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Abstract. On the base of a Feynman-Kac–type formula involving Poisson stochastic

processes, recently a Monte Carlo algorithm has been introduced, which describes

exactly the real- or imaginary-time evolution of many-body lattice quantum systems.

We extend this algorithm to the exact simulation of time-dependent correlation

functions. The techniques generally employed in Monte Carlo simulations to control

fluctuations, namely reconfigurations and importance sampling, are adapted to the

present algorithm and their validity is rigorously proved. We complete the analysis

by several examples for the hard-core boson Hubbard model and for the Heisenberg

model.
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1. Introduction

Probabilistic techniques, as the Quantum Monte Carlo (QMC) algorithms, provide

an essential tool to investigate the properties of many-body systems. Basically, with

these techniques one evaluates functions of matrices by a random walk in the space

of the matrix indices [1]. Given the Hamiltonian H of the system, the idea is to

find an appropriate stochastic representation of the imaginary time evolution operator

U(t) = exp(−Ht) applied to some initial trial state. By using these methods, one can

obtain, at least in the absence of a sign problem, the ground-state properties with a

numerical effort that grows with some power of the size L of the system. On the other

hand, the exact diagonalization of the Hamiltonian would imply an effort exponentially

growing with L.

From a more physical point of view, a probabilistic representation provides a dual

picture of the quantum systems: on one hand, the traditional description in terms of bra,

ket and operators, on the other hand, a description in terms of expectations of suitable

stochastic functionals, which are averages over virtual trajectories of the particles. It

is this mapping with a (in a sense) classical system that allows us to extract quantum

information by statistical simulations.

In recent years, it has been proved that the dynamics of a system of quantum

particles on a lattice admits an exact probabilistic representation [2, 3, 4]. A suitable

stochastic functional M[0,t)
n0 , which is defined in terms of a collection of independent

Poisson processes and diffuses from a Fock state n0 to a Fock state nt, has the property

that the expectation value E(M[0,t)
n0 δnt,n), taken with respect to the Poisson processes,

gives the matrix element of U(t) between the two Fock states n0 and n. In the

theory of stochastic processes, this probabilistic representation may be regarded as the

lattice version of the Feynman-Kac formula. We emphasize that in this method no

approximation is introduced and no “infinity path integral extrapolation” is requested.

It will be referred to as the exact probabilistic representation (EPR) of the evolution

operator U(t). The validity of EPR is not limited to Hamiltonian systems: it can be

used to express any imaginary- or real-time evolution operator U(t) having any finite

matrix H as generator.

In Ref. [5] we used EPR to obtain semi-analytical results in the limit t → ∞, in

which a central limit theorem applies. In this paper, we consider EPR at arbitrary times

within a Monte Carlo approach (EPRMC).

Two other well known QMC algorithms, namely the path integrals Monte Carlo

method (PIMC) and the Green function Monte Carlo method (GFMC), have affinities

with EPRMC and a comparison is mandatory.

In PIMC, one evaluates the matrix elements of U(t) by using the Trotter approx-

imation [6]. The operator U(t) is factorized in the kinetic, exp(−T t), and interac-

tion, exp(−V t), terms so that one gets exp(−Ht) =
∏N

k=1 exp(−T t/N) exp(−V t/N) +

O([T, V ]t2/N2). This approximation leads to a Feynman-Kac formula, in which, as

in EPRMC, the trajectories in the Fock space are generated only by the kinetic part,
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exp(−T t/N). However, in contrast to EPRMC, there are no stochastic times related

to Poisson processes. The PIMC simulations are performed by evolving the trajectories

for N steps. The drawback is that to obtain results corresponding to t/N → 0, in which

the Trotter approximation becomes exact, one must use extrapolation procedures. For

any finite value of N , the extrapolation becomes unreliable for values of t sufficiently

large. This is particularly evident in the case of real times (t → it), when the matrix

elements of U have an oscillating behavior with respect to t. In contrast, no small step

approximation is introduced in EPRMC and no extrapolation is requested.

Now, let us consider GFMC. The method consists in repeated statistical

applications of the operator (1 − Ht/N) to an initial state. For N → ∞, one

reproduces the operator U(t), whereas an approximation affected by a relative error

ε(N) is obtained for any finite N . It is plausible that the sampling directly the operator

U(t) instead of (1 − Ht/N)N leads to a higher efficiency. In the Appendix, we show

that the relative efficiency between EPRMC and GFMC in filtering the ground state is

E2
0/[2E

(0)
0 (E1−E0)ε], where E0 and E1 are the energies of the ground- and first-excited

states of the considered system and E
(0)
0 is the ground-state energy of the associated

non interacting system. Since the gap (E1−E0) decreases as the size L of the system is

increased, compared to GFMC, EPRMC offers a more powerful method to investigate

the ground-state properties of large lattice systems.

Actually, the GFMC scheme mentioned above is rather crude. Trivedi and Ceperley

[7] introduced Poisson processes as a tool to obtain a more efficient GFMC method

when the transition probabilities, proportional to the matrix elements of Ht/N , vanish

for N → ∞. We will refer to this improved GFMC as GFMCP. In Ref. [4] it has been

proved that in the limit N → ∞ GFMCP becomes equivalent to EPRMC. However, as

explained in the Appendix, for a finite value of N the relative efficiency of EPRMC with

respect to GFMCP is (E0/E
(0)
0 )2/2ε, i.e. it is proportional to the accuracy ε−1 required

in the approximated GFMCP.

Controlling the large fluctuations is one of the most important issues of any Monte

Carlo method. This is evident in GFMC where an iterated statistical application of

the operator (1 − Ht/N) is performed. Roughly speaking, after k iterations one has

fluctuations that grow like ∆k, ∆ being the statistical error associated to a single step.

To solve the problem of large fluctuations, besides the development of the importance

sampling method [6], remarkable progress has been made with the reconfiguration

technique introduced by Hetherington [8] and subsequently improved by Sorella [9] who

proposed a scheme without bias (see also Ref. [10]).

In this paper, after introducing some relevant physical models (Section 2)

and recalling EPR (Section 3), we extend EPR to the study of exact time-

dependent correlation functions (Section 4). In the core Section 5, we discuss the

EPRMC algorithm first with a pure sampling and then adding fluctuation control

by reconfigurations and importance sampling. A detailed proof of the validity of the

reconfiguration method is given in Section 6. Results of numerical simulations for the

hard-core boson Hubbard model and for the Heisenberg model are discussed in Section
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7. Conclusions are drawn in Section 8.

2. Models

The Hamiltonian models of interest have the following general structure (we shall always

take ~ = 1)

H = T + V, (1)

where V is the potential energy operator and T the kinetic energy operator, which on

a lattice assumes the form

T = −
∑

i<j∈Λ

∑

σ=↑↓

ηij

(
c†iσcjσ + c†jσciσ

)
. (2)

Here Λ ⊂ Zd is a finite d-dimensional lattice with |Λ| ordered sites and ciσ the commuting

or anticommuting destruction operators at site i and spin index σ with the property

c2iσ = 0 (fermion or hard-core boson systems). The system is described in terms of

Fock states labeled by the configuration n = (n1↑, n1↓, . . . , n|Λ|↑, n|Λ|↓), i.e. the set of

lattice occupation numbers taking the values 0 or 1. The total number of particles is

Nσ =
∑

i∈Λ niσ for σ =↑↓. We shall use the mod 2 addition n⊕ n′ = (n + n′) mod 2.

The analysis we develop in the following is valid for an arbitrary functional form

of the potential V . However, numerical examples will be limited to the well known

Hubbard potential [11]

V =
∑

i∈Λ

γic
†
i↑ci↑ c†i↓ci↓. (3)

We emphasize that, independently of its form, V is diagonal in the Fock space, whereas

T is off diagonal.

In this paper we will consider only hard-core boson systems. We recall that, even

if fermion systems, like the Hubbard model, are more attractive, hard-core bosons have

not a purely academic interest. Besides the description of boson particles with a hard-

core interaction, they can be mapped onto systems of half integer spin [1, 7, 12]. As an

example, we consider the S = 1
2
Heisenberg quantum antiferromagnetic model

H = J
∑

〈i,j〉

Si · Sj =
J

2

∑

〈i,j〉

(S+
i S

−
j + S−

i S
+
j ) + J

∑

〈i,j〉

Sz
i S

z
j , (4)

where J > 0, 〈i, j〉 indicates that the sites i and j are nearest neighbors, and Si and Sj

are the spin operators. It is convenient to view the left and right factors in Si ·Sj as the

spin operators of two sublattices A and B, respectively. The mapping is then established

as follows. The operators S+
i and S−

j commute on different sites and are thus identified

with boson operators via b†i = S+
i and bj = S−

j . Furthermore as Sz
i = S+

i S
−
i − 1

2
,

one has Sz
i = ni − 1

2
, where ni = b†ibi is the number operator. For a half spin system

S+
i S

+
i = S−

i S
−
i = 0, which implies (b†i )

2 = 0. Therefore, the bosons have a hard core and

a site can be occupied by at most one particle. In order to a have negative sign in the

kinetic energy term, a further transformation is necessary. The spins on the sublattice B
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are rotated as Sx
j → −Sx

j , S
y
j → −Sy

j , and Sz
j → Sz

j . Since this transformation is unitary,

the commutation relations are left unchanged. The hard-core boson Hamiltonian then

reads

H = −J

2

∑

〈i,j〉

(b†ibj + b†jbi) + J
∑

〈i,j〉

ninj + EN , (5)

where EN = −JZ|Λ|/8, Z being the number of nearest neighbors for the given lattice,

e.g. Z = 4 for a square lattice in two dimensions.

3. Probabilistic representation

We are interested in evaluating matrix elements of the form 〈n|e−Ht|n0〉 or 〈n|e−iHt|n0〉
between two Fock states n0 and n with t ∈ R. As usual, we will speak of imaginary

times in the former case and of real times in the latter one.

Let Γ be the set of links, i.e. the pairs (i, j) with 1 ≤ i < j ≤ |Λ| such that ηij 6= 0.

For simplicity, we will assume ηij = η if i and j are first neighbors and ηij = 0 otherwise.

For a d-dimensional lattice the number of links per spin component is |Γ| = d|Λ|. Let

us introduce

λijσ(n) ≡ 〈n⊕ 1iσ ⊕ 1jσ|c†iσcjσ + c†jσciσ|n〉, (6)

V (n) ≡ 〈n|H|n〉, (7)

where 1iσ = (0, . . . , 0, 1iσ, 0, . . . , 0). Note that the values assumed by λijσ are 0 or

1 (λijσ = 0,±1 is possible in the case of fermion systems not considered here). We

will call the link (ijσ) active if λijσ 6= 0. Let {N t
ijσ}, (i, j) ∈ Γ, be a family of 2|Γ|

independent left continuous Poisson processes with jump rate ρ = η if λijσ 6= 0 and 0

otherwise [13]. Let us now define the stochastic dynamics on the lattice. At each jump

of the process N t
ijσ a particle with spin σ moves from site i to site j or vice versa. Let

us indicate with A(n) the number of active links in the configuration n

A(n) ≡
∑

(i,j)∈Γ

∑

σ=↑↓

|λijσ(n)|. (8)

The total number of jumps at time t is Nt =
∑

(i,j)∈Γ

∑
σ=↑↓ N

t
ijσ. By ordering the jumps

according to the times sk, k = 1, . . . , Nt, at which they take place in the interval [0, t),

we define a trajectory as the Markov chain n1,n2, . . . ,nNt
generated from the initial

configuration n0 by the stochastic dynamics described above. Let us call λ1, λ2, . . . , λNt
,

V1, V2 . . . , VNt
and A1, A2 . . . , ANt

the values of the matrix elements (6), (7) and (8)

occurring along the trajectory, respectively. For simplicity, we will indicate the last

configuration reached after Nt jumps as nt = nNt
. We will also use the symbols

A0 = A(n0), V0 = V (n0) and s0 = 0.

According to Ref. [4], the following representation holds

〈n|e−Ht|n0〉 = E
(
δn,nt

M[0,t)
n0

)
, (9)
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where the expectation E (·) has to be taken with respect to the Poisson processes N t
ijσ

and the stochastic functional M[0,t)
n0 is defined by

M[0,t)
n0

= e
∫ t

0 [A(ns)η−V (ns)]ds. (10)

The subscript n0 in M[0,t)
n0 specifies the initial state. For real times an analogous

representation holds

〈n|e−iHt|n0〉 = E
(
δn,nt

M[0,it)
n0

)
, (11)

where

M[0,it)
n0

= iNte
∫ t

0
[A(ns)η−iV (ns)]ds. (12)

In the following, we will consider the case of imaginary times. Except when explicitly

said, all the formulas are trivially extended to the case of real times.

Any ground-state quantity can be obtained from the matrix elements (9) by a

proper manipulation and taking the limit t → ∞. For instance, the ground-state energy

is given by

E0 = lim
t→∞

−
∑

n
∂t〈n|e−Ht|n0〉∑

n
〈n|e−Ht|n0〉

= lim
t→∞

−∂tE(M[0,t)
n0 )

E(M[0,t)
n0 )

. (13)

It is easy to see [4] that −∂tE(M[0,t)
n0 ) = E(M[0,t)

n0 H(nt)), where H(nt) is given by

H(nt) ≡
∑

n
′

〈n′|H|nt〉 = −[A(nt)η − V (nt)]. (14)

Equation (14) is the local energy of the last visited configuration nt. Therefore, Eq. (13)

becomes

E0 = lim
t→∞

E(H(nt)M[0,t)
n0 )

E(M[0,t)
n0 )

. (15)

These identities are valid if the initial configuration n0 is such that 〈E0|n0〉 6= 0. For a

finite t, this scheme allows a good estimate of E0 if t ≫ (E1 − E0)
−1, where E1 is the

first-excited state of H . This implies that t must be increased by increasing the lattice

size |Λ|.

4. Correlation functions

Let us consider a generic operator O. By using twice the Fock representation of the

identity operator and twice Eq. (9) with functionals M[0,t)
n0 and M′[0,t′)

n
′

0
, respectively

defined by two sets of independent Poisson processes {N t
ijσ} and {N ′t′

ijσ}, we have

〈n|e−Ht′Oe−Ht|n0〉 =
∑

n
′

0

∑

n
′′

〈n|e−Ht′|n′
0〉〈n′

0|O|n′′〉〈n′′|e−Ht|n0〉

=
∑

n
′

0

∑

n
′′

E

(
M′[0,t′)

n
′

0
δ
n

′

t′
,n 〈n′

0|O|n′′〉 M[0,t)
n0

δnt,n′′

)

=
∑

n
′

0

E

(
δ
n

′

t′
,n M′[0,t′)

n
′

0
〈n′

0|O|nt〉 M[0,t)
n0

)
, (16)
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where n′
t′ is the configuration reached at time t′ starting from n

′
0. From this expression,

we get
∑

n

〈n|e−Ht′Oe−Ht|n0〉 =
∑

n

E

(
M′[0,t′)

n
〈n|O|nt〉 M[0,t)

n0

)
. (17)

The ground-state quantum expectation of the operator O, assuming 〈E0|E0〉 = 1, is,

therefore,

〈E0|O|E0〉 = lim
t, t′→∞

∑
n
E

(
M′[0,t′)

n 〈n|O|nt〉 M[0,t)
n0

)

E

(
M[0,t+t′)

n0

) . (18)

We can consider two basic cases for the operator O.

4.1. Diagonal operators

In this case, 〈n′|O|n〉 = δn′,nO(n) and Eq. (18) becomes

〈E0|O|E0〉 = lim
t, t′→∞

E

(
M′[0,t′)

nt O(nt) M[0,t)
n0

)

E

(
M[0,t+t′)

n0

) . (19)

Note that E(M′[0,t′)
nt M[0,t)

n0 ) = E(M[0,t+t′)
n0 ), so that 〈E0|O|E0〉 = 1 if O is the

identity operator, whereas for a single realization of the stochastic functionals we have

M′[0,t′)
nt M[0,t)

n0 6= M[0,t+t′)
n0 .

4.2. Off-diagonal operators

In this case, O is typically given in terms of elementary operators Oijσ connecting

two different Fock states like 〈n′|Oijσ|n〉 = Oijσ(n)δn′,niσ↔jσ , where n
iσ↔jσ is the

configuration obtained from n exchanging niσ with njσ. Therefore, one has

〈E0|Oijσ|E0〉 = lim
t, t′→∞

E

(
M′[0,t′)

n
iσ↔jσ
t

Oijσ(nt) M[0,t)
n0

)

E

(
M[0,t+t′)

n0

) . (20)

Similar expressions hold for other off-diagonal operators connecting two generic Fock

states.

5. EPRMC algorithm

5.1. Pure sampling

Equations (9) and (10) lend themselves to a statistical evaluation of the matrix elements∑
n

′〈n′|e−Ht|n〉 via a random sampling of jump times and trajectories. As explained in

Ref. [4], the practical algorithm works as follows. We start by determining the active

links in the initial configuration n0 assigned at time 0 and make an extraction with
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uniform distribution to decide which of them jumps first, say the link (i1j1σ1). We then

extract the jump time s1 according to the conditional probability density

pA0(s) = A0η exp(−A0ηs), (21)

where A0 is the number of active links before the first jump takes place. The contribution

to M[0,t)
n0 at the time of the first jump is, therefore,

e(A0η−V0)s1θ(t− s1) + e(A0η−V0)tθ(s1 − t). (22)

According to Eq. (10), the contribution of a given trajectory is then obtained by

multiplying the factors corresponding to the different jumps determined in an analogous

way until the last jump takes place later than t, i.e.,

M[0,t)
n0

=

(
Nt∏

k=1

e(Ak−1η−Vk−1)(sk−sk−1)

)
e(ANt

η−VNt
)(t−sNt

) (23)

if Nt > 0, and M[0,t)
n0 = e(A0η−V0)t if Nt = 0.

Let us consider N independent trajectories obtained as described above and let

M[0,t)(i)
n0 be the functional value (10) calculated along the i-th trajectory. From the law

of large numbers we have

E
(
M[0,t)

n0

)
= lim

N→∞

1

N

N∑

i=1

M[0,t)(i)
n0

. (24)

5.2. Reconfigurations

Equation (10) represents a product of Nt random factors and, since Nt grows with t,

the fluctuations of the functional M[0,t)
n0 grow exponentially with t. This implies that

the number of trajectories needed to have good statistical averages grows exponentially

with t. A similar problem has been successfully tackled some years ago in the framework

of GFMC by the reconfiguration technique [8, 9]. This technique can be adapted also to

the present probabilistic representation. In fact, for boson systems at imaginary times

the stochastic functional M[0,t)
n0 is always positive and can be thought as a weight. Let

us divide the time interval [0, t) in R subintervals of the same length ∆t = t/R. Let us

label the times corresponding to the end-points of these intervals as

tr ≡ r∆t, r = 0, . . . , R (25)

and let ntr be the configuration reached at the time tr+0+ trough the dynamics described

in Section 3 (we recall that the Poisson processes are left continuous defined). The

following obvious identity follows from Eq. (10)

M[0,t)
n0

=

R∏

r=1

M[tr−1,tr)
ntr−1

, (26)

which implies

E
(
M[0,t)

n0

)
= E

(
R∏

r=1

M[tr−1,tr)
ntr−1

)
. (27)
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The functional M[tr−1,tr)
ntr−1

will be referred to as local weight.

Essentially, the idea of the reconfiguration technique is the following. Instead

of extracting independent trajectories, one carries on an ensemble of M trajectories

simultaneously in order to perform dynamically, at the times tr, a suitable replica

of those with large weights, eliminating at the same time the others. This

replication/elimination of trajectories, also referred to as reconfiguration, has to be done

in such a way that the number of trajectories M remains constant. At the end, one can

substitute the average of
∏R

r=1M
[tr−1,tr)
ntr−1

with the average of
∏R

r=1〈M
[tr−1,tr)
ñtr−1

〉, where with
ntr → ñtr we indicate the reconfiguration action at the time tr, and with 〈M[tr−1,tr)

ñtr−1
〉

the uniform “average” of the local weights over the M reconfigured trajectories (we use

quotation marks since this quantity is itself a random variable). Hence, the remarkable

advantage of using the reconfigurations is that, if the functional
∏R

r=1M
[tr−1,tr)
ntr−1

has

variance ∆R∗

, the variance of
∏R

r=1〈M
[tr−1,tr)
ñtr−1

〉 will be roughly (∆/
√
M)R

∗

, where ∆ is

the variance of the local weights and R∗ < R is the number of subintervals in which the

local weights become approximately independent.

5.2.1. Reconfiguration algorithm. here, we describe in detail the reconfiguration

algorithm at imaginary times postponing the relative proof to the next Section. We

will indicate with n
(i)
tr , r = 0, . . . , R, and M[tr−1,tr)(i)

n
(i)
tr−1

, r = 1, . . . , R, the configurations

and the local weights of the i-th trajectory and define the corresponding M-component

vectors as ntr and M[tr−1,tr)
ntr−1

, respectively. We shall use also the operator symbols D
and R: D applied to the configurations ntr gives the configurations ntr+1 according to

the dynamics defined in Section 3 along the time interval [tr, tr+1), whereas R gives the

reconfigured configurations ñtr = Rntr .

First step. Define ñt0 = nt0 with n
(i)
t0 = n0 for i = 1, . . . ,M . At the initial

time t0 = 0, all the M trajectories starting from the initial configuration n0 follow the

dynamics D and reach the configurations nt1 = Dnt0 . Correspondingly, evaluate the M

local weights along the time interval [0, t1), M[0,t1)
ñt0

, and compute their average

〈M[0,t1)
ñt0

〉 ≡ 1

M

M∑

l=1

M[0,t1)(l)
ñt0

. (28)

Second step. Perform the reconfiguration nt1 → ñt1 = Rnt1 . The new

configurations are obtained by drawing out them randomly from the old ones, nt1 ,

according to the probabilities

P(i)
t1 ≡

M[0,t1)(i)
ñt0∑M

l=1M
[0,t1)(l)
ñt0

. (29)

The new configurations ñt1 are used as starting configurations of the M trajectories

for the time interval [t1, t2) and, through the dynamics D, are mapped into Dñt1 .
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Correspondingly, evaluate the M local weights M[t1,t2)
ñt1

and compute their average

〈M[t1,t2)
ñt1

〉 ≡ 1

M

M∑

l=1

M[t1,t2)(l)

ñ
(l)
t1

. (30)

Third step. Perform the reconfiguration Dñt1 → ñt2 = RDñt1 by drawing out the

new configurations randomly from the old ones according to the probabilities

P(i)
t2 ≡

M[t1,t2)(i)

ñ
(i)
t1∑M

l=1M
[t1,t2)(l)

ñ
(l)
t1

. (31)

The new configurations ñt2 are used as starting configurations in the time interval [t2, t3).

Evaluate the local weights M[t2,t3)
ñt2

and compute their average

〈M[t2,t3)
ñt2

〉 ≡ 1

M

M∑

l=1

M[t2,t3)(l)

ñ
(l)
t2

. (32)

By iterating this procedure for R steps, we arrive to the final configurations

DñtR−1
= D(RD)R−1

nt0 , with R computed averages 〈M[tr−1,tr)
ñtr−1

〉, r = 1, . . . , R. As

we will prove later, the following identity holds

E
(
M[0,t)

n0

)
= Ẽ

(
R∏

r=1

〈M[tr−1,tr)
ñtr−1

〉
)
, (33)

where Ẽ indicates the expectation in which the configurations ñtr are obtained by the

reconfiguration procedure described above. Explicitly, Eq. (33) implies that to evaluate

the expectation E(M[0,t)
n0 ), instead of Eq. (24), we can use

E
(
M[0,t)

n0

)
= lim

M→∞

R∏

r=1

〈M[tr−1,tr)
ñtr−1

〉, (34)

or, more generally, simulating N independent samples each one composed by M

reconfigured trajectories,

E
(
M[0,t)

n0

)
= lim

MN→∞

1

N

N∑

p=1

R∏

r=1

〈M[tr−1,tr)
ñtr−1

〉(p). (35)

The label (p) in Eq. (35) means p-th sample. Note that for M = 1 we recover Eq. (24).

All what we said about the functional M[0,t)
n0 can be repeated for the functional

M[0,t)
n0 δn,nt

. In this case, Eq. (33) becomes

E
(
M[0,t)

n0
δn,nt

)
= Ẽ

(
R−1∏

r=1

〈M[tr−1,tr)
ñtr−1

〉 1

M

M∑

l=1

M[tR−1,t)(l)

ñ
(l)
tR−1

δ
n,(DñtR−1

)(l)

)
. (36)

Equation (36) allows to calculate the numerator of Eq. (15) as

E
(
M[0,t)

n0
H(nt)

)
= Ẽ

(
R−1∏

r=1

〈M[tr−1,tr)
ñtr−1

〉 1

M

M∑

l=1

M[tR−1,t)(l)

ñ
(l)
tR−1

H((DñtR−1
)(l))

)
. (37)
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5.2.2. Correlation functions. Let us now consider the reconfiguration procedure for the

functionals introduced in Eqs. (19) and (20) to obtain the correlation functions. In this

case, we perform R steps in the first interval [0, t) and R′ steps in the second interval

[0, t′). All the quantities relative to the second interval [0, t′) will be be indicated with

a prime. In the pure sampling, the initial configurations of the second interval [0, t′) are

equal to the final ones of the first interval [0, t): n′
t′0
= ntR . For diagonal operators, we

have

E

(
M′[0,t′)

nt
O(nt) M[0,t)

n0

)
= Ẽ

(
R∏

r=1

〈M[tr−1,tr)
ñtr−1

〉
R′−1∏

r′=1

〈M′[t′
r′−1

,t′
r′
)

ñ
′

t′
r′−1

〉

× 1

M

M∑

l=1

M′[t′
R′−1

,t′)(l)

ñ
′(l)
t
R′−1

O((RR′DñtR−1
)(l))

)
, (38)

where now the configurations RR′DñtR−1
are obtained by updating the intermediate

configurations at time tR, namely DñtR−1
, R′ times according to the successive R′ steps.

For off-diagonal operators, we have

E

(
M′[0,t′)

n
iσ↔jσ
t

Oijσ(nt) M[0,t)
n0

)
= Ẽ

(
R∏

r=1

〈M[tr−1,tr)
ñtr−1

〉
R′−1∏

r′=1

〈M′[t′
r′−1

,t′
r′
)

ñ
ex
t′
r′−1

〉

× 1

M

M∑

l=1

M′[t′
R′−1

,t′)(l)

ñ
ex(l)

t′
R′−1

Oijσ((RR′DñtR−1
)(l))

)
, (39)

where ñ
ex
t′
r′−1

, r′ = 1, . . . , R′, are the configurations obtained after r′ steps starting from

the intermediate configurations (DñtR−1
)iσ↔jσ in which the occupations of sites i and j

with spin σ have been exchanged, i.e. ñex
t′
r′−1

= (RD)r
′−1(DñtR−1

)iσ↔jσ.

5.2.3. Real times. A reconfiguration procedure can be performed also at real times. In

this case, the stochastic functional M[0,it)
n0 is complex and we separate the contributions

from the R time intervals in their moduli and arguments, i.e.

M[itr−1,itr)
ntr−1

= |M[itr−1,itr)
ntr−1

| eiΦ
[tr−1,tr)
ntr−1 , (40)

where

|M[itr−1,itr)
ntr−1

| = e
∫ tr
tr−1

A(ns)ηds, (41)

Φ[tr−1,tr)
ntr−1

=
π

2
(Ntr −Ntr−1)−

∫ tr

tr−1

V (ns)ds. (42)

The moduli can be used as local weights for the reconfiguration operator R. All the

steps described in Section (5.2.1) remain unchanged except for the last factor, which

takes into account the R phase factors reconstructing the original stochastic functional.

The final result result is

E
(
M[0,it)

n0

)
= Ẽ

(
R−1∏

r=1

〈|M[itr−1,itr)
ñtr−1

|〉 1

M

M∑

l=1

|M[itR−1,itR)(l)

ñ
(l)
tR−1

| e
i
∑R

r=1 Φ
[tr−1,tr)(l)

(RR−r
ñtr−1

)(l)

)
. (43)
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5.3. Importance sampling

Although the reconfiguration method controls the growth of the fluctuations of M[0,t)

along the trajectories, since the dimension of the Fock space grows exponentially with

the lattice size, an extraction of the jumping links by importance sampling also may

be mandatory to reduce the statistical errors of the local weights [6]. If some a priori

approximation |g〉 of the ground state is known, which has the property 〈n|g〉 ∈ R \ 0
for any Fock state |n〉, then instead to sample directly the operator exp(−Ht), it

can be notably advantageous to sample the isospectral operator exp(−Hgt), where

〈n′|Hg|n〉 ≡ 〈n′|g〉〈n′|H|n〉〈n|g〉−1.

As explained in Refs. [4] and [14], if |g〉 is a guiding function in the sense specified

above, the generalization of the present algorithm to the case with importance sampling

consists in replacing the number of active links, A(n) ≡
∑

(i,j)∈Γ

∑
σ=↑↓ |λijσ(n)|, in all

the previous formulas with the quantity

Ag(n) ≡
∑

(i,j)∈Γ

∑

σ=↑↓

∣∣∣∣λijσ(n)
〈n⊕ 1iσ ⊕ 1jσ|g〉

〈n|g〉

∣∣∣∣ . (44)

Correspondingly, the probability density for the jump times becomes

pAg
(s) = Agη exp(−Agηs), (45)

and the extraction of the jumping link (i, j, σ) among the active ones must be performed

according to the probabilities |〈n⊕ 1iσ ⊕ 1jσ|g〉〈n|g〉−1|/Ag(n). Finally, the stochastic

functional (10) is modified as

M[0,t)
g,n0

= e
∫ t

0
[Ag(ns)η−V (ns)]ds. (46)

The advantage of using importance sampling becomes clear considering the local

energy associated to Hg

Hg(nt) ≡
∑

n
′

〈n′|g〉〈n′|H|nt〉〈nt|g〉−1 = −[Ag(nt)η − V (nt)]. (47)

In fact, in the limit |g〉 → |E0〉 one has Hg(nt) → E0 and accordingly M[0,t)
g,n0 →

exp(−E0t) so that the fluctuations vanish.

For any choice of the guiding function |g〉, the modified stochastic functional

(46) provides unbiased representations of the ground-state energy E0 as well as of the

expectation of a generic operator O in the ground state |E0〉 of H . In fact, Eq. (15) now

reads

lim
t→∞

E(Hg(nt)M[0,t)
g,n0)

E(M[0,t)
g,n0)

= E0g, (48)

where E0g is the ground-state energy of Hg, which, however, is an operator isospectral

to H . On the other hand, Eq. (18) written in terms of a g-modified operator Og becomes

lim
t, t′→∞

∑
n
E

(
M′[0,t′)

g,n 〈n|Og|nt〉 M[0,t)
g,n0

)

E

(
M[0,t+t′)

g,n0

) = 〈E0g|Og|E0g〉. (49)
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By using 〈n|E0g〉 = 〈n|g〉〈n|E0〉 and 〈E0g|n〉 = 〈n|g〉−1〈E0|n〉, it is simple to see that

〈E0g|Og|E0g〉 = 〈E0|O|E0〉 if we choose Og as the operator defined by 〈n′|Og|n〉 ≡
〈n′|g〉〈n′|O|n〉〈n|g〉−1. Note that, in the case of diagonal operators, Og = O.

Importance sampling may be useful also for a different purpose, namely the

determination of the transition amplitudes 〈g|e−iHt|n0〉 between two chosen states |n0〉
and |g〉. This is particularly interesting at real times and we illustrate the idea in this

case. If |g〉 is a generic state with the property 〈n|g〉 ∈ R \ 0 so that the isospectral

Hamiltonian Hg is well defined, we have
∑

n

〈n|e−iHgt|n0〉 = 〈g|n0〉〈g|e−iHt|n0〉. (50)

Since the expectation of the stochastic functionalM[0,it)
n0 with the modified rules (44) and

(45) provides an exact representation of the l.h.s. of Eq. (50), we obtain the transition

amplitudes 〈g|e−iHt|n0〉 up to the constant 〈g|n0〉.

6. Proof of the reconfiguration algorithm

In this Section, we prove Eqs. (33-39). Let us consider an ensemble of M simultaneous

trajectories obtained by the dynamics described in Section 3 starting from the

initial configuration n0. Let PR(M[t0,t1)
nt0

,M[t1,t2)
nt1

, . . . ,M[tR−1,t)
ntR−1

;nt0 ,nt1 , , . . . ,ntR) be

the probability density to have a realization in which the M trajectories have local

weights M[t0,t1)
nt0

,M[t1,t2)
nt1

, . . . ,M[tR−1,t)
ntR−1

and configurations nt0 ,nt1 , , . . . ,ntR at the times

t0, t1, . . . , tR, respectively. For simplicity, here we shall often use Mr−1 for M[tr−1,tr)
ntr−1

and nr for ntr . Since the M trajectories are independent, if we take n
(l)
0 = n0 for

l = 1, . . . ,M , we have

E
(
M[0,t)

n0
δn,nt

)
= E

(
R∏

r=1

Mr−1δn,nR

)
= E

(
1

M

M∑

l=1

R∏

r=1

M(l)
r−1δn,n

(l)
R

)
. (51)

Consider, then, the following identity

1

M

M∑

l=1

R∏

r=1

M(l)
r−1δn,n

(l)
R

=

(
M∑

l=1

M(l)
0 p

(l)
0

)(
M∑

l=1

M(l)
1 p

(l)
1

)
· · ·
(

M∑

l=1

M(l)
R−2p

(l)
R−2

)

×
(

M∑

l=1

M(l)
R−1δn,n

(l)
R

p
(l)
R−1

)
, (52)

where the quantities p0, p1, . . . , pR−1 are defined recursively by




p
(i)
0 = 1

M

p
(i)
r =

M
(i)
r−1p

(i)
r−1∑M

l=1 M
(l)
r−1p

(l)
r−1

, r = 1, . . . , R− 1
. (53)

Equations (51) and (52) lead to

E

(
R∏

r=1

Mr−1δn,nR

)
= E

(
R−1∏

r=1

〈Mr−1〉w〈MR−1δn,nR
〉w
)
, (54)
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where the weighted “averages”, 〈Mr〉w and 〈MR−1δn,nR
〉w, are defined as the weighted

sums 〈Mr〉w =
∑M

l=1M
(l)
r p

(l)
r and 〈MR−1δn,nR

〉w =
∑M

l=1M
(l)
R−1δn,n

(l)
R

p
(l)
R−1, respectively.

Up to now the quantities pr have been thought as stochastic variables. Actually,

since the components p
(l)
r are positive and normalized to 1, we can interpret them

as probabilities to modify the original probability density PR. We introduce a

new probability density P̃R that, besides taking into account the dynamics DR,

includes the probabilities pr, for r = 0, . . . , R − 1. In this case, if we indicate

with ñ0, ñ1, . . . , ñR−1,DñR−1 the configurations extracted according to the probability

density P̃R, Eq. (54) transforms into

E

(
R∏

r=1

Mr−1δn,nR

)
= Ẽ

(
R−1∏

r=1

〈M[tr−1,tr)
ñr−1

〉 1

M

M∑

l=1

M[tR−1,tR)(l)

ñ
(l)
R−1

δ
n,(DñR−1)(l)

)
, (55)

where Ẽ(·) means expectation with respect to P̃R and the weighted “averages” 〈Mr〉w
have been substituted by uniform “averages” over the new configurations, 〈M[tr−1,tr)

ñr−1
〉 =

∑M
l=1M

[tr−1,tr)(l)

ñ
(l)
r−1

/M .

Equations (51) and (55) reproduce Eq. (36). To conclude the proof, we still have

to show that the algorithm described in Section 5.2.1 coincides with sampling the

configurations ñ0, ñ1, . . . , ñR−1,DñR−1 according to the probability density P̃R. For

M trajectories with local weights M(i)
r−1, let us define the following probabilities

P(i)
r =

M(i)
r−1∑M

l=1M
(l)
r−1

, r = 1, . . . , R− 1. (56)

Due to the recursiveness of Eq. (53), for r ≥ 1, we have

p(i)r = Cr

r∏

r′=1

P(i)
r′ , (57)

where Cr is a normalization constant independent of the trajectory index (i). This allows

to realize the transformation Pr → P̃r recursively for r = 1, . . . , R. At the first step

r = 1, since p0 is uniform we do not have to reconfigure and ñ0 = n0. The density P̃1

will be then sampled through the vectors ñ0 and Dñ0. Suppose now to have sampled the

density P̃r through the vectors ñ0, ñ1, . . . , ñr−1,Dñr−1. To sample the density P̃r+1 we

must change the arrival vector of configurations Dñr−1 into a new vector ñr according

to the probabilities Pr, with components

P(i)
r =

M[tr−1,tr)(i)
ñtr−1∑M

l=1M
[tr−1,tr)(l)
ñtr−1

. (58)

With a further dynamic step we get Dñr. The distribution P̃R is sampled by iterating

this procedure R times. This is exactly the procedure explained in Section 5.2.1 and

the reconfiguration algorithm is proved.

Equation (33) follows easily by summing Eq. (36) over n. Finally, Eq. (37) can be

obtained multiplying M[0,t)
n0 δn,nt

by H(n) and then summing the product over n.
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Let us now consider the functional M′[0,t′)
nt δn,nt

M[0,t)
n0 . In analogy to the previous

case, we easily arrive to

E

(
R∏

r=1

Mr−1δn,nR

R′∏

r′=1

M′

r′−1

)
= E

(
R∏

r=1

〈Mr−1〉w
R′−1∏

r′=1

〈M′

r′−1〉w〈M
′

R′−1δn,nR
〉w
)
, (59)

where, recalling that n
′
t′0

= ntR , the weighted “averages” are given in terms of

probabilities pr defined recursively as in Eq. (53) with r = 1, . . . , R + R′ − 1. Let

PR+R′ and P̃R+R′ be the obvious extensions of the distributions PR and P̃R previously

considered. As before, by using Eqs. (56) and (57), for r = 1, . . . , R + R′ − 1, we can

realize the transformation PR+R′ → P̃R+R′ recursively: along the interval [0, t) we sample

P̃1, P̃2, . . . , P̃R, whereas along [0, t′) we sample P̃R+1, P̃R+2, . . . , P̃R+R′ , obtaining the

configurations ñ0, ñ1, . . . , ñR, ñ
′
0, ñ

′
1, . . . , ñ

′
R′−1,Dñ

′
R′−1. Therefore, Eq. (59) transforms

into

E

(
R∏

r=1

Mr−1δn,nR

R′∏

r′=1

M′

r′−1

)
= Ẽ

(
R∏

r=1

〈M[tr−1,tr)
ñr−1

〉
R′−1∏

r′=1

〈M′[tr′−1,tr′)

ñ
′

r′−1

〉

× 1

M

M∑

l=1

M′[tR′−1,tR′)(l)

ñ
′(l)

R′−1

δ
n,(RR′DñR−1)(l)

)
, (60)

which yields Eq. (38) after multiplying M[0,t)
n0 δn,nt

by O(n) and then summing

over n. Note that in the r.h.s. of Eq. (60) there appears RR′DñR−1 and not

DñR−1. Indeed, according to Eq. (52), in the last weighted average 〈M′
R′−1δn,nR

〉w =
∑M

l=1M
′(l)
R′−1δn(l)

R
,n
p
′(l)
R+R′−1 there appear the probabilities p′R+R′−1 associated to the last

time interval.

In general, in the reconfiguration procedure a weighted “average”

〈M[tR−1,tR)
nR−1

f(n0,n1, . . . ,nR−1,nR)〉w (61)

will be substituted by the uniform “average”

1

M

M∑

l=1

M[tR−1,tR)(l)

ñ
(l)
R−1

f((RR−1
ñ0)

(l), (RR−2
ñ1)

(l), . . . , (RñR−1)
(l), (DñR−1)

(l)). (62)

Equation (39) can be obtained in the same way as Eq. (38). Finally, in the case of real

times, Eq. (43) is immediately obtained by using for the local weights the quantities

|M[itr−1,itr)
ntr−1

| and for the function f(·) of Eq. (62) the product of the phase factors

f =

R−1∏

r=1

e
iΦ

[tr−1,tr)
ntr−1 . (63)

7. Numerical results

In this Section, we present some numerical applications of the algorithm described

above. In principle, the reconfiguration scheme can be applied for any positive integer

R. However, we have observed optimal reconfiguration for R ≃ 〈A〉ρt, where 〈A〉 is
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the average number of active links. This is what one expects as, in this case, the

reconfiguration is repeated in the average at each jump, i.e. as frequently as the

stochastic dynamics dictates (see also Ref. [15]). In the simulations reported below,

therefore, we always work with this approximately optimal number of reconfigurations.

The count of the active links and of the potential of a given configuration, quantities

to be determined at each jump, is a core point of the algorithm. Starting form a first

count based on a systematic inspection of the initial lattice configuration, we have

implemented a local updating of these quantities. In fact, when a jump occurs, the new

Hubbard potential and the new number of active links are determined by the change

of the lone occupations and of the lone links involved in the jump. The computational

cost of a local update, which takes into account only these relevant sites and links, is

independent of the lattice size. Also the reconfiguration procedure has been optimized

by defining a non-negative integer, the replication multiplicity µ
(i)
r , where (i) is the

trajectory index and
∑M

i=1 µ
(i)
r = M . Configurations for which µ

(i)
r = 0 are substituted

by those with µ
(i)
r > 1, whereas no operation is performed for the trajectories with

µ
(i)
r = 1, which are the largest fraction of the whole set of M trajectories. The efficiency

of the resulting code can be figured out by the following example. With an ordinary

personal computer and without using importance sampling, we are able to simulate

lattices with 40× 40 sites with 800 hard-core bosons obtaining the ground-state energy

up to a relative error of the order of 1% with 290 minutes of cpu time. A detailed

comparison of the efficiency of our EPRMC code with those implementing other Monte

Carlo methods is beyond the purposes of present work. In the Appendix, we discuss the

relative efficiency between EPRMC and GFMC or GFMCP.

In Figs. 1-5 we compare several quantities evaluated by the EPRMC algorithm with

the corresponding exact results obtained by numerical diagonalization of the associated

Hamiltonian. The system considered is a hard-core boson Hubbard model of small size,

namely a 2× 3 lattice at half filling. The general purpose of these figures is to show the

unbiased statistical convergence of the Monte Carlo data towards the exact values. No

importance sampling is used in these first examples.

In Fig. 1 we show the expectation E(M[0,t)
n0 ) as a function of the imaginary time

t. The agreement with the corresponding quantum matrix element
∑

n
〈n|e−Ht|n0〉 is

excellent. The reconfiguration procedure is able to control completely the fluctuations

growing with t so that the error bars, negligible on the used scale, do not increase by

increasing the time. Similar results are obtained for different initial configurations n0.

In Fig. 2 we show the expectation E(M[0,it)
n0 ) as a function of the real time t.

Also in this case there is an exact statistical convergence towards the quantum matrix

element
∑

n
〈n|e−iHt|n0〉. However, in this case the reconfiguration procedure is able

to control only a part of the fluctuations, namely those related to the modulus of the

functional M[0,it)
n0 . The fluctuations associated to the corresponding phase factor make

the convergence harder and harder for large times.

In Fig. 3 we show the behavior of the local energy E(M[0,t)
n0 H(nt))/E(M[0,t)

n0 ) as a

function of the imaginary time t. According to Eq. (15), the local energy converges
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Figure 1. Expectation of the functional M[0,t)
n0

versus the imaginary time t for

a hard-core boson Hubbard system in a 2 × 3 lattice at half filling with η = 1,

γ = 4, and periodic boundary conditions. The initial configuration is n0 =

(1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0). The Monte Carlo simulation (dots with error bars) was

done with M = 214 trajectories, N = 27 samples, and R = 300 reconfigurations.

Error bars correspond to one standard deviation evaluated from the N samples. The

dashed line is the exact result from numerical diagonalization of the corresponding

Hamiltonian. In the inset we show the small time behavior.

to the ground-state energy of the system, E0, for large times. In fact, after an initial

transient inversely proportional to the gap E1−E0, the ratio E(M[0,t)
n0 H(nt))/E(M[0,t)

n0 ),

estimated with a finite number of trajectories M , fluctuates around an average value

that is close but different from E0 (see inset of Fig. 3). However, if we increase M , as

shown in Fig. 4, the statistical accuracy increases and we obtain an unbiased convergence

toward E0.

As an example of correlation functions, we studied the spin-spin structure factor

S(qx, qy) =
1

|Λ|
∑

i,j∈Λ

eiqx(xi−xj)+iqy(yi−yj)〈E0|SiSj|E0〉, (64)

where Si = c†i↑ci↑−c†i↓ci↓ and xi and yi are the coordinates of the i-th lattice point. Note

that the operators SiSj are diagonal in the Fock space and can be evaluated by using

Eq. (38). In Fig. 5 we show S(π, π) evaluated for different values of the interaction

strength γ. In agreement with the exact results from numerical diagonalization, S(π, π)

has a sharp transition between the γ → 0 and γ → ∞ asymptotic values. This transition

is expected to take place when the average kinetic and potential energies are of the same

order, i.e., for η〈A〉 ∼ γ〈N↑↓〉, where 〈N↑↓〉 is the average number of doubly occupied

sites. For the system considered in Fig. 5, we have 〈A〉 ≃ 15 and 〈N↑↓〉 ≃ 1.5 so that

the transition is expected at γ/η ∼ 10. This is in agreement with the numerical results.
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Figure 2. Expectation of the real and imaginary parts of the functional M[0,it)
n0

versus the real time t for the same system of Fig. 1. The Monte Carlo simulation (dots

with error bars) was done with M = 220 trajectories, N = 27 samples, and R = 15

reconfigurations. Error bars correspond to one standard deviation evaluated from the

N samples. The dashed (real part) and dot-dashed (imaginary part) lines are the exact

results from numerical diagonalization.
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Figure 3. Local energy E(M[0,t)
n0

H(nt))/E(M[0,t)
n0

) versus the imaginary time t for the

same system of Fig. 1. The Monte Carlo simulation (solid line) was done with M = 214,

N = 1, and R = 300. The straight dashed line is the exact energy E0 = −10.233803

obtained by diagonalization. In the inset we evidence the difference between E0 and

the time average of E(M[0,t)
n0

H(nt))/E(M[0,t)
n0

) computed over the interval 10 ≤ t ≤ 20

(opaque region baseline).
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exact energy E0 versus the number M of reconfigured trajectories for the same system

of Fig. 1 with N = 27, t = 5, and R = 75. Error bars correspond to two standard

deviations evaluated from the N samples.
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Figure 5. Spin-spin structure factor S(qx, qy) at qx = qy = π versus the interaction

strength γ for the same system of Fig. 1. The dashed line is the exact result from

numerical diagonalization of the Hamiltonian whereas the dots with error bars are

from a Monte Carlo simulation with M = 214 (M = 218 for γ > 10), N = 27,

t = t′ = 3, and R = 45. Error bars correspond to one standard deviation evaluated

from the N samples.
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Figure 6. Local energy per site [E(M[0,t)
n0

H(nt))/E(M[0,t)
n0

)]/|Λ| versus the imaginary

time t for two different-size hard-core boson Hubbard systems at half filling with η = 1,

γ = 4, and periodic boundary conditions. The Monte Carlo simulations (solid lines)

were done with M = 212, R = 215, and N = 1. The straight solid lines are the time

averages of the simulation results computed over the interval 10 ≤ t ≤ 40 whereas the

straight dashed lines indicate the relative standard deviations. The simulations took

79 (20× 20 lattice) and 290 (40 × 40 lattice) minutes on a computer with a 2.40GHz

Intel Xeon CPU.

In Fig. 6 we report simulations performed for hard-core boson Hubbard systems of

large size. In particular, we show the local energy per site [E(M[0,t)
n0 H(nt))/E(M[0,t)

n0 )]/|Λ|
as a function of the imaginary time t for two lattices at half filling having size 20 × 20

and 40×40. Note that the standard deviations of the fluctuations around the long-time

averaged value of [E(M[0,t)
n0 H(nt))/E(M[0,t)

n0 )]/|Λ| provide an estimated relative error for

E0/|Λ| of the order of 1%. This result is obtained with a moderate computational effort.

In Fig. 6 it is also evident an asymmetry of the fluctuations of the local energy around

its mean value. This behavior is due to the reconfiguration procedure that ensures the

invariance of the first statistical moment of M[0,t) (or of related quantities) only.

We have performed simulations also for the Heisenberg model (5). In this case, we

used importance sampling with the following Jastrow-like guiding state [9]

〈n|g〉 ≡ exp

[
α

2

∑

i,j∈Λ

υ(ri − rj)

(
ni −

1

2

)(
nj −

1

2

)]
, (65)

where ri = (xi, yi), α is a real positive parameter, and the long range potential υ is

defined as

υ(r) =
2

|Λ|
∑

(qx,qy)6=(0,0)

eiqxx+iqyy

[
1−

√
1 + (cos qx + cos qy)/2

1− (cos qx + cos qy)/2

]
, (66)
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Figure 7. Local energy per site [E(M[0,t)
g,n0

Hg(nt))/E(M[0,t)
g,n0

)]/ |Λ| versus the

imaginary time t for a 6 × 6 Heisenberg system with
∑|Λ|

i=1 S
z
i = 0 and J = 1. The

Monte Carlo simulation (dots with error bars) was done by using importance sampling

with the guiding function (67) and statistical parameters M = 216, N = 26, and

R = 20.

the sum over qx and qy being extended over the Brillouin zone 2π/L, 4π/L, . . . , 2π, with

0 excluded. From Eq. (65) we have

〈n⊕ 1k ⊕ 1l|g〉
〈n|g〉 = exp

[
α

∑

i∈Λ, i 6=k, l

(
ni −

1

2

)
[(nk ⊕ 1− nk) υ(ri − rk)

+ (nl ⊕ 1− nl) υ(ri − rl)]

]
. (67)

We assumed α = 1.2 as suggested in Ref. [9].

In Fig. 7 we show the local energy per site [E(M[0,t)
g,n0Hg(nt))/E(M[0,t)

g,n0)]/ |Λ| as a

function of the imaginary time t for a 6 × 6 Heisenberg system having
∑|Λ|

i=1 S
z
i = 0.

The amplitude of the error bars shown in Fig. 7 is considerably reduced with respect

to the value that one would obtain without using importance sampling. We also stress

that the dynamics shown in 7 is relative to the Hamiltonian Hg modified by the chosen

guiding function |g〉.
In Fig. 8 we show the local staggered magnetization {3[E(M′[0,t′)

g,nt S
z
ππ(nt)M[0,t)

g,n0)

/E(M[0,t+t′)
g,n0 )]/|Λ|}1/2 evaluated in Heisenberg systems of different size as a function

of the imaginary time t′ and for a large value of the other imaginary time t. Here

Sz
ππ(n) = 〈n|Sz

ππ|n〉 is the quantum expectation in the Fock state n of the diagonal

operator

Sz
ππ =

1

|Λ|
∑

i,j∈Λ

eiπ(xi−xj)+iπ(yi−yj)Sz
i S

z
j . (68)

As noticed in the case of Fig. 7, also the dynamics of the local staggered magnetization
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Figure 8. Local staggered magnetization {3[E(M′[0,t′)
g,nt

Sz
ππ(nt)M[0,t)

g,n0
)/E(M[0,t+t′)

g,n0
)]

/|Λ|}1/2, defined in terms of the operator (68), versus the imaginary time t′ for

different-size Heisenberg systems with
∑|Λ|

i=1 S
z
i = 0 and J = 1. The Monte Carlo

simulations (dots with error bars) were done by using importance sampling with the

guiding function (67) with α = 1.2 and parameters t = 5, M = 216, N = 22, and

R = 10 in the 4 × 4 case, t = 10, M = 216, N = 22, and R = 20 in the 6 × 6 case,

t = 20, M = 217, N = 22, and R = 40 in the 8× 8 case.

shown in Fig. 8 is relative to the Hamiltonian Hg modified by the guiding function

(67). The asymptotic values of the local staggered magnetization reached for t′ large

are in agreement with those obtained with different Monte Carlo algorithms [9, 16]. The

statistical errors shown in Fig. 8 can be reduced by a factor about 10 by exploiting the

covariance between the local estimators for Sz
π,π and E0, as explained in [16].

Finally, in Fig. 9 we provide an example of how the local expectation values shown

in Fig. 8 depend on the parameter α of the guiding function (67). For different values

of α the local expectations have different evolutions determined by Hg(α), however, as

stated in Section 5.3 for a general guiding function, they all converge to the quantum

expectation of Sz
ππ in the ground state of H . In agreement with Ref. [9], the value

α = 1.2 is close to the optimal choice, which provides smallest fluctuations and minimal

evolution with respect to the asymptotic values.

In Figs. 1 and 2 we have shown that the imaginary- and real-time evolution of

the expectation of the basic functional M[0,t)
n0 coincides with that of the corresponding

quantum matrix element
∑

n
〈n|e−Ht|n0〉. Of course, a similar behavior is general.

Even if not shown explicitly, in all the considered examples the evolution of the relevant

time-dependent probabilistic expectations coincides with that of the corresponding time-

dependent quantum correlations functions.
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Figure 9. Local staggered magnetization versus the imaginary time t′ for the 4 × 4

Heisenberg system of Fig. 8. The three curves were obtained with different values of the

parameter α defining the importance sampling function (67). The other parameters

were t = 5, M = 216, N = 22, and R = 20.

8. Conclusions

We have exploited an exact probabilistic representation of the quantum dynamics in

a lattice to derive a Monte Carlo algorithm, named EPRMC, for which standard

fluctuation control techniques like reconfigurations and importance sampling have been

adapted and rigorously proved. This exact representation holds for both imaginary and

real times, even if in the latter case only a partial fluctuation control is possible so that

reliable statistical simulations are limited to short times.

Monte Carlo algorithms, like GFMC or GFMCP, provide similar representations of

the evolution operator, which are affected, however, by a systematic error ε controlled

by the number of iterations performed. With respect to these approximated methods,

EPRMC gives an efficiency gain proportional to the accuracy ε−1.

Acknowledgments

This work was supported in part by Cofinanziamento MIUR protocollo 2002027798 001.

Appendix

In this Appendix, we calculate the relative efficiencies of GFMC and EPRMC methods.

Both the methods have the aim to sample the operator e−Ht for t large. We can write

U(t) = e−Ht ∼ e−E0t, for t ≫ t, (69)
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where t is the characteristic time to filter out the excited states E1, E2, . . . with respect

to the ground state E0,

t =
1

E1 − E0

. (70)

As explained in the introduction, GFMC samples the operator (1 − Ht/N)N whereas

EPRMC samples directly the operator e−Ht. Since limN→∞(1 + x/N)N = ex, GFMC

→ EPRMC as the number of iterations N in the GFMC method grows. However, for

a finite value of N , GFMC remains affected by a systematic error. We are interested in

evaluating the critical value of N above which this error becomes smaller than a given

value. Let us consider the relative difference

fN(x) =
ex − (1 + x

N
)N

ex
. (71)

By using

log(1 + y) =
∞∑

k=1

(−1)k+1

k
yk, (72)

Eq. (71) becomes

fN(x) = (1− e−
x2

2N
+ x3

3N2 −...). (73)

For concreteness, let us put x = −E0t in Eq. (73). If we require that the relative error

is fN(−E0t) = ε ≪ 1, then we must have N ≥ Nt(ε), where

Nt(ε) =
E2

0 t
2

2ε
. (74)

In conclusion, Nt(ε) is the number of steps needed in GFMC to sample the operator

e−Ht for t large with a relative error equal to ε. On the other hand, the number of

steps needed in EPRMC to sample e−Ht for t large is given by the average number of

jumps that, when an optimal reconfiguration scheme is chosen as discussed in Section

7, coincides with the number of reconfigurations Rt

Rt = 〈A〉ηt ≃ E
(0)
0 t, (75)

where 〈A〉 is the average number of active links and E
(0)
0 is the ground-state energy in

the non-interacting case. Therefore, the relative efficiency of EPRMC with respect to

GFMC is given by the ratio

Nt(ε)

Rt
=

E2
0 t

2E
(0)
0 ε

. (76)

We see that the superiority of EPRMC grows by increasing the time t or increasing the

accuracy ε−1 required in GFMC. In particular for t = t we have

Nt(ε)

Rt

=
E2

0

2E
(0)
0 (E1 − E0)ε

. (77)

It is clear that if, instead of GFMC, we consider the GFMCP method, the efficiency

ratio (76) changes. In fact, any step in GFMCP, on the average, amounts to 〈ns〉
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elementary GFMC steps, where roughly 〈ns〉 = 〈A〉ηt [4]. Thus, in GFMCP the number

of steps needed to sample the operator e−Ht for t large with a relative error ε is reduced to

Nt(ε) = E2
0 t/(2E

(0)
0 ε) so that the relative efficiency of EPRMC with respect to GFMCP

is given by the ratio

Nt(ε)

Rt

=

(
E0

E
(0)
0

)2
1

2ε
. (78)

This ratio does not depend on t anymore but remains proportional to the accuracy

required in GFMCP.
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