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There was shown that Fourier transform of the negative magnetoresistance
(NMR) which is due to interference correction to the conductivity  contains the
information about the area distribution function of the closed paths and about area
dependence of the mean length of closed paths L S( ) . Based on this line of attack
we suggest the method of analysis  of NMR and use it for data treatment of the
NMR in 2D structure with doped  barrier. There was shown that in structure
investigated L S( )   dependence is determined by the scattering anisotropy.

The anomalous magnetoresistance which is observed at low temperature in
"dirty" metals and semiconductors  was provided by adequate explanation after
creating the theory of the quantum correction to the conductivity [1,2,3]. The
interference correction to the conductivity gives the main contribution to the NMR
in 2D structures at low temperatures. This correction arises from  interference of the
electron waves scattered along closed paths in opposite directions. In magnetic
field perpendicular to the 2D layer this interference is destroyed because of the
phase shift between the correspondent amplitudes and thus leads to NMR.

 The existing theory of weak-field magnetoresistance is developed   under
condition kF l >> 1  (kF   is the Fermi wave vector, l   is the mean free path). In this
case the quasiclassical treatment is valid and the interference correction to the
conductivity can be written as sum of the contributions from closed paths [4]
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π h   , Wi  is the probability density to find the electron in the starting
point  after passing on i-th trajectory with length Li , l vFϕ ϕτ= , vF  is the velocity at
Fermi energy,  τ ϕ  is the phase breaking time, the factor ( )exp /−L li ϕ  is taking into
account the probability of the breaking phase at passing on i--th trajectory.

For calculation of the magnetic field dependence of NMR the sum (1) is
represented as sum of the contributions of trajectories with different number of
collisions N [1,5,6]
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where ãäå Si
N  -is the area of i-th trajectory with N collisions,

 Φ0 2= πc eh /   is the elementary flux quantum,  ( )1 2 0− cos( / )πS Bi
N Φ  is the factor

taking into account the destruction of interference by magnetic field. The
diagrammatic technique [1,6] gives possibility to calculate the sum (2) and gives
the analytical result for NMR when two conditions are to be met: (i) At random
scatters distribution, and (ii) at isotropic scattering which corresponds to the
scattering by short range potential. At diffusion approximation ( when the collisions
number for actual trajectory is large (mach greater then unity)) this gives [1]
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where  Ψ( )x  is the logarithmic derivation of Γ -functhion,  τ p  is the elastic
scattering time, B c

eltr = h
2 2 . ( Without taking into account the electron-electron

interaction a =1.) Beyond the diffusion limit the function F B p( , , )τ τϕ  was
calculated in [6].

Just the expression (3) is used for analysis of the experimental data of NMR
and more or less agrees with magnetic field dependence of NMR. It gives
possibility to determine the phase breaking time and its temperature dependence.
At this way of analysis of the experimental data the reasons of the some deviation
of NMR from (3) remain unclear. They may be connected with some correlation in
scatters distribution, scattering anisotropy and so on.

 We suggest the method for the analysis of NMR which gives some information
about the statistic of closed paths and its dependence on the scatter distribution
and peculiarities in scattering. To make clear the essence of this method let  us
rewrite (1) decomposing Wi as a sum of contributions of paths with given area
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where W S Wi
S

i
( ) = ∑  is the distribution function of closed paths with area, Wi

S  is
the length distribution function of the trajectories with given area S, and we
introduce L L S l= ( , )ϕ  so that
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From (4) one can see that Fourier transform of NMR is equal
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Thus the Fourier transform of NMR contains the information about the distribution
function of closed path with area W S( ) , and about S  and lϕ  dependence of L . For
further analysis we propose that L L S l S f l= =( , ) ( )ϕ

α
ϕ . The numerical calculations of

the function L S l( , )ϕ  ( these calculations will be published elsewhere) and analysis
of expression (3) show that this assumption is valid in wide range of S , lϕ   and for
isotropic scattering α ≈ 0 67. . At first sight, it seems that the mean length of closed
paths is proportional to square root of the area S, but taking into account  that the
trajectories with larger area are more "winding" one can conclude this fact leads to
more strong area dependence of L . The ionised impurity scattering is the main
mechanism of the momentum relaxation at low temperature. For this scattering
mechanism the scattering is anisotropic, the small angle scattering gives the main
contribution. It is clear that for strong anisotropy the all trajectory became close to
the rings and therefore L S∝ 0 5. , i.e. α = 0 5. . Thus, value of α   is determined by
scattering anisotropy.

To determine experimentally the value of a one can measure ∆σ ( )B  at two
temperatures, i.e. at different lϕ , then find
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and from A -vs-S  dependence determine α .
Let us analyse the experimental results. We have measured the NMR in

heterostructure   0.3 mm n--GaAs /50 À-In0.07Ga0.93 As/0.3 mm n-GaAs. d-doping
by Si layers was arranged on both sides of the well  for distance of 100 A. The
measurements in wide range of magnetic field (up to 6 T) and temperature (1.5-40
K) show that in the structure investigated only one size-quantized 2D subband is
occupied and the main contribution to the conductivity comes from electrons in
In0.07GaAs0.93 quantum well with density n=2 5 1011. ×  cm-2 and mobility m
=11 104. ×  cm2/V sec.
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Fig.1. (1)The magnetic field dependence of ∆σ( ) /B G0  at T=1.5 K. The points are
the experimental data, the curve is theoretical dependence (3) at a = 0 7.  è
τ ϕ = × −5 4 10 12. sec (2). The difference between theoretical and experimental
dependences  ( ( ) ( ) )exp∆ ∆σ σB Btheor − ×20

The magnetic field dependence of NMR is shown in Fig.1. Usually the expression
(3) is used to analyse the MNR with a and τ ϕ  as fitting parameters. The solid curve
in Fig.1 was obtained by just the same method and at the first sight agrees well
with experimental data at magnetic field B Btr< ≈ 0 038.  T at a = 0 7.  è
τ ϕ = × −5 4 10 12. sec. But a closer look shows the difference between theory and
experimental data (curve 2 in Fig.1). This difference leadss to the fact that the
parameters  a and τ ϕ  vary in range 0.65-0.88 è ( . )4 4 6 10 12− × − ,respectively, at fitting
in different interval B  inside the range 0 < <B Btr . Thus, the accuracy of
determination the values aand τ ϕ  is 15-20%. Most of authors associate less than
unite  value of the prefactor a with contribution of electron-electron interaction (
Maki-Tompson term) [7]. But, from our point of view in structure investigated it
results from iinvalidity of diffusion approximation τ τϕ / p >>1 . Really, in our case
τ
τ

ϕ

p
≈ −5 10 , and as it is clear from analysis of the calculations NMR beyond



diffusion approximation [6], for such ratio of τ ϕ  and τ p  , NMR well described by
the expression (3) also, but with prefactor less then unity.
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 Fig.2. The Fourier transforms of the experimental data at different temperatures.

Let us consider what provides the method put forward above. In Fig 2 we
present the Fourie transforms of ∆σ ( )B  at different temperatures. As it is clear
from (7), the plot ln( ( ))A S -vs- ln( )S  gives the value of α . We have obtained
α = ±0 52 0 05. . . To illustrate the accuracy in determination α , A S( ) -vs-S −α

dependencies for different α  are plotted in Fig. 3.
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Fig.3.  The dependences of  A S S S SK K( ) ln( ( )) ln( ( )). .

− = −α Φ Φ1 5 4 2 - vs- S  for different
α .

As mentioned above, for isotropic scattering (i.e. for scattering by short range
potential)  the value of  a is equal to 0.67. To ensure that this is correct one can
analyse the NMR given by (3) using the method discussed above. It gives:  i -
assumption that L S l S f l( , ) ( )ϕ

α
ϕ=  is valid in wide range of S è lϕ ; ii - a =0.67.

We believe that the less then 0.67  value of a in structure investigated is the
result of the scattering anisotropy. Really, the main mechanism of the momentum
relaxation in our condition is the scattering by the potential of ionised impurities of 
d-layers which is smooth in quantum well. The estimations show that probability of
small angle scattering is about 15-20 times lager than backscattering probability.

In principle, the method put forward in this paper gives possibility to
determine the  distribution function of closed path with area W(S) . Really, because
the length lϕ  tends to infinity when  Ò®0, the extrapolation Ô(S,T) to Ò=0 gives



the area distribution function W(S) (see (6)). But, for such extrapolation it is
necessary to have the measurements of ∆σ ( )B  for lower temperatures.

In conclusion, the method of the analysis of NMR put forward in this
communication provides a way to obtain information on statistic of  closed paths
and in this way on the scattering anisotropy, correlation of impurity distribution
and so on.
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