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as the Majumdar-Ghosh Hamiltonian. We first apply the coupled-cluster method
of quantum many-body theory based on a spiral model state to obtain the ground
state energy and the pitch angle. These results are compared with accurate numeri-
cal results using the density matrix renormalisation group method, which also gives
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Marshall sign criterion. We discuss particularly the behaviour close to the phase
transitions at each end of the frustrated phase.
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1 Introduction

There is currently much interest in quantum spin systems which exhibit frustration.
This has been stimulated in particular by the work on the magnetic properties of the
cuprates which become high Tc superconductors when doped. The frustration in these
2D materials arises because of antiferromagnetic exchange across the diagonals of the
squares as well as along the edges. Other 2D frustrated systems are the triangular
and Kagomé lattices.

In this paper we study a simple 1D spin system which is also frustrated for some
range of its parameters. This is a spin-1/2 model with isotropic nearest and next-
nearest neighbour exchange given by

H = cosω
∑

l

sl.sl+1 + sinω
∑

l

sl.sl+2, (1)

where the sum over l is over all N atoms with periodic boundary conditions. We shall
also use the notation J1 = cosω and J2 = sinω.

The T = 0 phase diagram of this model is given in Fig. 1. The antiferromagnetic
(AF) phase extends over the region −π/2 < ω < ωMG, where ωMG = tan−1(1/2).
The point ωMG is the Majumdar-Ghosh (MG) Hamiltonian (Majumdar and Ghosh
1969a,b. See also Haldane 1982) at which the ground state consists of dimerised
singlets with a gap to the excited states. In a recent paper by two of the present
authors (Zeng and Parkinson 1995), a dimer variational wave function was proposed
which is exact at ωMG and gives good results for a large range around this point.

Much of the recent work on this system has focused on the transition from a
gapless ‘spin-liquid’ state which is known exactly at ω = 0 to a dimerised regime
with a gap which is also known exactly at ω = ωMG. The transition occurs at
J2/J1 = tanωc = 0.2411(1) (ωc = 0.2366(1)) (Okamoto and Nomura 1992). The
same authors have also studied the phase diagram in the vicinity of this transition in
the anisotropic version of this model (Nomura and Okamoto, 1993,1994).

The frustrated regime is given by ωMG < ω < ωFF , where ωFF = tan−1(−1/4) =
3.3865 is the point at which a first order transition to a ferromagnetic regime occurs.
This was first studied numerically by Tonegawa and Harada (1987) who found evi-
dence of change in the position of the peak of the correlation function as a function
of ω. Here we shall use a variety of methods to investigate the whole of the frustrated
regime, including ω > π/2.

It will be useful to compare our results with those of the classical Hamiltonian.
In this regime the minimum classical energy is obtained by forming a spiral with a
pitch angle θ between neighbouring spins where θ = cos−1(−J1/4J2). The classical
boundary with the AF phase is at ωC = tan−1(1/4) = 0.2450. The real-space peri-
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odicity thus increases monotonically from 2 at the AF boundary to infinity at the
ferromagnetic boundary.

2 The CCM formalism

In a recent paper (Farnell and Parkinson, 1994, referred to as I), the coupled-cluster
method (CCM) was applied by two of the present authors to the antiferromagnetic
(AF) phase. For a description of the CCM applied to spin systems see Bishop et al.

(1991) and the references in I. In the AF phase the natural choice of a model state
for the CCM is the Néel state used in I.

For the frustrated regime, however, this model state is physically unrealistic and the
CCM based upon it gives poor results. One possible choice is suggested by the fact
that when ω = π/2 we have J1 = 0 and J2 = 1, so the Hamiltonian (1.1) describes
two uncoupled antiferromagnetic Heisenberg chains. At this point a ‘double-Néel’
model state with a periodicity of 4 unit cells would be appropriate and would lead to
precisely the same results as for the single chain (J1 = 1, J2 = 0) with suitable scaling
factors. We did carry out CCM calculations based on this model state and obtained
reasonable results for a range of ω around π/2. These results will be described briefly
later.

Another possible model state is suggested by the classical ground state in this
regime. For this reason we have performed CCM calculations based on a spiral model
state in which the pitch angle θ is taken as a variational parameter. A necessary
condition to perform CCM calculations is the existence of a complete set of mutu-
ally commuting creation operators so that an arbitrary state of the system can be
constructed starting from the model state. We obtain these as follows.

The spiral model state is taken to have all spins aligned in the XZ plane with the
n’th spin making an angle nθ with the Z axis. We then introduce local axes such that
each atom is in the quantum spin state | − >. We use the usual notation | ± > for
the states with eigenvalues of sz equal to ±1

2
. Using the local axes the Hamiltonian

(1.1) becomes

H = J1/4
∑

i

{[cos(θ)− 1](s−i s
−

i+1 + s+i s
+
i+1) + [cos(θ) + 1](s−i s

+
i+1 + s+i s

−

i+1)

+2 sin(θ)(s−i + s+i )(s
z
i+1 − szi−1) + 4 cos(θ)szi s

z
i+1}

+J2/4
∑

i

{[cos(2θ)− 1](s−i s
−

i+2 + s+i s
+
i+2) + [cos(2θ) + 1](s−i s

+
i+2 + s+i s

−

i+2)

+ 2 sin(2θ)(s−i + s+i )(s
z
i+2 − szi−2) + 4 cos(2θ)szi s

z
i+2}. (1)

This equation contains terms which have an odd number of spin-flips multiplied
by a coefficient sin(θ) or sin(2θ). By symmetry the ground-state energy Eg will be
an even function of θ, which suggests that these terms should not contribute to Eg.
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We have confirmed explicitly that this is correct for the CCM approximation scheme
described in the following section, and for clarity we shall omit these terms from H
from now on.

2.1 Approximation schemes.

We shall work with Pauli spin operators σα
i , related to the spin angular momentum

operators in the usual way: σα
i σ

±

i = s±i . These definitions apply to all sites as there
is no partition into different sublattices in this scheme. The Hamiltonian of Eq.(1.1)
becomes

H = J1/4
∑

i

{[cos(θ)− 1](σ−

i σ
−

i+1 + σ+
i σ

+
i+1) + [cos(θ) + 1](σ−

i σ
+
i+1 + σ+

i σ
−

i+1)

+ cos(θ)σz
i σ

z
i+1}+ J2/4

∑

i

{[cos(2θ)− 1](σ−

i σ
−

i+2 + σ+
i σ

+
i+2)

+ [cos(2θ) + 1](σ−

i σ
+
i+2 + σ+

i σ
−

i+2) + cos(2θ)σz
i σ

z
i+2} (1)

In the CCM the true ground state is written

| Ψ >= eS | Φ > . (2)

The CCM correlation operator S is constructed entirely out of creation operators
with respect to the model state, i.e. out of a sum of terms containing all possible C+

I ,
where C+

I is a product of creation operators from {σ+
i } consistent with the conserved

quantities. The Hamiltonian of Eq.(2.1) contains only terms which involve an even
number of spin flips. This means that all terms in eS and hence in S should only
involve even numbers of σ+ operators. Note that this would not be true had the sin(θ)
and sin(2θ) terms not been neglected, and this point is considered further below.

We shall use the following approximation schemes, all of which were described in
I.

1) Full SUB2. In this scheme S includes all possible products of two spin-flip opera-
tors:

S =
1

2

∑

i

∑

r

brσ
+
i σ

+
i+r, (3)

where i runs over all Nsites and ris a positive or negative integer with | r |≤ N/2.
By symmetry b−r = br.

2) SUB2-3. This is a subset of full SUB2 in which all brare set to zero except b±1:
and b±2

S = b1
∑

i

σ+
i σ

+
i+1b1 + b2

∑

i

σ+
i σ

+
i+2 (4)
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Using the same notation as in I we calculate the similarity transform with respect
to S of the spin operators. For example

σ̃+
i = e−Sσ+

i e
S. (5)

Using these the transformed Hamiltonian H̃ can be obtained. Operating on the
ground state Schrödinger equation

H̃ | Ψ >= Eg | Ψ > (6)

with < Φ | then gives the following equation for the ground-state energy per spin in
either approximation as

Eg/N = J1/4{cos(θ) + (cos(θ)− 1)b1)}+ J2/4{cos(2θ) + (cos(2θ)− 1)b2)} (7)

To find b1 and b2 we obtain a set of coupled non-linear equations for the coefficients
retained in each of the approximation schemes by operating on Eq.(2.6) with < Φ |
CI , where CI is the Hermitian conjugate of one of the strings of creation operators
(combinations of σ+

i )present in S.

Lastly in this section we note that if odd numbers of spin flips been allowed there
would be a term in S of the form

a
∑

i

σ+
i .

We have performed calculations in the SUB2-3 approximation in which the extra
sin(θ) and sin(2θ) terms were retained in the Hamiltonian. In this case a = 0 is the
only physically reasonable solution, and the extra terms give zero contribution to the
ground-state energy.

3 The Coupled Non-linear Equations.

Using the S given by Eq.(2.4), we operate on Eq.(2.7) with Σiσ
−

i σ
−

i+t. and obtain the
full SUB2 equations.

J1
∑

ρ

(1− δr,0){A1δr,ρ +B1br + 2[cos(θ) + 1]br+ρ + [cos(θ)− 1]
∑

s

br+s+ρbs

+J2
∑

δ

(1−δr,0){A2δr,δ+B2br+2[cos(2θ)+1]br+ρ+[cos(2θ)−1]
∑

s

br+s+δbs = 0 (1)

where
A1 = [cos(θ)− 1](1 + 2b21) + 4b1 cos(θ), (2)
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A2 = [cos(2θ)− 1](1 + 2b22) + 4b2 cos(2θ), (3)

B1 = −4 cos(θ) + 4[1− cos(θ)]b1 (4)

B2 = −4 cos(2θ) + 4[1− cos(2θ)]b2 (5)

with ρ = ±1, δ = ±2 and s is any positive or negative integer. The solution of Eq.(3.1)
is given in section 4.

For the SUB2-3 approximation scheme Eq.(3.1) reduces to the pair of coupled
non-linear equations

J1{[cos(θ)− 1](1 + 2b22 − 3b21)− 4b1 cos(θ) + 2b2[[cos(θ) + 1]}

+ J2{[1− cos(2θ)]4b1b2 − 8b1 cos(2θ) + 2b1[[cos(2θ) + 1]} = 0 (6)

and
J1{[1− cos(θ)]4b1b2 − 8b2 cos(θ) + 2b1[[cos(θ) + 1]}

+ J2{[cos(2θ)− 1](1 + 2b21 − 3b22)− 4b2 cos(2θ)} = 0. (7)

Eqs.(3.4,5) can be solved numerically and hence Eg/N obtained in the SUB2-3 ap-
proximation for a given θ. Finally θ is varied to find a minimum value for Eg/N .

The results for θ as a function of ω are shown in Fig. 2. We observe that the
value of θ obtained by this method remains close to π/2 over a much wider range of
ω than in the classical calculation. We mentioned earlier that calculations based on
a ‘double-Néel’ model state have been carried out. As can now be easily understood,
the results were in good agreement with the ones based on the spiral model state over
quite a wide range of ω around π/2.

The results for the ground-state energy per spin are shown in Fig.3 and are com-
pared with the values obtained by direct diagonalisation of a chain of 20 spins, the
results of spin-wave theory (SWT), and also with a ‘classical’ result which is the ex-
pectation value of the Hamiltonian in the classical ground-state. The exact results at
ω = ωMG and ω = π.

The full SUB2 equations can be solved numerically by first performing a Fourier
transform as in I. Details are given in Appendix 1. The results are similar to the
SUB2-3 results except for the existence of ‘terminating points’ which are also shown
on the figures.

4 DMRG study of the periodicity

We next turn to the density matrix renormalisation group (DMRG) method in order
to perform a numerical study of the periodicity which can be compared with the CCM
results discussed above. We achieve this by accurately calculating the position of the
peak of the Fourier transformed ground state correlation function (Bursill et al 1995).
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The DMRG method

The DMRG was introduced in a series of papers by White and coworkers (White
and Noack 1992, White 1992 and 1993) and a highly successful application to the
spin-1 antiferromagnetic chain (White and Huse 1993) established the DMRG as the
method of choice for studying the low energy physics of quantum lattice systems in
one dimension. Efficient algorithms for calculating low-lying energies and correlation
functions of spin chains are described in great detail in (White 1993) so we will only
briefly describe the method here. We restrict our discussion to the infinite lattice
algorithm (White 1993) which was used in our calculations.

The DMRG is an iterative, truncated basis procedure whereby a large chain (or
superblock) is built up from a single site by adding a small number of sites at a time.
At each stage the superblock consists of system and environment blocks (determined
from previous iterations) in addition to a small number of extra sites. Also determined
from previous iterations are the matrix elements of various operators such as the block
Hamiltonians and the spin operators for the sites (at the end(s) of the blocks) with
respect to a truncated basis. Tensor products of the states of the system block, the
environment block and the extra sites are then formed to provide a truncated basis
for the superblock. The ground state |ψ〉 (or other targeted state) of the superblock
is determined by a sparse matrix diagonalization algorithm.

At this point, correlation functions, local energies and other expectation values
are calculated with respect to |ψ〉. Next, a basis for an augmented block, consisting
of the system block and a specified choice of the extra sites, is formed from tensor
products of system block and site states. The augmented block becomes the system
block in the next iteration. However, in order to keep the size of the superblock basis
from growing, the basis for the augmented block is truncated. We form a density
matrix by projecting |ψ〉 〈ψ| onto the augmented block which we diagonalise with a
dense matrix routine. We retain the most probable eigenstates (those with the largest
eigenvalues) of the density matrix in order to form a truncated basis for the augmented
block that is around the same size as the system block basis. Matrix elements for
the Hamiltonian and active site operators, together with any other operators that are
required for say, correlation functions are then updated.

The environment block used for the next iteration is usually chosen to be a reflected
version of the system block. The initial system and environment blocks are chosen to
be single sites.

The accuracy and computer requirements of the scheme is fixed by ns, the num-
ber of states retained per block (of good quantum numbers) at each iteration. ns

determines the truncation error, which is the sum of the eigenvalues of the density
matrix corresponding to states which are shed in the truncation process. The error
in quantities such as the ground state energy scale linearly with the truncation error
(White and Huse 1993).
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Application of the DMRG to the frustrated spin-1/2 chain

We have applied the infinite lattice DMRG algorithm to (1.1) using a number of
superblock configurations and boundary conditions. All the interactions (intrablock,
interblock and superblock Hamiltonians) commute with the total z spin Sz

T ≡
∑

i S
z
i ,

so Sz
T is a good quantum number which can be used to block diagonalize the sys-

tem, environment and super blocks. For even numbers of sites, the ground state of
the superblock |ψ〉 is a singlet with zero total spin so we only need to consider su-
perblock states with Sz

T = 0. We found that the most cpu efficient configuration was
the standard open ended superblock of the form system-site-site-environment (White
1993).

As mentioned, in applying the DMRG to (1.1), we are concerned with the corre-
lation function

Cjl ≡
〈

Sz
jS

z
l

〉

(1)

and hence its Fourier transform

C̃(q) =
1

V

∑

jl

Cjle
iq(j−l) (2)

We are particularly interested in q∗, the value of q where C̃(q) has its peak. This
leads to a natural (working) identification of the ground state periodicity with 2π/q∗

which was given in (Bursill et al 1995) where another frustrated spin model, the spin-1
model with bilinear and biquadratic exchange, was studied.

In practice, Cjl is calculated with j and l approximately equidistant from the centre
of the superblock and far from the ends of the block so as to avoid end effects. In
forming C̃(q) we calculate Cjl for 0 ≤ |j − l| ≤ 60. The algorithm is iterated until
these quantities converge. We test the algorithm by exactly calculating Cjl for finite
chains of up to 20 sites using the Lanzcos method and ensuring that these results are
reproduced by the DMRG.

In (Bursill et al 1995) it was noted that there are two impediments to an accurate
calculation of (4.2). Firstly, for given j and l, we must have ns sufficiently large
that Cjl is accurately determined. Secondly, for given q, we must retain enough
accurately calculated Cjl in truncating the infinite series to ensure an accurate result.
It was found (Bursill et al 1995) that if the system has a significant energy gap and
exponentially decaying correlation functions with a short correlation length, then the
Cjl converge rapidly with ns and the Fourier series converges very rapidly. On the
other hand, in critical or near critical regions where the energy gap is small or zero
and the correlation functions decay algebraically or have a large correlation length
then convergence is very slow.

By choosing ns up to 90, it is found that the main source of inaccuracy in calcu-
lating C̃(q) in these regions is Fourier series truncation. We plot C̃(q) as a function
of q for various values of J2/J1 in Fig. 4.

As mentioned, it was determined using exact diagonalization and finite size scaling
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methods (Okamoto and Nomura 1992) that the model is critical (gapless with alge-
braically decaying correlation functions) for 0 ≤ J2/J1 ≤ tanωc and gapped beyond
this region where tanωc = 0.2411(1) Correspondingly, we find that C̃(q) converges
slowly and has oscillation due to Fourier series truncation in and around the critical
region. In the region 0.3 ≤ J2/J1 ≤ 2 we find that C̃(q) converges rapidly to a smooth
function.

Now at the extreme point where J1 = 0 we have two decoupled Heisenberg chains
and so Cjl vanishes if j and l lie on different sublattices but Cjl decays algebraically
on a given sublattice. We in fact find that C̃(q) converges slowly for J2/J1 ≥ 2.5
indicating that there may be a finite interval around the J1 = 0 point where the
model is critical.

We next turn to the question of periodicity in the ground state. As mentioned,
we define the periodicity in terms of the position q∗ at which C̃(q) has its peak. A
plot of q∗ as a function of ω is included in Fig. 2. We see that the simple, analytical
CCM result for the pitch angle improves dramatically upon the classical result. Also,
we see that the dimer variational wavefunction (Zeng and Parkinson 1995) gives an
excellent estimate of the pitch angle in a region to the right of the solvable point.

q∗ converges very rapidly with nF (the number of Fourier coefficients used in form-
ing (4.2)) and ns in the region 0.3 < J2/J1 < 2 and we can accurately determine the
threshold (the onset of the spiral phase) ω̃ at which q∗ begins to move away from
π (as the periodicity begins to change from 2 to 4). Such a threshold was found in
(Bursill et al 1995) as the biquadratic interaction was increased relative to the bilinear
interaction. Again q∗ could be accurately determined near the threshold. Using the
same analysis as in (Bursill et al 1995) then, we find

tan ω̃ = 0.52063(6) (3)

This is to be compared with the classical threshold (0.25) and the terminating point
from the CCM theory (0.557).

In a recent preprint (Chitra et al 1994) have studied the extension of (1.1) where
there is also dimerization δ such that nearest neighbour exchange carries a factor of
1 + δ and 1 − δ on successive bonds. They conjectured that there is a disorder line
given by J2/J1 =

1
2
(1− δ) such that, in the δ-J2/J1 plane, the structure factor has its

peak at π below the line and decreases from π to π/2 as J2/J1 is increased above the
line. In the case (1.1) of no dimerisation (δ = 0) gives tan ω̃ = 1/2 (i.e. the threshold
is the exactly solvable point).

Now at the solvable point the ground state is a perfect dimer where spins form a
singlet with their dimer pair but are otherwise uncorrelated. The correlation function
is

Cij =











1
4
for i = j

−1
4
for i and j on the same dimer

0 otherwise
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The Fourier transform is therefore

C̃(q) =
1

4
(1− cos q) (4)

whence C̃ ′′(π) = −1/4 6= 0 so, unless C̃ ′′(π) is highly singular at the threshold, the
threshold (i.e. the point where C̃ ′′(π) vanishes) cannot occur at the solvable point.
This is borne out by our result (4.3).

Further interpretation of the spiral phase

We have defined the ground state periodicity and the spiral phase (w̃) in terms of the
peak position of the Fourier transformed correlation function. It has, however been
shown by (Schollwöck et al 1995) that further insight into disorder and incommensu-
rate spin distortions in the ground state can be gained by investigating the correlation
function in real space. In Table 1 we list the correlation function in real space C(r)
for J2/J1 =0.49, 0.5 (the solvable point), 0.51 and 0.5206. . . (the threshold). (As we
shall see, in the gapped region, the ground state has broken translational symmetry
and C(r) is defined to be the average of Cj j+r over a number of the sites j in the
middle of the chain).

We see that modulations begin to appear for J2/J1 values between the solvable
point and the threshold where C(2) changes sign. That is, the Majumdar-Gosh
point is a disorder point, separating phases of commensurate and incommensurate
correlations (in real space). Following (Schollwöck et al 1995), the threshold ω̃, where
incommensurate spin oscillations would begin to be observed (experimentally) in the
structure factor, is identified as a Lipshitz point. We would expect that in the limit
of large spin S, the classical disorder point, the quantum disorder point and the
Lipshitz point would merge, there being a single point separating commensurate and
incommensurate phases both in terms of real and momentum space.

Translational symmetry breaking in the ground state—a dimer

order parameter

As mentioned, (Okamoto and Nomura 1992) calculated the critical point tanωc =
0.2411(1) separating gapped from gapless phases. (Chitra et al 1994) calculated
the energy gap using the DMRG and deduced tanωc = 0.298(1), a result which
is incompatible with that of (Okamoto and Nomura 1992). It is however known
(White 1993, Bursill et al 1995 and Schollwöck et al 1995) that it is difficult to obtain
accurate energies with the DMRG for critical or near-critical systems. This is again
borne out when we apply the DMRG to the calculation of another order parameter
which characterizes this phase transition.

It is known that the ground state for the Heisenberg model J2 = 0 has no symmetry
breaking whereas at the Majumdar-Gosh point J2 = J1/2 the ground state has broken
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translational symmetry, the correlator Cj j+1 equating to 0 and −1/4 on successive
bonds (j, j+1). To measure this broken symmetry, we define a dimer order parameter
D by

D(N) ≡
∣

∣

∣CN/2−1 N/2 − CN/2 N/2+1

∣

∣

∣

and D ≡ limN→∞D(N) where N is the size of an even, open chain.

D(N) converges very slowly in and around the critical region 0 ≤ J2/J1 < 0.35
and rapidly (with respect to both N and ns) around the threshold 0.45 ≤ J2/J1 < 1.
A plot of D versus J2/J1 for ns = 40 is given in Fig. 5. We note that D is maximal
at around J2/J1 ≈ 0.58 i.e. neither the disorder point (0.5) nor the Lipshitz point
(0.52. . . ). The fact that D exceeds 1/4 to the right of the disorder point is indicative
of the incommensurate oscillations whereby the values of Cj j+1 on successive bonds
(j, j + 1) can have opposite sign. We see that the critical point is not well defined
and only qualitative information about the phase transition can be deduced from
this procedure. We shall attempt to address the question of how the DMRG can be
adapted to study critical phenomena in future publications.

5 The Marshall sign results.

An additional method of studying the periodicity of the ground state in the frustrated
phase is by means of the Marshall-Peierls (Marshall, 1955) sign criterion. Preliminary
results were reported in an earlier paper (Zeng and Parkinson, 1995) so a detailed
description will not be given here. We have now obtained results for an open chain
of 16 atoms and these confirm and extend those of shorter chains.

In Fig. 6 we show the parameter ρi for i = 1, 2, 3, 4, corresponding to a periodicity
of 2i in the 16 atom chain. This parameter will be close to 1 if the ground state
‘conforms’ to the given periodicity and will be close to 0.5 if the conformity is poor.
The main features are as follows.

For ω in the range 0 ≤ ω ≤ ωMG (outside the frustrated regime) ρ1 is very close to
1. For ωMG ≤ ω there is an extended region in which ρ2 is closest to 1. An interesting
and totally unexplained feature is the shallow double minimum in the value of ρ2
for ω near π/4, which was also observed for shorter chains. At ω ≈ 2.74 there is
a smooth crossover to a state in which ρ3 is largest and finally a more complicated
behaviour as ω approaches ωFF . An enlarged picture of the latter region is shown in
Fig. 7. The sharp changes in ρ3 at ω ≈ 2.82 and 2.85 are caused by the crossing of a
quintuplet state to become the ground state between these two values. This may be a
‘small N’ effect, although even here ρ3 is larger than the other ρi. Finally we observe
a region closer to ωFF in which ρ4 is the largest. Results in this area are difficult to
obtain because there are many states lying close to the ground state and convergence
is extremely slow.

Nevertheless, these results do suggest that the periodicity in the frustrated regime
increases as the ferromagnetic boundary is approached. At present, the quantum
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system looks rather different to the classical as the change in periodicity occurs as a
sequence of crossovers rather than smoothly. However the chains are still relatively
short and it may well be that in the large N limit the behaviour would approximate
more closely to the classical.

6 Conclusion

The quantum mechanical behaviour of the frustrated phase of this system is clearly
rather complex. The picture that is beginning to emerge is that the variation in
periodicity with ω that is characteristic of the classical ground state may well survive
partially in the quantum system. However, there are clearly many differences in detail
and also some completely new features.

The main difference in detail is that the periodicity of the quantum system, as
predicted by the Coupled-cluster method and the variational method and confirmed
by the DMRG results, remains closer to π/2 over a much wider range of ω than does
the classical system. Another difference, suggested by the Marshall sign calculations,
is that the changes in periodicity close to the ferromagnetic boundary may occur less
smoothly.

The behaviour of the quantum system close to the Majumdar-Ghosh point is quite
different, as there is no classical analogue of the highly dimerised nature of the ground
state.

A Appendix 1. Solution of the full SUB2 equa-

tions.

The full SUB2 equations, Eq.(3.1), can be solved using Fourier transforms as described
in Appendix A of I. The result is

br =
1

π

∫ π

0
dq cos(rq)Γ(q) (1)

with Γ(q) given by

αΓ(q)2 + βΓ(q) + γ = 0 (2)

where

α = J1 cos(k)[cos(θ)− 1] + J2 cos(2k)[cos(2θ)− 1]

β = J1{B1 + 2 cos(k)[cos(θ) + 1]}+ J2{B2 + cos(2k)[cos(2θ) + 1]}
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γ = J1{A1 cos(k)− 2b1[cos(θ) + 1] + [1− cos(θ)]X1}

+J2{A2 cos(2k)− 2b2[cos(2θ) + 1] + [1− cos(2θ)]X2}

where
X1 =

∑

s

bsbs+1; X2 =
∑

s

bsbs+2.

These equations are then solved numerically by constructing self-consistency equa-
tions in the coefficients b1 and b2 and also X1 and X2. Again θ is varied to find the
minimum Eg.
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Figure Captions.

Figure 1 T = 0 phase diagram of the model.

Figure 2 Pitch angle θ as a function of ω obtained by various methods.

Figure 3 Ground-state energy per spin as a function of ω. Open circles are exact
results. Closed circle is the CCM terminating point.

Figure 4 Fourier transformed correlation functions for various values of J2/J1
obtained from the DMRG.

Figure 5 Dimer order parameter D as a function of J2/J1 obtained from the
DMRG.

Figure 6 Marshall sign parameters ρi as a function of ω.

Figure 7 Enlarged part of Fig. 5 showing region close to ω2.
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Table Caption.

Table 1 Correlation function in real space C(r) for various values of J2/J1 obtained
from the DMRG.
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Table 1.

r 0.49 0.5 0.51 tan ω̃
0 0.25 0.25 0.25 0.25
1 -0.127 -0.125 -0.123 -0.121
2 0.00386 0 -0.0039 -0.00806
3 -0.00237 0 0.00234 0.00477
4 0.000892 0 -0.000764 -0.00143
5 -0.000571 0 0.000425 0.000714
6 0.00022 0 -0.000119 -0.000145

17


