc-min angular scales ℓ & 3000 in the damping tail,
where the primary anisotropies are heavily attenuated.
The physical scales probed by these power spectra is

illustrated in fig. 3, where we plot the projection kernels

Hℓ(k), for C
κκ
ℓ , CkSZ−kSZ

ℓ , and CkSZ2
−κ

ℓ , for ℓ = 1000 and
10000. The 3-d power spectrum of the radial momentum
∆2

pn̂pn̂
and the triangle power spectrum ∆2

T
are plotted in

the right panel at z = 0.5. Note that the triangle power
spectrum is of the same order of magnitude as the power
spectrum responsible for the kSZ effect, ∆2

T
∼ ∆2

pn̂pn̂
.

The angular power spectrum is the projection of the
power spectra on the right weighted by the kernels on
the left (see eq.( 47)), in this figure. The area under the
Hℓ(k) are normalized to unity. The sharp cutoff in the

kernel for CkSZ−kSZ
ℓ , occurs because we have assumed

the universe is reionized abruptly at η(zrei = 20) so that
W kSZ(ℓ/k) drops to zero at small k.
We show the differential redshift contribution to each

angular power spectrum as a function of redshift for ℓ =

5000 in fig. 4, where we plot 1
∆2

XY
(ℓ)

d∆2

XY (ℓ)
dz , for the auto

and cross spectra. By definition, the area under each
of these curves integrates to unity. While the kSZ auto
power spectrum (dashed) has contributions from a high
redshift tail, the bulk of the signal is skewed toward low z
∼ 0.5, because of the growth of nonlinear structure. The
overlap with the weak lensing (dotted) is thus apparent,
explaining the large correlation coefficient found in fig. 2
(left).

5. dependence on power spectrum normalization

It is well known that the thermal SZ power spectrum
exhibits a strong dependence on the power spectrum
normalization parameter σ8 (Komatsu & Seljak 2002;
Seljak, Burwell, & Pen 2001; Zhang & Pen 2001), ap-
proximately scaling as the seventh power Cℓ ∝ σ7

8 . This
strong dependence suggests that the thermal SZ power
spectrum might be an effective probe of σ8, because even
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100 1000 10000
l   (multipole)

10-15

10-14

10-13

10-12

∆2 l 

Fig. 2.— Left:Angular power spectra for kinetic SZ and kSZ2-weak lensing cross correlation. Only dimensionless units are used. The
blue solid line corresponds to the kSZ2 auto power spectrum, while the red solid line corresponds to the WL auto power spectrum scaled
down by a factor 109 for the sake of illustration. The kSZ2-weak lensing angular cross power spectrum is shown by the solid (black) line.
The dotted black line shows the result of using the approximation in eqn. (43) for the triangle power spectrum, which is good to ∼ 25%
for ℓ & 3000. The dashed (blue) line is the kinetic SZ auto power spectrum Right: Cross correlation coefficient for the kSZ2-weak lensing
correlation.

0.1 1.0 10.0 100.0 1000.0
k    (h/Mpc)

10-8
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10-2

100

H
l(k

)

0.1 1.0 10.0 100.0 1000.0
k    (h/Mpc)
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10-5
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10-3

∆2 (k
)

Fig. 3.— Projection Kernels for the weak lensing kinetic-SZ correlation: The left panel shows the projection kernels Hℓ (k) for the the

weak lensing auto correlation (dotted) Cκκ
ℓ

, the kinetic-SZ auto correlation (dashed) CkSZ−kSZ
ℓ

, and the weak lensing-kinetic SZ squared

cross-correlation (solid) CkSZ2
−κ

ℓ
. All kernels have been arbitrarily normalized to unit area. The leftmost set of curves indicate the range

of wave-numbers contributing to the angular power spectrum at ℓ = 1000; the rightmost set is for ℓ = 10000. The right panel shows
dimensionless 3-d power spectra of the radial momentum component (dashed) ∆2

pn̂pn̂
(eq. 28) and the triangular power spectrum (solid)

∆2
T

(eq. 43). The triangle power spectrum is of the same order of magnitude as the power spectrum responsible for the kSZ effect,

∆2
T

∼ ∆2
pn̂pn̂

if theoretical predictions are off by a factor of 2, this
translates into less than 10% systematic error in σ8.
We can determine the rough σ8 dependence of the

kSZ2-weak lensing correlation from simple power count-

ing if we recall that CkSZ2
−κℓ ∝ v2rmsBδδδ. The matter

power spectrum scales as Pδδ ∝ σ2−3
8 — two powers of

σ8 in the linear regime and three in the strongly nonlin-
ear stable clustering regime. The large scale modes that
give rise to the bulk flows in v2rms are linear, so we ex-
pect v2rms ∝ P lin

δδ ∝ σ2
8 . Finally, the bispectrum scales as

Bδδδ ∝ P 2
δδ, so putting everything together we expect the

scaling CkSZ2
−κ

ℓ ∝ σ6−8
8 . Figure 5 illustrates the depen-

dence of the cross power spectrum on σ8. We find that

CkSZ2
−κ ∝ σ7

8 provides a good description of this scal-
ing. This is similar to the strong seventh power scaling of
the thermal SZ and suggests that the kSZ2-weak lensing
correlation might also serve as an effective probe of the
power spectrum normalization and its redshift evolution.

6. prospect for measurement: signal to noise
analysis

In order to assess the detectability of the kSZ2-weak
lensing correlation we consider several current and future
CMB experiment configurations and WL lensing survey
specifications
On the CMB side, we consider the future PLANCK

mission and the soon to be build ACT (Kosowsky 2003)
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Fig. 4.— Differential redshift contributions to angular power
spectra: Differential redshift contributions to the weak lensing

auto correlation ℓ2

2π
Cκκ

ℓ
(dotted), the kinetic-SZ auto correlation

ℓ2

2π
CΘΘ

ℓ
(dashed), and the weak lensing-kinetic SZ squared cross-

correlation ℓ2

2π
CκΘ2

ℓ
at ℓ = 5000. All curves have been divided by

the total power so that they integrate to unity.

100 1000 10000
l   (multipole)

10-15
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10-13

∆2 l 0.8

0.9
0.95
1.0
1.05
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1.2

Fig. 5.— Dependence of the kSZ2 − κ cross correlation on σ8.
From top to bottom, the lines indicate σ8=1.2, 1.1, 1.05, 1.0, 0.95,
0.9, and 0.8 as labeled in the figure.

telescope. Whereas the first one should offer a full sky
survey (fsky ≃ 0.85 if one takes into account galactic con-
tamination) the second one should conduct a smaller (100
square degree (fsky ≃ 0.0025)) but deeper survey. Both
precise characteristics are summarized in table 1, where
θfwhm denotes the beam full width at half-maximum, σpix

denotes the instrumental noise per θ2 area pixels and
“Area” denotes the observed sky area.
The subsequent expected errors are illustrated on fig. 1.

Both have a frequency coverage appropriate for a proper
tSZ “separation” so that we neglect this signal from now
on (but the effects of residuals in § 6). On the lensing
side, we consider 3 various surveys: the on-going Canada
France Hawaii Telescope Legacy Survey (CFHTLS) 5,

5 http://www.cfht.hawaii.edu/Science/CFHTLS

the future SNAP satellite 6 and the future ground based
Large Synoptic Survey Telescope (LSST) 7. Their key
characteristics are summarized in table 2 and the ex-
pected uncertainties are illustrated in fig. 1 : z0 de-
notes the redshift parameter of the source distribution
of eq. (11), ngal the mean density of galaxies, the sur-
veyed area and the single component rms shear due to
intrinsic ellipticity is σγ .
We define the optimal signal to noise per individual

mode ℓ as
(

S

N

)2

ℓ

=

(

CXY
ℓ

)2

Cov
[(

CXY
ℓ

)2] . (49)

To derive this formula, the assumption was made that
all the relevant fields were Gaussian so that we end up
naturally with the S/(S+N) Wiener optimal weighting.
Doing so, we follow e.g. Zaldarriaga (2000). We then
approximate the covariance matrix by its diagonal, i.e.
neglecting the correlation induced by the cut sky,

(

fsky(2ℓ+ 1)
)−1

Cov
[(

CXY
ℓ

)2]
=

(

CX
ℓ +NX

ℓ

)(

CY
ℓ +NY

ℓ

)

+
(

CXY
ℓ

)2
, (50)

where NXX
ℓ denotes the evaluated instrumental noise

contribution to the measured angular power spectrum
of ℓ. For the weak lensing, it is simply the shot noise due
to the intrinsic ellipticitie of the sources, i.e.

NWL
ℓ = σ2

γ/ngal , (51)

whereas for the CMB, we include in the noise definition
all the signal that can not be separated out using multi-
frequency information and the conjunction of the noise
and beam smearing give rise to (Knox 1995)

NΘ
ℓ instr = θ2fwhmσ

2
pix/(4π) e

ℓ2θ2

fwhm
/8 ln 2 . (52)

In the following subsections, we will consider two
types of overlapping surveys. Either a small survey, like
CFHTLS cross-correlated with either ACT or SPT, in
which case the overlap area is limited by the sky cover-
age of say ACT, which is 100 square degrees, or a very
large survey which uses PLANCK in conjunction with
LSST or PANSTAR. In the latter case the total over-
lapping sky is limited by LSST, which is around 30,000
square degrees.

6.1. Signal to noise for the kSZ2-WL correlation

Table 1
Main characteristics of the CMB experiments

discussed.

θfwhm σpix Area
[µK]

[

deg.2
]

ACT/SPT a 1.7 2. 100.
PLANCK 5. 2.2 34000.

aSPT has in fact a wider but shallower survey but the correlation
would thus be limited by lensing survey.

6 http://snap.lbl.gov
7 http://www.lssto.org

http://www.cfht.hawaii.edu/Science/CFHTLS
http://snap.lbl.gov
http://www.lssto.org
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Fig. 6.— Signal to noise estimation for logarithmic bins in ℓ: The left panel assumes an ideal full sky measurement free of any instrumental
noise. The middle panel illustrates the expectation for a 100 square degree of a CFHTLS like survey and ACT. The right panel assumes a
LSST like 30 000 degree square degree and PLANCK. For each of those plot, the dashed line corresponds to a worst case scenario where
the patchy reionisation contribution is 10 times higher (in temperature square units) than the kSZ one.

For this correlation, the dominant “noise” contribution
that need to be considered at the relevant angular scales
(∼ 2′, i.e. ℓ ≃ 5000, see fig. 1) are the lensed primordial
CMB, the potential patchy reionisation contribution and
the instrumental noise. We neglect any residual tSZ sig-
nal and the subsequent correlation it would induced, we
also neglect the “spurious” correlation due to lensing of
the primordial CMB, although we discuss both of them
in the next section. As is evident from fig. 1, the am-
plitude of spurious correlation with lensing of the CMB
should be be more than 2 orders of magnitude weaker.

To evaluate both CkSZ2 kSZ2

ℓ and NkSZ2

ℓ involves one
more approximation. We indeed have to evaluate the
power spectrum of quantities squared in real space. To
do so exactly would involve the computation of even
higher order statistics, e.g. it would be a 8 point func-

tion for CkSZ2 kSZ2

ℓ . To avoid such complications, we
can reasonably consider those fields as being weakly non-
gaussian, so that we can neglect this way their connected
part, in particular the trispectrum of the squared field
(Zaldarriaga 2000). With this hypothesis, the evolution
of the power spectrum of those quantities translates in
a convolution in harmonic space that can be easily per-
formed numerically :

CX2

(ℓ)≃ 2

∫

d2ℓ′

(2π)2
CX(ℓ′) CX(ℓ− ℓ

′) (53)

Table 2
Main characteristics of the weak-lensing surveys

discussed.

z0 ngal Area σγ

[gal.arcmin−2] [deg.2]

CFHTLS 0.5 20. 170. 0.31
SNAP 0.9 100. 300. 0.23
LSST 0.75 75. 30000. 0.16

≃

∫

ℓ′dℓ′

π
CX(ℓ′) CX(|ℓ− ℓ

′|)

We evaluate the convolution above numerically using
the full power spectrum of primary plus secondary an-
isotropies. With this, we can compute all the required
quantities in eq. (49).
Before computing the theoretical prospects for the ex-

perimental configurations we consider, it is crucial to re-
alize that before squaring the Θ field, an appropriate fil-
tering is necessary. Indeed, as visible e.g. in eq. (53),
this squaring will introduce violent mode-coupling, so
that any signal that has a strong power outside the range
where the kSZ signal dominates will pollute the quadratic
field. It would be possible using our theoretical knowl-
edge of the shape of the cross-correlation power spec-

trum C
κΘ2

kSZ

ℓ , although a bit cumbersome, to compute
an optimal filter for our statistics (Hu 2002). Instead
we take a reasonable short cut. Given the fact that both

Cκ
ℓ and C

κΘ2

kSZ

ℓ are nearly flat in the range where the
kSZ dominates, we will consider indeed as the filter for
our cross-correlation signal the one that maximizes the
kSZ signal alone. This last one can be easily derived if
we assume that the projected kSZ signal is weakly non-
Gaussian. It is indeed given by the usual Wiener filter
(Bouchet & Gispert 1999; Tegmark & Efstathiou 1996)

fℓ =
CkSZ

ℓ

CNoise
ℓ + CkSZ

ℓ

(54)

where CNoise
ℓ includes the instrumental noise but also all

the other astrophysical component different from the kSZ
itself. Note that this filter is similar to the one derived
in a more general manner by Hu (2002) and employed
by Cooray (2001a).
The results are illustrated in fig. 6 where we plot the

contribution to the square of signal to noise per log ℓ. We
consider two situations: i/ the dashed line corresponds
to a situation where the patchy reionisation is present
and strong, i.e. we consider the higher amplitude model
of (Santos et al. 2003), where the patchy reionisation
power spectrum amplitude is about 10 times higher than
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the kSZ one in the same angular range (see fig. 1) ii/
the solid line corresponds to a scenario where the patchy
reionisation component is completely negligible.
Obviously, this signal should be easily detectable us-

ing a CFHTLS-ACT configuration. The overall signal to
noise ratio reaches 225 if the patchy reionization is neg-
ligible, 47 otherwise. The signal to noise per individual ℓ
reaches 1.8. For the PLANCK-LSST configuration, the
signal reaches 978 without no patchy reionization and
473 otherwise. However, as we discuss in the next sec-
tion, this kSZ signal will probably be heavily contami-
nated by thermal SZ residuals.

6.2. Spurious Correlations

The primary limitation to detecting the kSZ2-weak
lensing correlation will certainly come from spurious
sources of correlation. Possible sources of anisotropy
other than kSZ that the weak lensing may correlate
with are tSZ residuals from imperfect frequency cleaning,
weak lensing of the primordial CMB, and point sources.
We discuss each in turn.
The dominant spurious correlation will probably be

that due to the residual tSZ after frequency cleaning.
Cooray et al. (2000) estimated that for PLANCK, the
power spectrum of the residual for 600 < ℓ < 2500 should
be around 0.14 times the initial tSZ power spectrum,
i.e. around 5 times the kSZ for our model. Since the
correlation coefficient around WL and tSZ is expected
to be around 0.6 (Seljak, Burwell, & Pen 2001), the
correlated component between tSZ residuals and WL
will probably be more significant than the correlation
with kSZ. For ACT/SPT telescope, the frequency cov-
erage will allow for frequency cleaning as good as if not
better than PLANCK, while the higher resolution pro-
vides improved sensitivity at the scales where the tSZ
dominates,ℓ > 2000 (see fig. 1), so frequency cleaning
should be drastically improved at those scales. Further
consideration of this issue is required, but we defer this
to a future work.
Another source of spurious correlation should be the

correlation induced between the lensed primordial CMB
and the WL. Here again, this effect might be important
for PLANCK as visible in fig. 1 but should be negligible
for ACT/SPT since in the range of interest, the lensed
contribution of the CMB is around 2 orders of magni-
tude weaker than the kSZ one. In addition, any attempt
to cross correlate CMB lensing with cosmic shear (Hu
2002) will need to consider the kSZ2-weak lensing signal
as a source of spurious correlation, since this signal will
begin to dominate for ℓ ∼ 3000 near the damping tail.
Finally, there is the possibility of spurious correlation

with point sources. At the frequencies of interest, this
is primarily dust emission from sub-mm galaxies. This
population of objects will probably correlate with the
weak lensing signal but the strength of that correlation
is rather uncertain.
Finally, we note that the kSZ2-weak lensing correlation

has a specific signature that may alleviate some of the
problems with spurious correlation and could provide a
mechanism to isolate the kSZ signal. Specifically, the
kSZ effect does not correlate with weak lensing at the
2 point level, whereas tSZ residuals or dusty sub-mm
galaxies will. It may be possible to exploit this fact,
and remove the part of the anisotropy that correlates

with weak lensing at the two point level. This would
effectively “lensing clean” the temperature map so that
the residuals would be dominated by the kSZ. Realistic
simulations are certainly required to precisely evaluate
the potential of this technique, but this is outside the
scope of this paper.

7. conclusion

We have evaluated the prospects for upcoming exper-
iments to measure the correlation between arc-minute
scale secondary anisotropies of the CMB and cosmic
shear, after tSZ has been removed by frequency clean-
ing. In particular, we evaluated the signal to noise ratio
for the kSZ2-weak lensing correlation.
The two point correlation of kSZ with and density

tracer is negligible because of the isotropy of the velocity
field; however, we found that a strong 3-point correlation
exists. A collapsed three point statistic was introduced to
measure the three point signal, which is the angular cross
power spectrum between weak lensing and the square of
the filtered temperature. While residual thermal SZ will
limit the detectability of this correlation for PLANCK-
LSST, it should be easily detectable by cross correlation
ACT/SPT with the CFHTLS/SNAP at ℓ ∼ 5000 where
the signal to noise ratio per ℓ reaches 1.8. In principle, a
full analysis of the cross bispectrum BκΘΘ

ℓ1ℓ2ℓ3
could yield

a higher signal to noise — a calculation we defer to a
future paper.
The kSZ2-weak lensing correlation probes three point

correlations between the underlying dark matter and the
the momentum of the ionized baryons in dense regions,
providing the only known probe into this physics. We
presumed that these higher order correlations, or more
precisely the hybrid bispectrum Bδpn̂pn̂

, arose from three
point density modulations of large scale coherent mo-
tions. The situation is surely more complicated and this
approximation must be compared to hydrodynamic nu-
merical simulations. Nevertheless, measurement of kSZ2-
weak lensing correlation will provide valuable insights
into the physics of energy injection, the bias and ion-
ization fraction of baryons in the densest environments,
and information on the nonlinear mode coupling between
dark matter and baryons. We also considered the de-
pendence of correlation signal on the power spectrum
normalization parameter σ8 and determined the approx-
imate scaling Cℓ ∝ σ7

8 similar to the scaling of the tSZ
power spectrum.
Despite the interest in detection of the kSZ2-weak lens-

ing correlation, a null detection could prove equally in-
teresting. The contribution of patchy reionization to arc-
minute scale anisotropy in the CMB is a contentious
issue, with different reionization models and histories
predicting signal amplitudes differing by several orders
of magnitude (Aghanim, Desert, Puget, & Gispert 1996;
Gruzinov & Hu 1998; Knox, Scoccimarro, & Dodelson
1998; Santos et al. 2003; Valageas et al. 2001). The
lack of a correlation in the presence of significant arc-
minute scale anisotropy would indicate that this anisot-
ropy was generated at high redshift, rather than in the
low redshift universe probed by weak gravitational lens-
ing. This last point is especially important when one
considers the similarity in shape between the power spec-
trum of patchy reionization and that of kinetic SZ (see
fig. 1).
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In addition, we note that many of the calculations in
this paper can be directly applied to correlations with
galaxies rather than weak lensing as the tracer of den-
sity field, given a suitable model for the bias of galaxies
in the nonlinear regime, as provided by, e.g. the recently
popular halo model (Cooray & Sheth 2002; Sheth et al.
2003). The weak lensing window function Wκ(η), would
simply be replaced with a suitable window function for
the galaxies. As the noise in the correlation measure-
ment is dominated by the CMB, the signal to noise
per square degree should not change significantly. How-
ever, because large area galaxy surveys already exist,
the correlations we discussed might be measured with
galaxies first, as was the case recently for the ISW ef-
fect (Afshordi et al. 2003; Boughn & Crittenden 2003;
Fosalba & E. Gatzanaga 2003; Fosalba et al. 2003;
Nolta et al. 2003; Scranton et al. 2003). The kSZ2-
galaxy correlation would probe three point correlations
between the density of galaxies and the momentum of
ionized baryons in clusters, providing valuable informa-
tion about galaxy formation.
With such a high signal to noise ratio, it is conceivable

that radial information might also be extracted from the
cross-correlation. If photometric redshifts of background
source galaxies were available, one could attempt to de-
project the cross-correlation tomographically. Similarly,
if galaxies were correlated with kSZ2 rather than weak
lensing, galaxy photo-z’s could be use to extract this ra-

dial information. This has been discussed in the context
of galaxy-tSZ cross correlation by Zhang & Pen (2001).
Studying the cross-correlation as a function of redshift
would yield information on the redshift evolution of the
dynamical state of baryons in dense environments.
In conclusion, our study predicts that coming arc-

minute scale measurements of the secondary anisot-
ropies of the CMB should will correlate strongly with
local tracers of the density field, like weak gravitational
lensing or galaxies from large scale structure surveys.
The total signal to noise ratio for the kSZ2-weak lens-
ing correlation is greater than 220 for ACT/SPT cor-
related with CFHTLS/SNAP, which will be easily de-
tectable. We believe that this signal along with the
other cross-correlations with cosmic shear studied by
Seljak, Burwell, & Pen (2001) and Hu (2002), provide
a significant incentive for upcoming CMB experiments
and lensing surveys to image the same regions of sky.
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