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Abstract

Several proposed source models for Ultra-High Energy Cosmic Rays (UHECRs)
consist of dipole distributions oriented towards major astrophysical landmarks such
as the galactic center, M87, or Centaurus A. We use a comparison between real data
and simulated data to show that the HiRes-I monocular data for energies above
1018.5 eV is, in fact, consistent with an isotropic source model. We then explore
methods to quantify our sensitivity to dipole source models oriented towards the
Galactic Center, M87, and Centaurus A.

Key words: cosmic rays, anisotropy, galactic center, Centaurus A, M87, dipole
PACS: 98.70.Sa, 95.55.Vj, 96.40.Pq, 13.85.Tp

1 Introduction

The observation of Ultra-High Energy Cosmic Rays (UHECRs) has now spanned
over forty years. Over that period, many source models have been proposed
to explain the origin of these remarkable events. In the past five years, the-
oretical models have been suggested that would potentially produce dipole
distributions oriented towards M87 [1] or Centaurus A [2,3]. In addition, the
Akeno Giant Air Shower Array (AGASA) has reported findings suggesting a
4% dipole-like enhancement oriented towards the Galactic Center present in
its events with energies around 1018 eV [4]. This result seemed to be corrobo-
rated by findings published by the Fly’s Eye experiment in 1999 that suggested
the possibility of an enhancement in the galactic plane also at energies around
1018 eV [5], and also by a re-analysis of data from the SUGAR array that was
published in 2001 [6] that showed an enhancement in the general vicinity of
the Galactic Center.

However, both AGASA and Fly’s Eye are subject to a limiting factor; they
are both located too far north in latitude to directly observe the Galactic
Center itself. The re-analysis of SUGAR data actually demonstrated an excess
that was offset from the Galactic Center by 7.5◦ and was more consistent
with a point source than a global dipole effect [6]. While the current High
Resolution Fly’s Eye (HiRes) experiment is subject to a similar limitation in
sky coverage as the AGASA and Fly’s Eye experiments, we will show that,
by properly estimating the HiRes aperture and angular resolution, we can
effectively exclude these dipole source models to a certain degree of sensitivity.

∗ Corresponding author. E-mail address: stokes@cosmic.utah.edu (B.T. Stokes)
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However, we are not able to completely exclude the findings of AGASA or the
theoretical predictions mentioned above.

Our methods for detecting the presence of a dipole source model will be based
upon comparisons between the real data and a large quantity of events gen-
erated by our Monte Carlo simulation program. The simulated data possess
the same aperture and exposure as the actual HiRes-I monocular data set. In
order to measure the presence of a dipole effect in our event sample, we use
first a conventional binning technique that considers the event counts for the
full range of opening angles from the center of each proposed dipole distribu-
tion. We then show how the asymmetric angular resolution of a monocular air
fluorescence detector can be accommodated in this method. We ascertain the
90% confidence interval for a dipole source model for each of the three dipoles
considered by comparing our real data with large numbers of similar-sized
simulated data sets. We then consider the effects of systematic uncertainties
on our measurements. To conclude, we use a novel technique measuring the
information dimension [7], DI, of our sample to place an independent 90%
confidence interval on the scaling parameter, α, that we use to quantify our
dipole source model.

2 The Dipole Function

A dipole source model can be described, as first proposed by Farrar and Piran
[2]:

n =
1

2
+
α

2
cos θ, (1)

where n is the relative density of cosmic rays in a given direction, θ is the open-
ing angle between that direction and the global maximum of the distribution,
and α is the customary anisotropy amplitude [8]:

α =
nmax − nmin

nmax + nmin

. (2)

The cases of α = 1 and α = −1 correspond to 100% dipole distributions in the
direction of the center and anti-center of the dipole source model, respectively.
The case of α = 0 corresponds to an isotropic source model.

A simple scheme for measuring α consists of constructing a dipole function in
the following manner:
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(1) The opening angle is measured between the arrival direction of an event
and the center of the proposed dipole source model.

(2) The cosine of the opening angle is then histogrammed.
(3) The preceding steps are repeated until all of the events are considered.
(4) The resulting curve produced by the histogram is the dipole function.

The dipole function has two variable parameters: the bin width, ∆(cos θ), and
the total number of counts in all of the bins. At first glance, it would seem that
the total bin count is fixed upon the total number of events, but we will show
that this isn’t necessarily the case when we consider how to accommodate
angular resolution.

In the simplest case of a sample that contains a very large number of events
with a constant exposure and aperture over the entire sky, the dipole function
will be proportional to equation 1. We propose two simple ways that one
can quantify the dipole function for this sample; the most obvious way is to
consider its slope. We can see by referring to equation 1 that this is equal to α

2
.

A second way of quantifying α is to consider the mean cosine value, <cos θ>
for the dipole function:

<cos θ>=
1

2

1
∫

−1

cos θ(1 + α cos θ) d(cos θ) =
1

3
α. (3)

Both methods of quantification produce values that are dependent upon α.
While the dependence of<cos θ> is linear in α for the case of homogeneous full-
sky coverage, we will find that this is not necessarily the case when considering
the cumulative exposure of a ground-based air fluorescence detector.

3 Calculating the Dipole Function for the HiRes-I Monocular Data

We now consider the real data sample consisting of events that were included
in the HiRes-I monocular spectrum measurement [9,10]. This set contains 1526
events observed between May 1997 and February 2003 with measured energies
greater than 1018.5 eV. The HiRes monocular data set represents a cumulative
exposure of ∼ 3000 km2·sr·yr at 5× 1019 eV.

As a first order measurement, we construct the dipole function for a source
model with a maximum value at the Galactic Center. For now, we only con-
sider the nominal arrival directions of the events in our data sample. For this
demonstration, we set the bin width of the dipole function to ∆(cos θ) = 0.04.
This provides us with a mean bin count of 30.52. Figure 1a shows the re-
sulting dipole function. However, in order to estimate the value of α, we first
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(a) (b)

(c)

Fig. 1. The dipole function for the nominal arrival directions of the HiRes-I data
set—(a) the number of counts in each cos θ bin; (b) the aperture/exposure nor-
malization factor for each bin; (c) the normalized bin count with the χ2-fit to a
line.

normalize our dipole function with respect to aperture and exposure. This is
done by considering 107 pairs of simulated events and event times that cor-
respond to the actual HiRes-I observation periods. By constructing a dipole
function for this simulated set, we then estimate the normalization factor for
each cos θ bin in the dipole function. The result is shown in figure 1b. The
dipole function is then normalized and a χ2-fit performed to determine its
slope, m, and y-intercept, b. The normalized dipole function is pictured in
figure 1c with the best linear fit applied. The scaling constant, α, is then es-
timated by the quotient, m

b
. The result for the galactic dipole source model is

then: α = −0.010± 0.055.

The same method was employed to calculate α in the cases of Centaurus A
and M87. For Centaurus A, we obtained a result of: α = −0.035± 0.060. For
M87, we found α = −0.005± 0.045.
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Fig. 2. The geometry of reconstruction for a monocular air fluorescence detector

4 Incorporating Angular Resolution into the Dipole Function

The analysis described in the previous section does not take into account the
experimental angular resolution. Accommodating the angular resolution is
important to the overall integrity of this analysis because the HiRes-I monoc-
ular data contains very asymmetric errors in arrival direction determination.
For a monocular air fluorescence detector, angular resolution consists of two
components, the error, ∆n̂ in the estimation of the plane of reconstruction
and the error, ∆ψ, in the determination of the angle, ψ, within the plane of
reconstruction. Figure 2 illustrates how this geometry would appear with a
particular plane of reconstruction and a particular value for ψ. Intuitively, we
can see that the plane of reconstruction can be determined quite accurately.
However, the value of ψ is more difficult to determine because it is dependent
on the precise results of the profile constraint fit [9,10]. In general, ∆n̂ is de-
pendent upon the observed angular track length of the event in question. This
is because longer track lengths enable a better determination of the plane of
reconstruction. Typically, the value of ∆n̂ is ±0.5◦. The value of ∆ψ is depen-
dent upon the cosmic ray energy. This is due to the fact the larger showers
provide better defined profiles for the reconstruction program. Typically, the
value of ∆ψ is ±10◦.

In order to accommodate the HiRes-I monocular angular resolution, it is nec-
essary to revise the method we use to construct the dipole function. Instead
of considering each event as a single arrival direction, we will consider each
event to be an elliptical, two-dimensional Gaussian distribution of N points
with the two Gaussian parameters, σ1 and σ2, being defined by the parameters

6



(a) (b)

(c) (d)

Fig. 3. Density plots of event arrival directions with the angular resolution param-
eters of the Hires-1 monocular data on a Hammer-Aitoff projection with equatorial
coordinates (right ascension right to left)—(a) HiRes-I monocular data set; (b) sim-
ulated data set with an isotropic source model; (c) simulated data set with a galactic
dipole source model (α = 1); (d) simulated data set with a galactic dipole source
model (α = −1). In each case, the lighter regions correspond to a higher density of
event arrival directions.

that describe the angular resolution. Figure 3 shows how entire sets of events
with these error parameters appear when projected on a density plot using a
Hammer-Aitoff projection and equatorial coordinates.

In order to account for angular resolution in the construction of the dipole
function, we add an additional step. Instead of simply calculating the opening
angle between the arrival direction of the event and the center of the dipole
for the preferred arrival direction, we do so separately for each of the N points
in the Gaussian distribution that describes each event’s arrival direction. By
choosing a sufficiently large value for N and a sufficiently small bin width,
∆(cos θ), we can then construct the dipole function as a smooth curve. Ex-
amples of the dipole function are shown in figure 4 for each of the four event
sets in figure 3.

The next logical step would be to attempt to normalize the dipole function
of the real data with respect to aperture and exposure and then to calculate
the slope, m, and the y-intercept, b. However, this program would run into
a major complication. Because the Gaussian distributions that are used to
approximate the individual event arrival directions can overlap into a large
number of bins, the individual data points in the dipole function are highly
correlated. This makes it impossible to apply either the χ2-fit or a bootstrap
method to estimate the error in the values of m and b—and thus the error in
α—for the normalized dipole function. Another approach needs to be devel-
oped.
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(a) (b)

(c) (d)

Fig. 4. The dipole function, with angular resolution included, for a galactic dipole
model for four different event sets without correction for aperture and exposure—(a)
HiRes-I monocular data set; (b) simulated data set with an isotropic source model;
(c) simulated data set with a galactic dipole source model (α = 1); (d) simulated
data set with a galactic dipole source model (α = −1).

The method that we propose is to compare the value of <cos θ> for the dipole
function of the real data sample with that of a large number of similar-sized
simulated data samples with a discrete spectrum of α-values. We can then
show how <cos θ> varies with respect to α for different dipole source models.

5 Simulating the HiRes Aperture and Exposure

In creating simulated data sets, we employed a library of simulated events
generated by our Monte Carlo shower simulation program and then recon-
structed using the profile-constraint reconstruction program. This library of
events possesses the spectrum and composition reported by the stereo Fly’s
Eye experiment[11,12]. A total of ∼ 1.3 × 105 simulated events were recon-
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Fig. 5. Sidereal time distribution comparison between the real data and a simu-
lated data after the mirror-by-mirror correction (χ2/d.f. = 1.18). The solid line
histogram corresponds to the sidereal time distribution of the simulated data. The
crosses correspond to the sidereal time distribution of the real data with Gaussian
uncertainties assumed for each bin.

structed with energies greater than 1018.5 eV.

Once a library of simulated events was created, we then turned to the task
of creating simulated data sets that accurately reflected the exposure of the
HiRes-I monocular data set. In general, the apertures of air-fluorescence de-
tectors are complicated; we need to assign times to individual Monte Carlo
events that accurately reflect the distribution of times seen in the actual data.

By parsing through the raw HiRes-I data, we assemble a database of detec-
tor run-periods. We then randomly assign a time from these periods to each
simulated event for a simulated event set. We also apply a further correc-
tion to account for the effect of non-functioning detector units (mirrors). This
is achieved by excluding mirror events corresponding to periods in which a
particular mirror was out of commission.

In figure 5 we can see the results of this mirror-by-mirror correction by com-
paring the sidereal time distributions of real and simulated data sets after the
correction is applied. We see excellent agreement in this plot (χ2/d.f. = 1.18).

We also checked to see if the Monte Carlo shower simulation routine was
accurately modeling the efficiency of the HiRes-I detector with respect to
zenith and azimuth angles. In figures 6 and 7, we compare the distributions of
zenith and azimuth angles for the real data and the simulated data set that
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Fig. 6. Zenith angle distribution comparison between the real data and simulated
data (χ2/d.f. = 0.93). The solid line histogram corresponds to the distribution of
cosine of the zenith angles for the simulated data. The crosses correspond to the dis-
tribution of cosine of the zenith angles for the real data with Gaussian uncertainties
assumed for each bin.

has been assigned random times and filtered through our mirror-by-mirror
correction. There is again very good agreement between the simulation and
the data.

6 Results

For each of the three dipole source models considered we used the following
procedure to measure the α parameter:

(1) We calculated the value of <cos θ> for the dipole function of the real
data sample.

(2) We created a total of 20,000 simulated data samples, 1000 each for 0.1 in-
crements of α from -1.0 to 1.0, each with the same number of events as the
actual data. In figure 8 we can see that the distribution of <cos θ> values
for each α-value generated conforms well to a Gaussian distribution.

(3) We constructed curves corresponding to the mean and standard deviation
of <cos θ> of the dipole function for each value of α.

(4) We determined the preferred value of α and the 90% confidence interval
of α for each dipole source model by referring to the intersections of the
90% confidence interval curves with the actual value of <cos θ> for the
dipole function of the real data.

10



Fig. 7. Azimuth angle distribution comparison between the real data and simulated
data (χ2/d.f. = 1.31). The solid line histogram corresponds to the distribution
azimuth angles for the simulated data. The crosses correspond to the distribution
of azimuth angles for the real data with Gaussian uncertainties assumed for each
bin.

(a) (b)

Fig. 8. The distribution of <cos θ> values for the dipole functions of simulated data
sets with a single α-value—(a) the galactic dipole source model with α = 1.0; (b)
the galactic dipole source model with α = −1.0.

The results for all three dipole source models are shown in figure 9. In each
case, the nominal values of α and the 90% confidence levels only deviated
marginally from the values obtained without considering angular resolution.
The results are given in column 2 of table 1.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Estimations of the value of α for three different dipole source models. The
curves demonstrate the dependence of < cos θ> of the dipole functions upon α.
The horizontal lines represent the value of <cos θ> of the real data for the dipole
functions of each dipole source model—(a) the galactic dipole source model for
α = [−1.0, 1.0]; (b) the critical region for the galactic dipole model: α = 0.005±0.055
with a 90% confidence interval of: [−0.085, 0.090]; (c) the Centaurus A dipole source
model for α = [−1.0, 1.0]; (d) the critical region for the Centaurus A dipole model:
α = −0.005 ± 0.065 with a 90% confidence interval of: [−0.090, 0.085]; (e) the M87
dipole source model for α = [−1.0, 1.0]; (f) the critical region for the M87 dipole
model: α = −0.010 ± 0.045 with a 90% confidence interval of: [−0.080, 0.070].
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7 Potential Sources of Systematic Error in the Estimation of α

There are two principal potential sources of systematic error in the determi-
nation of α with HiRes-I monocular data. The first lies in the estimation of
the angular resolution. If the error in arrival direction estimation was being
underestimated or overestimated, it could lead to an improper evaluation of
the confidence intervals for α. In order to study the effect of angular resolu-
tion on our determination of α, we repeated our analysis of the galactic dipole
model twice. In the first case, we increased the estimated angular resolution
parameters for both the real and simulated data sets by 33%. In the second
case, we decreased the angular resolution parameters for both types of data
sets by 25%. In both cases, the width of the 90% confidence interval for α
changed by less than 0.010 and the nominal value of α remained unchanged.
The results suggest that the determination of α is largely independent of the
angular resolution—at least for the plausible range of values that one could
adopt for the angular resolution parameters.

The second issue of concern is the uncertainty in the determination of at-
mospheric clarity. Because hourly atmospheric observations are not available
for the entire HiRes-I monocular data set, we have relied upon the use of an
average atmospheric profile for the reconstruction of our data [13]. Different
atmospheric conditions can influence how the profile constraint reconstruction
routine interprets an observed shower profile and thus can lead to slightly di-
vergent determinations of an event’s arrival direction. Unfortunately, we do
not have large libraries of simulated data with differing atmospheric param-
eters used in the generation and reconstruction of events. However, we do
have the real data reconstructed with a full range of atmospheric parameters.
By considering the value of <cos θ> over the 1σ error space of atmospheric
parameters, we can establish the degree of systematic uncertainty that is con-
tributed to the determination of α by atmospheric variability. We saw that in
the most extreme case, the nominal value of α shifted by less than .01. There
was no broadening in the 90% confidence interval.

8 Using the Information Dimension, DI, as an Independent Check

The information dimension, DI [14,15], is a measure of the overall heterogene-
ity of a data sample. The smaller the value of DI, the more heterogeneous the
sample is. A basic formula for calculating DI is:

DI =
〈

−
1

logNδ

N
∑

i=1

Pi(Nδ) logPi(Nδ)
〉

, Nδ = [354, 360], (4)
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(a) (b)

Fig. 10. The distribution of DI values for simulated data sets with a single
α-value—(a) the galactic dipole source model with α = 1.0; (b) the galactic dipole
source model with α = −1.0.

where Nδ is the total number of declinational bins (with a range of values
between 354 to 360) and:

Pi(Nδ) =
ni

<ni>

π3

4(Nδ)4∆Ωδ

, (5)

with ni being the number of counts in a particular latitudinal bin, <ni> being
the average bin count over the entire sample and ∆Ωδ being the area of that
particular latitudinal bin. A detailed description of this method can be found
in reference [7].

While the measurement of DI is not necessarily the most sensitive tool avail-
able, it allows one to rule out any number of potential anisotropic source
models with a single measurement. The general scheme that we followed is
similar to what we used in the case of the dipole function.

(1) We calculated the value of DI for the real data sample.
(2) We created a total of 20,000 simulated data samples, 1000 each for 0.1

increments of α from -1.0 to 1.0. In figure 10 we can see that distribution
of DI values for each α-value is Gaussian.

(3) We constructed a curve consisting of the mean and standard deviation of
DI for each value of α.

(4) We then ascertained the preferred value of α and the 90% confidence
interval for each dipole source model by referring the intersections of the
90% confidence interval curves with the actual value of DI for the real
data.

The results for all three dipole source models are shown in figure 11.
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. Estimations of the value of α for three different dipole source models.
The curves demonstrate the dependence of DI upon α. The horizontal lines rep-
resent the value of DI for the real data—(a) the galactic dipole source model for
α = [−1.0, 1.0]; (b) the critical region for the galactic dipole model: α = 0.035±0.090
with a 90% confidence interval of: [−0.100, 0.190]; (c) the Centaurus A dipole source
model for α = [−1.0, 1.0]; (d) the critical region for the Centaurus A dipole model:
α = 0.040 ± 0.095 with a 90% confidence interval of: [−0.105, 0.200]; (e) the M87
dipole source model for α = [−1.0, 1.0]; (f) the critical region for the M87 dipole
model: α = 0.020 ± 0.10 with a 90% confidence interval of: [−0.26, 0.30].
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1 2 3

α determined α determined α determined

SOURCE MODEL without considering by the value of by the value of

angular resolution <cos θ> DI

Galactic −0.010 ± 0.055 0.005 ± 0.055 0.035 ± 0.09

Centaurus A −0.035 ± 0.060 −0.005 ± 0.065 0.040 ± 0.095

M87 −0.005 ± 0.045 −0.010 ± 0.045 0.020 ± 0.100

Table 1
Comparison of the estimation of α via direct fit, the value of <cos θ> for the dipole
function, and the value of DI.

The determination of α for both methods are compared in Table 1. The 90%
confidence intervals for the determination α via the use of DI are substantially
larger. This is to be expected because the value of DI is a single number that
contains no a priori preference for a specific source model. Furthermore, in
two cases there is a second solution to α that is excluded by considering
the results of the < cos θ> method. The important observation is that the
results of the two methods are consistent. One advantage of the DI method
is that we can state all three 90% confidence intervals jointly, since they are
all considering only a single measurement on the real data. In the case of the
<cos θ> method, we would have to consider a broader confidence interval for
each individual model in order to have a simultaneous 90% confidence level
for all three models.

9 Conclusion

We are able to place upper limits on the value of |α| for each of our three
proposed dipole source models. However, these limits are not small enough
to exclude the theoretical predictions [1,2,3]. Also, they do not exclude the
findings of the AGASA collaboration in terms of the intensity of the dipole
effect that they observed or in terms of the energy considered because the
events in the dipole effect observed by the AGASA detector possessed energies
below 1018.5 eV [4]. Since it appears that angular resolution has little impact
on the measurement of α and we do not appear to be systematically limited,
we conclude that the driving factor in making a better determination of α will
simply be larger event samples. HiRes-I mono will continue to have the largest
cumulative aperture of any single detector for the next three to five years, thus
it will continue to serve as an ever more powerful tool for constraining dipole
source models.
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