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Under steady shear, a foam relaxes stress through intermittent rearrangements of bubbles accom-
panied by sudden drops in the stored elastic energy. We use a simple model of foam that incorporates
both elasticity and dissipation to study the statistics of bubble rearrangements in terms of energy
drops, the number of nearest neighbor changes, and the rate of neighbor-switching (T1) events. We
do this for a two-dimensional system as a function of system size, shear rate, dissipation mechanism,
and gas area fraction. We find that for dry foams, there is a well-defined quasistatic limit at low
shear rates where localized rearrangements occur at a constant rate per unit strain, independent of
both system size and dissipation mechanism. These results are in good qualitative agreement with
experiments on two-dimensional and three-dimensional foams. In contrast, we find for progessively
wetter foams that the event size distribution broadens into a power law that is cut off only by system
size. This is consistent with criticality at the melting transition.
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I. INTRODUCTION

A foam is a disordered collection of densely-packed
polydisperse gas bubbles in a relatively small volume
of liquid [1–3]. Foams have a rich rheological behav-
ior; they act like elastic solids for small deformations
but they flow like viscous liquids at large applied shear
stress [4]. The stress is relaxed by discrete rearrangement
events that occur intermittently as the foam is sheared.
Three-dimensional foams are opaque, which makes it dif-
ficult to observe these bubble movements directly. How-
ever, measurements [5,6] by diffusing-wave spectroscopy
of three-dimensional foams subjected to a constant shear
rate suggest that the number of bubbles involved in the
rearrangements is small, of the order of four bubbles.
Bubble rearrangements can be observed directly by flu-
orescence microscopy in two-dimensional foams found in
insoluble monolayers at the air-water interface. A study
of shear in such foams [7] also revealed no large-scale
rearrangements.

While analytical theories for the response to applied
steady shear may be constructed for periodic foams, only
simulation approaches are possible for disordered foams.
Kawasaki’s [8] vertex model was the first to incorporate
dissipative dynamics. It applies to a two-dimensional
foam in the limit in which the area fraction of gas is
unity (a dry foam). Bubble edges are approximated by
straight line segments that meet at a vertex that repre-
sents a Plateau border. The equations of motion for the
vertices are solved by balancing viscous dissipation due
to shear flow within the borders by surface tension forces.
At low shear rates, the elastic energy of the foam, which is

associated with the total length of the bubble segments,
shows intermittent energy drops with a distribution of
event rate vs. energy release that follows a broad power
law, consistent with self-organized criticality. The rear-
rangements associated with the largest events consist of
cooperative motions of bubbles that extend over much of
the system.

Weaire and coworkers [9–11] were the first to develop a
model appropriate to a disordered wet foam. The model
does not include dissipation, so it is quasi-static by con-
struction. Thus the system is allowed to relax to an equi-
librium configuration after each of a series of infinitesimal
shear steps. The size of rearrangements is measured by
the number of changes in nearest-neighbor contacts. For
dry foams, the average event size is small, inconsistent
with a picture of self-organized criticality. However, as
the liquid content increases, the event-size distribution
broadens, with the largest events involving many bub-
bles. Although the statistics are limited, this is consis-
tent with a picture of criticality at the point where the
foam loses its rigidity.

The first model capable of treating wet, disordered
foams at nonzero shear rate was proposed by Durian [12].
His model pictures the foam as consisting of spherical
bubbles that can overlap. Two pairwise-additive inter-
actions between neighboring bubbles are considered, a
harmonic repulsive force that mimics the effect of bub-
ble deformation and a force proportional to the velocity
difference between neighboring bubbles that accounts for
the viscous drag. He found [13] that the probability den-
sity of energy drops followed a power law, with a cutoff
at very high energy events. The largest event observed
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consisted of only a few bubbles changing neighbors. This
is inconsistent with a picture of self-organized criticality,
although the effect of the liquid content on the topology
statistics was not examined.
Most recently, Jiang et al. [14] have employed a large-

Q Potts model to examine sheared foams. In this lattice
model bubbles are represented by domains of like spin,
and the film boundaries are the links between regions of
different spins. Each spin merely acts as a label for a par-
ticular bubble, and the surface energy arises only at the
boundaries where the spins differ. The evolution of the
foam is studied by Monte Carlo dynamics with a Hamil-
tonian consisting of three terms: the coupling energy be-
tween neighboring spins at the boundaries of the bubbles;
an energy penalty for changes in the areas of the bubbles,
which inhibits coarsening of the foam; and a shear term
that biases the probability of a spin reassignment in the
strain direction. The spatial distribution of T1 events
was examined and no system-wide rearrangements were
observed. Nevertheless, Jiang, et al. found a power-law
distribution of energy changes. They also found that the
number of events per unit strain displayed a strong shear
rate dependence, suggesting that a quasi-static limit does
not exist.
These four simulation approaches thus offer conflict-

ing pictures as to (1) the existence of a quasistatic limit,
(2) whether or not rearrangement dynamics at low shear
rates are a form of self-organized criticality, and (3)
whether or not the melting of foams with increasing liq-
uid content is a more usual form of criticality. One possi-
ble reason for this disagreement is differences in the treat-
ment of dissipation, and hence in the treatment of the
dynamics of the rearrangements. In principle, the only
accurate way in which to include dissipation in a sheared
foam is to solve for the Stokes flow in the liquid films and
Plateau borders. This approach has been adopted by Li,
Zhou and Pozrikidis [15], but so far it has only been ap-
plied to periodic foams. The statistics of rearrangement
events are fundamentally different in periodic and disor-
dered foams; in sheared periodic foams, all the bubbles
rearrange simultaneously at periodic intervals, while in
a disordered foam, the rearrangements can be localized
and intermittent. Nonetheless, the Stokes-flow approach
is the only one that can be used as a benchmark for more
simplified models.
In order to gain a better understanding of the origin

of the discrepancies between the various models, as well
as between the models and experiments, we report here
a systematic study of the properties of a sheared foam
using Durian’s model. We begin by reviewing his model
and discussing our numerical implementation using two
different forms of dissipation. After confirming that there
are no significant system-size effects for dry samples, we
examine shear-rate dependence and establish the exis-
tence of a true quasistatic limit for the distribution and
rate of energy drops and topology changes. This limit is

shown to be independent of the dissipation mechanism
for foams of different gas fractions. Finally, we examine
dramatic changes in the behavior of these quantities as
the liquid content is tuned toward the melting point.

II. BUBBLE MODEL

Durian’s model [12,13] is based on the wet-foam limit,
where the bubbles are spherical. The foam is described
entirely in terms of the bubble radii {Ri} and the time-
dependent positions of the bubble centers {~ri}. The de-
tails of the microscopic interactions at the level of soap
films and vertices are subsumed into two pairwise addi-
tive interactions between bubbles, which arise when the
distance between bubble centers is less than the sum of
their radii. The first, a repulsion that originates in the
energy cost to distort bubbles, is modeled by the com-
pression of two springs in series with individual spring
constants that scale with the Laplace pressures σ/Ri,
where σ is the liquid-gas surface tension and Ri is the
bubble radius. Bubbles that do not overlap are assumed
not to interact. The repulsive force on bubble i due to
bubble j is then

~F r
ij = kij [(Ri +Rj)− |~ri − ~rj |] r̂ij (1)

where r̂ij is the unit vector pointing from the center of
bubble j to the center of bubble i, and kij = F0/(Ri+Rj)
is the effective spring constant, with F0 ≈ σ〈R〉. The sec-
ond interaction is the viscous dissipation due to the flow
of liquid in the films. It, too, is assumed to be pairwise
additive and is modeled by the simplest form of drag,
where the force is proportional to the velocity difference
between overlapping bubbles. The viscous force on bub-
ble i due to its neighbor j is

~F v
ij = −b(~vi − ~vj), (2)

where the constant b is proportional to the viscosity of
the liquid, and is assumed to be the same for all bubble
neighbors.
The net force on each bubble sums to zero, since iner-

tial effects are negligible in this system. Summing over
those bubbles j that touch bubble i, the equation of mo-
tion for bubble i is

∑

j

(~vi − ~vj) =
F0

b

∑

j

[

1

|~ri − ~rj |
−

1

Ri +Rj

]

(~ri − ~rj) +
~F a
i

b
,

(3)

where ~F a
i is an externally applied force, arising, for in-

stance, from interactions with moving walls.
Durian [12,13] employed a further simplification of this

model, in which the viscous dissipation is taken into ac-
count in a mean-field manner by taking the velocity of
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each bubble relative to an average linear shear profile. In
this case, the total drag force on bubble i due to all of
its Ni overlapping neighbors is

~F v
i = −bNi (~vi − γ̇yix̂) . (4)

In the numerical simulations reported here we use both
the mean-field model of dissipation as well as the approx-
imation represented by Eq. 2, which we call the local dis-
sipation model. In the latter, at each integration time
step the velocity of a bubble is measured with respect to
the average of the velocities of its Ni overlapping neigh-
bors, so that the total drag force on bubble i is

~F v
i = −b



Ni~vi −
∑

j= nn

~vj



 (5)

For very large Ni, this reduces to Eq. 4; otherwise, it
allows for fluctuations. One aim of our study is to estab-
lish the sensitivity of the results to the specific form of
dissipation used, Eq. 4 or Eq. 5.
In two dimensions, the area fraction of gas bubbles,

φ, can be defined by the total bubble area
∑

πR2

i per
system area. Because the bubbles are constrained to re-
main circular and their interactions are approximated as
pairwise-additive [16], the model necessarily breaks down
for very dry foams. In fact, bubble radii can even be cho-
sen so that φ exceeds one. In a real foam, of course, this
is prevented by the divergence of the osmotic pressure.

III. NUMERICAL METHOD

All the results reported here are based on simulations
of a two-dimensional version of Durian’s model. We use
Eq. 3 to study a two-dimensional foam periodic in the
x–direction and trapped between parallel plates in the y–
direction. Bubbles that touch the top and bottom plates
are fixed to them, and the top plate is moved at a con-
stant velocity in the x–direction. (The system can also
be sheared with a constant force instead of a constant
velocity, but that case will not be discussed here.) Thus,
bubbles are divided into two categories — “boundary”
bubbles, which have velocities that are determined by
the motion of the plates, and “interior” bubbles, whose
velocities must be determined from the equations of mo-
tion.
The equation of motion Eq. 3 can be written in the

form

M({r}) · {v} = {Fr}/b+ {Fa}/b (6)

where {v} is a vector containing all the velocity compo-
nents of all of the bubbles, {vx

0
, vy

0
, vx

1
, vy

1
, . . .}, {Fr} is a

vector of all of the repulsive bubble–bubble forces, and
{Fa} contains all the forces exerted by the walls. The

matrix M depends on the instantaneous positions of the
bubbles. The 2× 2 block submatrix Mij is a unit matrix
1 if the distinct bubbles i and j overlap, and 0 if they do
not overlap. On the diagonal, Mii = −1Ni, where Ni is
the number of overlapping neighbors of bubble i. Eq. 6
is of the form A(r, t) · (dr/dt) = f(r, t), which we solve
for the bubble positions r with the routine DDRIV3 [17].
DDRIV3 has the ability to solve differential equations
in which the left hand side is multiplied by an arbitrary
time-dependent matrix. Furthermore, it allows all matrix
algebra to be performed by external routines, allowing us
to take advantage of the sparse nature of M. We use the
SPARSKIT2 [17] library for sparse matrix solutions.
The only relevant dynamical scale in this problem is

set by the characteristic relaxation time arising from the
competing mechanisms for elastic storage and viscous
dissipation, τd = b〈R〉/F0. This is the characteristic time
scale for the duration of bubble rearrangements driven by
a drop in total elastic energy. Without loss of generality
we set this to unity in the simulation. In these units, the
dimensionless shear rate γ̇ is the capillary number.
To introduce polydispersity, the bubble radii are drawn

at random from a flat distribution of variable width; in
all the results reported here, the bubble radii vary from
0.2 to 1.8 times the average bubble radius. We note that
the size distribution in experimental systems is closer to
a truncated Gaussian with the maximum size equal to
twice the average radius. The truncated Gaussian dis-
tribution arises naturally from the coarsening process
[18,19]. We tested the sensitivity of our results to the
bubble distribution by doing one run with bubbles drawn
from a triangular distribution, and found that the shape
of the distribution had no significant effect. Similarly,
variation of the width of a triangular distribution has
been shown to have no influence on the linear viscoelas-
ticity [13]. Note that it is important to include poly-
dispersity because a monodisperse system will crystallize
under shear, especially in two dimensions.
In all of our runs, the system is first equilibrated with

all bubbles treated as interior bubbles, and with a repul-
sive interaction between the bubbles and the top and bot-
tom plates so that bubbles cannot penetrate the plates.
The bubbles that touch the top and bottom plates are
then converted to boundary bubbles. The top plate is
moved at a constant velocity and data collection be-
gins after any initial transients die away. In addition to
recording quantitative measures of the system, we also
run movies of the sheared foam in order to observe vi-
sually how the flow changes as a function of shear rate,
area fraction and other parameters [20].

IV. QUANTITIES MEASURED

Before showing results, we discuss the various quanti-
ties extracted during a run. Under a small applied shear
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strain, bubbles in a real foam distort; as the shear strain
increases, the structure can become unstable and they
may thus rearrange their relative positions. In the bub-
ble model, the distortion of bubbles is measured globally
by the total elastic energy stored in all the springs con-
necting overlapping bubbles:

E =
∑ 1

2
kij [(Ri +Rj)− |~ri − ~rj |]

2
. (7)

Under steady shear, the elastic energy rises as bubbles
distort (overlap) and then drops as bubbles rearrange.
Thus, the total elastic energy fluctuates around some av-
erage value. The scale of the energy is set by the elastic
interaction and is of order F0〈R〉 per bubble, where 〈R〉
is the average bubble radius.
Fig. a shows a plot of the total elastic energy as a

function of strain for a system of 144 bubbles at area
fraction φ = 1.0 driven at a constant shear rate of
γ̇ = 10−3. Similar plots for stress vs strain are shown
in Refs. [12,13]. Note the precipitous energy drops, ∆E,
due to bubble rearrangements. In the literature, these
energy drops are often referred to as avalanches. Since
the term “avalanche” tends to imply the existence of self-
organized criticality, we employ the more neutral but less
elegant term “energy drop.” The time interval between
energy drops is much larger than the duration of a sin-
gle event. This is also illustrated in Fig. b, which shows
the magnitude of energy drops that occur as the system
is strained. (∆E is normalized by the average energy
per bubble Eb, which has been computed by averaging
the elastic energy over the entire duration of a run and
dividing by the total number of bubbles in the system,
Nbub.) These recurring precipitous rearrangements rep-
resent the only way for the foam to relax stress: there is
no mechanism involving a gradual energy release, as il-
lustrated in Fig. a. Note that we compute only the total
elastic energy of the system; because events can be local-
ized and intermittent, the elastic energy may be dropping
in one region of the sample and rising in other regions.
This would limit the size of the energy drop measured.
While useful for building intuition, the distribution

of energy drops does not yield direct information about
bubble rearrangements. Therefore, we also measure the
number N of bubbles that experience a change in over-
lapping neighbors during an energy drop. We exclude
events in which two bubbles simply move apart or to-
gether; thus the smallest event is N = 3. A typical
sequence of configurations before, during, and after an
event is shown in the first three frames of Fig. . In this
energy drop the magnitude of the drop and the number
of bubbles that change neighbors are close to the average.
In the second and third frame of the sequence, we have
marked the bubbles that changed neighbors since the be-
ginning of the energy drop (shown in the first frame). As
the system is strained, more bubbles change neighbors.
For the particular energy drop chosen, roughly one-sixth

of the bubbles eventually change overlapping neighbors.
The fourth frame shows the final configuration of bub-
bles (colored gray) superimposed on the initial configu-
ration at the start of the energy drop (colored black).
Most of the bubble motions that lead to this average-
sized energy drop are rather subtle shifts; there are no
topological rearrangements. A large energy drop, from
the tail of the distribution, is shown in Fig. . Again,
the first three frames show the configurations at the be-
ginning, middle and end of the drop, with the bubbles
that change overlapping neighbors marked in gray. The
fourth frame shows the extensive rearrangements that
occur from the beginning to the end of the drop. The
configuration shown is the final one, and the short seg-
ments are the tracks made by the centers of the bubbles
during the energy drop.
Typically, larger drops involve larger numbers of bub-

bles. Fig. c depicts N during each energy drop in the
same run as in Fig. a and b. (Here, N is normalized
by the total number of bubbles in the system, Nbub.)
The correlation between energy drops and the number of
bubbles involved is shown by a scatter plot of these quan-
tities in Fig. for a 900-bubble system strained from 0 to
10. We see that indeed there is a strong correlation be-
tween these two measures of the size of an event. Larger
drops in energy involve larger numbers of bubbles and
are therefore spatially more extended. The correlation is
particularly good at the large-event end. There is more
variability for midsize and small events – a large range
of energy drops corresponds to the same small number of
rearranging bubbles, suggesting that typical rearrange-
ments involve only a few bubbles.
Besides counting statistics for energy drops and

changes in number of bubble overlaps, another direct
measure of bubble rearrangements is the rate of T1
events, i.e. of topology changes of the first kind [3].
For a perfectly dry two-dimensional foam consisting of
thin films, these are said to occur when a bubble edge
shrinks to zero, such that a common vertex is shared by
four bubbles, two moving apart and two moving together.
These events were the only property used by Dennin and
Knobler [7] to characterize the response of their mono-
layer foam to shear because they were unable to measure
changes in the energy. While the time at which a T1
event occurs is well defined in a dry foam, it is some-
what ambiguous for a wet foam because there can be an
exchange of nearest neighbors without a common point
of contact. Moreover, while the number of bubbles in-
volved in a T1 event is four by definition, large clusters of
bubbles can rearrange, with some of the interior bubbles
being involved in two or three T1 events simultaneously.
It is then much harder to assign an exact time to a T1
event.
To make contact with the monolayer experiments, we

may define T1 events within the bubble model as fol-
lows. First we broaden the definition of “nearest neigh-
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bors” to also include bubbles that do not necessarily
overlap, but that are nonetheless so close such that
|~ri − ~rj | < a(Ri + Rj), where a > 1 is a suitably cho-
sen factor that may depend on φ. We then say that a T1
event begins when two nearest neighbors move apart, and
we say that it ends when a new nearest neighbor pair in-
trudes between them; the time at which the event occurs
is taken as the midpoint in this sequence. This definition
is illustrated in the time sequence of a T1 event shown in
Fig. . While the duration of an actual T1 event in a dry
foam is instantaneous, the duration within the bubble
model may vary greatly. Furthermore, the midpoint in
the sequence does not necessarily coincide with the exact
moment the switching occurs. In many instances it takes
a long time after two bubbles separate for the remaining
pair to come into contact. To compare with our other
measures of rearrangement, we depict in Fig. d the num-
ber of T1 events as a function of strain for the same run
as in Figs. a, b and c. There appears to be good corre-
lation between the largest energy drops and instances in
which many T1 events occur simultaneously. However,
there are many more T1 events than energy drops. This
is because many T1 events can occur when a large clus-
ter of bubbles rearranges, and because our definition also
includes topology changes that cause an increase in the
total elastic energy.
We can examine the consequences of our definition of

a T1 event by studying the distribution of the number of
rearrangement events as a function of their total duration
in units of the strain. This is done for both energy drops
and T1 events, as shown in Fig. . The duration of an
energy drop is taken as the difference in strain between
a decrease in the elastic energy and the next increase.
It is evident from the duration distribution for energy
drops, Fig a, that most energy drops occur over a rel-
atively short strain scale. In units of time, the longest
events are comparable to a hundred times the characteris-
tic time scale in the problem (τd = 1 in our simulations).
We find a good correlation between the number of bub-
bles that change overlapping neighbors and the duration
of the event; the more bubbles involved in the event, the
longer it lasts. The distribution for T1 events, shown
in Fig b, has a qualitatively similar shape, exhibiting a
slightly more rapid decrease for both fast and slow events.
However, the scale on which T1 events occur is an or-
der of magnitude larger than the characteristic duration
of the energy drops. By examining the bubble motions
we see that the largest energy drops are associated with
many T1 events, but the difference in strain scales makes
it difficult to demonstrate an exact correlation between
the number of overlap changes and the number of T1’s.
In counting the T1 events, we include only events that
have a total strain duration of less than 2. Fig. b shows
that we have included all the T1 events for this run.

V. SIMULATION RESULTS

For a given system size, strain rate, dissipation mech-
anism and gas fraction, we now collect statistics on the
following measures of bubble dynamics: (1) The proba-
bility distribution P (∆E) for energy drops of size ∆E;
(2) The probability distribution P (N) for the number
of bubbles N that change overlapping neighbors during
a energy drop event; and (3) The event rates for both
energy drops and T1 events, S(T 1) and S(∆E), both de-
fined as the number of events per bubble per unit strain.

A. System Size

We first address the important issue of the finite size
of the simulation sample. This is done for dry foams,
φ = 1.0, driven at a slow strain rate, γ̇ = 10−3. The
results for four system sizes, Nbub = 36, 144, 324 and
900, are shown in Fig.. In these runs, the systems were
strained up to 80, 80, 31 and 10, respectively. The top
plot shows the energy drop distribution scaled by Eb, the
average energy per bubble. It shows that energy drops
vary greatly in size over the course of a single run. The
general features of this distribution have been reported
earlier [13]. There is a power-law region with an exponent
of -0.7 that extends over several decades in ∆E/Eb, fol-
lowed by a sharp cutoff that occurs above a characteristic
event size. Such a distribution has a well-defined average
energy drop, which is near the cutoff between 2Eb and
3Eb for the systems shown here. The slight deviation
from power-law behavior for small ∆E was absent in the
earlier simulations [13], which did not exclude two-bubble
events, and which had a different roundoff error. Also,
as seen earlier [13], the two largest systems, with 324 and
900 bubbles, respectively, have nearly identical distribu-
tions. This has two important implications; namely, that
the sharp cutoff of the power-law distribution is not a
finite-size effect, and that the system does not exhibit
self-organized criticality.
The presence of a characteristic energy-drop size can be

corroborated by examining the number of bubbles that
participate in rearrangements for the same set of runs,
which is given in the middle plot, Fig. b. This quantity
has not been studied previously within the bubble model.
We plot the probability distribution P (N) of the number
of bubbles N that change overlapping neighbors during
a rearrangement. The distribution decreases monoton-
ically with a sharp cutoff at the large-event end. This
indicates that most of the rearrangements are local and
involve only a few bubbles. Fig. b shows that as the sys-
tem size increases, the largest events represent a smaller
fraction of the total number of bubbles. Indeed, the tail
of the distribution extends to smaller and smaller values
of N/Nbub with no signs of saturation as the system size
Nbub increases, indicating diminishing finite size effects.
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We next look at the system-size dependence of event
rates, S(T 1) and S(∆E), for the number of T1 events and
energy drops per bubble per unit strain. This is shown
in the bottom plot, Fig. c, for the same runs as in Figs.
a-b. We find that S(∆E) decreases very slightly with
increasing system size, but saturates for the largest sys-
tems. The results for S(T 1) show a stronger system-size
dependence, increasing slightly with Nbub. This could
be due to the fact that bubbles on the top and bottom
boundaries of the system are fixed, which lowers the num-
ber of possible T1 events per bubble. As the system size
grows, the boundary bubbles represent a smaller fraction
of the system so the event rate increases towards its bulk
value.

In short, all of our measurements at φ = 1.0 and
γ̇ = 10−3 indicate that the rearrangement events are
localized and that there is no self-organized criticality.
This agrees with observations of rearrangements in both
monolayer and bulk foams.

B. Shear Rate Dependence

Now that size effects have been ruled out for dry foams,
we may examine the influence of shearing the sample
at different rates. Experiments by Gopal and Durian
[6] on three-dimensional foams show a marked change in
the character of the flow with increasing shear rate. At
low shear rates, the flow is characterized by intermittent,
jerky rearrangement events occurring at a rate propor-
tional to the strain rate. As the shear rate increases,
so that the inverse shear rate becomes comparable to
the duration of a rearrangement event, the flow becomes
smoother and laminar, with all the bubbles gradually
rearranging all the time. This was attributed to a dom-
inance of viscous forces over surface tension forces when
the strain rate exceeds the yield strain divided by the
duration of a rearrangement event. In movies of our sim-
ulation runs, we also observe a crossover from intermit-
tent, jerky rearrangements to smooth laminar flow. Sim-
ilar smoothing has also been seen in stress vs. strain
at increasing shear rates for the mean-field version of
bubble dynamics [13]. This raises the question of how
the statistics of rearrangement events change with shear
rate. Specifically, how is the “smoothing out” of the flow
reflected in the statistics at high rates, and is there a
quasistatic limit at low shear strain rates, in which rear-
rangement behavior is independent of strain rate? Ear-
lier numerical studies by Bolton and Weaire [10] were
restricted, by construction, to the quasistatic limit. Oku-
zono and Kawasaki [8] examined nonzero shear rates, but
focused only on establishing the low shear-rate limit. Re-
cently, Jiang and coworkers found a strong dependence
of the T1 event rate on shear rate [14]. They found that
the number of T1 events per bubble per strain, S(T 1),

decreases sharply with strain rate with no evidence of a
quasi-static limit.
Our results for rearrangement behavior vs strain rate

are collected in Fig. for a 144-bubble system at φ = 1.0.
The top plot for the probability distribution of energy
drops indicates that there is no gross change in P (∆E)
with shear rate, even though our movies show a smooth-
ing with less frequent energy drops. However, there is
some suppression of small energy drops with an accom-
panying increase at large energy drops, as reflected in
a somewhat smaller power-law exponent and larger cut-
off at high values of ∆E/Eb. It is not apparent from
P (∆E) vs ∆E/Eb, but we find that the average energy
drop 〈∆E〉 and the average energy per bubble Eb both
increase with shear rate, and that 〈∆E〉 increases more
rapidly. The reason why Eb increases with shear rate
is, of course, that viscous forces become more important
than elastic forces and lead to increasing deformation (or
in our model, overlaps) of bubbles. The net result is that
there are fewer, relatively larger, rearrangements at high
strain rates.
The tendency that small events are suppressed with in-

creasing shear rates is also borne out by the distribution
of the number of bubbles that change neighbors during an
energy drop, as shown in Fig. b. Note that unlike the pre-
vious curves, P (N) is plotted here on a linear scale. Two
systematic trends emerge with increasing γ̇: there are
relatively fewer small events, i.e. P (N) decreases signif-
icantly at small N/Nbub, and the tail extends to slightly
higher N/Nbub. For γ̇ ≥ 10−1 the distribution is fairly
flat, suggesting that no one event size is dominant and
there are numerous large events of the order of the sys-
tem size. This suggests that at this shear rate the system
no longer relaxes stress by intermittent rearrangements,
but by continuous flow, as confirmed by our movies of the
runs [20]. The trend in P (N) is seen in larger systems as
well. For the 900-bubble system we also find that as the
shear rate increases from 10−5 to 10−3, the distribution
flattens and extends to higher values of N . The average
number of rearranging bonds increases with shear rate,
consistent with the picture of many bubbles in motion as
the system becomes more liquid-like. We cannot, how-
ever, probe the system at very high shear rates. Data
above a shear rate of about 1 cannot be trusted because
of the nature of the model used. At high rates of strain
the viscous term dominates and the elastic forces are not
strong enough to prevent clumping of bubbles. This is
actually an artifact of the assumption that only overlap-
ping bubbles interact viscously; such clumping does not
occur until much higher strain rates in the mean-field ver-
sion of dynamics. Another reason why we do not study
shear rates higher than unity is because we do not allow
bubble breakup under flow (recall that γ̇ is the capillary
number).
The gradual smoothing with increasing shear rate is

most apparent in Fig c, where we see that the event
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rates of T1 events and energy drops both decrease with
increasing strain rate. For the T1 events, the decrease
is slight, and is primarily due to the fact that the event
duration becomes even longer. The decrease is more dra-
matic for the energy drop events. With increasing strain
rate, the average energy drop increases and the rate of
energy drops decreases.

Let us now re-examine the behavior of all quantities
in Fig., focusing on behavior at low shear strain rates.
Note that all quantities appear to approach a reasonably
well-defined “quasistatic” limit insensitive to the value
of γ̇. We thus have the following picture. For small γ̇,
the time between rearrangements is typically much longer
than the duration of a rearrangement, implying there is
adequate time for the system to relax stress. As the shear
rate increases, bubbles are constantly in motion and can-
not fully rearrange into local-minimum-energy configura-
tions. Therefore, the viscous interactions dominate, and
the system flows like an ordinary liquid.

C. Mean-Field vs Local Dissipation

In the bubble model at higher strain rates, the be-
havior was seen to depend on the form of dissipation:
clumping for local dissipation, Eq. 5, as opposed to no
clumping for mean-field dissipation, Eq. 4. In this sec-
tion we will investigate whether dissipation affects the
low-strain-rate behavior as well. If there truly exists a
quasi-static limit as γ̇ → 0, as suggested by the plots in
the previous section, then the form of dissipation should
have no influence. This need not occur, since once a re-
arrangement starts it proceeds with finite speed accord-
ing to dynamics set by a competition between surface
tension and dissipation forces. For example, it is con-
ceivable that the mean-field dynamics might discourage
the mushrooming of a tiny shift in bubble position into a
large avalanche, whereas local dynamics might not. An-
other important issue is that differences in mean-field vs
local dissipation could be relevant to true physical dif-
ferences between bulk foams and Langmuir monolayers
at an air/water interface. For three-dimensional foams,
the shear is transmitted through the sample via bubble-
bubble interactions, so the dissipation might be better
captured by the local dissipation model. In contrast,
for two-dimensional Langmuir monolayer foams the sub-
phase imposes shear on the monolayers, and the dissipa-
tion might therefore be closer to that calculated with the
mean-field model.

To investigate the influence of mean-field vs local dy-
namics, we can simply compare avalanche statistics. This
is done in Fig. for 144-bubble systems at four different
area fractions, all sheared at γ̇ = 10−3. The top plot
shows results for the energy-drop distribution, P (∆E),
with solid/dashed curves for local/mean-field dissipation

respectively. There is no significant difference seen be-
tween the two choices of dissipative dynamics. This is
also true of the spatial extent of the rearrangements, as
seen in the middle plot for the probability distribution
P (N) of rearranging bubbles. The bottom plot for the
rate of energy-drop and T1 events also shows little signif-
icant difference between mean-field and local dynamics.
The only distinction is a slightly greater rate of T1 events
in the mean-field case. This reflects the difference in du-
ration of T1 events within the two models; we find that
T1 events tend to last longer within the local dissipation
model. Since we do not count T1 events that last longer
than a strain of 2, we count fewer events within the local
model than the mean-field version. Thus, the differences
in S(T 1) may simply be due to our method of counting
T1 events. Taken together, the three plots in Fig. en-
courage us to believe that the rearrangement dynamics
predicted by the model are robust against details of the
dissipation. They also provide further evidence for the
existence of a true quasi-static limit, where the effect of
strain rate is only to set the rate of rearrangements.

D. Gas Area fraction

Finally, we turn to the issue of how the elastic character
of a foam disappears with increasing liquid content, and
possibility of critical behavior at the melting transition.
The principal signature of the melting, or rigidity-loss,
transition is that the shear modulus G = limt→∞ σ(t)/γ
vanishes and the foam can no longer support a nonzero
shear stress without flowing. In two-dimensional systems,
this happens at a critical gas fraction corresponding to
that of randomly packed disks, φc ≈ 0.84. This has been
seen in several different simulations, where the gas frac-
tion was tuned to within 0.05 of the transition [9–11] and
where it was tuned through, and even below, the transi-
tion [12,13]. Other signatures of melting are that the os-
motic pressure vanishes as a power-law [12,13,16] the co-
ordination number decreases towards about 4 as a power-
law [9–13,22], and that the time scale for stress relax-
ation following an applied step-strain appears to diverge
[12,13]. Here we look for signs of melting in the statistics
of avalanches during slow, quasi-static flow. Within our
model, an increase in liquid content causes a decrease in
the average overlap between neighboring bubbles. This
in turn produces a decrease in the average elastic energy
of the system, Eb and sets the scale for the average en-
ergy drop 〈∆E〉 per rearrangement. It therefore should
also decrease at lower gas fractions φ.

The energy drop and size statistics of rearrangement
events for increasingly wet foams were shown already in
Fig. , but were discussed only in the context of mean-
field vs local dissipative dynamics. A clear trend emerges
when we examine the φ dependence specifically. In the
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top plot Fig. a for P (∆E), we see that the power-law be-
havior for small events does not change, but that the ex-
ponential cut-off moves towards larger values of ∆E/Eb

as φ → φc. Though both 〈∆E〉 and Eb decrease towards
zero, the latter evidently vanishes more rapidly. This
results in a broader distribution of event sizes near the
melting transition; as the system becomes more liquid,
large events are more prevalent. The probability distri-
bution P (N) for the numbers of bubbles involved in rear-
rangement events is shown in Fig. b. It displays similar
trends as a function of φ, but not as pronounced as in
P (∆E). Namely, the power law for small N is unaffected
by φ, but the exponential cut-off moves towards slightly
larger events as φ → φc. Thus, although the scale of en-
ergy drops increases dramatically, the number of broken
bonds only increases marginally. Note, however, that the
largest events include almost all the bubbles in the sys-
tem; thus, the relatively weak dependence of P (N) on φ
could be a finite-size effect in these Nbub = 144 systems,
as we will show below.
The behavior of S, the number of energy drops and

T1 events per bubble per strain, is shown in Fig.c. As
the system becomes wetter, there is no noticeable change
in the event rate S(∆E) for energy drops. In contrast,
if our definition of nearest neighbors only includes over-
lapping bubbles, we find that S(T 1) decreases as φ de-
creases. This runs counter to expectations–bubbles in a
wet foam should have more freedom to move and rear-
range because the energy barrier between rearrangements
is lower and the yield strain is smaller. The apparent
drop arises because the bubble coordination number is
much higher in a dry foam (roughly 6) than in a wet
foam (roughly 4). As a result there are more overlapping
neighbors for each bubble in a dry foam, and more possi-
bilities for the occurrence of T1 events. In the wet foam,
however, there are many T1 events that do not satisfy
the stringent starting or ending configurations because
neighboring bubbles do not overlap. It is therefore appro-
priate in wet foams to modify the criterion for neighbors
to |ri − rj | < a(Ri + Rj), where the proximity coeffi-
cient a is taken as 1/φ. When T1’s are computed with
this definition, we find no significant dependence on area
fraction.
The fact that the power-law region of the energy drop

distribution is more extended at lower area fractions sug-
gests the possibility of a critical point as the close-packing
density, φc, is approached from above. This would im-
ply a pure power-law distribution P (∆E) for the energy
drops at φc, which would presumably be accompanied by
a growing correlation length, as well as the growing re-
laxation time observed previously in Refs. [12,13]. Note,
however, that the distribution of the number of bubbles
involved in a rearrangement, P (N), does not depend very
strongly on φ for the 144-bubble systems of Fig. ; further-
more, the cut-off to power-law behavior is always present,
no matter how closely φc is approached. This raises the

question of whether finite system size effects are more im-
portant at values of φ near φc (recall from Fig. that there
were no significant system size effects near φ = 1). To
examine this, we have plotted the dependence of P (∆E),
P (N) and S on system size in Fig. . We indeed find a
strong system size dependence in P (∆E) at φ = 0.85
just above the melting transition, with no saturation at
the largest size studied (900 bubbles). This is consistent
with the existence of a long correlation length.

The distribution of the number of bubbles per energy
drop, P (N) also shows signs of criticality. Recall from
Fig. b that at φ = 1, the tail of P (N) was cut off at
smaller and smaller values of N/Nbub with increasing sys-
tem size at φ = 1. This was consistent with a short cor-
relation length, characteristic of localized rearrangement
events. At φ = 0.85, the behavior with increasing Nbub

is quite different, as shown in Fig. b. The distribution
falls off slightly more rapidly with N/Nbub at larger sys-
tem sizes (probably because φ = 0.85 still lies above φc),
but the largest events in the system still involve the same
fraction N/Nbub ≈ 0.75 of bubbles, indicating a correla-
tion length that is comparable to the largest system size
studied (30 bubble diameters across).

The event rates for energy drops and T1 events for the
different system sizes at φ = 0.85 are shown in Fig. c.
The behavior is not markedly different from that found
for the drier foam. Recall, however, that we have ad-
justed our definition of a T1 event by changing the prox-
imity coefficient a with area fraction, so little can be ex-
pected to be learned from this measure.

VI. DISCUSSION

We have reported the results of several different mea-
sures of rearrangement event dynamics in a sheared foam.
A comparison of the probability distribution of energy
drops P (∆E) with the probabilty distribution of bubbles
changing neighbors P (N) shows that the size of an energy
drop correlates well with the number of bubbles involved
in a rearrangement (see Fig. ). This is valuable because
the energy drop-distribution has been widely studied the-
oretically, but is very difficult to measure experimentally.
The number of bubbles involved in rearrangements, how-
ever, can be probed with multiple light scattering tech-
niques on three-dimensional foams [5] and by direct vi-
sualization of two-dimensional foams [7]. A study of the
rate of occurrence of topological changes (T1 events) pro-
vides a further link to experiments.

In general, our results agree with experiments on three-
dimensional and two-dimensional foams. Despite its sim-
plicity, the bubble model appears to capture the main
qualitative features of a sheared foam remarkably well.
For example, we find that the size of rearrangement
events is typically small at low shear rates and at area
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fractions not too close to φc. This is in accord with exper-
iments of Gopal and Durian [5], and Dennin and Knobler
[7], as well as simulation results of Bolton and Weaire [10]
and Jiang and coworkers [14]. Our results do not agree
with those of Okuzono and Kawasaki [8], however, who
found power-law distributions of rearrangement events at
φ = 1 in two dimensions.
The largest discrepancies between our results and those

of others lie in the statistics of T1 events. We find that
the number of T1 events per bubble per unit strain is
of order unity and is generally insensitive to shear rate
and gas area fraction. Kawasaki et al. [21] found similar
results: S(T 1) = 0.5 and no dependence on shear rate.
In the Potts-model simulations [14], however, S(T 1) is
unity at γ̇ = 10−3 but falls to about 0.01 at γ̇ = 10−1.
The monolayer experiments [7] yielded values of

S(T 1) ≈ 0.15, nearly an order of magnitude lower than
predicted by our simulations. Durian [13] reported a
number of rearrangement events per bubble per unit
strain for simulations of a 900-bubble system at γ̇ = 10−5

that was comparable to the monolayer result, but he
measured the number of energy drops per bubble per
unit strain, S(∆E), not the T1 event rate, S(T 1). Note
that our energy-drop event rate, S(∆E), agrees well with
Durian’s earlier result.
One might guess that the discrepancy between our

measurement of S(T 1) and that of the monolayer exper-
iment might lie in the method of analysis used to count
T1 events. Unlike the simulations, in which the number
of T1 events can be computed from an analysis of bubble
positions as a function of time, the number of T1’s in the
monolayer studies was determined by repeated viewing of
videotapes of the experiments and counting of the events
as the foam cells reach their midpoint configuration. It
seemed possible, then, that the difference between the
simulation and the experiment was the result of a system-
atic undercounting of the number of the events. To check
this possibility, the number of T1’s in a simulation run
was determined by observations of the animated bubble
motions. The number of events missed in this unauto-
mated counting was only 2% of the total.
We believe that the origin of the discrepancy between

the T1 event rates in the simulation and the monolayer
experiment lies in the yield strain. While the yield strain
in the model system is less than 0.2, which is consis-
tent with that measured in three-dimensional foams, that
in the monolayer foams is closer to unity. Bubbles in
monolayer foams can therefore sustain very large defor-
mations without inducing rearrangements. The T1 event
rate should be inversely proportional to the yield strain.
Thus, the ratio of S(T 1) in the simulation to S(T 1) in
the experiment should equal the ratio of the yield strain
in the experiment to the yield strain in the simulation.
This is exactly what we find.
One of our main results is that a quasistatic limit ex-

ists within the bubble model. We find that the statistics

of rearrangement events are independent of shear rate at
low shear rates. This agrees with the monolayer experi-
ments [7], which measured T1 event rates at two different
shear rates, γ̇ = 0.003s−1 and 0.11s−1. Dennin and Kno-
bler found no noticeable difference in the T1 event rate,
despite the fact that the shear rates studied differ by a
factor of thirty. In addition, Gopal and Durian found
that the number of rearrangement events per bubble per
second in a three-dimensional foam is given by the event
rate in the absence of shear plus a term proportional to
the shear rate. In their case, the event rate was nonzero
in the absence of shear because of coarsening; we have
neglected this effect in our simulations. However, we do
find that the rearrangement event rate per unit time is
simply proportional to the shear rate at low shear rates.
Thus, experimental results in both two and three dimen-
sions contradict the simulation results of Jiang, et al.
[14], which find no quasistatic limit, but agree with our
findings.
The form of dissipation used in the bubble model is a

simple dynamic friction, which does not capture the hy-
drodynamics of fluid flow in the plateau borders and films
in a realistic way. However, our results suggest that we
may still be capturing the correct behavior at low shear
rates. We find that the rearrangement event statistics
are the same whether we use mean-field or local dissipa-
tion at low shear rates. This suggests that the statistics
are determined by elastic effects rather than viscous ones
at low shear rates, and that the behavior in that limit
should be independent of the form of viscous dissipation
used.
Finally, our results as a function of gas area fraction

imply that there may be a critical point at the melt-
ing transition, as the area fraction approaches the ran-
dom close-packing fraction from above. Previous studies
showed that both the shear modulus and yield stress van-
ish as power laws at the melting transition [10,12], and
that the stress relaxation time appears to diverge [12].
Here, we have shown by finite-size studies that there is
also a correlation length, characterizing the size of rear-
rangements, which grows as one approaches the melting
transition. We also find that the distribution of energy
drops appears to approach a pure power law in that limit.
The existence of a critical point at the melting tran-

sition remains to be tested experimentally. The vanish-
ing of the shear modulus and osmotic pressure at the
transition has been measured by Mason and Weitz [23]
for monodisperse, disordered emulsions, and by Saint-
Jalmes and Durian for polydisperse gas-liquid foams [24].
However, these small-amplitude-strain rheological mea-
surements could not test whether there is a diverging
length scale for rearrangements in a steadily sheared sys-
tem at the melting transition. On the other hand, Gopal
and Durian [5] have measured the size of rearrangement
events in a gas-liquid foam, but only at packing fractions
well above the melting transition. At lower packing frac-
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tions close to the melting transition, the liquid drains too
quickly from the foam due to gravity to permit such mea-
surements. Experiments under microgravity conditions
should be able to resolve whether the melting transition
is indeed a critical point.
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FIG. 1. Elastic energy and rearrangements vs strain for a 144-bubble system, with gas (area) fraction φ = 1, being slowly
sheared at rate γ̇ = 10−3. The top plot (a) shows the total elastic energy stored in the “springs” of overlapping bubbles. Plot
(b) shows the size of the energy drops that occur as the system is sheared. Note that the duration of an energy drop is very
short compared to the time between energy drops at this low shear rate. Plot (c) shows the corresponding fraction of bubbles
that experience a change in overlapping neighbors during each precipitous energy-drop event. The bottom plot (d) marks the
mid-point of each T1 event, where two bubbles begin to intrude between two others; these have no direct correspondence to
the energy drop events seen in (a) and (b). The behavior of all the properties shown here indicates that flow is accomplished
inhomogeneously and intermittently by sudden rearrangements.
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∆γ = 0 ∆γ = 0.0023

∆γ = 0.0045
FIG. 2. Sequence of snapshots showing the nature of bubble rearrangements during an energy drop of average size in a

144-bubble system at φ = 1.0 sheared at a rate of γ̇ = 10−3. The magnitude of the drop (∆E/Eb = 2.61) and the fraction
of bubbles that change overlapping neighbors (N/Nbub = 0.18) are both close to average. The first three frames show the
configurations of bubbles at the start, middle and end of the energy drop, respectively. As the event proceeds, more and more
bubbles change overlapping neighbors, as shown by the gray bubbles. The fourth frame shows the final configuration with
bubbles in light gray superimposed on the initial configuration with bubbles in black. Most of the bubble motions involve
subtle shifts of bubble positions; there are no topological rearrangements in this event. Note that although this event appears
to nucleate at the top, in general the events appear randomly throughout the sample.
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∆γ = 0 ∆γ = 0.00975

∆γ = 0.0195

FIG. 3. Sequence of snapshots showing bubble rearrangements during a large energy drop in a 144-bubble system at φ = 1.0
and γ̇ = 10−3. The magnitude of the drop (∆E/Eb = 13.18) and the fraction of bubbles that change overlapping neighbors
(N/Nbub = 0.44) both fall in the upper tails of the distributions. The first three frames show the configurations at the beginning,
middle and end of the energy drop; the gray bubbles have changed overlapping neighbors since the start of the drop. The
fourth frame shows the final configuration along with the tracks made by the centers of the bubbles during the event. We did
not use the same scheme as in the fourth frame of Fig. 2 to show the rearrangements because the bubble motions were too
extensive in this case.
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FIG. 4. The size of energy drops as a function of the number of bubbles that concurrently change overlapping neighbors
during the energy drop, for a 900-bubble system at φ = 1.0 driven at γ̇ = 10−3. This indicates that the fraction of bubbles
that change overlapping neighbors during an energy drop increases with the size of the energy drop.

∆γ = 0 ∆γ = 0.025

 ∆γ = 0.125 ∆γ = 0.165

φ = 0.85

γ = 10-3

FIG. 5. A sequence of snapshots showing a T1 event in a wet foam at φ = 0.85 as the system is strained at γ̇ = 10−3. During
the event, the black pair of bubbles moves together and the gray pair moves apart.
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FIG. 6. The probability distribution for the duration of (a) energy-drop rearrangement events and (b) T1 events, for a
144-bubble system φ = 1 driven at γ̇ = 10−3. Note that the typical duration of T1 events is significantly longer than that of
energy drops.
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FIG. 7. Effect of system size at φ = 1.0 and γ̇ = 10−3. (a) Probability density distribution of energy drops ∆E scaled by
Eb, the average energy per bubble for each run. There is a power-law region (the straight line has a slope of -0.7) followed
by a sharp cutoff. The cutoff depends only weakly on the system size and converges for the larger systems. (b) Probability
distribution of the number of bubbles that change overlapping neighbors during a rearrangement. The tails of the distribution
extend to smaller fractions of the total number of bubbles in the system as the system size increases, showing that the events
are spatially localized. (c) Event rate for T1 events (solid circles) and energy drops (open squares). Error bars in this and
subsequent figures represent the variations found in independent runs (at least three, with the exception of the 900-bubble
system for which only two runs were carried out) with the same initial conditions. Where no error bar is indicated the variation
is smaller than the sixe of the symbol. The number of energy drops per bubble decreases as the system size increases, reaching
the same value for the 324-bubble and 900-bubble systems. There are, however, more T1 rearrangement events per bubble at
the larger system size.
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FIG. 8. Effect of shear rate for a 144-bubble system at φ = 1.0. (a) There is no systematic change in the power-law region of
the probability distribution of energy drops. The cutoff moves towards larger event sizes as γ̇ increases. (b) A stronger trend is
apparent in the probability distribution of rearranging bubbles. As γ̇ increases, the distribution flattens. For the highest rate,
γ̇ = 0.1, the distribution is fairly flat, suggesting that no one event size is dominant and the largest events are of the order of
the system size. (c) Both the event rates for T1 events and energy drops decrease as the system is sheared faster. The T1 event
rates at γ̇ = 10−3 and 10−2 are the same within error. Note that a well-defined quasi-static limit is approached as γ̇ → 0.
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FIG. 9. Effect of gas area fraction and the form of viscous dissipation for a 144-bubble system sheared at γ̇ = 10−3. The
probability distribution of both (a) energy drops, and (b) number of bubbles changing overlapping neighbors during an event,
are given at four area fractions: φ = 1.0, 0.95, 0.90, and 0.85. Heavy and light curves are for mean-field and local versions of
dissipative dynamics, respectively. Note that the dynamics do not influence the behavior but that the events become larger as
the gas fraction approaches the melting point, φc ≈ 0.84. Part (c) shows the event rates for T1 events and energy drops; these
are insensitive to both gas area fraction and type of dynamics.
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FIG. 10. Effect of system size at φ = 0.85 and γ̇ = 10−3. (a) There is no change in the power-law region of the probability
density distribution compared with Fig. 6a. However, the cutoff increases and there is no convergence for the largest system
sizes. (b) Even at the largest system sizes, the largest events involve a significant fraction of the bubbles in the system,
indicating that the events are much more spatially extended than at φ = 1. (c) As in Fig. 7c, the number of T1 events and
energy drops show the opposite trend. The event rates for energy drops indicate that finite size effects are more pronounced at
this lower area fraction. Unlike the saturation seen in Fig. 7c, the event rate continues to drop as the system size increases.
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