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Field theory of the quantum kicked rotor

Alexander Altland∗ and Martin R. Zirnbauer∗
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The quantum kicked rotor (QKR) is investigated by field theoretical methods. It is shown that the
effective theory describing the long wave length physics of the system is precisely the supersymmetric
nonlinear σ–model for quasi one–dimensional metallic wires. This proves that the analogy between
chaotic systems with dynamical localization and disordered metals can indeed be exact. The role of
symmetries is discussed.
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Quantum mechanics tends to suppress the chaoticity
of classical dynamical systems. The investigation of this
phenomenon in periodically driven systems, i.e. systems
that are governed by a Hamiltonian with periodic time
dependence, has led to the discovery of one of the most in-
triguing parallels between the fields of nonlinear dynam-
ics and disordered solids: In the quantum kicked rotor
(QKR), a typical representative of this class of system,
the quantum mechanical suppression of chaos exhibits
striking similarities to the phenomenon of Anderson lo-
calization in disordered metallic wires [1].

By definition, the kicked rotor is a point particle that
moves freely on a circle. The particle is kicked period-
ically in time, where the kick strength depends on the
angular position. When a kick strength parameter kτ
exceeds a certain threshold value, the dynamics becomes
globally chaotic. In a statistical physicist’s language, the
chaoticity of the motion manifests itself as follows: An
ensemble of particles prepared at time t = 0 so as to
have definite angular momentum l0 but arbitrary angu-
lar coordinate θ, will diffuse in l–space around the ini-
tial condition l0. In the corresponding quantum system

(θ → θ̂, l → l̂, [l̂, θ̂] = −ih̄), the unbound diffusion
in l–space is suppressed by localization. Numerical [1]
and analytical [2,3] studies have shown that the QKR–
localization is analogous to the Anderson localization dis-
played by metallic wires with many channels (quasi 1d
wires). In particular, it has been demonstrated numeri-
cally [4] that a phenomenological modeling of the QKR
by random band matrices can successfully explain essen-
tial features of the localization phenomenon. Random
matrix models of the same type are known [5], in turn,
to describe the universal large distance physics of disor-
dered wires.

However, the equivalence between the rotor and quasi
1d wires still has the status of a conjecture. A rigor-
ous answer to the question whether this analogy is com-

plete (and not just restricted to the bilateral appearance
of localization) has not yet been given. Can a simple
one–dimensional driven system indeed exactly mimic the
behavior of disordered electronic conductors, which in-
cludes a variety of complex phenomena that have recently
been found [6,22,8]? In the present Letter we are going

to show that the answer is positive. This is done by
mapping the kicked rotor onto the very same supersym-
metric nonlinear σ–model that is known to describe the
long wave length physics of disordered wires. The fact
that both models can be described by the same effective
field theory implies that all that is known about the QKR
applies to disordered wires and vice versa.
The QKR is defined by the time dependent Hamilto-

nian

Ĥ =
l̂2

2
+ k cos(θ̂ + a)

∞
∑

n=−∞

δ(nτ − t),

where the particle’s moment of inertia has been set to
unity and a ∈ R is a symmetry breaking parameter whose
meaning will be explained below. To elucidate the anal-
ogy between this Hamiltonian and disordered electron
systems, one may consider the discrete time analog of a
four–point Green function in (angular) momentum space:

〈

〈

l1|G
+(ω+)|l2

〉 〈

l3|G
−(ω−)|l4

〉

〉

ω0

, (1)

where G±(ω±) :=
∑±∞

n=0 Û
neiω±nτ = [1−(Ûeiω±τ )±1]−1,

Û = exp(il̂2τ/4) exp(ik cos(θ̂ + a)) exp(il̂2τ/4) denotes
the Floquet operator, i.e. the unitary operator govern-
ing the time evolution during one elementary time step,

ω± = ω0± (ω/2+ i0), and 〈. . .〉ω0
:= τ

∫ 2π/τ

0 dω0(. . .)/2π
is an average over the rotor’s quasi–energy spectrum.
Before turning to the quantitative discussion of the sys-

tem, let us explain the meaning of the symmetry breaking
parameter a. The localization length of a disordered wire
depends on the behavior of the Hamiltonian under the
time reversal transformation T : t→ −t, p→ −p, x→ x,
where p and x are the momentum and the position. In
the case of the rotor, where localization takes place in
momentum rather than coordinate space, this symmetry
operation is irrelevant. However, it has been shown [9]
that the transformation Tc: t→ −t, θ → −θ, l → l plays
a role analogous to T in disordered metals. (Note that
Tc differs from T just by the exchange of momentum and
position.) To couple the system to a Tc breaking pertur-
bation in a simple way, we put it on an angular lattice of
spacing 1/(2πL), L ∈ N , thereby giving it the topology
of a ring of circumference L in momentum space [10]. It
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will turn out that the symmetry breaking parameter a
then acts like a Tc breaking Aharonov–Bohm flux pierc-
ing the ring.
In the following we deal with the correlator (1) by field

theoretical methods. The strategy of our approach is dic-
tated by the experience gained from both the analysis of
disordered metals [11] and a recent field theoretical ap-
proach [12] to Hamiltonian chaotic systems. Owing to
the different formulation of periodically driven systems,
however, the actual computational scheme deviates sig-
nificantly from these cases. To simplify the notation, we
temporarily focus on the case of unbroken Tc symmetry,
a = 0.
Invariance under the transformation Tc, which acts as

an anti–unitary operator in the quantum system, results
in the Floquet operator being a symmetric matrix when
represented in the l–basis (from now on we refer to all
operators in l–representation). This makes it possible
to decompose U = {〈l|Û |l′〉} by (Ueiω±τ )±1 = V±V

T
± ,

where V± does not possess any symmetries other than
unitarity. We choose V± = e±iω±τ/2Ka=0

±,k/2, where

Ka
±,k := {〈l| exp(±il̂2τ/4) exp(±ik cos(θ̂ + a))|l′〉}, and

write the Green functions appearing in (1) as [13]

G±(ω±) =

(

1 V±
V T
± 1

)−1

11

=: G̃±(ω±)11. (2)

In the next step we introduce a superfield ψ = {ψλαtl},
λ, α, t = 1, 2, with complex commuting (anticommut-
ing) components ψα=1(ψα=2), and consider the gener-
ating functional

∫

D(ψ, ψ̄) exp
[

−ψ̄
(

G−1 + J
)

ψ
]

, (3)

where G = E11
AR⊗1BF⊗ G̃

+(ω+)+E
22
AR⊗1BF⊗ G̃

−(ω−),
matrices with subscript ’AR’ (’BF’,’T’) act in the two–
dimensional spaces of λ (α,t) indices (the t–indices refer
to the matrix structure appearing in (2)) and (Eij

X )i′j′ :=
δii′δjj′ , X = AR,BF,T. Here and below, indices that are
not indicated explicitly are summed over. Expressions
like (1) can readily be obtained from (3) by differentiat-
ing twice with respect to matrix elements of the source
field J . As we are interested in the general structure of
the theory, rather than in the calculation of any particu-
lar correlation function, we henceforth omit J .
After a few elementary manipulations, namely matrix

transpositions and regrouping of integration variables,
the Gaussian integral (3) takes the simple form

∫

D(φ, χ)e−
1
2
(φ̄φ+χ̄χ)+φ̄E11

AR⊗V+χ+χ̄E22
AR⊗V T

− φ, (4)

where the fields φ = {φλαtl} and χ = {χλαtl} comprise
components of both ψ and ψ̄. Instead of displaying the
structure of these new quantities explicitly, we merely
note two essential features that fix their functionality as

integration variables: (i) φ and χ are independent of each
other and (ii) they possess the symmetry Ȳ = (1AR ⊗
M)Y, Y = φ, χ, where M = E11

BF ⊗ σ1
T + E22

BF ⊗ (iσ2
T)

and σi
X (i = 1, 2, 3, X = AR,BF,T) denotes the Pauli

matrices.

The next step in the construction of the field theory is
the average over the phase exp(iω0τ), which plays a role
similar to the energy average employed in Ref. [12]. In
that case, energy averaging led to a quartic (∼ (ψ̄ψ)2)
non–local contribution to the action of the field theory.
The latter was eliminated by means of a matrix valued
auxiliary field Q that coupled to the dyadic product ψψ̄.
The phase average to be carried out in the present prob-
lem produces in addition to the quartic term an infinite
series of higher contributions to the action. We have
not succeeded in decoupling these terms by elementary
means. On the other hand, the experience gained from
previous diagrammatic analyses [3] of the QKR suggests
that a field coupling to ψψ̄ should again describe the large
scale physics.

The problem of identifying this field is solved by a re-
cently discovered identity [14] that adapts the Hubbard–
Stratonovich transformation to averages over unitary op-
erators. In the special case under consideration, namely
a phase or U(1) average, this identity reads:

〈

eφ̄1
uη

1
+η̄

2
ūφ

2

〉

ω0

=

∫

Dµ(Z, Z̃)eφ̄1
Zφ

2
+η̄

2
Z̃η

1 , (5)

where u := exp(iω0τ), η1 = V+
∣

∣

ω0=0
χ1, η̄2 = χ̄2V

T
−

∣

∣

ω0=0
,

all subscripts refer to the λ–indices (’AR’–space), Z =
{Zαtl,α′t′l′} is a non–local (in l) 4 × 4 supermatrix field,

Dµ(Z, Z̃) = D(Z, Z̃)sdet(1−ZZ̃) with ’sdet’ the superde-
terminant, and

∫

D(Z, Z̃) stands for the integral over the

matrix elements of Z and Z̃ := Z†σ3
BF.

The proof [14] of (5) makes use of group theoretical
concepts and the theory of generalized coherent states
[15] and is too lengthy to be reported here. We note how-
ever that the field Zll′ takes values in the unrestricted
set of 4 × 4 complex supermatrices. The latter can be
interpreted as a space parameterizing the coset space
G/K, K = {k ∈ G|kσ3

AR = σ3
ARk} ⊂ G, where G is

the group of 8 × 8 supermatrices g subject to the con-
straint g†ηg = η, η =

(

σ3
AR ⊗ E11

BF + 1AR ⊗ E22
BF

)

⊗ 1T.
This coset space is the field manifold of a ’unitary’ su-
persymmetric σ–model that is twice as large as in the
usual case [11] on account of the extra T–space indices.
The relationship between the Z–field and this manifold
is the first indication of the fact that we will end up with
a nonlinear σ–model.

After this comment on the formalism, we proceed to
apply (5) to the construction of the field theory for the
rotor. To that end we insert (5) into (4) and perform the
Gaussian integration over the fields φ and χ. As a result
we obtain for the generating functional (at J = 0),
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∫

D(Z, Z̃) exp str

[

ln(1 − ZZ̃)− 1
2 ln(1− Zτ−1ZT τ)

− 1
2 ln(1 − eiωτ Z̃U0τ

−1Z̃T τU †
0 )

]

, (6)

where U0 = U
∣

∣

a=0
, τ = Mσ3

BF and the supertrace ’str’
includes a trace over the l–space. So far all manipula-
tions have been exact. We next restrict the field theory
to its infrared limit, which describes the long time/large
distance physics we are interested in.
The action of the field theory (6) vanishes for fields

Z proportional to unity in angular momentum space if
ω → 0 and the constraint

Z̃ = τ−1ZT τ (7)

is imposed. Field configurations that violate this sym-
metry are ’massive’ and cannot contribute to the long
range correlations of the model. We therefore restrict
the integration in (6) to the field manifold specified by
(7). (The integration over the massive quadratic fluc-
tuations around this manifold yields a factor of unity
by the supersymmetry of the model.) Note that the
unitary coset space G/K subject to the constraint (7)
defines the field space of the ’orthogonal’ nonlinear σ–
model. As a preliminary result, we thus find that our
field theory has the same symmetries as the one de-
scribing time reversal invariant disordered metals. What
happens when this symmetry is gradually broken by
the introduction of a small finite value of a? In that
case, the decomposition of the time evolution operator
has to be generalized to (Ueiω±τ )±1 = V a

±V
−aT
± , where

V a
± = e±iω±τ/2Ka

±,k/2. All further steps can be repeated
in essentially the same way as before and we again ar-
rive at (6). The only change is that the fields appearing
in the action have undergone a ’gauge transformation’
Zll′ → Za

ll′ := exp(−ialσ3
T)Zll′ exp(ial

′σ3
T), and similarly

for Z̃.
To carry the analogy to disordered metals further, we

need to expand the action around the limit Zll′ = δll′Z0,
ω = 0. Details of this somewhat tedious calculation
will be presented elsewhere [16]. Here we restrict our-
selves to a rough sketch of the main ideas. We first
subject the action in (6) to a ’semiclassical approxima-
tion’. The expansion parameter of this approximation
is h̄/δl ≪ 1, where δl is the typical angular momentum
scale over which the relevant Z–fields fluctuate [17]. As
a result, (i) the symbol ’str’ in (6) no longer includes a
trace over angular momentum space but rather an inte-
gral over the phase space coordinates (l, θ) of the clas-

sical rotor, (ii) Z(l, l′) is replaced by its Wigner trans-
form Z(l, θ) (we temporarily suppress the superscript

a in Za), and (iii) U0ZU
†
0 is replaced by Zu, where

fu(l, θ) = f(θ+ τ(l+k sin θ), l+k sin θ) denotes the clas-
sical one time step evolution (standard map) of a phase
space function.

The angular variable θ of the standard map is a rapidly
relaxing degree of freedom, which leads us to expect that
only θ–independent field configurations contribute to the
long wave limit of the model. To formulate this state-
ment in a quantitative manner we do a Fourier transform,
Z(l, θ) =

∑∞
m=−∞ Zm(l) exp(imθ), and observe that the

non–zero modes Zm 6=0 are ’massive’. Integration over
these fields in Gaussian approximation yields an effective
field theory for the massless zero mode Z(l) := Z0(l).
We finally expand the action S[Z] in terms of slowly

fluctuating fields. This program is carried out most eco-
nomically in the l–Fourier space, i.e. in angular coor-
dinates [18]. The small parameters of this expansion
scheme are ωτ and the characteristic ’momentum’ φ (φ
is an angular variable) of slowly fluctuating fields Z(φ),
which is of order φ ≪ k−1 ≪ 1. Concerning the former,
we note that the mean quasi–energy level spacing of the
model is ∆ = 2π(Lτ)−1. Since we are interested in small
frequencies of O(∆), we have ωτ ∼ L−1 ≪ 1. To leading
order in ωτ and φ the action of the generating functional
reads

S[Za, Z̃a] ≃

∫

dx
[

−
iωτ

2
str(1− Za(x)Z̃a(x))−1 −

D

4
∂x′∂xstr ln(1 − Za(x)Z̃a(x′))

∣

∣

x′=x

]

, (8)

where we have Fourier–transformed back to angular mo-
mentum space, taken a continuum limit (i.e. the variable
x is a smoothed version of the l–index,

∑

l →
∫

dx) and
D = k2/2 + ... is the classical diffusion coefficient of the
rotor [19]. (The dots indicate oscillatory corrections [20]
to D that result from elimination of the non–zero modes
and are smaller than the leading term by powers of k.)
Introducing an 8× 8 matrix field Q by

Q =

(

1 Z

Z̃ 1

)(

1 0
0 −1

)(

1 Z

Z̃ 1

)−1

,

we can rewrite the functional integral as
∫

DQ exp

∫

str

(

D

32
∇aQ∇aQ+

iωτ

8
Qσ3

AR

)

,

∇a = ∇+ ia[σ3
T, . ], (9)

which is precisely the nonlinear σ–model for a quasi one–
dimensional metallic ring in the presence of a T –breaking
(Aharonov-Bohm) vector potential of strength a.
Because of its importance for an understanding of the

localization physics of wires, the model (9) has been in-
vestigated thoroughly [11]. Let us now review some of
its essential properties in the terminology of the kicked
rotor. For times less than O(τk2) the kicked particle per-
forms a diffusive motion in momentum space. On larger
time scales, quantum localization confines the particle to
stay within a volume specified by the localization length
ξo = k2/2. For ’flux’ strengths a ∼ L−1, the orthogo-
nal symmetry of the model is broken and one expects a
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doubling of the localization length ξo → ξu = 2ξo [11].
(Note, however, that amax = 2π/L corresponds to one
’flux quantum’ φ0 penetrating the ring. As the physics
of Aharonov-Bohm geometries is φ0–periodic, amax is
the maximum field strength that can be realized in our
model. For systems with L >

∼ ξo this strength does not
suffice to cause a crossover from ξo to ξu.).

A careful look reveals that the localization length ξo
predicted by our analysis is four times larger than the
length ξn found in numerical work (cf. e.g. Ref. [21]).
We believe that this discrepancy is caused by an am-
biguity in the convention of what is called a localiza-
tion length: The ’field theoretical’ localization length
determines the exponential decay of the average tran-

sition probability
〈

|G+(ω+; l, l
′)|2

〉

ω0
∼ exp(−|l − l′|/ξo)

between two remote states |l − l′| ≫ ξo. In numerical
measurements, however, one computes the average of in-

dividual decay constants, which is to say that one calcu-
lates |l − l′|/ξn =

〈

−ln|G+(ω+; l, l
′)|2

〉

ω0
. The lengths

ξo and ξn thus defined do not coincide in general. Ac-
cording to Ref. [22] they are related by ξo = 4ξn for
quasi 1d-wires. In view of this, our analytical result does
agree with the numerics. To summarize, we have mapped
both the unitary and the orthogonal quantum kicked ro-
tor on the supersymmetric nonlinear σ–model for quasi
1d wires. This proves the longstanding conjecture that
the universal properties of these two classes of system
are indeed the same. Our mapping is straightforward
and direct and avoids some approximations made in ear-
lier work, namely (i) the replacement of the deterministic
rotor by a stochastic model and (ii) the passage from uni-
tary to Hermitian randomness. Note that the rotor-metal
analogy is not restricted to the phenomenon of strong lo-
calization. It has recently been shown that quantum in-
terference in metals manifests itself in various pre–stages
of localization such as non–trivial wavefunction statis-
tics [6,22] or the appearence of pre–localized states [8].
The exact correspondence between quasi 1d wires and
the rotor suggests that these effects must be observable
in the latter, too. In fact, the rotor may be an ideal
model system for highly accurate numerical analyses of
these pre–localization phenomena, since it can be imple-
mented more efficiently on a computer than can weakly
disordered multi–channel wires.

We have benefitted from discussions with O. Agam, S.
Fishman, P. Freche, M. Janssen and A.Mirlin.
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