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THE LONDON PENETRATION DEPTH OF STRONGLY COUPLED ISOTROPIC

SUPERCONDUCTORS:LOW TEMPERATURE BEHAVIOUR
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We proceed to a systematic exploration of the low temperature dependence of the London
penetration depth of isotropic superconductors within strong coupling theory in the clean limit. For
a sizeable range of parameters, we find that strong coupling effects can reasonably simulate a power
law dependence, sometimes with an excellent precision. In such cases it would be quite difficult to
distinguish experimentally between a pure power law and the strong coupling result. Physically we
have been able to ascribe this temperature dependence to low frequency phonons which produce a
quasi elastic scattering for electrons. The presence of these low frequency phonons requires rather
wide phonon spectra and their effectiveness in scattering implies fairly strong coupling.

PACS numbers : 74.20.Fg, 74.72.Bk, 74.25.Jb

I. INTRODUCTION

The temperature dependence of the London penetration depth λL(T ) plays an important role in the ongoing debate
about the mechanism of high Tc superconductivity. It is indeed an essential piece of information about this mechanism
to know the symmetry of the order parameter [1]. While an s-wave type order parameter ( that is having a fixed sign
over the Fermi surface ) finds a natural explanation in terms of a purely attractive interaction, an order parameter
which changes sign over the Fermi surface, such as the d-wave one produced by the spin fluctuation mechanism, points
toward some repulsive component in the pairing interaction. A change of sign for the order parameter implies the
existence of nodes of the gap and hence of low energy elementary excitations in the superconducting phase. These
should manifest themselves experimentally in numerous low temperature properties. However the interpretation of
many experiments is not so easy. In this respect the penetration depth is a very interesting quantity to measure
since it is a thermodynamic quantity and its measurement is less likely to be perturbed by extrinsic defects than a
dynamical quantity. Moreover it is a bulk quantity since one explores the sample over typically 1000 Ȧ, in contrast
to photoemission or tunnelling where only a few atomic layers at the surface are involved, which raises the fear that
the surface might be perturbed or perturbing in some way.

The existence of low energy excitations should produce for λL(T ) a low temperature dependence stronger than
the standard BCS behaviour, which is essentially flat. Therefore many experimentalists have looked at this low T
behaviour. In particular they have quite often tried to fit this behaviour with a power law T n since this would allow
to find if the nodes of the gap, if any, are located on points or lines on the Fermi surface. Indeed many experiments
on YBCO and BiSSCO [2] have found near T 2 behaviours which have been interpreted as proving the existence
of point nodes. More recently YBCO cristals [3] and films [4] have shown a T behaviour, pointing toward lines of
nodes at the Fermi surface. There is however an implicit assumption in this kind of conclusion. This is that no
s-wave superconductor can give a low temperature dependence compatible with experiment. This assumption has
been mainly challenged by pointing out that strongly anisotropic s-wave superconductors will clearly give a low T
behaviour stronger than standard BCS. A related point is that normal layers will also produce low energy excitations
and a strong low T dependence [5].

However even for a completely isotropic superconductor there is also another direction to look for possible physical
effects which would spoil the standard interpretation. Indeed, when comparison is made with experiment, the standard
reference theory for s-wave superconductivity is the weak coupling BCS theory. On the other hand there are good
indications that high Tc superconductors might be in the strong coupling regime. Indeed, in addition to the high value
of Tc itself, resistivity as well as infrared experiments give for the inverse quasiparticle lifetime at Tc a value which is of
order of Tc itself, in clear contradiction with the weak coupling assumption which requires it to be much smaller than
Tc. It is therefore worthwhile to wonder about strong coupling effects on the penetration depth at low temperature.
Although much work [6]has been devoted to the strong coupling theory of λL(T ) and qualitative suggestions have been
made on strong coupling effects [7], there has been to our knowledge no quantitative and systematic study of the low
temperature behaviour. This is naturally easy to understand since, before the discovery of high Tc superconductivity
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and the recent debate on the symmetry, there was no specific reason to look in details at this specific point. It
is our purpose in this paper to consider this theoretical question in detail, both as a basic exploration in strong
coupling theory and as a reference for the interpretation of experiments in high Tc compounds. We will consider
only isotropic superconductors. Our purpose is indeed to show that even in this case, the low temperature behaviour
can be qualitatively different from the BCS result. Naturally strong anisotropy will produce important additional
changes at low temperature. We will come back on this point at the end of the paper. In the next section we give our
procedure for this systematic exploration. In section III we give our results and discuss their physical origin. Finally
we discuss in the last section the consequences of our findings.

II. POSITION OF THE PROBLEM

The fact that the penetration depth is a thermodynamic quantity is an important advantage for the study of
strong coupling effects. Indeed the input of any calculation in the strong coupling Eliashberg theory is the so-called
Eliashberg function α2F (Ω) which gives the strength of the electron phonon interaction for a given phonon frequency
Ω ( naturally we might consider as well an attractive pairing interaction caused by the exchange of other kinds of
bosons, but in the following we will consider phonons for simplicity ). In principle the knowledge of α2F (Ω) is
equivalent to fixing an infinite number of parameters. In practice this forces to consider a set of models for α2F (Ω)
depending on a restricted number of parameters. These models are in general either inferred from experimental data
or chosen for various theoretical reasons. Nevertheless this procedure is not satisfactory since the chosen models
contain necessarily some arbitrary ingredients : either these are irrelevant and it would be better to know it, or they
are important in which case they are not under control.

However it has been pointed out recently that it is possible to overcome this difficulty for thermodynamic quantities
[8]. Indeed the very structured Eliashberg function α2F (Ω) enters actually the imaginary axis Eliashberg equations
only through the very smooth spectral function λ(ω) =

∫
dΩ 2α2F (Ω) Ω/(Ω2 + ω2) which gives physically the

frequency dependence of the effective pairing interaction. It has been shown [8]that it is possible in a systematic way
to approximate very well ( within a few percent ) all the possible λ(ω) by a set of functions, depending on 5 parameters,
which provide in this way a ”representation” of all the possible spectra α2F (Ω). For the critical temperature and
the gap, it was indeed found that the difference between the quantity calculated from the original spectrum and from
its representation differed at most by a few percent. Although there are clearly many different ways to choose the
functions which give the representation, we have found it convenient to use all the functions generated by a spectrum
made of two Einstein peaks [8]. In this case the five parameters are, in addition to the Coulomb pseudopotential µ∗,
the frequencies Ω1 and Ω2 of the two peaks and their weights λ1 and λ2 , where λ1 + λ2 = λ with λ being the total
coupling strength. We set r = Ω2 / Ω1 and ρ = λ2 / λ1. These parameters are obtained from the original spectrum
[8] by r = ( 1 + bρ−1/2 )/( 1 − bρ1/2) , where 1 + b2 = < Ω2 > / < Ω >2 . And ρ is the solution of r−ρ/(1+ρ) ( 1 +
rρ )/( 1 + ρ) = < Ω > / Ωlog , which is easily solved numerically. Here < Ωβ > =

∫
dΩ Ωβ 2α2F (Ω)/λΩ and Ωlog

= lim β→0 < Ωβ >1/β . We stress that the exploration of this representation will allow us to cover all the possible
cases arising in strong coupling theory.

In the present case the situation simplifies somewhat since we will consider the variation of the reduced penetration
depth λL(T ) / λL(0) as a function of the reduced temperature T / Tc. Therefore the absolute values of the frequencies
will naturally be irrelevant and, in addition to µ∗, we are left with only 3 parameters to vary, namely the total coupling
strength λ, the ratio r of the peak frequencies which is a measure of the width of the spectrum, and the relative weight
p = λ2 / λ of the high frequency peak compared to the total coupling strength. Actually we will consider only the
case µ∗ = 0 in this paper although we have also explored the case µ∗ = 0.1 . The reason for this will be clear in the
following. Indeed the Coulomb pseudopotential is a high frequency contribution to the pairing interaction while we
will see that all the interesting physics comes from low frequencies, as we might expect at low temperature. Therefore
µ∗ provides essentially an uninteresting renormalization of the coupling strength.

Our endeavour meets from the start with a basic problem, which is both conceptual and practical. Whereas it is
straightforward to give the variation of a physical quantity as a function of various parameters, how can we study
the low temperature dependence of λL(T ) as a function of these parameters ? Indeed we do not know of any general
functional dependence of λL(T ) in this regime, which would then depend only on a few parameters. In fact this
general problem is analogous to the one raised above for α2F (Ω) and the solution should be the same : we ought
to expand λL(T ) on an appropriate functional basis and find the coefficients of this expansion. Actually the present
experimental situation and the way most results are analyzed suggest a natural way to do something of this kind.
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We will try to find an approximate power law dependence for λL(T ) at low temperature, which provides us with an
exponent and a prefactor to characterize this behaviour. Naturally we will find in general that λL(T ) does not obey
a power law. Therefore we will proceed specifically in the following way. We work with the superfluid density ρs(T )
= λ−2

L (T ) / λ−2
L (0) and define apparent exponents between temperature Ti and Tf as n = ln [( 1 - ρs(Tf ) ) / ( 1 -

ρs(Ti) ) ] / ln (Tf / Ti ) . Both for experimental and theoretical reasons we do not take our sampling temperature
too low. Indeed for the experiments we are interested in [9], the low temperature behaviour is pretty flat with some
scatter and the resulting imprecision makes results obtained in this region rather meaningless. On the theoretical side
we could naturally go in this region, but the variations of ρs(T ) would be minute. Moreover we know theoretically
that a power law will be a very bad description of λL(T ) in this regime. Therefore we have chosen our sampling
temperatures to cover the ”middle-low” temperature region 0.2 < T / Tc < 0.5 where an experimentalist is most
likely to look for a power law. Precisely we have taken T1 / Tc = 0.2, T2 / Tc = 0.35 and T3 / Tc = 0.5, and we have
defined three exponents : n1 between 0.35 and 0.5 , n2 between 0.2 and 0.5, and n3 between 0.2 and 0.35 (see Fig.1).
Naturally n2 = 0.389 n1 + 0.611 n3 , but we find it convenient to use this redondant presentation because n3 - n1

appears as a kind of theoretical ”error bar” for the middle exponent n2. A large value will tell us that a power law is
a bad representation of the temperature dependence of λL(T ) in this region, while a small error bar will mean that
a simple power law provides a good description. Most of the time we have found n1 < n2 < n3 corresponding to a
weaker T dependence at lower temperature, but it is important that the reverse order occurred also. Naturally our
description could be improved, for example by replacing the prefactor by a polynomial, but we have not explored this
possibility.

III. RESULTS ON THE PENETRATION DEPTH

The London penetration depth is given by [10]:

λ−2
L (T ) = λ−2

L 2πT

∞∑
n=0

∆2
n

ω2
n +∆2

n

1

Zn(ω2
n +∆2

n)
1/2

+ 1
2τi

(1)

Here λL is the weak coupling penetration depth at T = 0 in the clean limit, given by λ−2
L ≡ (2/D) N0 e2 v2F where

D is the dimensionality of the superconductor,N0 the density of states per spin at the Fermi level, τi is the impurity
scattering time, and ∆n and Zn are respectively the gap function and the phonon renormalization function at the
Matsubara frequencies ωn = (2n+ 1)πT. These last ones are given by the solution of the Eliashberg equations:

ωn(Zn − 1) = πT
∑
m

λn−m
ωm

(ω2
m +∆2

m)
1/2

(2)

∆nZn = πT
∑
m

λn−m
∆m

(ω2
m +∆2

m)
1/2

where:

λ(ω) = λ <
Ω2

Ω2 + ω2
> (3)

with λ ≡ λ(0). As above the brackets < ... > are for the average
∫

dΩ g(Ω) ... over phonons frequency with respect
to the normalized Eliashberg function g(Ω) = 2α2F (Ω)/λΩ .

Although this imaginary axis expression Eq.(1) is by far the most convenient for numerical calculations, it is useful
for the physical interpretation of the results to write also the corresponding expression with integration on the real
frequency axis. Indeed this allows to express the penetration depth, which gives the superfluid response to the
electromagnetic field, in terms of virtual pair-breaking excitations. This expression reads:

λ−2
L (T ) = λ−2

L Im

∫
∞

0

dωtanh(
ω

2T
)

∆2(ω)

(∆2(ω)− ω2)
3/2

1

Z(ω) + 1
2τi(∆2(ω)−ω2)1/2

(4)

It reduces to Eq.(1) by deforming the integration contour toward the imaginary frequency axis. This result is easy to
understand physically. If one omits the last term in the integral, this expression is the standard BCS result except for
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the frequency dependence of ∆(ω). The last term corresponds to the mass renormalization of the excitations. Indeed
in addition to the constant factor 1/m∗ due to the band structure effective mass coming in the prefactor λ−2

L , one
has to include the frequency dependent mass renormalization function Z(ω). Naturally the imaginary part of Z(ω)
will describe the effect of the finite lifetime of the excitations. The additional contribution (1/2τi) (∆

2(ω) - ω2)−1/2

in the last term is just the corresponding effect of impurities on the excitation lifetime. In this paper we will actually
be concerned only with the clean limit. Indeed we will see that the interesting low temperature behaviour of λ(T ) is
controlled by lifetime effects due to inelastic scattering. When the superconductor gets very dirty, the elastic lifetime
becomes much shorter than the inelastic one and the low temperature behaviour is similar to the standard weak
coupling BCS result and therefore uninteresting for our purpose. We note also that, if we have in mind a comparison
with experiment, the dirty limit is not relevant for high Tc compounds which are more or less on the clean side because
Tc is so high. Therefore the clean limit is physically the interesting one. However Eq.(1) and (4) will be useful for
comparison.

Let us start with the simplest case, namely the Einstein spectrum, in order to have a reference for comparison. We
display in Fig.2 the results for an Einstein spectrum, which corresponds to take our parameter p = 0 or 1 , the value
of r being then irrelevant. We do not give the values of our exponents ni for these Einstein spectra since they range
typically from 5 to 10 and a power law is clearly a very poor way to describe the low temperature behaviour for them
as it is clear from Fig.2. The λ = 0 curve is naturally the BCS result. At the beginning, when the coupling strength
starts to increase, λL(T ) becomes flat at even higher temperature than in the BCS result. This is just the effect of
the increase with λ of the ratio 2 ∆ / Tc . Indeed, as it is seen from Eq.(4), the flattening of λL(T ) starts when
all excitations have essentially disappeared. Since the gap ∆ gives the minimum energy for creating an excitation,
the temperature at which λL(T ) becomes flat scales with ∆. However when we have, say, λ > 4, this evolution is
reversed and the low temperature dependence gets stronger. When we reach λ ≈ 10 , we are already back to the
λ = 1 behaviour. Since we have specifically in mind here the low temperature behaviour, it is of interest to fully
understand physically the origin of this somewhat surprising evolution.

Since this behaviour appears on the strong coupling side, we will understand it by considering the strong coupling
limit, where the coupling constant λ goes to infinity, while we let at the same time the phonons frequencies go to zero
in order to keep for example λ < Ω2 > = 1 in order to keep the critical temperature fixed ( here we do not restrict
ourselves to an Einstein spectrum and consider rather a general spectrum ). This limit has already been investigated
in various papers [11,13,12,14,15,6]. However for our purpose it is more interesting not to let Ω go strictly to zero, but
to take it very small in order to avoid singularities at low temperature. Because of the factor λn−m , the dominant
contribution in the sums in Eq.(2) comes from the terms with |ωm - ωn| at most of order a few times Ω. When Ω
becomes very small, ωm (ω2

m + ∆2
m )−1/2 is almost constant over this range since Ω will be very small compared to

∆m. Therefore the sum can be performed explicitely which leads, to leading order, to:

Zn =
π

2
λ < Ω(2N(Ω) + 1) >

1

(ω2
n +∆2

n)
1/2

(5)

where N(Ω) is the Bose - Einstein distribution. The analytic continuation of this simple result toward the real axis :

Z (ω) = i
π

2
λ < Ω(2N(Ω) + 1) >

1

(ω2 −∆2(ω))1/2
(6)

can also be obtained directly from the real axis Eliashberg equations. The physical meaning of Eq.(5) and (6) is quite
clear. The very low frequency phonons behave like quasi-impurities [13]. When they are absorbed or emitted, they
produce the same result as impurities with a scattering time τph given by 1/τph = π λ < Ω ( 2 N(Ω) + 1) >, as it
can be seen by comparing Eq.(4) and (6) ( one would get the same result for 1/τph in the normal state ). In other
words in this limit Z(ω) is physically dominated by lifetime effects. When this result is carried into Eq.(1) one finds
naturally the dirty limit with τph as scattering time:

λ−2
L (T ) = λ−2

L

2

πλ < Ωcoth(Ω/2T ) >
2πT

∞∑
n=0

∆2
n

ω2
n +∆2

n

(7)

The last factor, which contains the sum over Matsubara frequencies, gives a very regular function of temperature.
This function is given in [6]. It goes to a constant [16] when T → 0. Therefore the low temperature behaviour of
λ−2
L (T) is given by τph . As long as T >> Ω , λ−2

L (T) diverges as T −1 , because the number of thermally excited
phonons is proportional to T : when the temperature is lowered the number of scattering processes decreases which
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produces the growth of λ−2
L (T). Naturally this divergence saturates for T << Ω , since at zero temperature only

the possibility of spontaneous phonon emission is left which gives 1/τph = π λ < Ω > . We come therefore to the
conclusion that the increased low temperature dependence found when the coupling gets very strong is due to the low
frequency phonons, which act as scatterers and whose number depends naturally on temperature.

We turn now to our investigation of the apparent exponent for the low T behaviour of 1 - λ−2
L (T ) / λ−2

L (0). Since
we have already explored the strong coupling limit we can restrict ourselves to ”reasonable” values for the coupling
constant λ. Specifically we consider λ going from 2 to 8. Indeed for λ = 1 we have found results rather similar to the
BCS result with fairly large exponents ( of order 4 or more ) which have little interest. Similarly we do not show the
results for a spectral width parameter r = 2 , since they do not depart very much from what is found for Einstein
spectra. We consider first the results for r = 4 , which are displayed in Fig.3 . Since p = 0 or 1 correspond to Einstein
spectra, we give only the results for 0.1 ≤ p ≤ 0.9 . While for 0.1 ≤ p ≤ 0.5, it is plain that a power law does not
agree with the theoretical results, remarkably it becomes a reasonable representation for 0.6 ≤ p ≤ 0.9 , mainly for
high values of λ. Indeed if we accept an uncertainty of ± 10% on the exponent ( it is not easy to obtain a better result
experimentally ) we find a power law for 0.7 ≤ p ≤ 0.9 provided λ ≥ 3. In particular for p = 0.8 we find that for λ = 4
( ni = 3.55 ), 6 ( ni = 2.95 ) and 8 ( ni = 2.72 ) the temperature dependence is remarkably well described by a power
law. This is somewhat surprising since we know theoretically that this dependence is not a power law, and there is no
obvious reasons why it comes so close to be one. We might indeed have anticipated that all our results would behave
the way they do for, say, p ≤ 0.5 . Naturally the fact that n1 = n3 does not imply that we have exactly a straight
line on our log-log plot, and we might worry that it has actually a sizeable oscillation. One can check directly that it
is not so : the difference with a straight line is quite small and could certainly not be seen experimentally. We give
right below a specific example of this.

When we look for larger values of the spectral width, we find that the range of parameters where a power law gives
a good description gets larger and that the exponents decrease. This is seen on Fig.4 where we present our results
for r = 6. For 0.6 ≤ p ≤ 0.8 we obtain good power laws within ± 10% down to λ = 3. For p = 0.75 we find ni =
2.6 for λ = 4 . This exponent is already rather near experimental results. We show on Fig.5 the result for 1 - λ−2

L (T )

/ λ−2
L (0) compared with an exact power law. It is clear that it would not be possible experimentally to make the

difference between the power law and the strong coupling result for temperature below 0.5 Tc . For p=0.7 and λ =
8 one finds a T 1.98 law. The results for r = 8 displayed on Fig.6 show the same trends. The domain where we have
a power law within ±10% extends now from p = 0.5 to p = 0.8 and starts almost from λ = 2. For p = 0.7 and λ =
4 we find an exponent ni = 2.15 . Finally one sees on Fig.7 , where we show the results for r = 16 , that exponents
markedly below 2 and actually not so far from 1 can be obtained. For example for p = 0.6 and λ = 4 we have ni =
1.51 . The domain with a power law within ±10% goes from p = 0.4 to p = 0.7, starting from λ = 2. We complete
our results by displaying in Fig.8 the prefactor of the approximate power laws that we have obtained for r = 4, 8 and
16 (this prefactor is calculated between T / Tc = 0.2 and 0.5 using our exponent n2 ). We give only the results for
the values of p where a power law is a good approximation. The prefactor that we find is always of order unity. This
means that the power law that we find at low temperature is not a small effect since its extrapolation for T = Tc

gives for 1 - λ−2
L (T ) / λ−2

L (0) a result of order unity.

Naturally the parameters where we find very good power laws correspond to the region where one switches from
n1 < n2 < n3 to n3 < n2 < n1 for the order of our exponents. We have found above that this crossing occurs in the
region p ≈ 0.7± 0.1 . However since p = 0 or 1 corresponds to an Einstein spectrum, the exponents must be in the
same order for p = 0 and 1 which implies that there must be another crossing region. This region is actually very
near p = 1 (for r = 4 and λ = 3 it occurs for p = 0.98, and for higher values of r it goes closer to p = 1 ). This
means that the spectrum has a very small low frequency component, which makes this kind of spectrum somewhat
pathological and unlikely to be relevant experimentally. The exponents corresponding to this crossing are also fairly
high which makes them quite uninteresting. Therefore we do not discuss this region further. In contrast the region
which we have considered above corresponds to quite standard spectra and the exponents are similar to what is found
experimentally.

It is worthwhile to try to understand the physical origin of this appearance of quasi-power laws with small exponents.
Since this feature develops when the spectral width gets large, it is useful to consider the large spectral width limit,
which corresponds to let go to infinity our parameter r in the two peaks representation. This is equivalent to let the
frequency Ω1 of the lower peak go to zero, while we keep at the same time the higher frequency peak Ω2 fixed ( we
can take for example Ω2 as unity). Physically, in the same way as we have seen for the strong coupling limit, the low
frequency phonons will behave as impurities. They disappear from the equation for the gap function. Therefore ∆n as
well as Tc are given by the Einstein spectrum result with frequency Ω2 and coupling strength λ2. On the other hand
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the low frequency phonons still contribute to Zn by the m = n term. This produces the same effect as introducing
additional scattering with a lifetime 1/2τph = π λ1T . This leads for the penetration depth to:

λ−2
L (T ) = λ−2

L 2πT

∞∑
n=0

(∆E
n )

2

ω2
n + (∆E

n )
2

1

ZE
n (ω2

n + (∆E
n )

2
)
1/2

+ πλ1T
(8)

where, as explained above, ∆E
n and ZE

n are the solution of Eliashberg equations for an Einstein spectrum with
frequency Ω2 and coupling strength λ2 . As one might have expected, this result is just the general formula Eq.(1)
with the impurity lifetime replaced by the contribution from low frequency phonons. It is clear from Eq.(8) that,
because of the term πλ1T, the low frequency phonons depress λ−2

L (T) below what would be obtained from an Einstein
spectrum alone. Hence they give for λL (T ) at low temperature a dependence which is stronger than the standard
BCS one. Therefore the low frequency phonons are responsible for development of the low temperature dependence
when the width of the spectrum increases. However there is no obvious reason why this dependence can get close to
a power law. Nevertheless we note that Eq.(8) gives a linear T dependence for λL (T ) at low temperature (naturally
our limiting case corresponds to a situation where Ω1 << T). We show on Fig.9 the result of the calculation when
the coupling strength of the high frequency peak is equal to λ2 = 3. The coupling strength λ1 of the low frequency
phonons takes the values m λ2 /(10 -m) and the integer m goes from 0 to 9. The values of λ1 for m ≥ 6 are quite large
and are just given to show the trend. It is interesting to note that the heavy line on this figure, which corresponds to
λ1 = 1.28 , is quite similar to the experimental results of Ref. [3].

IV. DISCUSSION

In this paper we have explored the effect of strong coupling on the low temperature behaviour of the penetration
depth in the simplest model, namely for an isotropic attractive interaction leading to s-wave pairing. Quite surprisingly
and unexpectedly we have found that strong coupling effects can mimick a power law dependence, for a sizeable range
of parameters, sometimes with an excellent precision. Physically we have been able to ascribe this strong T dependence
to low frequency phonons which produce a quasi elastic scattering for electrons, but we have not found any deeper
theoretical reasons for these quasi-power laws. The presence of these low frequency phonons below Tc requires rather
wide phonon spectra and their effectiveness in scattering implies fairly strong coupling.

Let us try to apply our results to the case of high Tc superconductors. Although we have found that one can
obtain in principle a linear low temperature dependence from strong coupling effects, it seems completely unlikely
that such an interpretation applies to the linear dependence found recently in YBCO [3,4] because our parameters
are too extreme in terms of phonon frequency and coupling strength. On the other hand our results are of interest
for other high Tc compounds : if we take the experimental results showing a dependence not so far from a T 2 law, as
it is quite often found [2] in BiSSCO, our results are rather close to provide an alternative explanation although our
coupling strength is a bit too high and the spectrum we require somewhat too wide to agree with the experimental
information presently available.

On the other hand we have only investigated here the isotropic case. It is clear that, if we consider some anisotropy,
the effects that we have found will be increased. Indeed, as we see from Eq.(8), the inverse lifetime due to low
frequency phonons is in direct competition with the size of the gap. Anisotropy will make the gap smaller at some
places on the Fermi surface, thereby increasing the effect of low frequency phonons and leading to the possibility of
having a power law at low T for reasonable values of the parameters. In this way strong coupling effects might be
quite relevant to the understanding of experimental results. In this respect it is worth pointing out that most high
Tc microscopic theories claiming to perform a reliable critical temperature calculation are strong coupling theories
with coupling constants at least of order unity. This is in particular the case for spin fluctuations microscopic theories
such as the MMP [17] or the RULN [18]calculations. How strong should be the coupling in these compounds is still
naturally a matter of debate. However strong coupling effects are generally completely overlooked in the interpretation
of experiments on the low temperature behaviour of λL(T ). Our results show that this might be dangerous. Another
way to put it is to say that, when something happens at low temperature, one should not only look at the fermionic
degrees of freedom for an explanation, but one should also consider the possibility that bosonic degrees of freedom
might be at least partly responsible for the effect.
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FIG. 1. Example of the calculation of our apparent power law exponents n1, n2 and n3 from the log-log plot of 1 − λ−2

L

(T) / λ−2

L
(0) ( this figure corresponds precisely to the case r = 4, λ = 4 and p = 0.3 with n1 = 4.14 , n2 = 5.36 and n3 =

6.13 ). This figure suggests that it might be difficult to obtain experimentally a very good relative precision on the power law
exponent.

FIG. 2. Variation of the λ−2

L
(T) / λ−2

L
(0) for an Einstein spectrum for a coupling strength λ = 1 ( short dashed line ), λ

= 4 ( dashed line ) and λ = 10 ( long dashed line ). The full curve is the BCS result

FIG. 3. Exponents n1 , n2 and n3 for r = 4 and λ = 2 ( dashed line ), λ = 3 ( open circles ), λ = 4 ( full lines ), λ = 6 (
filled squares ) and λ = 8 ( dashed lines ). The lines are just guides for the eye

FIG. 4. Exponents n1 , n2 and n3 for r = 6 and λ = 2 ( dashed line ), λ = 3 ( open circles ), λ = 4 ( full lines ), λ = 6 (
filled squares ) and λ = 8 ( dashed lines ). The lines are just guides for the eye

FIG. 5. 1 − λ−2

L
(T) / λ−2

L
(0) for r = 6 , λ = 4 and p = .75 together with its power law approximation 0.59 (T/Tc )2.6 over

the full temperature range and (inset) for T/Tc ≤ 0.5
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FIG. 6. Exponents n1 , n2 and n3 for r = 8 and λ = 2 ( dashed line ), λ = 3 ( open circles ), λ = 4 ( full lines ), λ = 6 (
filled squares ) and λ = 8 ( dashed lines ). The lines are just guides for the eye

FIG. 7. Exponents n1 , n2 and n3 for r = 16 and λ = 2 ( dashed line ), λ = 3 ( open circles ), λ = 4 ( full lines ), λ = 6 (
filled squares ) and λ = 8 ( dashed lines ). The lines are just guides for the eye

FIG. 8. The prefactor of the approximate power law for 1 − λ−2

L
(T) / λ−2

L
(0) : r = 4 (left), r = 8 (middle) and r = 16

(right); λ = 2 (open diamonds), λ = 3 (open circles), λ = 4 (open squares), λ = 6 (filled squares) and λ = 8 (filled diamonds)

FIG. 9. λ−2

L
(T) / λ−2

L
(0) in the large spectral width limit for λ2 = 3. The coupling strength λ1 takes the values m λ2 /(10

-m) and the integer m goes from 0 to 9. The heavy line corresponds to λ1 = 1.28
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