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Boundary Effects and the Order Parameter Symmetry of High-T
c
Superconductors
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Apparently conflicting phase-sensitive measurements of the order parameter symmetry in the high-
Tc cuprate superconductors may be explained by regions near surfaces in which the order parameter
symmetry is different than in the bulk. These surface states can lead to interesting and testable
effects.

Phase-sensitive measurements on the high tempera-
ture superconductor YBa2Cu3O7−δ have yielded two po-
tentially conflicting sets of results for the symmetry
of the superconducting order parameter [1]. Measure-
ments involving currents flowing in the CuO2 planes,
such as the corner-junction SQUID experiments [2–4],
the corner-junction flux modulation experiments [5,6],
and the tricrystal ring experiments [7] indicate an order
parameter with primarily dx2

−y2 symmetry under rota-
tions in the plane (∆(k) ∼ cos kx−cosky). The presence,
however, of Josephson tunneling perpendicular to the
CuO2 planes between heavily-twinned YBCO and a con-
ventional s-wave superconductor [8–10] suggests an order
parameter with a significant s-wave component [11,12].
A bulk order parameter of mixed s and dx2

−y2 sym-
metry could explain both sets of experiments. An or-
der parameter with this mixed symmetry, for a material
which is otherwise macroscopically symmetric under 90o

rotations (heavily twinned YBCO), requires either a first
order transition or two separate bulk phase transitions.
So far, there has been no convincing evidence for either
of these. In this paper, then, we assume that the or-
der parameter in the bulk superconductor transforms as
one irreducible representation of the rotation group D4h,
either s or dx2

−y2 .
Using a Ginzburg-Landau model in which both s and

dx2
−y2 order parameter symmetries are allowed, but only

one is favored in the bulk, we find that there are two
possibilities consistent with both the CuO2 plane and c-
axis tunneling experiments.
The first possibility is that the order parameter is s-

wave in the bulk and a d-wave component is mixed in at
faces normal to the CuO2 planes (Fig. 1a). This does not
require any special choice of parameters; there is an in-
stability to mixing near these faces. The symmetry being
tested is rotation in the CuO2 plane and placing an edge
in that plane breaks the symmetry explicitly. This always
causes mixing. The amount of mixing depends on the en-
ergetics: if the d-wave component is strongly disfavored
(as might be expected in a conventional superconductor),
the mixing is small. If there is a close competition, the
mixing may be large. In addition, we find that for this

case the mixing can explain the CuO2 plane experiments
only if the order parameter breaks time reversal invari-
ance at the surface: it must have the form s+ id there.
The second possibility is that the order parameter is d-

wave in the bulk and a surface state forms which mixes in
an s component on the face perpendicular to c-axis (Fig.
1b). This occurs only under certain conditions. The two
components must inhibit each other, in the sense that the
presence of one makes the other energetically less favor-
able. In addition, the effect of the c-axis boundary must
be such that the magnitude of the d-wave component de-
creases significantly from its bulk value near the edge. In
that case, the s-wave component is less suppressed near
the surface and a localized region of mixed symmetry can
develop [13].
The presence of the surface state normal to the c-axis

is sensitive to the boundary conditions. This may explain
the difficulty in achieving c-axis junctions, as well as the
variability among samples of angle-resolved photoemis-
sion spectroscopy studies of the gap magnitude [14]. The
photoemission studies see the topmost CuO2 layer. Vari-
ations in surface properties affect the boundary condi-
tions, which in turn affect whether the order parameter
has the form d+ s, d + is or pure d at the surface, each
of which has a different momentum dependence.
The c-axis surface state may also lead to “π-junction”

behavior. In a SQUID loop between YBCO and a con-
ventional superconductor, with junctions normal to the
c-axis, the configuration with opposite relative phases on
the two junctions will lead to a net phase difference of π
in the absence of an applied magnetic field.
For both possibilities discussed above, the starting

point is the Ginzburg-Landau free energy [15]

F = Fs + Fd + Fsd +
1

8π

∫

d3r B2 , (1)

Fi =

∫

d3r
[

κi |Dψi|
2 + ai(T ) |ψi|

2 + bi |ψi|
4

]

Fsd =

∫

d3r
[

λ1 |ψs|
2|ψd|

2 + λ2 (ψ
∗2
s ψ2

d + ψ2
sψ

∗2
d )

+
(

γ ψ∗

d(D
2
x −D2

y)ψs + c.c.
)

]

.
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The CuO2 planes are in the x-y directions, the magnetic
field B = ∇×A, the gauge invariant gradient operator
D = ∇− 2ieA/c, and the index i runs over s and d. We
now consider the two cases separately.
Bulk s case: We consider a homogeneous system in

the absence of a magnetic field, for which the gradient
terms in F vanish in the bulk. A purely s-wave solu-
tion to Eq. (1) exists when as < 0 and ad + |as| (λ1 −
2λ2)/2bs > 0. If ad < 0 and as + |ad| (λ1 − 2λ2)/2bd > 0
then a purely d-wave solution also exists. As long as
a2s/bs > a2d/bd, the s solution has lower energy than the
d solution and is the stable global minimum of the free
energy.
Ordinarily, near a boundary, a stability criterion fol-

lows from considering the change in energy due to adding
a small ψd to the bulk ψs solution:

δF = ψ∗

d

[

− κd ∂
2
x + ad + λ|ψs|

2

]

ψd +O(|ψd|
4) , (2)

where

λ ≡ λ1 + 2λ2 cos 2θsd , (3)

θsd is the relative phase between the s and d order pa-
rameters, ψs(x) is the unperturbed solution, and we con-
sider a boundary along the x direction. If the operator in
brackets has an eigenstate with negative eigenvalue, then
the energy will be lowered by forming a surface state. If
there are no negative eigenvalues, the system is stable
against the formation of a surface state.
This stability criterion assumes that the gradient terms

mixing the the s and d components in Fsd can be ne-
glected. For a boundary which is in the a-b plane, this
will not necessarily be true. Near a boundary, the s-
wave component may decrease, in which case the gradi-
ent terms in Fsd contribute. These add a term linear in
ψd to Eq. (2). The effect of a linear term is that the en-
ergy can always be lowered by turning on a small ψd 6= 0,
that is, there is an instability to mixing.
This instability occurs only for boundaries in the a-b

plane because boundaries in this plane explicitly break
the rotational symmetry being tested: they allow a term
such as ψ∗

s (D
2
x −D2

y)ψd to contribute to the free energy.
For a boundary along the c-axis, there is no equivalent
linear-order mixing through gradients.
The form of the magnitudes S(r) ≡ |ψs(r)| and D(r) ≡

|ψd(r)| near the boundary will depend in detail on the
Ginzburg-Landau parameters and the boundary condi-
tions. The relative phase θsd between ψs and ψd is easier
to understand. There are only two terms in the free en-
ergy given in Eq. (1) which depend on this phase:

λ2 S
2D2 cos 2θsd + γ D(∂2x − ∂2y)S cos θsd , (4)

where we have assumed there are no spontaneous phase
gradients (currents) at the edge. The second term is min-
imized for a relative phase difference between the s and

d components of 0 or π depending on the sign of γ. How-
ever, for a given system, this term will prefer opposite
phases on the faces normal to the x̂ and ŷ directions:
s + d on one face and s − d on the other [16]. Such a
configuration is not consistent with the corner junction
experiments because there will be no net phase shift in a
loop formed between two adjacent faces.
The first term in Eq. (4), however, favors θsd = ±π/2

when the coefficient λ2 is positive, and θsd = 0 or π
when λ2 is negative. If θsd = ±π/2 at the minimum
then the second term does not contribute and there is no
preference from this surface energy for either sign. The
corner energy is minimized for a uniform phase around
the material, and the result is s + id at every face or
s − id at every face. This solution, which occurs when
the parameters are such that λ2 < 0 and the first term
dominates over the second term at the minimum, has
the potential to be consistent with the corner junction
experiments.
Both the single corner junction and tricrystal ring ex-

periments, however, place strong limits on the amount
of s which is present at the surface [1,7]. In order for
the bulk s scenario to explain these results, the param-
eters must be fine tuned so that the amount of residual
s-wave order parameter near the surface is small. This
makes the picture somewhat unlikely, although not yet
ruled out.
Bulk dx2

−y2 case: In this case, we assume that the
corner junction experiments are detecting the intrinsic,
bulk order parameter symmetry and that surface states
with mixed symmetry form at the faces perpendicular to
the c-axis.
The energy cost of adding a small ψs solution to a bulk

ψd solution is

δF = ψ∗

s

[

− κs ∂
2
z + as + λ|ψd|

2

]

ψs +O(|ψs|
4) , (5)

where λ is defined in Eq. (3) and we now consider a
boundary along the ẑ-direction. When the operator in
brackets develops a bound state with a negative energy
satisfying the appropriate boundary conditions, a surface
state will form.
The boundary conditions determine the presence of the

surface state in the following way. If ψd near the surface
decreases very little from its bulk value, than the ψs com-
ponent will be as suppressed as it is in the bulk and a
surface state is unlikely to form. Conversely, if ψd does
decrease significantly, a surface state may be induced.
More explicitly, the boundary condition at an interface
can be written in general [17] as dψ(z)/dz|z=0 = ψ(0)/L,
where L measures the extent to which the order param-
eter is suppressed at the interface. At a superconductor-
insulator boundary L → ∞, so ψ(0) is close to the
bulk value, whereas at a superconductor-metal boundary
L → 0, so that ψ(0) nearly vanishes. Therefore bound-
aries which are more superconductor-metal like enhance
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the likelihood of a surface state forming.
The symmetry of the surface state will depend on the

sign of the λ2 defined in Eq. (1): the state will have the
form s± id for positive λ2 and s± d for negative λ2 [13].
For a given system (fixed λ2), the plus and minus states
are degenerate, and this can lead to the effects illustrated
in Figs. 2 and 3. The Josephson energy for the SQUID
loops shown in Fig. 2 can be written

EJ(Φ) = EJ,a cosφa + η EJ,b cosφb , (6)

where EJ,i are the Josephson coupling energies for the
top and bottom junctions (i = a, b), φi are the phase
differences across these junctions, and η is ±1. The phase
differences satisfy

φa − φb = 2π
Φ

Φ0

, (7)

where Φ is the net flux enclosed in the loop and Φ0 =
hc/2e is the flux quantum [18]. The configuration in
which the top and bottom junctions have misaligned s
components (η = −1) adds an additional phase shift of
π because the conventional superconductor couples only
to the s component of the order parameter (assuming a
tunnel junction in which higher order tunneling matrix
elements can be neglected). The result, for symmetric
junctions, is shown in Fig. 3. Minimizing the Josephson
energy yields a net phase shift of Φ0/2 between the flux
dependence of the η = +1 and η = −1 configurations.
This phase shift leads to several interesting behaviors.

In the high-inductance limit, the η = −1 configuration
in Fig. 2 will cause spontaneous currents generating half-
integral flux quantua, as in the tricrystal ring configu-
rations. The half-integral periodicity of EJ (Φ) is also
reflected in a half-integral periodicity in the flux depen-
dence of the critical current, which will be seen if the
system can probe both configurations in achieving the
maximum supercurrent. We also note that an asymmet-
ric junction, for which E1 6= E2, causes the resulting
EJ (Φ) to oscillate between −|E1 − E2| and −|E1 + E2|,
instead of 0 and −2E1 as in Fig. 3, but the periodicity
with Φ0/2 remains the same.
There are several other interesting consequences of a

mixed symmetry surface state. First, for the state normal
to the c-axis, there should be a surface phase transition,
at a temperature Tc,s below the bulk Tc, where the s-
wave component of the order parameter disappears. This
would most likely occur at too high a temperature to be
seen in the Josephson tunneling into a conventional su-
perconductor, but might be seen in photoemission. There
is some preliminary evidence from photoemission studies
on Bi2Sr2CaCu2O8+x that at a temperature ≈ .8 to .9Tc
there is an increase in anisotropy of the gap magnitude, as
would occur if a surface s-wave contribution to the order
parameter were disappearing [19]. Second, the relative
phase angle between the two components, θsd, is a dy-
namical variable and its oscillations, which occur as long

as there is a charging energy (a capicitance in the Joseph-
son equations), are a new collective mode of the order pa-
rameter. This mode is charged, since |ψs| 6= |ψd|, and will
therefore be pushed up near the plasma frequency, but
is distinct from the usual plasma mode. The mode will
disappear at the temperature Tc,s of the surface phase
transition.
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FIG. 1. Two possiblities consistent with both sets of phase
sensitive experiments: (a) A surface state of mixed s and d
symmetry forms normal to the CuO2 planes in a bulk s-wave
superconductor; (b) A surface state of mixed symmetry forms
parallel to the CuO2 planes in a bulk d-wave superconductor.
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FIG. 2. Two possible configurations of a d-wave supercon-
ductor, with surface states of mixed symmetry, in a SQUID
loop with a conventional superconductor.
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FIG. 3. Josephson energy of the two configurations in Fig.
2. The η = +1 configuration behaves as an ordinary SQUID,
but the flux dependence for the η = −1 configuration is
shifted by Φ0/2. The result is that the ground state energy
of the system (solid line) is periodic with period Φ0/2 rather
than Φ0.
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