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Abstract

In a previous paper, we introduced reflection equations for interaction-round-
a-face (IRF) models and used these to construct commuting double-row trans-
fer matrices for solvable lattice spin models with fixed boundary conditions.
In particular, for the Andrews-Baxter-Forrester (ABF) models, we derived
special functional equations satisfied by the eigenvalues of the commuting
double-row transfer matrices. Here we introduce a generalized inversion rela-
tion method to solve these functional equations for the surface free energies.
Although the surface free energies depend on the boundary spins we find that
the associated surface critical exponent αs = (7− L)/4 is independent of the
choice of boundary.

1 Introduction

We have recently demonstrated how, by generalizing the work of Sklyanin [1], fixed
boundary conditions may be imposed upon interaction-round-a-face (IRF) models
whilst preserving solvability [2]. Specifically, we have shown that the Yang-Baxter
equations and the boundary reflection equations imply commutativity of double-
row transfer matrices. Related results have also been obtained by the authors of [3]
and [4].

Furthermore, we have found solutions to the reflection equations for the Andrews-
Baxter-Forrester (ABF) models [5]. Consideration of the fusion [6, 7, 8, 9] of this
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model with fixed boundaries leads to functional relations for the double-row trans-
fer matrices, and hence their eigenvalues. In this paper we solve these functional
equations in the thermodynamic limit to obtain the surface free energy, from which
we determine the surface critical exponent αs.

In the remainder of this section we summarize the results of [2] which are needed
for our calculation. For further details we refer the reader to this reference. In
Section 2 we demonstrate the solution of the inversion relation for the bulk free
energy, and then generalize this method to the surface free energy.

1.1 The ABF models with fixed boundaries

The ABF models [5] are restricted solid-on-solid models in which sites on the lattice
take values in the set {1, 2, 3, . . . , L} subject to the condition that the values of sites
adjacent on the lattice must differ by ±1. The Boltzmann weights depend on a
crossing parameter λ = π/(L + 1), and a spectral parameter u. In the regimes of
interest we have 0 < u < λ. The non-zero face weights are given by

W

(

a± 1 a
a a∓ 1

)

=
ϑ1(λ− u)

ϑ1(λ)
(1.1)

W

(

a a± 1
a∓ 1 a

)

=

(

ϑ1((a− 1)λ)ϑ1((a+ 1)λ)

ϑ2
1(aλ)

)1/2
ϑ1(u)

ϑ1(λ)
(1.2)

W

(

a a± 1
a± 1 a

)

=
ϑ1(aλ± u)

ϑ1(aλ)
. (1.3)

The ϑ1(u) = ϑ1(u, p) are elliptic theta functions with nome p. We define p = exp(−ε)
with ε > 0, corresponding to regime III. The critical limit is p → 0. The boundary
weights depend on an additional arbitrary complex parameter ξ, which may be
different for the left and right boundaries. The non-zero boundary weights are

K

(

a± 1
a
a

)

=

(

ϑ1((a± 1)λ)

ϑ1(aλ)

)1/2
ϑ1(u± ξ)ϑ1(u∓ aλ∓ ξ)

ϑ2
1(λ)

. (1.4)

There is another form of the boundary weights which, at criticality, is independent
of u and ξ

K

(

a± 1
a
a

)

=

(

ϑ1((a± 1)λ)

ϑ1(aλ)

)1/2
ϑ4(u± ξ)ϑ4(u∓ aλ∓ ξ)

ϑ2
4(λ)

. (1.5)

This expression is obtained from (1.4) simply by making a complex shift in ξ. How-
ever, in this paper we will take ξ to be real and consider only the two forms of the
boundary weights (1.4) and (1.5). From the face weights and boundary weights we
construct a double-row transfer matrix D(u). For a lattice of width N , the entry
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of the transfer matrix corresponding to the rows of spins a = {a1, . . . , aN+1} and
b = {b1, . . . , bN+1} is defined diagrammatically by

〈a|D(u)|b〉 = ❆
❆

❆❆

✁
✁

✁✁

✁
✁
✁✁

❆
❆
❆❆

a1 a1 a2 a3 aN aN+1 aN+1

b1 b1 b2 b3 bN bN+1 bN+1

c1 c2 c3 cN cN+1

u u u

λ−u λ−u λ−u

λ−u u

. . .

. . .

. . .

. . .

• • • • •

The solid spins {c1, . . . , cN+1} are summed over. As the boundary weights are di-
agonal, we must have a1 = b1 and aN+1 = bN+1. Furthermore, these boundary
spins, which we will call aL and aR, are fixed to the same values for all entries in
the transfer matrix. The parameters ξL and ξR are similarly fixed for all entries.
Defined in this way, the double-row transfer matrix exhibits the crossing symmetry

D(λ− u) = D(u). (1.6)

More importantly, however, the double-row transfer matrices form a commuting
family,

D(u)D(v) = D(v)D(u). (1.7)

This implies that the eigenvectors of D(u) are independent of u, so that functional
equations satisfied by the transfer matrix are also satisfied by its eigenvalues. In
particular, all eigenvalues of the transfer matrix satisfy the crossing symmetry (1.6).
It should be emphasized that all the matrices in a commuting family share the same
boundary spins aL and aR, and the same values of ξL and ξR.

The values ξ = ±λ/2 deserve special mention, since for these choices the isotropic
lattice, u = λ/2, has all boundary spins fixed. This is easily seen from the definition
(1.4), as, for fixed a, only one of the choices a±1 gives a non-zero boundary weight.
The non-zero boundary weights then contribute only a constant factor to each entry
the transfer matrix. Aside from this trivial factor, the lattice exhibits pure fixed
boundary conditions, with boundary spins alternating {a, a + 1, a, a + 1, . . . } or
{a, a− 1, a, a− 1, . . . }.

Just as in the case of periodic boundary conditions, the face weights and bound-
ary weights may be fused [6, 7, 8, 9] to form new solvable models with fixed boundary
conditions. The functional equations which result have the same form as in the pe-
riodic case, with the addition of some order 1 factors related to the boundary.
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2 Functional equations

It has been shown in [2] that the eigenvalues of the ABF models with fixed boundary
conditions at fusion level 1× q satisfy the inversion identity hierarchy

sq−1sq+1D
q(u)Dq(u+ λ) = γq

q−1s−1s2q+1f−1fq + s2qD
q−1(u+ λ)Dq+1(u), (2.1)

where 1 ≤ q ≤ L− 1, and

sk = ϑ1(2u+ (k − 1)λ), γr
k = αr

kβ
r
k, fk = (−1)N

[

ϑ1(u+ kλ)

ϑ1(λ)

]2N

. (2.2)

In terms of the function

θrk(u) =

r−1
∏

j=0

ϑ1(u+ (k − j)λ)

ϑ1(λ)
, (2.3)

we can write αr
k and βr

k as

αr
k(u) = θrk(u− ξL)θ

r
k(u+ ξL)θ

r
k(u− ξR)θ

r
k(u+ ξR)

βr
k(u) = θrk−aL

(u− ξL)θ
r
k+aL

(u+ ξL)θ
r
k−aR

(u− ξR)θ
r
k+aR

(u+ ξR).
(2.4)

If the second form of the boundary weights (1.5) is used, the ϑ1 functions in (2.3)
should be changed to ϑ4 functions. The closure of the inversion identity hierarchy
is governed by the conditions

D−1(u) = DL(u) = 0, D0(u) = f−1, DL−1(u) = (−1)Nf−2α
L
L−2/β

1
−2. (2.5)

If we write the eigenvalues Dq(u) with their bulk and surface terms separated

Dq(u) ∼ Dq
b(u)D

q
s (u) as N → ∞, (2.6)

then, by virtue of the inversion relation for the fused face weights [6], Dq
b(u) satisfies

the functional relation

Dq
b(u)D

q
b(u+ λ) = f−1fq, (2.7)

2.1 The bulk free energy

Equation (2.7) implies that, between the inversion points u = (1 − q)λ/2 and
(3− q)λ/2, the bulk partition function per site satisfies the functional equation

κq
b(u)κ

q
b(u+ λ) =

ϑ1(λ− u)ϑ1(u+ qλ)

ϑ1(λ)2
. (2.8)
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This is the same inversion relation as in the case of periodic conditions, which is
to be expected since the boundary conditions should not affect the bulk behaviour.
Equation (2.8) has been solved previously [8, 9, 10], but we include the solution here
for completeness, and as an introduction to the generalized methods that follow. We
use the standard techniques developed by Baxter [11]. The assumption that the so-
lutions are analytic between the inversion points, and that they may be analytically
continued a small distance outside the strip, along with the relation (2.8) and the
crossing symmetry

Dq((2− q)λ− u) = Dq(u) (2.9)

uniquely determines the free energies. The assumption of analyticity may be justified
by studying the zeros of the largest eigenvalue Dq(u) for large finite N . In the critical
case, it is seen that for the fusion level 1×q, the strip −qλ/2 < Re(u) < (4−q)λ/2 is
free of order N zeros [12]. Furthermore, there can be no poles inside this strip, since
for finite N the independence of the eigenvectors on u implies that the eigenvalues
are simply linear combinations of products of Boltzmann weights. Since none of
the Boltzmann weights have poles, neither can the eigenvalues. This assumption of
analyticity implies that the logarithms of the partition functions may be expanded
in a Laurent series in powers of exp(2πu/ε),

ln κq
b(u) =

∞
∑

k=−∞

cke
2kπu/ε. (2.10)

We rewrite the right hand side of (2.8) using the “conjugate modulus” transforma-
tion, which, in terms of the function

E(x, p) =

∞
∏

n=1

(1− pn−1x)(1− pnx−1)(1− pn), (2.11)

is given by

ϑ1(u, p) =
(π

ε

)1/2

e−(u−π/2)2/ε E(e−2πu/ε, q̃2) (2.12)

ϑ4(u, p) =
(π

ε

)1/2

e−(u−π/2)2/ε E(−e−2πu/ε, q̃2) (2.13)

where p = exp(−ε) and q̃ = exp(−π2/ε) are conjugate nomes. With both sides
of (2.8) expanded in powers of exp(2πu/ε), we match coefficients and impose the
crossing symmetry (2.9) to obtain the solution

ln κq
b(u) = c0(u) +

∞
∑

k=1

cosh[(π − 2λ)πk/ε]

k sinh(π2k/ε)

−
∞
∑

k=1

cosh[(π − (q + 1)λ)πk/ε] cosh[((2− q)λ− 2u)πk/ε]

k sinh(π2k/ε) cosh(λπk/ε)
, (2.14)
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where

c0(u) =
1

2ε
[(π − qλ)(q − 1)λ+ 2u((2− q)λ− u)] . (2.15)

The analytic continuation of this function to the region −qλ/2 < Re(u) < (4−q)λ/2
gives the bulk behaviour of the largest eigenvalue of the transfer matrix

Dq
b(u) ∼ [κq

b(u)]
2N as N → ∞. (2.16)

From (2.14) it is easy to show that inside the interval −qλ/2 < u < (2− q)λ/2,

κq−1
b (u+ λ)κq+1

b (u) = κq
b(u)κ

q
b(u+ λ) when q > 1. (2.17)

When q = 1, it can also be shown that inside −λ/2 < u < λ/2,

ln

∣

∣

∣

∣

κq−1
b (u+ λ)κq+1

b (u)

κq
b(u)κ

q
b(u+ λ)

∣

∣

∣

∣

= −
π

2ε
(λ− 2|u|)−

∞
∑

k=1

sinh(λ− 2|u|)πk/ε

k cosh(λπk/ε)
, (2.18)

so that
∣

∣κq−1
b (u+ λ)κq+1

b (u)
∣

∣ < |κq
b(u)κ

q
b(u+ λ)| when q = 1. (2.19)

Putting together equations (2.8), (2.16), (2.17) and (2.19), we therefore obtain

lim
N→∞

(

Dq−1
b (u+ λ)Dq+1

b (u)

f−1(u)fq(u)

)

=

{

0 when q = 1,

1 when q > 1,
(2.20)

which is consistent with the critical bulk behaviour described in [12]. We need this
result for the derivation that follows.

2.2 The surface free energy

Recalling the separation of the bulk and surface terms (2.6), and using the functional
equation (2.7) and the bulk behaviour of the eigenvalues (2.20), the inversion identity
hierarchy in the thermodynamic limit becomes, for −qλ/2 < Re(u) < (2− q)λ/2,

sq−1sq+1D
q
s (u)D

q
s (u+ λ) =

{

γ1
0s−1s3 if q = 1,

γq
q−1s−1s2q+1 + s2qD

q−1
s (u+ λ)Dq+1

s (u) otherwise.

(2.21)

In the case of the unfused model, q = 1, we therefore have an inversion relation
which allows us to calculate the surface free energy5. Explicitly,

κs(u)κs(u+ λ) =
ϑ1(2λ− 2u)ϑ1(2λ+ 2u)

ϑ1(λ− 2u)ϑ1(λ+ 2u)
ǫL(u)ǫR(u), (2.22)

5In the general case of p× q fusion, an analogous functional equation is derived when q = p.
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where ǫL(u) and ǫR(u) are defined by, for a and ξ corresponding to the left or right
boundary as appropriate,

ǫL,R(u) = θ10(u− ξ)θ10(u+ ξ)θ1
−a(u− ξ)θ1a(u+ ξ). (2.23)

In the unfused case, the crossing symmetry of the eigenvalues implies that

κs(λ− u) = κs(u). (2.24)

The solution of the inversion relation for the surface free energy proceeds in a similar
fashion as that for the bulk free energy, although we must justify the assumption
of analyticity separately. There can of course be no poles between the inversion
points for the same reason as there are none in the bulk. However, we are now con-
cerned about order 1 zeros inside 0 < Re(u) < λ. Certainly zeros occur on the line
Re(u) = λ/2, but, guided by the derivation of conformal weights for periodic bound-
ary conditions [12], we associate these zeros with finite-size (order 1/N) corrections
rather than surface effects.

Numerical studies show that zeros do occur on the real u axis inside the strip
−λ/2 < Re(u) < 3λ/2, but never inside the strip 0 < Re(u) < λ. For certain values
of ξ, zeros occur at the inversion points u = 0 and λ. These values are determined
by the zeros of ǫL,R(u), and are found to be ξ = 0, −aλ and (L + 1 − a)λ. For all
other values of ξ (up to periodicity), the interval between the inversion points is free
of zeros. We therefore conclude that the surface partition function per site, κs(u),
is analytic in this region.

With this assumption of analyticity, and the imposition of the crossing symmetry,
the solution of (2.22) is

ln κs(u) = 2
∞
∑

k=1

sinh[(π − 3λ)πk/ε] sinh(λπk/ε) cosh[2(λ− 2u)πk/ε]

k sinh(π2k/ε) cosh(2λπk/ε)

+ (π − 3λ)λ/ε+ ln κL
s (u) + ln κR

s (u),

(2.25)

where ln κL
s and ln κR

s are given for generic a and ξ by

ln κL,R
s (u) = c0(u) + 2

∞
∑

k=1

cosh[(π − 2λ)πk/ε]

k sinh(π2k/ε)

−2
∞
∑

k=1

cosh[(aλ + ξ − |ξ|)πk/ε] cosh[(π − aλ− ξ − |ξ|)πk/ε] cosh[(λ− 2u)πk/ε]

k sinh(π2k/ε) cosh(λπk/ε)

(2.26)

and

c0(u) =
1

ε

[

(aλ+ ξ)(π − 2ξ) + (|ξ| − 2λ)π + (2− a2)λ2 + 2u(λ− u)
]

. (2.27)
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In deriving this expression, ξ is assumed to satisfy the inequality

−π < (1− a)λ < ξ < (L− a)λ < π. (2.28)

We note that, as one would expect, the height reversal transformation a → L+1−a
and ξ → −ξ leaves (2.26) unchanged. If the second form of the boundary weights
(1.5) is used, each term in the sums of (2.26) should be multiplied by (−1)k, which
alters the critical behaviour.

The temperature variable t is identified in [5] to be given by t = p2. The
behaviour in the critical limit t → 0+ is found by applying the Poisson summation
formula to the above expression for ln κs (2.25). We find that the leading-order
singularities of ln κs have the form

fsing ∼

{

tπ/4λ if L ≡ 0 or 1 (mod 4),

tπ/4λ ln t if L ≡ 3 (mod 4).
(2.29)

When L ≡ 2 (mod 4), ln κs is regular. The leading singularity of ln κL,R
s is in general

of higher order than that of ln κs. In addition, ln κL,R
s is regular in the following

situations:

L even











ξ = kλ, k ∈ Z

ξ > 0 and a odd

ξ < 0 and a even

L odd

{

ξ = (2k + 1)λ/2, k ∈ Z

a odd

These exceptions aside, ln κL,R
s has the leading-order singularities

fL,R
sing ∼

{

tπ/2λ if L is even,

tπ/2λ ln t if L is odd.
(2.30)

When the second form of the boundary weights (1.5) is used, the leading-order
singularities are, aside once again from the above exceptions,

fL,R
sing ∼

{

tπ/4λ if L is even,

tπ/4λ ln t if L is odd.
(2.31)

In this case the function ln κL,R
s vanishes at criticality.

The surface critical exponent αs is defined in analogy with the bulk critical
exponent α [13, 14],

Cb ∼ |t|−α Cs ∼ |t|−αs , (2.32)

with the specific heats

Cb =
∂2fb
∂t2

Cs =
∂2fs
∂t2

. (2.33)
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Our result for the surface critical exponent αs is therefore

αs =
7− L

4
. (2.34)

The ABF model with L = 3 corresponds to the two-dimensional Ising model. In
this case we have

fsing ∼ t ln t, (2.35)

in agreement with the calculations of McCoy and Wu [15] for free boundary con-
ditions, but with a lattice rotated by 45◦ with respect to the one considered by
them.

3 Conclusion

From the inversion identity hierarchy, and from the known solution of the bulk
free energy, we have derived an inversion relation for the surface free energy of the
ABF models with fixed boundary conditions. We have solved this inversion relation,
subject to justifiable analyticity assumptions, and thus obtained an expression for
the surface free energy. Finally, we have analysed the critical behaviour of the
surface free energy to obtain the surface critical exponent αs.

In this paper we have considered the bulk form of the free energy and its surface
(order 1) correction. In a future publication we will study the finite-size (order 1/N)
corrections at criticality, and hence derive the central charges and conformal weights
of the ABF models with fixed boundaries.

After this work was completed, we received the preprints [16] and [17], in which
the authors derive surface critical exponents of the eight-vertex and ABF models
using methods similar to ours.
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