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Abstract

In the core of the vortex of a superconductor, energy levels appear inside the

gap. We discuss here through a random matrix approach how these levels are

broadened by impurities. It is first shown that the level statistics is governed

by an ensemble consisting of a symplectic random potential added to a non-

random matrix. A generalization of previous work on the unitary ensemble

in the presence of an external source (which relied on the Itzykson-Zuber in-

tegral) is discussed for this symplectic case through the formalism introduced

by Harish-Chandra and Duistermaat-Heckman. This leads to explicit formu-

lae for the density of states and for the correlation functions, which describe

the cross-over from the clean to the dirty limits.
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∗Unité propre du centre national de la Recherche Scientifique, Associée à l’Ecole Normale
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I. INTRODUCTION

The energy levels inside a vortex of a superconductor have been characterized long ago
[1], but recent studies have dealt with the broadening of these levels by impurities. The
density of states has been computed both in the clean limit and for the dirty case.

In this article, we discuss the crossover between these two limits. The impurity potential
is handled through a random matrix theory. However the matrix elements between different
energy levels due to the impurities are strongly correlated, and therefore one is far from a
usual Wigner-Dyson random matrix theory.

It is shown below that the crossover is characterized in this case by a random symplectic
matrix coupled to an external non-random source matrix. For handling this problem we
develop a technique which generalizes earlier work on the unitary ensemble in which one
considered the cross-over from a deterministic hamiltonian to a fully random hermitian
hamiltonian [2–5]. In the hermitian case, the formalism relied on an integral over the
unitary group due to Harish-Chandra [6] and rederived in the context of random matrix
theory by Itzykson-Zuber [7]. All the correlation functions for the energy levels were then
found explicitely. For the vortex problem considered here the perturbation due to impurities
is a matrix with a symplectic structure, which we treat as a random potential added to the
unperturbed diagonal matrix consisting of the regularly spaced energy levels. It is shown
below that for this problem a similar integral over the symplectic group, considered by
Harish-Chandra [6], and more recently generalized by Duistermaat and Heckman [8] leads
also to explicit formulae. The crossover from the clean spectrum to the dirty limit follows
from this formalism. We will show how this general behavior for the crossover is relevant to
the actual problem of the excitation energy spectrum in a superconducting vortex.

II. SYMPLECTIC STRUCTURE OF THE PERTURBATION FOR THE ENERGY

LEVELS INSIDE A VORTEX

The energy eigenvalues and eigenfunctions of a quasi-particle inside the vortex of a su-
perconductor, were obtained long ago [1]. The two component wave functions of excitations
ψ̂ = (ψ1, ψ2) in a superconductor satifies the Bogolubov-de Gennes equation,

[σz(H0 + Vimp) + σxRe∆(r) + σyIm∆(r)]ψ̂ = Eψ̂ (2.1)

where H0 = p2/2m− EF , and ∆(r) is a gap order parameter. The impurity potential Vimp

is a sum of short range scattering sites ri:

Vimp(r) =
∑

i

Viδ(r − ri) (2.2)

In the absence of impurity, the Schrodinger equation (2.1) leads to a spectrum of equidistant
states E0

n

E0
n = −h̄ω0(n− 1

2
) (2.3)
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where n is an integer defining the quantized angular momentum of the vortex, and h̄ω0 =
∆2/EF . We assume that the spacing h̄ω0 between these levels is much smaller than the gap
∆, and consequently there are many excitation levels in the vortex core.

Using the explicit wave functions for the unperturbed eigenstates, one finds that the
matrix elements of the interaction due to the i-th impurity are

Ai
nm =

Vie
−2K(ri)

λF ξ
ei(m−n)φi [Jn(kF ri)Jm(kF ri)− Jn−1(kF ri)Jm−1(kF ri)] (2.4)

where (ri, φi) is the position of the i-th impurity in polar coordinates. The indices n and m
run from −N to +N where N ∼ ∆/ω0 ∼ EF/∆ is assumed to be a large number.

The scattering time τ , given by 1/τ = 2niV
2
i m, where ni = Ni/ξ

2 is the density of
impurities in the vortex ; Ni the total of impurities in the cross-section of a vortex of radius
ξ.
Three different situations may occur: a) a dirty limit ∆ << 1/τ << EF , b) a clean limit
ω0 < 1/τ << ∆, c) a superclean case 1/τ << ω0 ∼ ∆2/EF . However, in [11,12] it has
been shown that the level statistics depends not only on the parameter τ but also on the
number of impurities Ni . This is clear in the superclean case. Then the density of states
has narrow peaks centered around the unperturbed energy levels (2.3). The form of these
peaks is Gaussian when the number of impurities is large ; however as shown in [14,12] these
peaks have a different form when there is only a single impurity.

In the clean case ω0 < 1/τ < ∆, the level statistics also depends upon the number of
impurity Ni. If Ni → ∞ and if the random potential is a white noise, it was shown in [13]
that one can apply standard random matrix theory. However if the number of impurities
Ni is smaller than a certain number Nic (Nic > (EF/∆)1/2), Koulakov and Larkin [11] have
found that the spectrum is of a different type.

In the present article, we have defined the dirty and the clean limits by Ni > Nic,
and Ni < Nic respectively. (These definitions differ slightly from the usual ones, quoted
hereabove.)

When there is only one impurity in the vortex core, with a radius ξ, the impurity is
located at a position ri ∼ ξ. We are thus in a limit in which kF ri >> 1, since the correlation
length is ξ ∼ h̄2kF/m∆, and we have thus kF ξ ∼ k2F/∆ ∼ EF/∆ >> 1. Therefore, in the
clean limit, this condition is always satisfied. In the dirty limit, the number of impurities
increase and the typical value of the quantity kF ri is reduced.

In that limit the Bessel functions in (2.4) may be replaced by their asymptotic expansions
and the matrix element Ai

nm, produced by the scattering site i between two states n and m,
is given for kF ri ≫ 1 by

Ai
nm ≃ C̃ei(m−n)φi sin(2kF ri −

n+m

2
π) (2.5)

where C̃ = Vie−2K(ri)

λF ξ
( 2
πkF ri

).
The corresponding secular equation for the clean case was solved by Koulakov and Larkin

[11] who have found that, after averaging over the location of the impurity, the density of
states ρ(E) was given by

ρ(E) =
2

ω0
sin2(

πE

ω0
) (2.6)
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(normalized to one after integration on the interval 0 < E < ω0).
In the dirty limit, kF ri is not as large and it is necessary to take into account the sub-
asymptotic behavior of the Bessel functions, and to sum over the impurities. Since the
matrix elements Ai

nm have an oscillatory behavior, it is natural to regard them in the dirty
limit as the elements of a random matrix. However it is necessary to keep some of the
structure exhibited by the clean limit (2.5) in mind.

In the dirty limit or in the moderate clean case, a random matrix theory has already
been considered for the superconductor-normal interface, and for a quantum dot with a
superconductor boundary. [15,16]. The excitation levels of the superconductor vortex have
also been analysed in this way [13]. The random matrix ensemble, for such cases, has been
suggested to be invariant by the symplectic group Sp(N).

If the full Hamiltonian is treated as a random matrix in a symplectic ensemble Sp(n) ,
which is valid in the extreme dirty limit, the density of states has been conjectured [15,13]
to be

ρ(E) = 1−
sin(πE

ω0
)

(πE
ω0
)

(2.7)

This differs markedly from the clean result (2.6).
It is therefore challenging to find the crossover behavior between these two limits, and it
might even be important for the transport problems associated with the excitations of quasi-
particles inside the vortex core [14]. In order to achieve our goal, instead of treating the
full Hamiltonian as random, we consider here only the scattering by impurities as a random
matrix but not the full Ha miltonian.
In order to motivate the use of the symplectic structure in this problem it is instructive to
examine the form of the matrix Ai

nm. For a given impurity i, let A be the matrix whose
elements are < n|A|m >= Ai

nm. The state index |m > varies over 2N levels. When N = 2,
for example, the states |m > are | − 1 >, |0 >, |1 >, |2 >. Since E0

n = −ω0(n− 1
2
), we have

E0 = −E1 = 1
2
ω0 and E2 = −E−1 = −3

2
ω0. Labelling the lines and rows of the matrix A

in the order |0 >, |2 >, |1 >, | − 1 >, in order to split it into even-even, even-odd, odd-odd
2× 2 blocks, we write

A =











< 0|A|0 > < 0|A|2 > < 0|A|1 > < 0|A| − 1 >
< 2|A|0 > < 2|A|2 > < 2|A|1 > < 2|A| − 1 >
< 1|A|0 > < 1|A|2 > < 1|A|1 > < 1|A| − 1 >
< −1|A|0 > < −1|A|2 > < −1|A|1 > < −1|A| − 1 >











(2.8)

Since < 0|A|2 >= Ai
02 = Ai

20 =< 2|A|0 >, and < 2|A|1 >=< 0|A|−1 >, etc. from (2.4) (we
have used the J−n(x) = (−1)nJn(x)), it is easy to see that the matrix A has, for arbitrary
N , the structure

A =
(

a b
b∗ −aT

)

(2.9)

where a is an N×N hermitian matrix a† = a, and b is an N ×N symmetric complex matrix
bT = b (bT is the transpose of b).
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The number of degrees of freedom in the random matrix A is thus 2N2 + N , ( N2 for
the hermitian matrix a and N2 +N for the complex symmetric matrix b). The number of
generators of the symplectic Sp(N) group is indeed also N(2N + 1).

The symplectic structure of A is exhibited by the algebraic relation

ATJ + JA = 0 (2.10)

where J is

J =
(

0 1
−1 0

)

. (2.11)

This structure implies that the eigenvalues are real and pairwise opposite, giving a chiral
structure to the eigenvalues. The Lie algebra X is diagonalized by the symplectic group
G ∈ Sp(N). For example, for N = 2, we have

X = G†











λ1
λ2

−λ1
−λ2











G (2.12)

If we mutiply the matrix A by i =
√
−1 one recovers an element of the Lie algebra of

the group Sp(N). If we consider now that the position (φi, ri) of the impurity is random, it
is natural to take < n|A|m > in this Sp(N) invariant random ensemble.

For instance when there is only one impurity (i = 1), the matrix A has a periodic
structure, with alternating signs for each 2 by 2 block. For example, in the case of N = 4,
we have for the full Hamiltonian H = E0 + A, (E0 is a diagonal matrix)

A =











s −s −c c
−s s c −c
−c c −s s
c −c s −s











(2.13)

where s = C̃ sin(2kFa) and c = C̃ cos(2kFa). ( In the single impurity case the phase φ can be
set equal to zero by a choice of gauge condition ). This even-odd structure has been studied
earlier in [12,11]. The periodic structure becomes clearer if we write the matrix A = (Anm),
(2.4) for N=2 with the approximation (2.5),

A =











s c −s −c
c −s −c s
−s −c s c
−c s c −s











(2.14)

in which rows and lines are in the order |2 >, |1 >, |0 >, | − 1 >. The determinant of this
matrix is a kind of Toeplitz determinant (constant along parallel to the anti-diagonal). We
have omitted the diagonal part E0

n. It is clear that the eigenvalues are periodic, depending on
the odd-even parity of n. When we consider several impurities, a sum over impurities

∑

iA
i
nm

should be taken. In the clean limit, we replace the quantities s and c by s =
∑

i C̃ sin(2kF ri)
and c =

∑

i C̃ cos(2kF ri). The random average over the positions of these impurities gives
the density of state (2.7) [11].

5



III. ITZYKSON-ZUBER INTEGRAL AND ITS EXTENSION

In the previous section, we have discussed how we are led to study the crossover from the
clean case to the dirty case. We now divide the matrix

∑Ni

i=1A
i
nm into two parts. One part,

denoted by H0, corresponds to the clean case, namely the matrix has a periodic structure
as in (2.13), like a Toeplitz matrix, but with a sum over i. The other part is the remaining
difference between the matrix

∑Ni
i=1A

i
nm and H0, which is considered as a random matrix V .

Thus we have

H = H0 + V (3.1)

The matrices H0 and V are both symplectic, represented by the symplectic group Lie algebra
Sp(N), which has the form (2.9).

In the analogous, but simpler, problem of a unitary invariant random perturbation, (H0

and V were then both complex Hermitian matrices), a technique to study the crossover
from the non-stochastic H0 to a pure random matrix V has been developped earlier [2–4].
Here we have to consider the symplectic case. As in the unitary case, we have to integrate
over the Lie group which diagonalizes the matrix H . In the unitary case, the first step,
the integration over the unitary group, was introduced in the study of two coupled random
matrices by Itzykson and Zuber. [7]. We now summarize the formulae of integration over
Lie Groups, which are useful for the subsequent discussion. We assume that the probability
distribution of V is a Gaussian, and that H0 is a fixed non-random matrix. [It is possible to
generalize it to some non-Gaussian distributions for V ; for instance in the appendix B, we
have considered the case of a general hypergeometric function whose argument is a matrix.]

The Itzykson-Zuber integral [7] is an integral over the unitary group U(n),

∫

U(n)
etr(uau

†b)du = CN
det(eaibj )

∆(a)∆(b)
(3.2)

where ∆(a) =
∏

i<j(ai − aj), and similarly ∆(b), are the Vandermonde determinants of the
eigenvalues of the Hermitian matrices a and b. The constant is found to be CN =

∏N
j=1(j−1)!.

By expressing det(eaibj ) as an alternating sum over the symmetric group Sn, one may write

∫

U(n)
e<Ad(u)·a|b>du = CN

∑

ǫ(w)e<w·a|b>

∆(a)∆(b)
(3.3)

where Ad(u) · a = uau−1 is the adjoint action of u ∈ U(n) on the matrix a. In this formula
the matrix a is diagonal, a = diag(a1, ..., an), w is a permutation and ǫ(w) is its signature.
We have used the notation < a|b >= tr(ab).

This formula is a special case of a more general formula due to Harish-Chandra [6]. Let
G be a compact connected Lie group. Then Harish-Chandra’s result reads [6,17,18]

∫

G
e<Ad(g)·a|b>dg =

∑

w∈W (detw)e<w·a|b>

∆(a)∆(b)
(3.4)

where a, b, h belong to a Lie algebra h, and for any H ∈ h,
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∆(H) =
∏

α∈∆+

α(H) (3.5)

∆+ is the collection of the positive roots, w is the finite reflection group, called the Weyl (or
Coxeter) group and h is the Cartan subalgebra.

The Harish-Chandra formula has been interpreted more recently as an integration over
an orbit, with a symplectic structure. This structure implies that the saddle point method
is exact, provided one sums over all the critical points [8,19]. This is also related to the
localization theorems [20].

As an illustration of the semi-classical nature of this formula, we consider again the
integral over the unitary goup U(N),

I =
∫

dgetr(agbg
†) (3.6)

Representing an element g of U(N) as

g = g0e
iX (3.7)

where X is an element of the Lie algebra, we expand the argument of the exponential. up
to second order in X , and impose the stationarity condition,

tr[ag0iXbg
†
0] + tr[ag0b(−iX)g†0] = 0 (3.8)

for any X , i.e.

[b, g†0ag0] = 0 (3.9)

If a and b are diagonal, it implies that g0 should be a unitary permutation matrix, g0 = p.
Then, the integral I becomes

I =
∑

p

etr(apbp
−1)

∫

dX exp[tr(−1

2
apX2bp−1 − 1

2
apbX2p−1 + apXbXp)] (3.10)

Performing the Gaussian integral over X one recovers the Itzykson-Zuber formula. (This
is not a derivation of course, but a way of verifying that for this integral the one-loop
approximation is exact provided one sums over all the saddle-points).

A similar saddle point technique may be applied to the symplectic case. We take
g ∈ Sp(N) in (3.6) and for a and b diagonal matrices with chiral eigenvalues, a =
diag(a1, ..., aN ,−a1, ...,−aN) and similarly for b. Then the same calculation yields

I = C
det[2sinh(2aibj)]

∏

1≤i<j≤N(a
2
i − a2j )(b

2
i − b2j )

∏

1≤k≤N(akbk)
(3.11)

and this result will be repeatedly used below.
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IV. DENSITY OF STATE

Using the method developped for the unitary case [2–5,9], we consider now the density
of states with an external source matrix. Indeed for a random Gaussian V , the resulting
probability for H is a Gaussian with an external matrix source A linearly coupled to V . We
assume that the matrix A belongs to the Lie algebra of the symplectic group and, without
a loss of generality, we may take it as a diagonal matrix, A = diag(a1, ..., aN ,−a1, ...,−aN).
We take this A as the unperturbed H0. The probability distribution of the random matrix
V is assumed to be Gaussian.

The density of states ρ(λ) is given by

ρ(λ) =
1

N
<

N
∑

α=1

δ(λ− λα) > (4.1)

The probability distribution P (M) of the random matrix M is

P (M) = exp[−trM2 − trMA]

= exp[−
∑

λ2i − tr(gΛg†A)] (4.2)

where Λ = diag(λ1, ..., λN ,−λ1, ...,−λN) and g is an element of the symplectic group. (Note
that we use here a normalization which differs from our previous treatment [2,4,5] of the
unitary case). With the present normalization the edge of the density of states becomes of
order

√
N ; in the large N limit, the support of the density of states lies in an interval of

order [−
√
2N,

√
2N ].

The density of states is obtained as the Fourier transform of the evolution operator

ρ(λ) =
∫ ∞

−∞

dt

2π
e−itλUA(t) (4.3)

and using the symplectic measure ∆2(λ) with ∆(λ) =
∏

(λ2i −λ2j )
∏

λk [21], and the previous
Harish-Chandra integral formula (3.11), we obtain

UA(t) =
1

N

N
∑

α=1

∫ ∞

0

N
∏

i=1

dλi

∏

1≤i<j≤N(λ
2
i − λ2j )

∏

1≤k≤N λk
∏

1≤i<j≤N(a
2
i − a2j )

∏

1≤k≤N ak
e−

∑

λ2
i
+itλα

× det[sh(2λiaj)] (4.4)

(up to a factor 2 in (3.11) absorbed in the coefficient C).
By the reflexion symmetry λi → −λi, and by the exchange symmetry between λi and

λj, we can extend the integrations over the λi’s from −∞ to ∞ . The change of sign for
itλi can be absorbed since we can change t → −t by parity. Then the expression for UA(t)
simplifies to

UA(t) =
1

N

N
∑

α=1

∫ ∞

−∞

N
∏

i=1

dλi

∏

1≤i<j≤N(λ
2
i − λ2j )

∏

1≤k≤N λk
∏

1≤i<j≤N(a
2
i − a2j )

∏

1≤k≤N ak
e−

∑

λ2
i+itλα+2

∑N

i
aiλi (4.5)

Before proceeding to the explicit integrations over the λi’s in UA(t), let us investigate
the expression for the density of states ρ(λ) , in the absence of any external source, which
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one may then calculate by the usual method with orthogonal polynomials . The N-point
level distribution is given

ρN (λ1, ..., λN) = C
∏

1≤i<j≤N

(λ2i − λ2j)
2

∏

1≤k≤N

λ2k exp[−
∑

λ2i ] (4.6)

Using orthogonal polynomials method [10], this distribution may be written as

ρN(λ1, ..., λN) = det[KN(λi, λj)] (4.7)

with the kernel KN(λi, λj) given by a sum of Laguerre polynomials, and in particular the
density of states ρ(λ) = KN (λ, λ) is equal to

ρ(λ) =
1

N

N−1
∑

n=0

n!

Γ(3
2
+ n)

L
( 1
2
)

n (λ2)L
( 1
2
)

n (λ2)λ2e−λ2

. (4.8)

L(1/2)
n (x) are associated (generalized) Laguerre polynomials, orthogonal with the normaliza-

tion

∫ ∞

0
e−xx

1
2L

( 1
2
)

n (x)L
( 1
2
)

m (x)dx =
Γ(3

2
+ n)

n!
δn,m; (4.9)

leading to L
(1/2)
0 (x) = 1, L

(1/2)
1 (x) = 3/2 − x, L(1/2)

n (x) =
∑n

r=0(−1)r[Γ(n + 3/2)/Γ(n− r +
1)Γ(r + 3/2)]xr/r!.

The asmptotic behavior of these Laguerre polynomials in the limit N → ∞ is [23]

L
( 1
2
)

N (x) =
1√
πx
e

1
2
x sin(2

√
Nx) +O(

1√
N
). (4.10)

With the Christoffel-Darboux identity, we have

N−1
∑

n=0

n!

Γ(3
2
+ n)

L
( 1
2
)

n (x)L
( 1
2
)

n (y)

= − N !

Γ(1
2
+N)

L
( 1
2
)

N (x)L
( 1
2
)

N−1(y)− L
( 1
2
)

N−1(x)L
( 1
2
)

N (y)

x− y
(4.11)

and using the large N aymptotic behavior (4.10), we obtain

xe−x[
N−1
∑

n=0

n!

Γ(3
2
+ n)

L
( 1
2
)

n (x)L
( 1
2
)

n (x)]

= xe−x[L
( 1
2
)

N (x)
d

dx
L
( 1
2
)

N−1(x)− L
( 1
2
)

N−1(x)
d

dx
L
( 1
2
)

N (x)]

≃ 1

π
[

√
N√
x
sin(

√

x

N
)− 1

4
√
Nx

sin(4
√
Nx)]

≃ 1

π
[1− 1

4
√
Nx

sin(4
√
Nx)] (4.12)

9



Thus, putting x = λ2, we get

ρ(λ) =
1

π
[1− sin(4

√
Nλ)

4
√
Nλ

]. (4.13)

This result is identical to (2.7), when we substitute ω0 =
π
4N

and E = λ/
√
N .

We now return to the integral (4.5) over the λi’s in the presence of the external source.
We first replace t→ 2t and following [2,3], for fixed α, we denote by bi the sum bi = ai+itδi,α
. One then uses the integral

∫ ∞

−∞
dλi

∏

i<j

(λ2i − λ2j)
N
∏

i=1

λie
−
∑

(λi−bi)
2

=
∏

i<j

(b2i − b2j )
N
∏

i=1

bi; (4.14)

(after the translation λi → λi+ bi the result follows easily from antisymmetry under permu-
tation of the bi’s, parity in bi, and counting the degree of the resulting polynomial in those
b’s).

Using the normalization UA(0) = 1, and writing the sum over α as a contour integral
around the a2j ’s in the complex u-plane, we obtain

UA(t) =
1

N

∮

du

2πi

N
∏

j=1

((
√
u+ it)2 − a2j )

(u− a2j )

1

(
√
u+ it)2 − u

(1 +
it√
u
)e−t2+2it

√
u. (4.15)

Fourier transforming UA(t) we obtain the density of states ρ(λ)

ρ(λ) =
∫ ∞

−∞
UA(t)e

−2itλ dt

2π
(4.16)

Let us verify the consistency with the orthogonal polynomial result (4.8) when the external
source vanishes. Then

U0(t) =
1

N

∮

du

2πi

(
√
u+ it)2N

uN
1

(
√
u+ it)2 − u

(1 +
it√
u
)e−t2+2it

√
u (4.17)

and

ρ(λ) =
∫ ∞

−∞

dt

2π
U0(t)e

−2itλ

=
i(−1)N

N

∫ ∞

−∞

dx

2π

∮ du

2πi
(
x√
u
)2N+1 1

u+ x2
e−x2−2ixλ−u+2λ

√
u (4.18)

(we have shifted t to t = x+ i
√
u). The integration contour is a small loop around the origin

u = 0. Expanding 1/(u+ x2) = x−2(1− u
x2 + · · ·), and noting that

∮

du

2πi

1

un+1
√
u
e−u+2λ

√
u =

2Γ(3
2
)

Γ(3
2
+ n)

(−1)nλL
( 1
2
)

n (λ2) (4.19)

and
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∫ ∞

−∞

dx

2π
x2n+1e−x2−2ixλ = − in!λ

2
√
π
L
( 1
2
)

n (λ2)e−λ2

(4.20)

we v erify the consistency of the integral representation (4.18) with the orthogonal polyno-
mial result (4.8). The integral representation (4.20), gives an easy way to recover the large
n asymptotic behavior (4.11) of the Laguerre polynomials through the steepest descent
method. Note that the chiral invariance leads as expected to an even density of states.

In the presence of the external source, the density of states becomes

ρ(λ) =
i(−1)N−1

N

∫ ∞

−∞

dx

2π

∮

du

2πi
(
x√
u
)

N
∏

γ=1

(
x2 + a2γ
u− a2γ

)
1

u+ x2
e−x2−2ixλ−u+2λ

√
u (4.21)

(We shall analyze this density of states as the limit of λ → µ of the kernel KN (λ, µ) in the
next section). We note here that if we make the change of variable, u = v2, we have

ρ(λ) =
i(−1)N−1

N

∫ ∞

−∞

dx

2π

∮

dv

2πi

N
∏

γ=1

(
x2 + a2γ
v2 − a2γ

)
x

v2 + x2
e−x2−2ixλ−v2+2λv (4.22)

where the contour encloses all the ±aγ . For example when N = 1, we obtain

ρ(λ) =
λ

2
√
π

sinh(2λa1)

a1
e−a21−λ2

=
λ

4
√
πa1

[e−(λ−a1)2 − e−(λ+a1)2 ] (4.23)

Near the origin λ = 0, the density of states ρ(λ) becomes ρ(λ) ∼ λ2

π
exp(−a21−λ2). Thus

the density of states is an even function and it vanishes near the origin as λ2.

V. CORRELATON FUNCTION

The n-level correlation functions are expressed as the determinant of the kernel KN(λ, µ),
exactly as for Hermitian random matrices in a source. Indeed the formula of (4.14) is quite
similar to (3.8) of [5]. Therefore, all the derivations of the Hermitian matrix model in [2,4,5],
may be repeated almost identically for the Sp(N) case.

For instance, the two-level correlation function ρ(2)(λ, µ) is obtained as the double Fourier
transform of UA(t1, t2),

ρ(2)(λ, µ) =
∫ ∫

dt1dt2
(2π)2

e−it1λ−it2µUA(t1, t2) (5.1)

in which UA(t1, t2) is defined as

UA(t1, t2) =<
1

N

N
∑

α=1

eit1λα
1

N

∑

β=1

eit2λβ > (5.2)

11



Using the integral formulae (3.10) and (4.14), we find

UA(t1, t2) =
1

N2

∑

α6=β

(aα + it1)
2 − (aβ + it2)

2

(a2α − a2β)

∏

γ 6=(α,β)

(aα + it1)
2 − a2γ

a2α − a2γ

×
∏

γ 6=(α,β)

(aβ + it1)
2 − a2γ

a2β − a2γ
(1 +

it

aα
)(1 +

it2
aβ

)e−t21−t22+2i
√
ut1+2i

√
vt2

(5.3)

(wa have subtracted the term α = β in UA(t1, t2)). The summation over α and β is expressed
by contour integration over two complex variables u and v,

UA(t1, t2) =
1

N2

∮ dudv

(2πi)2

N
∏

γ=1

(
√
u+ it1)

2 − a2γ
(u− a2γ)

N
∏

γ=1

(
√
v + it2)

2 − a2γ
v − a2γ

× 1

(
√
u+ it1)2 − v

1

(
√
v + it2)2 − u

(1 +
it1√
u
)(1 +

it2√
v
)

× (u− v)[(
√
u+ it1)

2 − (
√
v + it2)

2]

[(
√
u+ it1)2 − u][(

√
v + it2)2 − v]

e−t21−t22+2i
√
ut1+2i

√
vt2

(5.4)

We now shift t1 → t1 + i
√
u and t2 → t2 + i

√
v, note that

(u− v)[(it1)
2 − (it2)

2]

[(it1)2 − v][(it2)2 − u]
=

[(it1)
2 − u][(it2)

2 − v]

[(it1)2 − v][(it2)2 − u]
− 1 (5.5)

and divide UA(t1, t2) into two terms. The first one, which comes from (-1) gives the product
of the two density of states ρ(λ)ρ(µ), and the second one is a product of two integrals over
t1, u and t2, v respectively. Therefore, we end up with

ρ(2)(λ, µ) = KN (λ, λ)KN(µ, µ)−KN(λ, µ)KN(µ, λ) (5.6)

with

KN(λ, µ) =
1

N

∮

du

2πi

∫ ∞

−∞

dt

2π
e−t2−2itµ−u+2

√
uλ

N
∏

γ=1

(it)2 − a2γ
u− a2γ

1

(it)2 − u

× (
it√
u
); (5.7)

(the contour in the u-plane encircles all the a2γ) . From this expression, we recover the
previous result (4.15,4.16) for the density of states as ρ(λ) = KN(λ, λ).

The n-point correlation can be analyzed as in [5] and leads here also to a determinant
form,

ρ(λ1, · · · , λn) = det[KN(λi, λj)] (5.8)

for an arbitrary external source.
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We now discuss Dyson’s short-distance universality, within our model, i.e. when we vary
the external source A, through the explicit expression of the kernel KN(λ, µ).

We return first to the sourceless case,aγ = 0, and consider the large N limit of KN(λ, µ)
for λ, µ are order of one. We scale t→

√
Nt, and u→ Nu. The kernel is then

KN(λ, µ) = − 1√
N

∮

du

2πi

∫

dt

2π
e−N(f(t)+g(u))(

it√
u
)

1

t2 + u
(5.9)

where f(t) = t2+2iµ/
√
N − 2 ln t and g(u) = u− 2λ

√
u/

√
N + ln u. In the large N-limit we

have the saddle points, t(1)c = 1 − iµ/2
√
N , t(2)c = −1 − iµ/2

√
N ,u(1)c = −1 + iλ/2

√
N and

u(2)c = −1− iµ/2
√
N . Adding these saddle-points contributions, we obtain

KN(λ, µ) =
1

π
[
sin(2

√
N(λ− µ))

2
√
N(λ− µ)

− sin(2
√
N(λ+ µ))

2
√
N(λ+ µ)

] (5.10)

When λ→ µ, we recover the expression (4.13) of the density of states.
In the presence of the external source, we find a similar expression to Eq.(5.9), with

f(t) = t2 +
2itµ√
N

− 1

N

∑

ln(t2 +
a2γ
N

) (5.11)

g(u) = u− 2λ
√
u√

N
+

1

N

∑

ln(u− a2γ
N

) (5.12)

Using the definition , f ′(tc) = 0, g′(uc) = 0, of the saddle-points we find

KN(λ, µ) =
1

π
[
sin(2tc0

√
N(λ− µ))

2
√
N(λ− µ)

− sin(2tc0
√
N(λ+ µ))

2
√
N(λ+ µ)

] (5.13)

where tc0 is a solution of

1

N

N
∑

γ=1

1

t2c0 +
a2γ
N

= 1 (5.14)

Here we have assumed that the order of aγ is a2γ ≤ O(N). The derivation of (5.13) is the
same as (5.10). The difference is just a normalization, due to the change of the saddle-point
tc0. Note that the support of the density of states is inside the interval of −

√
N and

√
N .

Therefore, universality holds provided that the eigenvalues of the external source matrix are
located in an interval of the same order of magnitude ; ( it has to be of same order as the
support of the density of states for the zero external source case). In this universal regime for
the correlation function, the energies λ and µ are assumed of order one, namely λ/

√
N → 0

in the large N limit. Since λ can be order of
√
N , the universal behavior of (5.13) appears

only near the origin, as exepcted, and is differnt from the non-universal bulk behaviour.
The universality found here, is similar to that found in other chiral random matrix models
studied in [3]; there it was the density of states which took a universal form near the origin,
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and became independent of the external source or of the non-Gaussian distributions (as seen
by a rescaling of the energy).

When the a2γ spread over an interval larger than N , the universal form of (5.13) does not
hold any more, since the saddle-point method of (5.14) breaks down. In our formulation,
the amplitude of the random matrix is fixed. We now change the strength of the external
source. For this purpose, we introduce a parameter C, which determines the strength of the
external source H0, respective to the random potential V . Let us consider the example of
the external source,

aγ = Ctan[
(2γ − 1)π

2(2N + 1)
] (5.15)

where γ = 1, 2, ..., N , and C is a parameter. When γ/(2N + 1) << 1, we have

aγ =
Cπ

(2N + 1)
(γ − 1

2
) (5.16)

and the eigenvalues of the external source are equally distributed, and thus reproduce the
excitation spectrum inside the clean superconductor vortex, if we identify h̄ω0 = Cπ/(2N+1)
in (2.3). Since we are interested in the behavior near the origin for the energies λ and µ in
KN(λ, µ), this linear approximation of the tan(x) ≃ x is valid.

More generally, using the formula,

N
∏

m=1

(x2 + tan2[
(2m− 1)π

2(2N + 1)
]) =

1

2(2N + 1)
[(1 + x)2N+1 + (1− x)2N+1] (5.17)

we may replace the product involving the aγ in (5.7), and obtain

KN(λ, µ) = − 1

N

∮ du

2πi

∫ dt

2π





(1 + t
C
)2N+1 + (1− t

C
)2N+1

(1 + i
√
u

C
)2N+1 + (1− i

√
u

C
)2N+1





× 1

t2 + u
(
it√
u
)e−t2−2itµ−u+2

√
uλ (5.18)

This expression is exact for finite N when the aγ are given by (5.15). It is easily seen
that when C → 0, we recover the previous external source free result (5.9).

For non-zero C we have two different cases according to the size of C,
i) if C is of order

√
N , we recover the universal behavior of (5.13). (We simply scale t→

√
Nt,

and u→ Nu, and use the saddle point method). We recover then the result (5.13), with

tc0 =
1

2
(

√

C2

N
+ 4− C√

N
) (5.19)

.
ii) in the second case C ∼ O(N), we change u = v2 in (5.18) :

KN(λ, µ) = − 1

N

∮

dv

2πi

∫

dt

2π

[

(1 + t
C
)2N+1 + (1− t

C
)2N+1

(1 + iv
C
)2N+1 + (1− iv

C
)2N+1

]

× it

t2 + v
e−t2−2itµ−v2+2vλ (5.20)
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In the large N-limit (5.20) reduces to

KN (λ, µ) = − 1

N

∮ dv

2πi

∫ dt

2π

cosh(2Nt
C
)

cos(2Nv
C

)

it

t2 + v2

× e−t2−2itµ−v2+2vλ (5.21)

If we rescale t→
√
Nt and v →

√
Nv poles appears in the v-plane at v = C(m− 1

2
)π/2N3/2

for which cos(2N3/2v/C) = 0 ; m is an integer.
Within the residues of these poles, we have the Gaussian factors

e
−N(v− λ√

N
)2
= e−(

C(m− 1
2 )π

2N
−λ)2 (5.22)

There are thus two different regions for λ. We first consider λ ∼ O(
√
N), i.e. the bulk

case. Then λ/
√
N >>

√
N/C, and the saddle point of t is t0 = −iλ/

√
N . We set λ = µ,

and for this this saddle point, we have the density of states ρ(λ) = KN(λ, λ)

ρ(λ) = − 1

2
√
πN

∑

m

(−1)m[
λcos(2Nλ

C
)

−λ2 + (
C(m− 1

2
)π

2N
)2
]

× e−(
C(m− 1

2 )π

2N
−λ)2 (5.23)

Note that the zeros of the denominator are cancelled by zeros of the numerator
cos(2Nλ/C). When C/N >> 1, the exponential factor of (5.23) damps the result and
we may set λ = C(m− 1/2)π/(2N), then

λcos(2Nλ
C

)

−λ2 + (
C(m− 1

2
)π

2N
)2

= −(−1)m
N

C
(5.24)

Thus we find

ρ(λ) =

√
N

2C
√
π

∑

m

e−(
C(m− 1

2 )π

2N
−λ)2 (5.25)

which is a sum of Gaussians : the density of states is just sum of Gaussian peaks around the
levels λ = C(m− 1/2)π/2N . This result is valid provided λ is not too close to the origin.

When λ is near the origin, namely λ ∼ O(1), we have λ/
√
N ∼

√
N/C since C is order

N . In this case, we have to take into account the term cosh(2Nt/C) in the saddle-point
equation. The saddle-point becomes t0 = −iλ/

√
N ±

√
N/C. Using this value in (5.21), we

find

ρ(λ) = Re
∑

(−1)n[
λ+ iN

C

−(λ+ iN
C
)2 + ( C

2N
(n− 1

2
)π)2

]e−[ C
2N

(n− 1
2
)π−λ]2 (5.26)

Near λ = 0, the density of states behaves as ρ(λ) ∼ λ2. For example, when C = N , we have
ρ(λ) ∼ πλ2exp(−π2/16)/(1 + π2/16), and ρ(λ) has peaks at λ = ±π/4,±3π/4, .... Thus,
when C ∼ N , which means that the random potential is weak compared to the external
source, the density of states takes a form which is different from the universal form (5.13).
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VI. CROSSOVER FROM THE CLEAN LIMIT TO THE DIRTY LIMIT

In the clean case, when kF ri ∼ kF ξ >> 1, we approximate Ai
nm by (2.12). Then, the

periodic spectrum is obtained

En = −h̄ω0(n− 1

2
+ z̃(−1)n) (6.1)

When the number of impurities inside the vortex Ni ≃ 1, we are in the superclean case, and
z̃ in (6.1) is a function of the position of this impurity. If 1 < Ni < Nic, we are in a clean
case, and we need to average over the different values of z̃.

In the previous section, we have discussed the case where the deterministic term En =
−h̄ω(n − 1

2
) is coupled to the random matrix A. Here we consider for the external source

the matrix whose eigenvalues are (6.1).
We may then use the formula

N
∏

r=1

[x2 + tan2(
rπ

2(N + 1)
)] =

1

4(N + 1)x
[(1 + x)2(N+1) − (1− x)2(N+1)], (6.2)

which is similar to (5.17). ( We assume that N is odd here). We divide this product into
two parts, r-odd and r-even . The r-even part is obtained immediately from (6.2) as

N−1
∏

r=even

[x2 + tan2(
rπ

2(N + 1)
)] =

1

2(N + 1)x
[(1 + x)N+1 − (1− x)N+1] (6.3)

Dividing (6.2) by (6.3), we obtain the expression for the r-odd part,

N
∏

r=odd

[x2 + tan2(
rπ

2(N + 1)
)] =

1

2
[(1 + x)N+1 + (1− x)N+1] (6.4)

We now consider the eigenvalues (6.1) as an external source,

aγ = [Cπ/2(N + 1)](γ − 1

2
+ z̃(−1)γ), (6.5)

and introduce z0 = Cπ/4(N + 1), z = −Cπz̃/2(N + 1). Using the expressions (6.3) and
(6.4), we write

(
x− iz0 − iz

C
)

N−1
∏

r=even

[(
x− iz0 − iz

C
)2 + tan2(

rπ

2(N + 1)
)]

×
N
∏

r=odd

[(
x− z0 + z

C
)2 + tan2(

rπ

2(N + 1)
)]

=
1

4(N + 1)
[(1 +

x− iz0 − iz

C
)N+1 − (1− x− iz0 − iz

C
)N+1]

× [(1 +
x− iz0 + iz

C
)N+1 + (1 +

x− iz0 + iz

C
)N+1] (6.6)
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In the large N limit, when rπ/(2(N + 1)) << 1, the left hand side of (6.5) vanishes at
x = −i(±r − 1/2 + z(−1)r)Cπ/[2(N + 1)] . Noting that

∏

γ

(t2 + a2γ) =
∏

γ

[t− i(z0 + z) + i
Cγπ

2(N + 1)
][t− i(z0 + z)− i

Cγπ

2(N + 1)
]

=
∏

γ

[(t− i(z0 + z))2 + C2tan2(
γπ

2(N + 1)
)] (6.7)

we have from (5.7) (and the change of variable
√
u = v),

KN(λ, µ) = − 1

N

∮

dv

2πi

∫

dt

2π
e−t2−2itµ−v2+2vλ it

t2 + v2

× [(1 + i
C
(−it− z0 − z))N+1 − (1− i

C
(−it − z0 − z))N+1]

[(1 + i
C
(v − z0 − z))N+1 − (1− i

C
(v − z0 − z))N+1]

× [(1 + i
C
(−it− z0 + z))N+1 + (1− i

C
(−it− z0 + z))N+1]

[(1 + i
C
(v − z0 + z))N+1 + (1− i

C
(v − z0 + z))N+1]

(6.8)

As in the previous section, we have to distinguish two different cases, i) C ∼ O(N) and ii)
C ∼ O(

√
N). There are also two regions λ ∼ O(

√
N) and λ ∼ O(1).

When C ∼ O(N), we exponentiate the factor in the bracket of (6.7),

sin[N
C
(−it− z0 − z)]cos[N

C
(−it− z0 + z)]

sin[N
C
(v − z0 − z)]cos[N

C
(v − z0 + z)]

=
sin[2N

C
(−it− z0)]− sin(2N

C
z)

sin[2N
C
(v − z0)]− sin(2N

C
z)

(6.9)

Since z0 = Cπ/[4(N + 1)], we have

KN (λ, µ) = − 1

N

∮ dv

2πi

∫ dt

2π

cosh(2Nt
C
) + sin(2N

C
z)

cos(2Nv
C

) + sin(2N
C
z)

it

t2 + v2

× e−t2−2itµ−v2+2vλ (6.10)

When z = 0, we obtain the same expression as in the previous section (5.21).
Poles in the integral over v are present at v = z0 + z + Cnπ/N and v = z0 − z + (2n +

1)(Cπ/2N) from (6.8). The residues R for the first poles are

R = (−1)nit
sin[N

C
(−it− z0 − z)]cos[N

C
(−it− z0 + z)]

[t2 + (z0 + z + Cnπ
N

)2]cos[2N
C
(z + Cnπ

N
)]

(6.11)

When λ = µ ∼ O(
√
N), the saddle point becomes t0 = −iλ/

√
N and we set this value in R.

The second pole gives a similar expression. Furthermore, if C/N >> 1, we can approximate
λ ∼ z0 + z + Cnπ/N . Then, we find that the residue R in (6.10) becomes R = N/2C.
Therefore, we have the density of states for C/N >> 1, and λ ∼ O(

√
N),
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ρ(λ) =

√
N

4C
√
π

∑

n

[e−(z0+z+Cnπ
N

−λ)2 + e−(z0−z+
C(2n+1)π

2N
−λ)2 ] (6.12)

which is a sum of Gaussian distributions.
In the clean case we have several impurities and one may average this density of states

over z . As discussed in [11], the measure for this z-average is

ρ0(z) = Acos2[
2Nz

C
] (6.13)

where A = 4N/Cπ. The matrix elements are represented by a quaternion, and the measure
is isomorphic to the uniform measure over the four-dimensional sphere s3, Sp(1) ∼ S3. In
spherical coordinate this leads to (6.13). When C/N >> 1, the integration of (6.12) over z
with the measure (6.14) yields

< ρ(z) > =
∫ ∞

−∞
e−(z0+z+Cnπ

N
−λ)2Acos2(

2Nz

C
)dz

= A

√
π

2
[1− e−

4N2

C2 cos(
4N

C
λ)] (6.14)

(in which we have used N/C << 1). When C/N → ∞, the exponential factor
exp(−4N2/C2) becomes one and the density of states becomes sin2(2Nλ/C). This is
indeed the result for the clean case found in [11]. When C/N is finite, at the energy
λ = nπC/2N = nh̄ω0, the density of state becomes non-vanishing, except at the origin. At
the origin λ = 0, we have a zero due to the factor it = λ in (6.11). It may be interesting to
note this deviation from zero has been observed in the numerical work of [11].

When C becomes order of
√
N , we may apply the saddle point method in (6.8). We take

the saddle point equation (5.14) for aγ = πC
2N

(n − 1
2
+ (−1)γ z̃). However, the second and

third term (−1/2 + (−1)γ z̃) can be neglected since they remain of order one, compared to
n which can be order of N . Thus we may approximate a − γ by aγ = π2C2n2/4N3, which
is independent of z. Therefore the average over z does not change the result for the density
of states, and we have a universal result for the kernel and for the density of states (5.13).

It is possible to take the average (6.10) by the formula,

∫ π
2

−π
2

dz
a + sinz

b+ sinz
cos2z = π[

1

2
+ (a− b)(b−

√
b2 − 1)] (6.15)

Then, changing the contour integration in the v-plane to the integration near the saddle-
points for v in the large N limit, we have

KN(λ, µ) = −CAπ
4N2

∫ dt

2π

∫ dv

2π
(

t

t2 + v2
)[(cosh(

2Nt

C
)− cos(

2Nv

C
))

× sin(
2Nv

C
)]e−t2−2itµ−v2+2vλ (6.16)

The term sin(2Nv/C) comes from the sum of integration paths in opposite directions. We
assume here that λ and µ are of order one, and O(λ) ∼ O(N

C
). After the shift t→

√
Nt, the
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saddle-point is at t0 = −iµ/
√
N ±

√
N/C and v = λ/

√
N ± i

√
N/C for the terms in (6.16).

Inserting the values of these saddle-points, we have

ρ(λ) =
N

C
[1 − C

4Nλ
sin(

4Nλ

C
)] +

C

2N
sin2(

2Nλ

C
)

− Cλ2

4N(λ2 + N2

C2 )
[1 + e−

4N2

C2 cos(
4Nλ

C
)]

+
λ

4(λ2 + N2

C2 )
e−

4N2

C2 sin(
4Nλ

C
) (6.17)

The above expression reduces to that of the dirty case when C/N → 0, since the first
term is then dominant. Thus (6.17) gives the correction to the dirty limit, and it is valid for
C ∼ N .

In the large C, C >> N , it is easy to recover the clean case from the expression (6.16).
The saddle-point is given by t = −iµ and v = λ. Putting these values in (6.16), and taking
µ→ λ, we obtain immediately

ρ(λ) =
N

2C
sin2(

2Nλ

C
) (6.18)

Thus, (6.16) gives the result both for the dirty case and for the clean case when one
varies the parameter C.

VII. DISCUSSION

We have discussed a random matrix theory for the energy levels inside a superconductor
vortex and investigated the crossover from the clean case to the dirty case.

The technique involves a transposition of earlier results for the Hermitian case to the
symplectic group Sp(N). An extension of the Itzykson-Zuber integral is presented (in
an appendix). In the symplectic case we have to consider an external source matrix,
which describes the spectrum of energies in the absence of impurities, whose eigenval-
ues are of the form a = (a1, ..., aN ,−a1, ...,−aN). In the symplectic case the measure
∆(a) =

∏

(a2i − a2j )
∏

ai replaces the Vandermonde determinant of the unitary case. In-
deed, in the superconductor vortex, the eigenvalues appear in opposite pairs, i.e. with an
exact particle-hole symmetry, as seen in the Andreev reflexion. We have then discussed gen-
eralized integral formulae related to the Sp(N) group. In an appendix we have investigated
hypergeometric functions of matrix argument both for the unitary and symplectic groups.
This result may be useful for non-Gaussian random distributions.

This random matrix theory is phenomenological. One phenomenological parameter,
which can be viewed as the intensity of the disorder, is sufficient to describe the distribution
functions of the random matrices. We have fixed this disorder parameter to one, which is
why it does not appear explicitly in (4.2). Instead for the external source matrix A, we have
introduced a parameter C in (5.16). We find the a universal formula for the density of states
and the correlation functions for the different regimes of this parameter: a clean case C > N ,
a dirty case C < N , and a crossover region C ∼ N . Nevertherless the identification of this
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parameter C with microscopic parameters, such as the strength of the impurity potential Vi
and the number of impurities Ni in (2.4), requires a microscopic study which is outside the
scope of this work.
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Appendix A: Harish-Chandra formula for the unitary, orthogonal and sym-

plectic group

Let G be a compact connected Lie group. The Harish-Chandra integral formula is
[6,17,18]

∫

G
e<Ad(g)·a|b>dg =

∑

w∈W (detw)e<w·a|b>

∆(a)∆(b)
(A.1)

where a, b ∈ h; h is a Lie algebra, and for any H ∈ h,

∆(H) =
∏

α∈∆+

α(H) (A.2)

∆+ is the collection of positive roots, W is the finite reflection group, called the Weyl (or
Coxeter) group and h is the Cartan subalgebra of the Lie algebra of the group. In the general
classification theory, the irreducible finite refelection groups are categorized as belonging to
various types, An, Bn, Cn, Dn, ...., which are associated with certain compact Lie groups. In
(3.4), det(w) is simply ±1, since each w ∈ W is an orthogonal transformation.

Let us illustrate this result in the simplest case of the unitary group. The Lie algebra
of SU(n) , u = su(n), consists n × n complex skew-Hermitian traceless matrices. The
complexification of u is g = sl(n, C), the Lie algebra of all n × n complex matrices with
zero trace. The Cartan subalgebra h of g consists of diagonal n × n complex matrices
H = diag(h1, ..., hn) such that h1 + .... + hn = 0. We define the linear functional ej on h
by ej(H) = hj, and the n × n matrix Ejk which consists of 1 in the (j,k)th position and
0 elsewhere. The linear functional α = ej − ek, j 6= k is a root of g with respect to h, i.e.
∆ = [ej − ek : 1 ≤ j 6= k ≤ n]. One then verifies that (A.1) reduces the Itzykson-Zuber
formula (3.4) in the unitary case.

The orthogonal group O(N) consists of real N × N matrices u such that uut = 1. The
Harish-Chandra formula applies to compact connected groups G and we thus restrict our-
selves to the special orthogonal subgroup SO(N), of orthogonal matrices with determinant
one. The Lie algebra g = so(N) of G = SO(N) consists of all N ×N real skew-symmetric
traceless matrices. We need to consider separately the even case N = 2n and the odd one
N = 2n+ 1.

For SO(2n), the Cartan subalgebra h is the complex Lie algebra of all 2n× 2n complex
block-diagonal matrices of the form [22]

H =































0 h1
−h1 0

0 h2
−h2 0

·
·

0 hn
−hn 0































(A.3)

This matrix H is written as the direct sum of v’s defined as
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v =
(

0 1
−1 0

)

(A.4)

H = h1v ⊕ h2v ⊕ · · · ⊕ hnv (A.5)

Let [e1, ..., en] be the standard basis for Rn. A root system for SO(2n) is ∆ = [±ej ± ek :
1 ≤ j ≤ k ≤ n], which is a root system of type Dn. For α = ej ± ek ∈ ∆+ and the Cartan
subalgebra H , we have α(H) = hj ± hk and

V (H) =
∏

1≤j<k≤n

(h2j − h2k). (A.6)

A fundamental Weyl chamber is defined as S = [(h1, ..., hn) ∈ Rn : h1 > · · · > hn−1 > |hn|].
The group G(n) of permutations w of the set [−n, ...,−1, 1, ..., n] restricted to w(−j) = -
w(j), acts on the set of [h−n, ..., h−1, h1, ..., hn] as

w · (h1, ..., hn) = (hw(1), ..., hw(n)) (A.7)

where we denote h−j = −hj , j = 1, ..., n. The Weyl group W consists of W = [permutations
and even number of sign changes of [e1, ..., en]]; thus |W | = 2n−1n!. For H , we have

w ·H = hw(1)v ⊕ hw(2)v ⊕ · · · ⊕ hw(n)v (A.8)

Therefore the Harish-Chandra formula (A.1) gives for a = a1v ⊕ a2v ⊕ · · · ⊕ anv and b =
b1v ⊕ b2v ⊕ · · · ⊕ bnv

∫

SO(2n)
etr(gag

−1b)dg = CSG(n)

∑

w∈SG(n)(detw) exp(2
∑n

j=1w(aj)bj)
∏

1≤j<k≤n(a
2
j − a2k)(b

2
j − b2k)

(A.9)

with CSG(n) = (2n− 1)!
∏2n−1

j=1 (2j − 1)!.

For SO(2n+ 1), the matrix H is

H = h1v ⊕ h2v ⊕ · · · ⊕ hnv ⊕ 0 (A.10)

and the root system for SO(2n+ 1) is

∆ = [±ej ± ek : 1 ≤ j ≤ k ≤ n] ∪ [±ej : 1 ≤ j ≤ n] (A.11)

Thus for α ∈ ∆+ and H , we have

α(H) = hj ± hk if α = ej ± ek
hj if α = ej (A.12)

and

V (H) =
∏

1≤j<k≤n

(h2j − h2k)
n
∏

j=1

hj (A.13)
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The weyl group of SO(2n+1) is W =[ permutations and sign changes of [e1, ..., en]]. |W | =
2nn!.

The action of G(n) on the Lie algebra h is

w ·H = hw(1)v ⊕ hw(2)v ⊕ · · · ⊕ hw(n)v ⊕ 0 (A.14)

The Harish-Chandra formula (3.4) becomes for a = a1v⊕· · ·⊕anv⊕0, b = b1v⊕· · ·⊕bnv⊕0,

∫

SO(2n+1)
etr(gag

−1b)dg = CG(n)

∑

w∈G(n)(detw) exp(2
∑n

j=1w(aj)bj)
∏

1≤j≤k≤n(a
2
j − a2k)(b

2
j − b2k)

∏n
j=1 ajbj

(A.15)

where CG(n) =
∏n

j=1(2j − 1)!
∏4n−1

j=2n j!.

For the case of the symplectic group Sp(N), we have

H =





















h1
·
hn

−h1
·

−hn





















(A.16)

and ej(H) = hj . A root system for Sp(N) is

∆ = [±ej ± ek : 1 ≤ j ≤ k ≤ n] ∪ [±2ej : 1 ≤ j ≤ n] (A.17)

The Weyl group for the Sp(N) algebra is W = [permutations and sign changes of [e1, ..., en]].
|W | = 2nn!.

Appendix B: Generalization of the Itzykson-Zuber formula

The Itzykson-Zuber formula for Hermitian matrices a and b is again

∫

U(n)
etr(gag

−1b)dg =
det(eaibj )

∆(a)∆(b)
(B.1)

where ai and bi are eigenvalues of a and b, respectively. We wish now to consider general-
izations of this type of integrals for which

∫

U(n)
ψn(gag

−1b)dg =
det(f(aibj))

∆(a)∆(b)
(B.2)

where ψn is a function of a matrix argument, and f is a real function.
The Itzykson-Zuber formula of (B.1) corresponds to f(xy) = exp[xy] and ψn =

exp[tr(gag−1b)].
We may take for f(xy) an hypergeometric function pFq(α1, ..., αp; β1, ..., βq; xy) . Note

that f(xy) = exp[xy] = 0F0(xy). Then , the corresponding function ψn(t) is also an hyperge-
ometric function of the matrix argument pFq(α1+n−1, ..., αp+n−1; β1+n−1, ..., βq+n−1; t).
For example,in the p = 1, q = 0 case, we have
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∫

U(n)
det(1− agbg−1)−α−n+1dg = 1F0(α; a, b)

=
det(1F0(α; aibj))

∆(a)∆(b)
(B.3)

where 1F0(α; aibj) = (1 − aibj)
−α. This is easily checked directly for the n = 2, g = U(2)

case. We represent g as

g =
(

cosφeiθ1 sinφeiθ2

− sinφeiθ3 cosφe−i(θ1−θ2−θ3)

)

(B.4)

with the measure J = cos φ sinφdφ
∏3

i=1 dθi.
More generally, the formula of the integration over the U(N) group may be written as

pFq(α1, ..., αp; β1, ..., βq; a, b)

=
∫

U(n)
pFq(α1, ..., αp; β1, ..., βq; agbg

−1)dg

= C
det(pFq(α1 − n+ 1, ..., αp − n + 1; β1 − n+ 1, ..., βq − n + 1; aibj))

∆(a)∆(b)

(B.5)

This derivation of (B.5) proceeds by induction [25]. First, we introduce the zonal poly-
nomials Zm(A) [24] which are homogeneous polynomials of degree m, which are symmetric
functions of the n eigenvalues of the matrix A. From their definition they have the simple
property that

∫

G
Zm(gAg

−1B)dg =
Zm(A)Zm(B)

Zm(1)
(B.6)

in which the integral runs over the elements of a compact Lie group G with a Haar measure
normalized to one. The coefficients of these polynomials are group-dependent, but they
can be constructed from this property inductively. The polynomials are thus expressed as
decompositions of products of Tr(Am

1 )Tr(A
m
2 ) · · ·Tr(Am

n ), with |m| = m1 + · · · +mn, and
the mj are the partitions of m characterizing a Young tableau. It then follows that

(trA)k =
∑

|m|=k

Zm(A) (B.7)

in which the sum runs over all the Young tableaux with k boxes. We may now take for a
generating function the hypergeometric function with matrix argument defined as

pFq(α1, ..., αp; β1, ..., βq; t) =
∞
∑

k=0

1

k!

∑

|m|=k

[α1]m · · · [αp]m
[β1]m · · · [βq]m

Zm(t). (B.8)

Then, one has

pFq(α1, ..., αp; β1, ..., βq; a, b) =
∫

G
pFq(α1, ..., αp; β1, ..., βq; gag

−1b)dg

=
∞
∑

k=0

1

k!

∑

|m|=k

[α1]m · · · [αp]m
[β1]m · · · [βq]m

Zm(a)Zm(b)

Zm(1)

(B.9)
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where

[α]m =
n
∏

j=1

(α− j + 1)mj
(B.10)

(α)k = α(α+ 1) · · · (α + k − 1) (B.11)

In the case of the unitary group G = U(n) the zonal polynomial Zm(A) is a Schur function,
namely it is given by the Weyl formula for the characters of the representations of G

Zm(A) =
det(a

mj+n−j
i )

det(an−j
i )

. (B.12)

The Euler integral gives

Zm(A) =
Γn(β)

Γn(β − α)Γn(α)

[β]m
[α]m

∫

0<r<1
Zm(rA)det(r)

α−ndet(1− r)β−α−ndr (B.13)

where the integration is over Hermitian matrices r whose eigenvalues are between 0 and 1.
The Gamma function Γn(α) is defined by

Γn(α) = πn(n−1)/2
n
∏

i=1

Γ(α− i+ 1) (B.14)

Using these notations, we have established the recurrence formula,

p+1Fq+1(α1, ..., αp+1; β1, ..., βq+1; a, b) =
Γn(βq+1)

Γn(αp+1)Γn(βq+1 − αp+1)

×
∫

0<r<1
det(r)αp+1−ndet(1− r)βq+1−αp+1−n

pFq(α1, .., αp; β1, .., βq; ra, b)dr

(B.15)

which proves (B.5) inductively.
For the case of the confluent and Gaussian hypergeometric functions, 1F1 and 2F1, these

formulae reduce to

1F1(α; β; t) =
Γn(β)

Γn(α)Γn(β − α)

∫

0<r<1
dretr(rt)det(r)α−ndet(1− r)β−α−n (B.16)

2F1(α, β; γ; t) =
Γn(γ)

Γn(β)Γn(γ − β)

∫

0<r<1
drdet(r)β−ndet(1− r)γ−β−n

×det(1− rt)−α (B.17)

For the symplectic group Sp(n), we have similar formulae with hypergeometric functions.
In the case p = 0, q = 0, and p = 1, q = 0, which is similar to (B.1) and (B.3),
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0F0(a, b) =
∫

Sp(n)
etr(gag

−1b)dg

=
det[2sinh(2aibj)]

∆(a)∆(b)
(B.18)

1F0(α; a, b) =
∫

Sp(n)
det(1− agbg−1)−α−2n+1dg

=
det[( 1

1−aibj
)2α − ( 1

1+aibj
)2α]

∆(a)∆(b)
(B.19)

where ∆(a) =
∏

(a2i −a2j )
∏

ai. These formula are easily checked for the simplest case, n = 1,
Sp(1), which is isomorphic to SU(2), with

g =
(

cosφeiθ1 sinφeiθ2

− sinφe−iθ2 cosφe−iθ1

)

(B.20)

It may be useful to notice that these results for Sp(1) may also be derived immediately
from the U(2) case by setting a = a1 = −a2, and b = b1 = −b2 in (B.1) and (B.3). Indeed
the Lie group g of Sp(1) in (B.20) is derived from (B.4) with the condition θ3 = −θ2. The
denominator ∆(a) for Sp(n) is also derived from the U(n) case with the condition on the
eigenvalues a = diag(a1, · · · , an,−a1, · · · ,−an). This equivalence between U(n) and Sp(n)
holds for n 6= 1. Since the eigenvalues appear here in pairs (ai,−ai), we have to replace
n by 2n in the hypergeometric relations as shown in (B.19). For a general hypergeometric
function, we have for the Sp(n) case,

pFq(α1, ..., αp; β1, ..., βq; a, b)

=
∫

Sp(n)
pFq(α1, ..., αp; β1, ..., βq; agbg

−1)dg

=
C

∆(a)∆(b)
det[(pFq(α1 − 2n+ 1, ..., αp − 2n+ 1; β1 − 2n+ 1, ...,

βq − 2n+ 1; aibj))
2

− (pFq(α1 − 2n + 1, ..., αp − 2n+ 1; β1 − 2n + 1, ...,

βq − 2n+ 1;−aibj))2]
(B.21)
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