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For a class of generalized Hubbard models, we determine the maximal stability region for the
superconducting η-pairing ground state. We exploit the Optimized Ground State (OGS) approach
and the Lanczos diagonalization procedure to derive a sequence of improved bounds. We show that
some pieces of the stability boundary are asymptotic, namely independent on the OGS cluster size.
In this way, necessary and sufficient conditions are obtained to realize superconductivity in terms
of an η-pairing ground state. The phenomenon is explained by studying the properties of certain
exact eigenstates of the OGS hamiltonians.

Generalized Hubbard models are important theoreti-
cal frameworks for the study of superconductivity. Apart
from special cases, they are not solvable and rigorous re-
sults on their physical properties are quite valuable.

The inclusion of nearest neighbour extra couplings be-
yond the on site Coulomb interaction has a long history
and is still an interesting issue. Indeed, the qualitative
effects of these interactions is not definitely understood
and examples can be provided where they are not negli-
gible at all.

As is well known, a good marker for superconductivity
is off-diagonal long-range order (ODLRO) [1], a property
that makes sense in any number of dimensions and im-
plies both Meissner effect and flux quantization. Ground
state ODLRO can be detected by studying the asymp-
totic behaviour of fermion correlation functions [2]. Of
course, if the ground state is analitically known, it can
be checked explicitely. This is the case of the so-called
η-pairing [3] states that exhibit ODLRO and, under some
constraints, can be the ground states of certain general-
ized Hubbard models.

When an η-pairing state is discovered to be an ex-
act eigenstate, the next problem is to determine the re-
gion in the coupling space where it is also the ground
state. To answer this question many analytical meth-
ods have been developed to establish rigorous bounds
for the superconducting region. Among them, we re-
call the positive semidefinite operator approach [5,6] and
the bounds derived by application of Gerschgorin’s theo-
rem [7]. The algorithm which however appears to be the
simplest and most powerful is the Optimal Ground State
(OGS) scheme proposed for generalized Hubbard mod-
els [8] and recently applied to the case of next to nearest
neighbour couplings [9]. The method is based on the ex-
act diagonalization of a certain local hamiltonian defined
over a cluster of sites. If the cluster is made larger, the

superconducting region is generally expected to expand.
In the limit of an infinite cluster we obtain exact bounds.

For simplicity, in the following we shall call supercon-
ducting (SC) region, the subset of coupling space where
the η-pairing state is the ground state. In this Letter,
we apply the OGS algorithm to study the stability of the
superconducting η-pairing state with momentum π. We
discuss the behaviour of the OGS bounds as a function
of the cluster size using the Lanczos algorithm to diag-
onalize the cluster hamiltonian. We obtain an improved
SC region that can be considered numerically asymptotic
and discuss in details the inclusion problem by stating
the conditions under which larger clusters are expected
to give better bounds. Another interesting result is that
some pieces of the boundary between the SC and non
SC regions are independent on the cluster size and de-
termine necessary and sufficient conditions for η-pairing
superconductivity. We explain these stable boundaries
by means of certain exact eigenstates of the OGS hamil-
tonians whose properties are crucial in this respect.

Let us consider the Hamiltonian of a one dimensional
generalized Hubbard model (we denote by 〈i, j〉 the sum
over nearest neighbour sites)

H = −t
∑

〈i,j〉,σ=↑,↓

(c†iσcjσ + c†jσciσ)+

+X
∑

〈i,j〉,σ=↑,↓

(ni,−σ + nj,−σ)(c
†
iσcjσ + c†jσciσ) +

+ U
∑

i

(

ni↑ −
1

2

)(

ni↓ −
1

2

)

+

+ V
∑

〈i,j〉

(ni − 1)(nj − 1) + Y
∑

〈i,j,〉

(p†ipj + p†jpi) +

+
1

2
Jxy(S

+
i S

−
j + S+

j S
−
i ) + JzS

Z
i S

Z
j , (1)
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where ciσ and c†iσ are canonical Fermi operators obey-

ing {c†iσ, cjσ′} = δijδσσ′ and {ciσ, cjσ′} = {c†iσ, c
†
jσ′} = 0.

The number operators are defined as usual: niσ = c†iσciσ
and ni = ni↓ + ni↑. The operator pi

† creates pairs

p†i = c†i↑c
†
i↓. The Heisenberg exchange interaction is writ-

ten as usual in terms of su(2) operators S+
i = c†i↑ci↓,

S− = (S+)† and SZ = 1
2 (n↑ − n↓).

The Hamiltonian in (1) contains many couplings: X
parametrizes the bond-charge repulsion interaction which
has been related to high-Tc materials [10]; U is the usual
on site Coulomb interaction; V is the nearest neighbour
charge-charge coupling; Y controls the pair hopping term
as in the Penson-Kolb-Hubbard models [11]. Finally, Jxy
and Jz are the t− J like Heisenberg exchange couplings.
We introduce the η-pairing operator

η† =
∑

n

(−1)np†n, (2)

from which we build the state

|η〉 = (η†)N/2|0〉, (3)

where |0〉 is the empty state and N is the number of lat-
tice sites. The state |η〉 is an eigenstate of H provided
V + 2Y = 0. In this case it describes a half-filled state
with energy

E+ =
1

4
(U + 4V ), (4)

and can be shown to possess ODLRO. Since E+ is an up-
per bound for the ground state energy, a strategy to proof
that |η〉 is the ground state is to find a lower bound E−

and a region in the coupling space where E− = E+. The
same procedure applies also to other exact eigenstates
like, for instance, the η-pairing state with zero momen-
tum. Also, if V = Y = Jxy = Jz = 0 and t = X , exact
eigenstates can be built by applying η† to eigenstates of
the U = +∞ standard Hubbard model due to the fact
that t = X implies a conserved number of doubly oc-
cupied sites. However, we remark that the state |η〉 is
particularly interesting from a methodological point of
view as can be seen by the complete failure of the naive
Gerschgorin approach [12].
Lower bounds for the ground state of H may be ob-

tained following the OGS approach [8]. The Hamilto-
nian (1) is written as

H =

∞∑

n=−∞

(h(1)n + h
(2)
n,n+1), (5)

where h
(1)
n contains operators acting only on site n and

h
(2)
n,n+1 links site n to site n+1 and depends on operators

acting on both. To recast (5), we introduce extended
operators

h̃(k)n =
1

2
h(1)n +

n+k−2∑

m=n

h
(2)
m,m+1 +

+

n+k−2∑

m=n+1

h(1)m +
1

2
h
(1)
n+k−1, (6)

for any integer k ≥ 2. The local hamiltonian h̃(k) de-
scribes a cluster of k sites. Like H , also h̃(k) is symmetric
under η†. All the states

(η†)p| 0 · · · 0
︸ ︷︷ ︸

k sites

〉, p integer (7)

are degenerate with energy E+ and are precisely those
needed to build the |η〉 state on the infinite lattice (see [8]
for a complete discussion of the k = 2 case). The Hamil-
tonian can be written in terms of h̃(k) as

H =

∞∑

n=−∞

h̃(k)n . (8)

If we denote by E0(N) the ground state energy for a sys-
tem of N sites, the asymptotic ground energy per site is
by definition

E0 = lim
N→∞

E0(N)

N
, (9)

and, for each k, satisfies the rigorous bound

E0 ≥ 1

k − 1
min σ(h̃(k))

def
= E(k)

0 , (10)

where σ(A) denotes the spectrum of the operator A. The
normalization factor 1/(k − 1) takes into account the
number of terms in Eq. (8) which contain a given site.
The right hand side of Eq. (10) depends on the cluster
size k and a better bound is expected as k increases.
However, strictly speaking, this is false. Let us write a
cluster of k sites in terms of smaller clusters

h̃(k)n = h̃(k−l)
n + h̃

(l+1)
n+k−l−1, 1 ≤ l ≤ k − 2. (11)

From (11) we obtain the exact inequalities

E(k)
0 ≥ k − l − 1

k − 1
E(k−l)
0 +

l

k − 1
E(l+1)
0 , (12)

and in particular

E(2k−1)
0 ≥ E(k)

0 . (13)

This allows to build sequences of bounds converging to
the exact bound in the infinite cluster size limit. In more
details, Eq. (13) splits into disjoint sequences of cluster
sizes as follows

2 ⊂ 3 ⊂ 5 ⊂ · · · ,
4 ⊂ 7 ⊂ 13 ⊂ · · · , (14)
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where the notation means that each sequence gives bet-
ter and better bounds. We notice that in general two
sequences are not related at all and, in particular, 3 ⊂ 4
may be false as we shall see in explicit examples. What
can be stated in full generality is that the minimal choice
k = 2 is always the worst bound since from

E(N+1)
0 ≥ N − 1

N
E(N−1)
0 +

1

N
E(2)
0 , (15)

we proof inductively that ∀N ≥ 2 we have

E(N)
0 ≥ E(2)

0 . (16)

Keeping these remarks in mind, we study the size depen-
dence of the conditions under which (1) with Y = −2V
admits |η〉 as its ground state by explicit diagonalization
of h̃(L) on clusters of increasing sizes. The OGS method
requires diagonalization of the local hamiltonian in all
sectors of definite up and down electron numbers; for the
numerical diagonalization we use the Lanczos algorithm.
In the following we shall always assume t ≡ 1 and denote
by L the cluster size.

Since the couplings constants space is large, we decide
to discuss separately what happens with the Heisenberg
exchange interaction switched on or off. Let us begin
with Jxy = Jz = 0.

In Fig. 1 we show at X = 0 the size dependence of
the bounds when V > −1. As can be seen, there are
regions where the corrections are definitely negligible be-
yond L = 3, i.e. V > −0.4. On the other hand, around
V = −0.5, size effects can be important up to large clus-
ter sizes. We remark that this figure does not show any
non trivial relationship among the bounds obtained at
different L: they just improve monotonically.

In Fig. 2 we show the best bounds obtained with L = 6
at several values of X . In the inset we expand the region
around V = −2. A remarkable feature of the plot is that
an enveloping straight line appears around V = −1. Suc-
cessive corrections are quite small and the region shown
can be considered maximal from any practical point of
view [13].

In Fig. 3 we plot at four different X the difference
∆U(L) = U(L) − U(2) between the boundary curves at
L > 2 and the minimal one at L = 2. The inclusion
tree (14) is non trivially satisfied and indeed the L = 4
bound is not always better than the L = 3 one. As a sec-
ond remark, we observe that at each X there is a piece of
the boundary where finite size corrections vanish. This
turns out to happen between two of the L = 2 boundary
points. As shown in [8], the result at L = 2 is that a
sufficient condition for |η〉 to be the the ground state is

V ≤ 0, (17)

U ≤ −2 max

(

2 + 2V, 2|1− 2X |+ 2V, V − (1−X)2

V

)

.

For 0 ≤ X ≤ 1 (we study this case only), the differ-
ence ∆U vanishes between the intersections of the curves
U = −4(1 + V ) and U = −2(V − (t − X)2/V ), namely
for |V + 1| ≤

√

X(2−X).

Let us now discuss why this stable boundary subset ap-
pears. For each value of L, the normalized cluster Hamil-

tonian 1
L−1 h̃

(L) has many eigenstates |E(L)
i (U, V,X)〉

(i = 1, . . . , dim(h̃)) which we label by their eigenvalue.

Let X play the role of a parameter; following the OGS

approach, the inequalities E
(L)
i ≥ E+ determine the su-

perconducting region in the (U, V ) plane. Each point

of its boundary satisfies E
(L)
i = E+ for some index i.

Hence, if a subset of the boundary turns out to be L
independent, a possible reason can be the existence of
an eigenvalue independent on L. A trivial case is pro-
vided by the states (η†)p|0〉 (p integer) where |0〉 is the
empty state for h̃(L). However, in this case, the condi-
tion E(L) = E+ is identically satisfied for all U , V and
X and does not determine any boundary. To find a non
trivial eigenstate with eigenvalue independent on L we
can consider the one particle sector (i.e. n↑ = 1, n↓ = 0
or viceversa). The two states

|Sσ〉 =
L∑

n=1

c†nσ|0〉, σ =↑, ↓, (18)

are indeed exact eigenstates of 1
L−1 h̃

(L) provided U =
−4(1 + V ) and in this case their eigenvalue is precisely
E+ = −1 (t ≡ 1). The states |Sσ〉 are thus responsible
for the stable boundary. To understand why it is con-
fined to |V + 1| ≤

√
2X −X2 we introduce additional

eigenstates of h̃(L). Indeed, on the line U = −4(V + 1),
the su(2) singlet state (X 6= 1)

|γ〉 =







∑

i6=j

c†i↑c
†
j↓ + ρ

∑

i

1− (−1)i+L

2
p†i






|0〉, (19)

can be shown to be an exact eigenstates of 1
L−1 h̃

(L) with
eigenvalue E+ if and only if ρ = (2 + V )/(1 − X) and
V = −1 ±

√
2X −X2. This is the L > 2 generalization

of the state |ψ±〉 discussed in [8] in the L = 2 case. It
forbids to extend the bounds associated to |Sσ〉 beyond
the points |V + 1| =

√
2X −X2. The case X = 1 is

singular and must be treated separately; the number of
doubly occupied sites is conserved and splitting may oc-
cur. For instance, the state |γ+〉 with V = 0 splits into

the independent eigenstates |γi〉 = p†i |0〉.
The above analytical and numerical results lead us to

the conclusion that the inequality U ≤ −4(1+V ) is a nec-
essary and sufficient condition for |η〉 being the ground
state in the subset of the coupling space constrained by
the conditions t ≡ 1, Y + 2V = 0, 0 < X < 1 and
|V + 1| ≤

√

X(2−X).
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The above facts do not change qualitatively when the
Heisenberg exchange interaction is switched on. To sim-
plify the analysis, we consider the special point Jxy =
Jz = −2Y which allows for a comparison with the re-
sults illustrated in [6,8].
The plot of Fig. 4 is analogous to that of Fig. 1; we

show the OGS bounds in the (U, V ) plane at X = 0. A
part of the boundary is clearly independent on L. This
fact is clearly visible in the left inset and mostly in Fig. 5
where (as in Fig. 3) the asymptotic part of the bound-
ary can be seen as a function of X . In particular, the
left edge is at V = −1 and is independent on X . These
features can be analyzed as in the previous case. The
bounds valid at L = 2 are

V ≤ 0, (20)

U ≤ −2 max

(

0, 2 + 2V, 2|1− 2X |+ 2V, 4V − (1−X)2

V

)

,

and the stable part (with 0 ≤ X ≤ 1) is that between the
intersections of the lines U = 0, U = −4(1 + V ) and the
curve U = −2(4V −(1−X)2/V ). Thus we obtain the fol-
lowing interval for V : −1 ≤ V ≤ 1

2 (1−
√
3− 4X + 2X2).

As before, the line U = −4(1+ V ) appears at all L since
on it the states |Sσ〉 are eigenstates of 1

L−1 h̃
(L). More-

over, as before, there are two states which forbid to cross
the above interval for V . At the right edge, such a state
has the form of Eq. (19) with ρ = 2(1− V )/(1−X) and
V = 1

2 (1 −
√
3− 4X + 2X2). At the left edge, V = −1,

the exact (X independent) eigenstate is instead

|γ′〉 =




∑

i<j

c†i↑c
†
j↓ +

∑

i>j

c†j↓c
†
i↑



 |0〉. (21)

To summarize, in this case, our conclusion is that un-
der the conditions t = 1, Y + 2V = 0, 0 < X < 1
and −1 ≤ V ≤ 1

2 (1 −
√
3− 4X + 2X2), a necessary

and sufficient condition for |η〉 being the ground state
is U ≤ −4(1 + V ).
To conclude, in this Letter we have considered gener-

alized Hubbard models with nearest neighbour couplings
and the problem of determining when the ground state is
a superconducting η-pairing state. By diagonalizing local
hamiltonians associated to clusters of sites with different
sizes we studied the convergence of the OGS bounds. As
predicted in [8], it may happen that the bounds obtained
with the smallest clusters are actually exact. This pe-
culiar situation seems rather typical and indeed we have
shown that there exist subsets of the bounding region
which are asymptotic and remain unchanged as the clus-
ter size is varied. We clarified the origin of the phe-

nomenon by providing several exact eigenstates which
play a crucial role in its derivation.
We thank A. Montorsi for very useful discussions on

generalized Hubbard models and η-pairing superconduc-
tivity.
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FIG. 1. Size dependence of the OGS bounds in the (U,V ) plane at Jxy = Jz = 0 and X = 0.
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FIG. 2. Best OGS bounds obtained with L = 6 clusters. The Heisenberg interactions are switched off Jxy = Jz = 0. The
different curves correspond (from bottom to top) to X = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1.0.
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FIG. 3. Existence of an asymptotic boundary. The plots show U(V ;L) − U(V ; 2) as a function of V (always in units of t)
for four values of X. The function U(V ;L) is the curve obtained from the OGS bounds using clusters of L sites. The inset at
X = 0 shows a non trivial inclusion tree as the cluster size is increased. See also Fig. 4.
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FIG. 4. As Fig. 1, but with Jxy = Jz = −2Y . The left inset shows a non trivial inclusion tree.
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FIG. 5. As Fig. 4, but with Jxy = Jz = −2Y . The inset magnifies a portion of the curves to confirm that the OGS bound is
not asymptotic for V < −1.
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