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Quantum phase transition from the Néel to the dimer states in an antiferromagnetic(AF) Heisenberg
model on square lattice is studied. We introduce a control parameter α for the exchange coupling
which connects the Néel (α = 0) and the dimer (α = 1) states. We employ the CP 1 representation
of the s = 1

2
spin operator and integrate out the half of the CP 1 variables at odd sites to obtain a

CP 1 nonlinear σ model. The effective coupling constant is a function of α and at α = 0 the CP 1

model is in the ordered phase which corresponds to the Néel state of the AF Heisenberg model. A
phase transition to the dimer state occurs at a certain critical value of αC as α increases. In the
Néel state, the dynamical composite U(1) gauge field in the CP 1 model is in a Higgs phase and
low-energy excitations are gapless spin wave. In the dimer phase, a confinement phase of the gauge
theory with s = 1 excitations is realized. For the critical point, we argue that a deconfinement
phase, which is similar to the Coulomb phase in 3 spatial dimensions, is realized and s = 1

2
spinons

appear as low-energy excitations.

Quantum phase transition(QPT) is one of the most
interesting problem in these days.1 It is often argued
that the simple Ginzburg-Landau theory does not ap-
ply to certain class of the QPT’s. In this paper we shall
study s = 1

2
antiferromagnetic(AF) Heisenberg model on

2-dimensional square lattice with nonuniform exchange
couplings,

HAF =
∑

x,j

Jxj ~Sx · ~Sx+j (1)

where x denotes site of the spatial lattice, j is the direc-

tion index (j = 1, 2) and ~Sx is the spin operator at site
x. We rename the even lattice sites x = (o, i) where o
denotes odd site and the index i = 1, 2, 3 and 4 specifies
its four nearest-neighbor(NN) even sites (see Fig.1).
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FIG. 1. Numbering and dimer picture:cross symbol is odd
site, and spot symbol is even site. Solid line means that its
correlation is stronger than dotted lines.

The exchange couplings Jxj = Joi are position depen-
dent and we explicitly consider the following case which
corresponds to the dimer configuration,

Joi = J +∆Joi,

∆Joi =

{

∆Joi = αJ, i = 1
∆Joi = −αJ, i = 2, 3, 4

(2)

where 0 ≤ α ≤ 1 is a control parameter which connects
the uniform Heisenberg model to the dimer model.
It is not so difficult to derive the CP 1 field-theory

model2,3 from Eq.(1)4. The spin operator ~Sx can be ex-
pressed in terms of the CP 1 variable zx = (z1x, z

2
x)

t as

~Sx =
1

2
z†x~σzx, (3)

where ~σ are the Pauli matrices and the CP 1 constraint
∑

a=1,2 |zax|2 = 1 guarantees the magnitude of the local-

ized spin as 1

2
.

From our assignment of Joi (2), it is obvious that Jo1
is larger than the others. We use the path-integral for-
malism and parameterize the CP 1 variable zo by refering
to zo1 ≡ ze,

zo = poze +
√

1− |po|2eiθz̃e, (4)

where po is a parameter, eiθ is a phase factor and
z̃e = iσ2z

∗
e . At vanishing temperature(T ), spins tend to

point antiparallel their NN spins, and then the parame-
ter po can be treated as a small parameter. We expand
√

1− |po|2 ≃ 1− 1

2
|po|2+ · · · and retain only terms up to

quadratic of po. Then we perform the Gaussian integra-
tion of po’s to obtain an effective model of ze’s for which
smooth configurations dominate at T = 0.
Calculation is rather long but straightforward4 and

we obtain an effective field theory of the AF Heisenberg
model under study,

LCP =
∑

µ=τ,x

[

|Dµzx|2 + σx

(

|zx|2 −
1

feff

)]

+ LB, (5)
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where Dµzx = (∂µ + iAµ)zx, Aµ = iz†∂µz is the U(1)
gauge field, σx is the Lagrange multiplier for the CP 1

constraint and LB is the Berry phase term. We have
rescaled the imaginary time τ and x as taking the con-
tinuum limit(the spatial coordinate x in Eq.(5) denotes
the even site of the original lattice). The effective cou-
pling constant feff and the “speed of light” c, which is
often set unity, are explicitly given as

1

feff
=

1

2
√
2a

· 1− α

2− α

√

2(2 + α)

1− α
≡ 1

fAFH

1

b(α)
, (6)

c =

√
2aJ

h̄
·
√

(2− α)(1 − α)

2
≡ cAFHγ(α), (7)

where a is the lattice spacing of the original lattice and

fAFH = 2
√
2a and cAFH =

√
2aJ
h̄

.
Here we should comment on the Berry phase terms,

LB, which appear in the CP 1 nonlinear-σ model repre-
sentation of the AF Heisenberg model. First we consider
AF spin chains in one dimension in order to obtain impor-
tant insight for the effect of the Berry phase terms. For
the uniform AF chains, the Berry phase reduces to the
θ-term (iθ

∫

dτdxFτx) with θ = π. The gauge dynam-
ics crucially depends on the value of θ and only the case
of θ = π (mod 2π), the deconfinement phase is realized.
Topologically nontrivial configurations are suppressed by
the θ-term when θ = π.
On the other hand for the bond-alternating(BA) AF

Heisenberg chain with Jx = J + (−1)x∆J , the value of
the θ parameter is θ = J−∆J

J+∆J
π, and therefore the above

suppression by the θ-term does not occur and gauge dy-
namics is essentially the same with the θ = 0 case. Then
the confinement of the spinon zax occurs, and low-energy
excitations are gapful s = 1 excitations ~nx = 1

2
z†x~σzx

even for a very small value of ∆J . This is nothing but
the spin-Peierls transition.
For the 2-dimensional uniform AF Heisenberg model,

the Berry phase term similarly appears as LB =
i
2

∑

x ǫxAx, where ǫx = 1(−1) for even (odd) site x (of

the lattice with the lattice spacing
√
2a for the CP 1

model (5)) and Ax is the area enclosed by the curve given
by the time evolution of ~nx(τ). It can be proved that it
gives only vanishing contribution for an arbitrary smooth
configuration. However for singular configurations like
instantons (monopoles), the Berry phase is nonvanishing

and it gives terms like LB = iπ
2

∑4

i=1

∑

x ζ
i
xm

i
x, where

ζix are 0, 1, 2, 3 (i = 1, 2, 3, 4), respectively and mi
x is the

instanton number.5,6 (The index i refers to the four dual
sublattices of the original lattice.) From the above LB, it
is obvious that the cancellation mechanism of the instan-
ton contribution occurs by the destructive interference
unless mi

x = 4 (mod 4).
For the nonuniform cases which are considered in this

paper, the coefficient of the Berry phase term becomes ir-
rational as in the case of the BA spin chains and therefore
cancellation of instanton effect does not occur or at least
weakens. Then we can expect that the (global) phase

structure of the effective gauge model for the nonuni-
form AF Heisenberg model is the same with that of the
CP 1 model without the Berry phase terms. More com-
ments will be given after showing results of nonpertur-
bative studies on the gauge dynamics.
It is straightforward to obtain the effective potential of

σ = 〈σx〉 and z2 = 〈z2x〉 by integrating out z1x,

Veff = σ
(

|z2|2− 1

feff

)

+
1

6π

[

(σ+Λ2)
√

σ + Λ2−Λ3−σ
√
σ
]

,

where the cutoff Λ =
√
2π
a

. The effective potential Veff
indicates that there exists a critical coupling fC = 4π

Λ
.

The existence of the phase transition has been verified by
the numerical calculation of the equivalent O(3) nonlin-
ear σ model in (2+1) dimensions7. In the weak-coupling
region feff < fC , the spontaneous symmetry breaking oc-
curs and 〈z2x〉 6= 0. As a result, the Higgs phase is realized
in the gauge-theory terminology. Low-energy excitations
are gapless spin waves which are described by z1x. In
the strong-coupling phase feff > fC , 〈σx〉 6= 0 whereas
〈z2x〉 = 0. Local Maxwell terms appear in the effective
action of the gauge field Aµ, and the confinement phase
is realized. Low-energy excitations are s = 1 compos-
ite of the spinons which correspond to ~nx with (mass)2

∝ 〈σx〉.
The effective coupling feff in (6) first decreases as α in-

creases but above certain value of α it starts to increase
and goes to infinity at the dimer limit α = 1. In the
uniform case α = 0, feff(α = 0) < fC and this means
that the ordered Néel state is realized at the vanishing T
in the AF Heisenberg model in two spatial dimensions as
it is now widely believed. The behavior of the effective
coupling feff(α) shows the existence of a critical value
αC at which the phase transition occurs. This result in-
dicates that the strong-coupling phase of the CP 1 model
(5) corresponds to the dimer phase in which the ground
state is nothing but spin-singlet pairs formed by the al-
ternative strong exchange couplings and excitations have
s = 1. In fact this Néel-dimer transition was observed by
the numerical calculations some years ago8.
Hereafter we are interested in the critical point at

feff = fC which separates the Néel and dimer phases.
In order to investigate that “phase”, study on the gauge
dynamics is required. At fC , 〈σx〉 = 〈zax〉 = 0. Effective
action of the gauge field and the field σx is obtained by
integrating out the gapless spinon field zax (a = 1, 2). The
resultant effective action becomes nonlocal and therefore
it is possible for the gauge dynamics to belong to different
universality class from that of the usual gauge theory in
2+1 dimensions. By the continuum field-theory calcula-
tion, the effective action of the gauge field Aµ is obtained
as

LA ∝
∫

d3x

∫

d3y
∑

µ,ν

Fµν(x)
1

|x − y|2Fµν(y), (8)

where Fµν = ∂µAν −∂νAµ. Similarly the effective action
of the field σx is obtained as
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Lσ ∝
∫

d3p σ̃(−p)
1

|p| σ̃(p), (9)

where σ̃(p) is the Fourier transformed field of σx. Equa-
tion (9) shows that fluctuations of the field σx are
strongly suppressed at large distances. In the CP 1 model
on the 3-dimensional space-time cubic lattice, a similar
expression of the action LA and Lσ is obtained by the
hopping expansion of zax (a = 1, 2). In the effective action
SA of the compact gauge field Uµ = eiAµ , the following
nonlocal terms appear

SA ∼
∑

Γ

γ|Γ|
∏

Γ

Uµ(x), (10)

where the summation over closed loops Γ includes loops
of an arbitrary large size, |Γ| is the length of Γ and the
parameter γ is estimated as γ ∼ 1

2d
for massless zax with

the dimension of the lattice d = 3. We shall focus our in-
terest on the gauge dynamics of the above nonlocal action
which is one of the most important problems in the theo-
retical studies on the strongly-correlated electron systems
in these days and is still controversial. At present it is
known that there exists only the confinement phase in
the (2+1)-dimensional compact U(1) gauge theory with-

out matter couplings.9 However phase structure is not
clear when the U(1) gauge field couples to matter fields,
particularly gapless matter fields10–14. In particular in
Ref.10,11, it is argued that a deconfinement phase is real-
ized by the gapless fermion couplings. Simple mean-field
type argument is not applicable for the nonlocal gauge
systems and numerical studies are required.
We shall study lattice gauge model with a nonlo-

cal action which is related with (10) but slightly more
tractable. The summation over Γ in SA (10) becomes
(logarithmically) divergent for the configulation Uµ = 115

since the massless relativistic bosons zax (a = 1, 2), which
appear at the critical point, give divergent hopping ex-
pansion for Uµ = 1. From the above discussion we shall
consider the following (2 + 1) dimensional lattice gauge
model with the long-range interaction in the τ̂ direction,

SG = g1

Nτ−1
∑

n=1

∑

x,µ=1,2

1

n
Uµ(x)Wx+µ(n)U

†
µ(x + nτ̂)W †

x(n)

+g2
∑

pl

∏

pl

U, (11)

where Wx(n) = U0(x)U0(x+ τ̂ ) · · ·U0(x+ nτ̂), Nτ is the
system size in the τ̂ direction and gi (i = 1, 2) are cou-
pling constants for the time and spatial directions, re-
spectively. From action (11), it is obvious that the gauge
model under study has nonlocal coupling in the τ̂ direc-
tion whereas it has the usual local Maxwell-type correla-
tion in the spatial directions.16 Reason why we take the
action (11) is that the τ̂ direction terms logarithmically
divergent for Uµ = 1 and also Monte-Carlo simulations
are easier for the model than those with full-nonlocal in-
teraction terms. We think that studies of the model (11)

give important insight for the full-nonlocal gauge system
(10). More comments on this point will be given after
showing the results of the Monte-Carlo simulations of
the model (11).
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FIG. 2. Fluctuation of energy as a function of g1 is plotted
for the fixed g2 = 1.0 and 3.0. Lattice size is 122 × 16 and
92 × 12. The results show the existence of a phase transition.
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FIG. 3. The correlations of Polyakov lines as functions of
their distance are plotted. The results for g1 = 0.12 and 0.14
are shown in (a), and one for g1 = 0.16 is shown in (b). Value
of g2 is fixed as g2 = 1.0. The results show the existence of
the confinement-deconfinement phase transition.

We studied phase structure of the model (11) by the
Monte-Carlo simulations of the standard Metropolis algo-
rithm. We calculated the fluctuation of the energyE, i.e.,
〈(E−〈E〉)2〉, as a function of the coupling g1 for fixed g2.
The results are shown in Fig.2 for g2 = 1.0 and g2 = 3.0,
and they indicate the existence of a phase transition at
critical coupling g1C ∼ 0.14 and g1C ∼ 0.13, respectively.
We varied the system size and verified that the peak gets
sharper as the system size increases. This means that
the transition is of second order. In order to investigate
gauge dynamics in each phase we calculated the corre-
lations of the Polyakov lines G(ℓ) = 〈P (x)P †(x + ℓ1̂)〉
where P (x) = U0(x) · · ·U0(x+Nτ τ̂).

17 In Fig.3, we show
the results of G(ℓ) for various values of g1 and it is obvi-
ous that the behavior of G(ℓ) changes at g1 ∼ g1C from
lnG(ℓ) ∝ ℓ to G(ℓ) ∼ constant for large ℓ. Then the

phase transition from the confinement to the deconfine-

ment phases occurs as g1 increases.
Numerical calculations show that the spatial coupling

of the gauge field and larger system size enhance the de-
confinement phase. From the above results we expect
that the full-nonlocal gauge model (10), which results
from the integration of the massless relativistic boson zax
at the criticality, is in the deconfinement phase. In fact
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the coupling constant g1 ∼ 1 corresponds to (10) in which
the damping factor γ|Γ| balances the entropy factor of the
paths Γ.
In the deconfinement phase of (11), topologically non-

trivial configurations are suppressed and the field-theory
result (8) gives a qualitatively correct picture. Charges
interacting through Aµ have the potential V (r) ∝ 1/r
where r is the spatial distance between the two charges.
Let us comment on the effects of the Berry phase. Since

LB is neglected in (11), one may doubt the deconfinement
phase transition observed above. However, as the Berry
phase generates extra phases for topologically nontrivial
configurations in the path integral, the Berry phase en-

hances the deconfinement. In fact without these extra
phases, all instanton configurations contribute additively
to disorder the gauge system. Thus the existence of the
deconfinement phase in the gauge system (11) guaran-
tees its existence even in the presence of the Berry phase.
Similar argument was used for the deconfinement transi-
tion at finite T 18, which is established at present.
We summarize the phase structure of the original spin

model. In the region α < αC (feff < fC), the low-energy
excitations are the massless spin waves whereas in the
region α > αC (feff > fC), they are s = 1 excitations
~nx. On the critical point α = αC (feff = fC), the gauge
dynamics is in the “Coulomb” phase and the low-energy
excitations are the s = 1/2 bosonic spinons zax (a = 1, 2)
which are interacting with each other by the potential
1/r. The spin correlation function decays algebraically
both in the Néel state and at the criticality but exponent
is different. In the Néel state, the spin operator is given

as ~Sx = 1

2
z†x~σzx ∼ 〈z†x〉~σzx ∼ z1x whereas at the criticality

~nx, the bilinear of zax and za†x (a = 1, 2). Phase structure
of the nonuniform AF Heisenberg model is schematically
shown in Fig.4.
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FIG. 4. Schematic phase diagram of the Heisenberg model.
Phases A,B and C are the Higgs (Néel), Coulomb (critical)
and confinement (dimer) phases, respectively.

Recently a similar phase transition from the Néel to
the dimer states was discussed19. There they conclude
that instanton effects are irrelevant at the critical point.
Our numerical investigation is consistent with their result
but our study shows the long-range interactions of the
gauge field, which appear as a result of the coupling to
the massless boson zax, play an essentially important role.
Results of more detailed studies on the long-range gauge

theories will be reported in near future.20
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