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We consider core electron photoemission in a localized system, where there is a charge transfer
excitation. Examples are transition metal and rare earth compounds, chemisorption systems, and
high Tc compounds. The system is modelled by three electron levels, one core level and two outer
levels. In the initital state the core level and one outer level is filled (a spinless two-electron problem).
This model system is embedded in a solid state environment, and the implications of our model
system results for solid state photoemission are disussed. When the core hole is created, the more
localized outer level (d) is pulled below the less localized level (L). The spectrum has a leading peak
corresponding to a charge transfer between L and d (”shake-down”), and a satellite corresponding to
no charge transfer. The model has a Coulomb interaction between these levels and the continuum
states into which the core electron is emitted. The model is simple enough to allow an exact
numerical solution, and with a separable potential an analytic solution. Analytic results are also
obtained in lowest order perturbation theory, and in the high energy limit of the semiclassical
approximation. We calculate the ratio r(ω) between the weights of the satellite and the main peak
as a function of the photon energy ω. The transition from the adiabatic to the sudden limit is
found to take place for quite small kinetic energies of the photoelectron. For such small energies,
the variation of the dipole matrix elements is substantial and described by the energy scale Ẽd.
Without the coupling to the photoelectron, the corresponding ratio r0(ω) shows a smooth turn-
on of the satellite intensity, due to the turn on of the dipole matrix element. The characteristic
energy scales are Ẽd and the satellite excitation energy δE. When the interaction potential with
the continuum states is introduced a new energy scale Ẽs = 1/(2R̃2

s) enters, where R̃s is a length
scale of the interaction (scattering) potential. At threshold there is typically a (weak) constructive

interference between intrinsic and extrinsic contributions, and the ratio r(ω)/r0(ω) is larger than its
limiting value for large ω. The interference becomes small or weakly destructive for photoelectron
energies of the order Ẽs. For larger photoelectron energies r(ω)/r0(ω) therefore typically has a weak
undershoot. If this undershoot is neglected, r(ω)/r0(ω) reaches its limiting value on the energy scale
Ẽs for the parameter range considered here. In a ”shake-up” scenario, where the two outer levels do
not cross as the core hole is created, we instead find that r(ω)/r0(ω) is typically reduced for small
ω by interference effects, as in the case of plasmon excitation. For the ”shake-down” case, however,
the results are very different from those for a simple metal, where plasmons dominate the picture.
In particular, the adiabatic to sudden transition takes place at much lower energies in the case of a
localized excitation. The reasons for the differences are briefly discussed.

I. INTRODUCTION

X-ray photoemission spectroscopy PES is a useful tool
for studying the electronic structure of solids. The theo-
retical description of PES is however very complicated1,2

and almost all work has been based on the so-called
sudden approximation.3,4 The photoemission spectrum
is then described by the electron spectral function con-
voluted by a loss function, describing the transport of the
emitted electron to the surface. The sudden approxima-
tion becomes exact in the limit when the kinetic energy
of the emitted electron becomes infinite.3,4 In this limit

we can distinguish between intrinsic satellites, appearing
in the electron spectral function, and extrinsic satellites,
appearing in the loss function. For lower kinetic energy,
this distinction is blurred due to interference effects, and
the satellite weights are expected to be quite different as
we approach the opposite limit, the adiabatic limit, of
low kinetic energy.3 It is then interesting to ask at what
kinetic energy the sudden approximation becomes accu-
rate. This issue has been studied extensively for the case
when the emitted electron couples to plasmons, and it
has been found that the sudden approximation becomes
valid only for very large (∼ keV) kinetic energies.4–6

A semi-classical approach has been found to work ex-
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ceedingly well for the study of plasmon satellites.4,5 In
such a picture, one may take the emitted electron to move
as a classical particle away from the region where the hole
was created. The system then sees the potential from
both the created electron and hole. Initially the electron
potential cancels the hole potential, but as the electron
moves away, the hole potential is gradually switched on.
The switching-on of the hole potential may lead to the
creation of excitations. If the kinetic energy of the elec-
tron is sufficiently large, we can consider the hole poten-
tial as being switched on instantly, and the creation of
excitations around the hole then reaches a limiting value,
the sudden limit. In the semi-classical picture, the per-
turbation is turned on during a time τ = R0/v, where
v is the photoelectron velocity and R0 is the range of
the interaction (scattering) potential between the emit-
ted electron and the excitations. In this picture we also
need to determine the relevant time scale τmax so that
the sudden limit is reached if τ ≪ τmax or v ≫ R0/τmax.
Our analysis within the semi-classical framework shows
that 1/τmax is related to the energy δE of the relevant

excitation of the system and to the strength Ṽ of the
scattering potential.

We find a different characteristic energy scale Ẽs =
1/(2R̃2

s), where R̃s is a characteristic length scale of the
scattering potential. On dimensional grounds one may
argue that the adiabatic-sudden approximation takes
place when the kinetic energy of the emitted electron
is comparable to Ẽs. This would differ dramatically
from the semi-classical approach, where the transition
takes place for energy of the order 1/(Ẽsτ

2
max), i.e. e.g.,

(δE)2/Ẽs or Ṽ 2/Ẽs. Alternatively, and again on dimen-
sional grounds, one may argue that the sudden approx-
imation becomes valid when the kinetic energy of the
emitted electron is much larger than the energy δE of
the relevant excitations of the system,7 in strong con-
trast to the two criteria above. This latter criterion is
however not true in general.8

For many systems with strong correlations, the core
level spectrum can be understood in a charge transfer
scenario.9 This is illustrated in Fig. 1 for a Cu com-
pound, e.g., a Cu halide. In the ground-state, Cu has
essentially the configuration d9 and all the ligand or-
bitals are filled. In the presence of a Cu core hole, it
becomes energetically favorable to transfer an electron
from a ligand to the d-shell, obtaining a d10 configura-
tion on the Cu atom with the core hole. Due to the
hybridization between the d9 and d10 configurations, the
states are actually mixtures of the two configurations, as
indicated in Fig. 1. In the photoemission process there
is a nonzero probability that the outer electron will not
stay on the ligand, but is transferred to the lower energy
d-like state. This “shake-down” process corresponds to
the leading peak in the spectrum, while the process where
the outer electron stays on the ligand corresponds to the
satellite. This kind of model has been applied to rare
earth compounds,9,10 chemisorption systems,11,12 transi-

tion metal compounds,13–17 and High Tc compounds.18
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FIG. 1. Schematic view of the Cu 3s charge transfer pho-
toemission. Here a is the Cu 3d level and b is a ligand (L)
valence state for the symmetric case.

Our simple model allows an accurate numerical calcu-
lation of the photocurrent either by integrating the time-
dependent Schrödinger equation or by directly inverting a
resolvent operator (QM). We also derive analytic results
with a separable potential. These results are compared
with the semi-classical theory (SC), and with first order
perturbation theory (PT). In both these cases we have
analytic results, which is very useful for understanding
the physics of the problem.
The impurity model discussed here differs in certain

important aspects from a real solid. To start with, for a
solid we never reach the limit of a pure intrinsic spectrum
since when the cross section for extrinsic scattering goes
to zero, the range from which the photoelectrons come
goes to infinity. In our impurity model, on the other
hand, the extrinsic scattering approaches zero at high
kinetic energies. Secondly, for a solid, we discuss excita-
tions in the continuum and not as here discrete energy
levels.
For the coupling to plasmons, the adiabatic-sudden

transition takes place at large kinetic energies where
the SC approximation is very accurate.4,5 The relevant
length scale is given by the plasmon wave length λ =
2π/q and the relevant time by the inverse plasmon fre-
quency ωq. Large interference effects are then connected
with a large phase velocity ωq/q, as discussed e.g. by
Inglesfield.19 Since long wave-length plasmons play an
important role these large interference effects for small
q delay the approach to the sudden limit, which only is
reached at very high kinetic energies (∼ keV).
For the localized excitations studied here the relevant

length scale is much shorter. The SC theory then predicts
that the transition takes place at correspondingly smaller
kinetic energies. This is indeed what we find from the
exact solution of our model. This has two consequences.
Firstly, the SC treatment itself is not valid at such small
energies, and we have to rely on QM treatments. Actu-
ally, although the SC treatment correctly predicts a small
transition energy, we find it predicts qualitatively wrong
dependencies on the relevant parameters. Secondly, the
smaller energy scale means that the energy variation of
the dipole matrix elements becomes very important. The
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dipole matrix element grows rapidly on an energy scale
Ẽd, which can become very important for the adiabatic-
sudden transition.
We study the ratio r(ω) between the weights of the

satellite and the main peak as a function of the photon
energy ω for the emission from a 3s level. First we con-
sider the case when the scattering potential between the
electron and the target is neglected. We find that the
corresponding ratio r0(ω) strongly depends on the ratio

between the excitation energy δE and Ẽd. If δE/Ẽd ≪ 1,
r0(ω) approaches its limiting value from below, while it

has an overshoot if δE/Ẽd ≫ 1. In both case the limit
value is reached for photoelectron energies of the order
of a few times δE.
We then study the effects of the scattering potential by

focusing on r(ω)/r0(ω). For small energies there is typi-
cally an overshoot due to constructive interference in the
”shake-down” case, contrary to the shake-up case where,
like for plasmons, r(ω)/r0(ω) is reduced by interaction

effects. This happens on the energy scale Ẽs. If the scat-
tering potential is very strong, this overshoot may ex-
tend to several times Ẽs. Depending on the parameters
there may be an undershoot for higher energies, which
can extend up to quite high energies. The undershoot
is, however, rather small for the parameters we consider
here, and should therefore not be very important unless
we want to calculate the spectrum with a high accuracy.
For Cu compounds and emission from the 3s core level,
we find that Ẽd and Ẽs are comparable, and the relevant
energy for r(ω)/r0(ω) is then given by Ẽ ∼ Ẽs ∼ Ẽd.
We present our model in Sec. II and calculate various

matrix elements in Sec. III. The sudden approximation
is described in Sec. IV and exact numerical methods
are given in Sec. V. The perturbational and the semi-
classical treatments are presented in Sec. VI. In Sec. VII
we study the condition for the adiabatic-sudden transi-
tion qualitatively, using simple analytic matrix elements
and within the framework of the semi-classical theory.
The results are discussed in Sec. VIII.

II. MODEL

We consider a HamiltonianH0 describing a model with
a core level c and two valence levels a and b,

H0 = ǫana + ǫbnb + ǫcnc + Uancna + Ubncnb

+ t(c†acb + c†bca). (1)

The first two terms give the bare energies of the levels a
and b, and the last term the hybridization between them.
The remaining terms involve the occupation number nc

of the core level c. In photoemission the core level is
filled in the initial state, and empty in the final, and nc

only enters as a constant. It is trivial to diagonalize H0,
and one obtains two dressed energies Ea(nc) and Eb(nc)
for the levels a and b. In a Cu compound, for instance, c

may represent the Cu 3s core level, a the Cu 3d valence
level and b a ligand state. This is schematically illus-
trated in Fig. 1. In our calculations we almost always
treat the case when Ea(1) > Eb(1), and Eb(0) > Ea(0).
The meaning of the levels a and b for different types of
systems with localized excitations is indicated in Table
I. The full Hamiltonian also has a one-electron part for
continuum states,

T =
∑

k

ǫknk, (2)

with the energies ǫk = k2/2, and wavefunctions ψk ob-
tained from a one-electron potential corresponding to

nc = 0. The nk are occupation numbers nk = c†
k
ck.

We use atomic units with e = m = h̄ = 1, and thus,
e.g. energies are in hartrees (27.2 eV). The perturbation
causing photoemission is

∆ =
∑

kc

(Mkc
†
k
cc + h.c.), (3)

where Mk is an optical transition matrix element. We
take the photoelectron interaction as

V =
∑

kk
′

[naV
(a)

kk
′ + nbV

(b)

kk
′ − V

(c)

kk
′ ]c

†
k
c
k
′ . (4)

Here V
(ν)

kk
′ is a matrix element of the Coulomb potential

V (ν)(r) from the charge density ρν(r) of the orbital ν,

V
(ν)

kk
′ =

∫

ψ∗
k
(r) V (ν)(r)ψk′ (r) dr, V (ν)(r) =

∫

ρν(r
′)

|r− r
′|dr

′.

It is the potential V which determines the transition from
the adiabatic to the sudden limit, with V = 0 we are in
the sudden limit.
The total Hamiltonian is given by

H = H0 + T + V +∆. (5)

This Hamiltonian has two conserved quantities,

nc +
∑

k

nk = 1 and na + nb = 1. (6)

For simplicity we take the core electron and the d elec-
tron potentials as equal, V c = V a, and use the relation
na + nb = 1 to obtain

V = nb

∑

kk
′

V
kk

′ c†
k
c
k
′ (7)

where

V
kk

′ ≡
∫

ψ∗
k (r)Vsc(r)ψk′ (r) dr,

Vsc(r) ≡ V (b)(r)− V (a)(r) =

∫

dr′
1

|r− r
′| [ρb(r

′)− ρa(r
′)].

3



The (scattering) potential Vsc(r) describes the change in
the potential acting on the emitted electron when the
electron in the target hops from level a to b.
Dropping a constant we can write H0 as

H0 = ǫcnc + (ǫa + Unc)na + ǫbnb

+ t(c†acb + c†bca). (8)

where the Coulomb integral U is given by

U ≡ Ua − Ub

=

∫

drdr′ρc(r)
1

|r− r
′| [ρa(r

′)− ρb(r
′)]. (9)

Since the core level is very localized in space this leads
to

U = −Vsc(0). (10)

For the different types of systems in Table I, a refers to
a localized level and b refers to a more extended level.
For instance, for a copper dihalide compound, a refers
to a Cu 3d orbital and b to a combination of orbitals on
the ligand sites. For simplicity, we approximate the six
ligand orbitals by a spherical shell with the radius R0,

20

where R0 is the average Cu-ligand separation. The po-
tential from the Cu 3d orbital V3d(r) can be considered as
purely Coulombic at r = R0. The charge from the spher-
ical shell gives a constant potential inside the radius R0,
and we have

Vsc(r) =

{

(−V3d(r) + 1
R0

)/ε r < R0;

0 r > R0.
(11)

Here ε is a constant chosen to make U = −Vsc(0), which
may be thought of as being due to screening by the sur-
rounding. Since V3d(0) ≫ 1/R0, ε varies only weakly
with R0 and is approximately given by ε ≃ V3d(0)/U .

III. MATRIX ELEMENTS

To estimate the matrix elementsMk and V
kk

′ we must
approximate the photoelectron wavefunctions ψk (r).
These wavefunctions are calculated from the potential
of a neutral atom, which further is shifted to make the
potential zero outside a muffin-tin radius rmt. The states
are then described by spherical Bessel functions outside
rmt, which are matched to a solution of the atomic po-
tential inside rmt. For the energy k2/2 we obtain the
partial wave

Rlk(r) =

{

alkψlk(r) r < rmt;
√

2
Rk[cos ηlkjl(kr) − sin ηlknl(kr)] r > rmt,

(12)

where ψlk(r) is the solution of the radial Schrödinger
equation for the atomic potential inside the muffin-tin

radius, alk is a matching coefficient and ηlk a phase shift.
The normalization is given by

∫ R

0

drr2R2
lk(r) = 1, (13)

where R is the radius of a large sphere to which the con-
tinuum states are normalized. The factor (2/R)1/2k is
due to the normalization and the asymptotic behavior of
jl(x) for large x.

Slater’s rules21 are used to generate the orbitals and
charge densities, from which the potential V3d(r) is calcu-
lated. This gives the scattering potential Vsc(r), which
is shown in Fig. 2a. We consider photoemission from
a Cu 3s hole. Due to the dipole selection rules, the
core electron is then emitted into a continuum state of
p-symmetry. The matrix elements Vkk′ of the scattering
potential Vsc(r) are shown in Fig. 2b,

Vkk′ =

∫

drr2Rk(r)Vsc(r)Rk′ (r), (14)

where the muffin-tin radius rmt is taken as the ionic ra-
dius of Cu, rmt = 2.6 a.u., and we have dropped the l
index, since we always consider l = 1. The dipole matrix
element Mk is given by

Mk ∼ ak(ǫk − ǫc)

∫

drr2ψ3s(r)rψk(r). (15)

We assume that the core level is deep, and |ǫc| much
larger than the energy difference between the ligand and
copper levels. We can then take the factor ǫk − ǫc as a
constant, which drops out since we always consider rela-
tive intensities. The result for Mk is shown as the solid
line in Fig. 3a. These dipole and scattering potential ma-
trix elements are used in the following numerical calcu-
lations. Extensive calculations of dipole matrix elements
for many systems were performed by Yeh and Lindau.22

To interpret the results, it is useful to also perform an-
alytical calculations. For this purpose we need models
of the matrix elements. Below we consider the limits of
low and high kinetic energies of the emitted electron. In
the limit of low kinetic energies, we replace the spherical
Bessel function by its expansion for small arguments

jl(x) =
1

(2l + 1)!!
xl, nl(x) = −(2l− 1)!!

1

xl+1
(16)

and the solution ψlk(r) by its zero energy limit ψl0(r).
This leads to

tan ηlk =
l − ξ

l+ 1 + ξ

(krmt)
2l+1

(2l − 1)!!(2l + 1)!!
∼ ηlk,

alk =

√

2

R
k

[

2l+ 1

l + 1+ ξ

(krmt)
l

(2l+ 1)!!

]

1

ψl0(rmt)
. (17)
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FIG. 2. (a) The photoelectron scattering potential Vsc(r)
given by Eq. (11) with respect to r for CuCl2 (R0 = 4.71 a.u.
and ε = 1.96). In the inset, we give the atomic configuration
of Cu-Cl octahedral (nearly octahedral) cluster in CuCl2. (b)
The diagonal and off-diagonal matrix elements of the scat-
tering potential multiplied by R. In the figure, k1 = 1 a.u.,
k2 = 5 a.u., and k3 = 10 a.u. are taken.

Due to the matching, the coefficient alk contains the
ratio ξ = rmtψ

′

l0(rmt)/ψl0(rmt). The value of the coeffi-
cient therefore depends in an interesting way on the wave
function ψl0 and its derivative, and if l+1+ ξ is close to
zero alk blows up. Then the matrix elements of the scat-
tering potential also blow up and we may expect strong
deviations from the sudden approximation. In such a
case the dipole matrix element Mlk also becomes large,
i.e., there is a resonance (ηlk = π

2 ) in the photoemission
cross section.

From Eqs.(12) and (15) it follows that in the limit of
a small k the dipole matrix element is proportional to
ak ∼ kl+1. The main peak and the satellites in the pho-
toemission spectrum correspond to different kinetic ener-
gies and therefore have dipole matrix elements with dif-
ferent k-values. This is important at low energies, while
for large energies the variation in Mlk is generally small
over a range of the energy difference between the main
peak and the satellite, and for the ratio of the peaks, the
dipole matrix elements should then not play a role. For
simplicity, we assume that the dipole matrix elements be-
come independent of k for R̃dk ≫ 1, where R̃d is some
typical length scale of the system. For our case (l = 1)

we use the model (note that any constant factor in Mk

drops out in our final expressions)

Mk =
(R̃dk)

2

1 + (R̃dk)2
≡ ǫk/Ẽd

1 + ǫk/Ẽd

, (18)

where Ẽd = 1/(2R̃2
d). Fig. 3a compares this model with

the full calculation for a 3s orbital. We obtain R̃d = 1.3
a.u.. For a 1s or 2s orbital the length scale is smaller and
R̃d ∼ 1/2 a.u.. While we consider l = 1 the behaviour
for other l is primarily modified for small energies.

We next consider the matrix elements Vkk′ . For small

values of k and k
′

and for l = 1

Vkk′ =
2

R

[

rmt

ψl0(rmt)

]2
(kk

′

)2

(ξ + 2)2

∫ rmt

0

ψ2
l0(r)Vsc(r)r

2dr

+
2

9R
(kk

′

)2
∫ R0

rmt

[

r +

(

1− ξ

2 + ξ

)

r3mt

r2

]2

Vsc(r)r
2dr.

(19)

For small values of k and k
′

it then follows that Vkk′ ∼
(kk

′

)2. For large values of k and k
′

the matrix elements
become very small due to destructive interference be-
tween the two wave-functions unless k ≈ k

′

. If k = k
′

the
matrix elements Vkk approach a constant. These features
are contained in the model

Vkk′ =
Ṽ R̃s

R

(R̃2
skk

′

)2

[1 + (R̃sk)2][1 + (R̃sk
′)2][1 + R̃2

sd(k − k′)2]
,

(20)

where R̃s and R̃sd are appropriate length scales and Ṽ
has the energy dimension. We recall that Ṽ contains in-
formation about the coefficient alk defined in Eq.(17) and

therefore about the atomic potential and that Ṽ may be-
come particularly large close to a resonance. The dipole
matrix elementMk and potential matrix Vkk′ in our sim-
plified model Eqs. (18) and (20) are given in Fig. 3 as
compared with the exact results.

For large values of k and k
′

, the expression Eq. (20)
simplifies to

Vkk′ =
Ṽ R̃s

R

1

1 + R̃2
sd(k − k′)2

. (21)

An expression of this type can also be derived by assum-
ing that the wave functions Rlk(r) can be approximated
by spherical Bessel functions in all of space, and by as-
suming some shape of Vsc(r), e.g., a linear dependence
on r

5
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FIG. 3. (a) The dipole matrix element Mk as a function
of k. The exact result (solid line) is obtained from Eq. (15)
and the simplified model by Eq. (18) is also shown (dashed
line). The appropriate parameter is R̃d = 1.30 a.u. (b) The
matrix elements V

kk
′ of the scattering potential are given for

k = k
′

, k
′

= 1 a.u., and k
′

= 5 a.u.. The solid line is from the
exact calculation for the model of CuCl2 and the dashed line
is based on the simplified model (Eq.(20)). The parameters
are Ṽ = −0.36 a.u., R̃s = 1.77 a.u. and R̃sd = 1.31 a.u..

Vsc(r) = Vsc(0)(1−
r

R0
). (22)

For large values of k and k
′

we then obtain

Vkk′ =
Vsc(0)R0

R

1− cos[(k − k
′

)R0]

[(k − k′)R0]2
. (23)

For this model we relate R̃s = R̃sd = R0/3 to the range

R0 of the potential and Ṽ = 3Vsc(0)/2. Using this iden-
tification in Eq. (21), leads to the correct average value

of Vkk and to the correct width in k − k
′

of Vkk′ . The
simple form (21), however, neglects the effects of the os-
cillations of the cos-function in Eq. (23) for large values

of (k − k
′

)R0, and it therefore gives a worse representa-
tion of the linear potential (22) than the form (20) gives
for the more realistic scattering potential (11). Later we

will find that it is a reasonable approximation to put R̃d,
R̃sd and R̃s equal to the same value R̃, and introduce the
corresponding energy Ẽ = 1/(2R̃2).

IV. SUDDEN APPROXIMATION

We first discuss the photoemission in the sudden limit,
i.e., we neglect the scattering potential between the emit-
ted electron and the target (V ≡ 0). The initial state
|Ψ0〉 is the ground state of H0 with nc = 1 and given by

|Ψ0〉 = − sin θ|ψc〉|ψa〉+ cos θ|ψc〉|ψb〉, (24)

where

tan 2θ = 2t/(ǫa + U − ǫb) (25)

and the corresponding ground state energy is

E0 = ǫc +
1

2
(ǫa + U + ǫb)−

1

2

√

(ǫa + U − ǫb)2 + 4t2.

(26)

The final states of the target are given by the two eigen-
states of H0 with nc = 0

|ψ1〉 = cosϕ|ψa〉 − sinϕ|ψb〉,
|ψ2〉 = sinϕ|ψa〉+ cosϕ|ψb〉, (27)

with

tan 2ϕ = 2t/(ǫb − ǫa) (28)

and the corresponding energy eigenvalues E1 and E2 are

E 1

2

=
1

2
(ǫa + ǫb)∓ δE/2, (29)

with

δE =
√

(ǫa − ǫb)2 + 4t2 (30)

being the optical excitation energy of the system.
The photocurrent Js

k(ω) (s = 1, 2) is given by,1

Js
k(ω) = |〈Ψsk

f |∆|Ψ0〉|2δ(ω − ǫk + E0 − Es), (31)

where |Ψsk
f 〉 is a final state. According to the sudden

approximation, it can be written as the final target state
multiplied by the photoelectron state, |Ψsk

f 〉 = |ψs〉|ψk〉.
This gives

〈Ψsk
f |∆|Ψ0〉 =Mkws ≡ msk, ws =

{

− sin (ϕ+ θ) , s = 1
cos (ϕ+ θ) , s = 2

(32)

J1
k
(ω) gives the main line (corresponding to the quasi

particle line in metal) and J2
k
(ω) the satellite line. The

schematic picture of the initial and final state for this
system is given in Fig. 1. Summing the kinetic energy
distribution of the photoelectron, we obtain the absorp-
tion spectra Js(ω),
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Js(ω) =
∑

k

Js
k(ω) ∝

1

ks
|Mks

ws|2

ks =
√

2(ω + E0 − Es), (33)

where the threshold energies for J1(ω) and J2(ω) are
given by E1 − E0 and E2 − E0(≡ ωth), respectively.

We can thus also write k1 =
√

2(ω + δE − ωth) and

k2 =
√

2(ω − ωth). The factor 1/k comes from the k-
summation over a δ-function in energy. For convenience
we introduce the quantity ω̃ = ω−ωth, and thus ǫk2

= ω̃.

In the sudden approximation the kinetic energy of the
emitted electron is large, and we can take k1 = k2. The
ratio r00 of the satellite to the main peak intensity then
is

r00 = lim
ω→∞

J2(ω)

J1(ω)
= cot2(ϕ+ θ). (34)

Taking into account the energy dependence of the dipole
matrix element according to model Eq. (18) as well as
the factor 1/k, we obtain

r0(ω) = r00

[

ω̃

ω̃ + δE

]
3

2

×
[

1 + (ω̃ + δE)/Ẽd

1 + ω̃/Ẽd

]2

Θ(ω̃). (35)

We now require that the ratio r0(ω) should reach a frac-
tion γ (γ ≈ 1) of its limiting value r0(∞) for ω = ωγ .
This gives

ωγ − ωth

δE
≈

{

3
2

1
1−γ , if δE ≪ Ẽd;

γ2/3(Ẽd/δE)4/3, if δE ≫ Ẽd.
(36)

This criterion refers to the energy where r0(ω) reaches a
fraction γ in its rising part, and it does not consider that
there is a large overshoot for δE/Ẽd ≫ 1. In this case
we can instead require that r0(ω) is smaller than γ ≈ 1
in its descending part. This gives the condition

ωγ − ωth

δE
≈ 1

γ2 − 1
δE/Ẽd ≫ 1, γ > 1. (37)

In Fig. 4 we show results for r0(ω) over a large range of

values for δE/Ẽ. The figure illustrates that the dipole
matrix element effect alone makes the sudden approxi-
mation invalid for small kinetic energies. It is interesting
that for somewhat larger photon energies r0 overshoots.
The reason is that the matrix elements Mk saturate for
ǫk ≫ Ẽd, while the factor 1/k in Eq.(33) favors the satel-

lite. For δE/Ẽd = 1, the result is rather close to the

sudden limit for ω̃/δE ∼ 1. Finally, for δE/Ẽd ≫ 1,
there is a substantial overshoot.

0
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1
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r 0
(ω

)/
r 0
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FIG. 4. The ratio r0(ω) of the satellite to the main
peak in Eq.(35) divided by the result for an infinite pho-
ton energy (r0(∞) = r00). Three values of the excitation
energy δE are considered.

As discussed in the introduction, we would like to
study how the adiabatic to sudden transition depends
on certain factors, like the range R0 of the potential and
the energy δE of the excitation causing the satellite. We
therefore keep ratio of t, U and ǫa−ǫb fixed, but vary their
magnitude. In this way we can vary δE without varying
the magnitude of the satellite in the sudden limit. Eq.
(10) requires that we vary Vsc(0) as we vary δE (via U),
e.g., by varying the dielectric constant ε. In some of the
calculations below, however, we do not impose Eq. (10),
to be able to see the effect of varying δE alone. We fur-
thermore vary the range R0 of the potential. From the
definition Eq. (11) it follows that this would also vary
the strength of the potential. For this reason we simul-
taneously vary the dielectric constant ε so that Vsc(0)
stays unchanged when R0 is changed. Alternatively, we
can use the analytical matrix elements (18, 20). We can

then easily vary the length scale by changing R̃ or the
strength by changing Ṽ .

To know roughly what are interesting values for our
parameters we use experimental results for some copper
dihalides.15 We estimate the relative strength of the satel-
lite to the main peak, and the energy difference between
the peaks. This gives two equations while in our model
these quantities, r00 and δE, depend on three parame-
ters, t, U, and ǫa − ǫb. To only have two parameters we
consider the symmetric case ǫa = ǫ − U/2 and ǫb = ǫ as
shown in Fig.1. In the symmetric case we are restricted
to the shake-down situation since before the transition
the a-level is above the b-level, ǫa + U − ǫb = U/2,
while after the transition the a-level is below the b-
level, ǫb − ǫa = U/2. In the symmetric case we have
0 < θ = ϕ < π/4, and r00 = cot2 2ϕ = U2/(16t2). Once
we know where in the ball-park we have t and U , we can
leave the symmetric case, and also consider, e.g., shake-
up cases when there is no level crossing, ǫa > ǫb. In the
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lowest final state the electron essentially stays on level
b, while the transfer of the electron to the level a cor-
responds to a shake up satellite. In this case we have
−π/4 < ϕ < 0 < θ < π/4 and ϕ+ θ < 0.
Our calculations usually take the CuCl2 parameters as

reference values. For CuCl2 we have θ = ϕ = 0.3, which
gives r00 = 2.1. Further Ṽ = −0.36 a.u., Ẽ = 0.195
a.u. (with R̃ = 1.6 a.u.), and δE = 0.237 a.u., i.e.,

Ṽ /Ẽ = −1.85 and δE/Ṽ = −0.66 (see also Table II).

V. EXACT TREATMENT

A. Time-dependent formulation

To obtain exact results for model Eq.(5), we use a time-
dependent formulation23 and solve the Schrödinger equa-
tion for the Hamiltonian

H(τ) = H0 + T + V +∆f(τ). (38)

The interaction is switched on at τ = 0, using

f(τ) = e−iωτ (e−ητ − 1) η > 0. (39)

Here η is a small quantity to assure that the external field
is switched on smoothly. The initial (τ = 0) state |Ψ0〉
is given by the ground state of H0 with nc = 1 in Eq.(1).
After a time τ , the state |Ψ(τ)〉 of the system is

|Ψ(τ)〉 = a(τ)|ψa〉|ψc〉+ b(τ)|ψb〉|ψc〉
+

∑

k

cak(τ)|ψa〉|ψk〉+
∑

k

cbk(τ)|ψb〉|ψk〉. (40)

The coefficients of |Ψ(τ)〉 can be determined by

i
∂

∂τ
|Ψ(τ)〉 = H(τ)|Ψ(τ)〉, (41)

which gives four differential equations for the four coeffi-
cients a(τ), b(τ), cak(τ), and cbk(τ),

i
∂

∂τ
a(τ) = (ǫa + U + ǫc)a(τ) + tb(τ)

+
∑

k

V d
k

∗
(τ)cak(τ), (42)

i
∂

∂τ
b(τ) = (ǫb + ǫc)b(τ) + ta(τ)

+
∑

k

V d
k

∗
(τ)cbk(τ), (43)

i
∂

∂τ
cak(τ) = (ǫa + ǫk)cak(τ) + tcbk(τ)

+ V d
k (τ)a(τ), (44)

i
∂

∂τ
cbk(τ) = (ǫb + ǫk)cbk(τ) + tcak(τ) + V d

k (τ)b(τ)

+
∑

k′

Vkk′cbk′ (τ), (45)

where V d
k (τ) = V0Mkf(τ) with V0 representing the

strength of the external field. We solve the equations
in the limit when V0 → 0, and thus the ratio between
cak and cbk is independent of V0. The initial conditions
are a(0) = − sin θ, b(0) = cos θ, and cak(0) = cbk(0) = 0.
Thus the problem is reduced to solving the coupled dif-
ferential equations, which is done using the Runge-Kutta
fourth-order method.
The photoelectron currents J1(ω) and J2(ω) corre-

sponding to main and satellite lines, respectively, are
given by

J1(ω) =
∑

k

|〈Ψ1k
f |Ψ(τ)〉|2

=
∑

k

| cosϕcak(τ)− sinϕcbk(τ)|2, (46)

J2(ω) =
∑

k

|〈Ψ2k
f |Ψ(τ)〉|2

=
∑

k

| sinϕcak(τ) + cosϕcbk(τ)|2, (47)

where τ is a sufficiently large time. We let the system
evolve for a time of the order 1/η to obtain converged re-
sults for a given finite V0. In principle, we should perform
the calculation for a few small values of η and then ex-
trapolate to η = 0 followed by an extrapolation V0 → 0.
Here, for simplicity we have performed the calculation
for one single small value of V0. The calculation was per-
formed for η = 0.1 eV, 0.08 eV, 0.02 eV, and the results
were extrapolated to η = 0 assuming the η dependence
a(ω)η+ b(ω)η2+ c(ω). The error in this approach occurs
primarily for small ω̃(<∼ 5 eV), and it is then less than
5% in r(ω)/r0(ω).
The approach above gives the relative intensity of the

main and satellite peaks

r(ω) =
J2(ω)

J1(ω)
. (48)

It can be shown that the formulas (46, 47) above give
identical results to the more conventional formulation
(51) below, by performing derivations of the type made
in, e.g., Ref. 24.
As an example of the results obtained in this formal-

ism, we show in Fig. 5 results for the copper dihalides
CuBr2, CuCl2 and CuF2. The corresponding param-
eters are shown in Table II and were estimated from
experiment.15 The figure illustrates that there is a small
“overshoot” for small ω̃ but that the sudden limit is
reached fairly quickly as ω̃ is further increased. We re-
mind that in our CuCl2 reference case Ẽ=0.195 a.u.=5.3
eV.
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FIG. 5. The ratio r(ω) between the satellite and the main
peak for the divalent copper compounds CuBr2, CuCl2, and
CuF2. The parameters are given in Table II. The dotted lines
are the limit values (r(∞)) for the respective cases.

B. Resolvent formulation

Alternatively, we can work in the energy space, and
obtain the spectrum by direct inversion of a resolvent
operator. We consider the Hamiltonian H,

H = H0 + T + V, (49)

where by H0 we understand H0(nc = 0). The exact final
photoemission state |Ψsk

f 〉 is1

|Ψsk
f 〉 =

[

1 +
1

E −H0 − T − V − iη
V

]

|ψs〉|ψk〉, (50)

where |ψs〉 (s = 1, 2) (Eq. (27)) are the exact (target)
eigenstates of H0(nc = 0) and E = ǫk +Es is the energy
of the final state. Using Eq. (50) we calculate the matrix
element M(s, k) ≡ 〈Ψsk

f |∆|Ψ0〉

M(s, k) (51)

= 〈ψk|〈ψs|
[

1 + V
1

ǫk + Es −H0 − T − V + iη

]

∆|Ψ0〉.

Introducing a basis set

|i〉 = |ψs〉|ψk〉, (52)

the matrix elements of V can then be written as

Vij ≡ Vks,k′ s′ = Vkk′ vsvs′ . (53)

Here

vs =

{

−sinϕ, if s = 1;
cosϕ, if s = 2,

(54)

where we have used Eqs. (7, 27). The Hamiltonian ma-
trix in this basis set is diagonalized, which gives the eigen-
values ǫν and the eigenvectors

|ν〉 =
∑

i

cνi |i〉. (55)

We then have

M(s, k) ≡M(i) = (56)

〈i|∆|Ψ0〉+
∑

ν

∑

j,l

Vi,jc
ν
j c

ν
l 〈l|∆|Ψ0〉

ǫk + Es − ǫν + iη
.

The quantities 〈i|∆|Ψ0〉 were given in Eq. (32),
〈i|∆|Ψ0〉 = mi = msk = Mkws. By organizing the
sums in Eq. (56) appropriately, the calculation of this
expression is very fast and the main time is spent in
diagonalizing the Hamiltonian matrix. We have found
this method to be more efficient than the time-dependent
method above.
In the expression (56), we can identify the first term

as the intrinsic contribution, since this is the amplitude
which is obtained if there is no interaction between the
photoelectron and the target. The extrinsic effects are
then determined by the square of the absolute value of
the second term. The interference between the intrinsic
and extrinsic contributions is given by the cross product
of these terms.

C. Separable potential

It is interesting to consider a separable potential

Vkk′ = Ṽ bkbk′ , (57)

since it is then possible to obtain an analytical expression
for r(ω). The operator in the denominator of Eq. (50) is
written as

(z −H0 − T − V )ij = di(z)δij − Ṽ cicj , (58)

where again |i〉 = |s〉|k〉 is a combined index for the target
state s and the continuum state k and z is a (complex)
number. Then

dsk(z) ≡ di(z) = z − Es − ǫk (59)

and

ci ≡ csk = bkvs. (60)

Using the fact that V is separable, it is then straightfor-
ward to invert the expression in Eq. (58) and obtain

[(z −H0 − T − V )−1]ij (61)

=
δij
di(z)

+ Ṽ
cicj

di(z)dj(z)(1− Ṽ
∑

l c
2
l /dl(z))

.

This leads to
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r(ω)

r0(ω)
= (62)

∣

∣

∣

∣

1 + cosϕDk2
(E0 + ω)/cos(ϕ+ θ)

1 + sinϕDk1
(E0 + ω)/sin(ϕ+ θ)

∣

∣

∣

∣

2

,

where ks is defined in Eq. (33),

Dk(ǫ) = − Ṽ

Ẽs

bkE(ǫ)

Mk[1 + (Ṽ /Ẽs)C(ǫ)]
, (63)

with Ẽs = 1/(2R̃2
s) and

C(ǫ) = −Ẽs

∑

l

c2l
dl(ǫ+ iη)

(64)

and

E(ǫ) = −Ẽs

∑

l

clml

dl(ǫ+ iη)
. (65)

To obtain a model for Vkk′ we can, for instance, put

bk =

√

R̃s

R

(R̃sk)
2

1 + (R̃sk)3
. (66)

Compared with the expression in Eq. (20), there is no

term k−k′

in the corresponding expression for Vkk′ . The
neglect of this term means that Vkk′ goes to zero more

slowly as one of the arguments k or k
′

goes to infinity. To
compensate for this we use the power three for R̃sk in the
denominator of (66), while in Eq. (20) the correspond-
ing power is two. This is a reasonable approximation for
small k, but it breaks down for large k.

D. On the variables in the intensity ratio

For the satellite to main line intensity ratio we have,

r(ω) =
k1
k2

∣

∣

∣

∣

M(2, k2)

M(1, k1)

∣

∣

∣

∣

2

.

This ratio does not depend on any constant factor in
Mk, since M(s, k) is proportional to Mk. If we take the

parameters R̃d, R̃s, and R̃sd equal to a common typi-
cal radius R̃ (as will be motivated later), and use the
analytic expressions in Eqs. (18) and (20) then r(ω) or
r(ω)/r0(ω), apart from ϕ and θ, becomes a function of

δE/Ẽ, Ṽ /Ẽ, and ω̃/Ẽ, with Ẽ = (2R̃2)−1. We can see

this since Mk is a function of kR̃, and Vkk′ a function
of kR̃ and k′R̃ apart from their prefactors. The prefac-
tor of Vkk′ is Ṽ R̃/R, while that for Mk has no influence.
For each V in a perturbation expansion of Eq. (51) we
have an energy denominator and a k-summation. The
k-summation gives an integral and a factor Rdk. Using
variables R̃k, the R̃/R in the prefactor vanishes. Factor-

ing out Ẽ in the energy denominator, we have a factor

Ṽ /Ẽ for each Vkk′ , and instead of δE and ω̃ we have

δE/Ẽ and ω̃/Ẽ.

With θ and ϕ given, δE is proportional to U . U in
turn is equal to −Vsc(0), and thus somehow related to

the strength of the scattering potential Ṽ . If we fix the
value of the sudden limit r00 = cot2 (ϕ+ θ) by choosing
one of the angles, we still have an independent parameter
left. This parameter can be used to decouple the rela-
tion between δE and Ṽ (whatever it is). Summarizing,
we have found that the parameters of our model system
appear as the angles θ and ϕ, and the excitation energy
δE (or U), while the coupling between the photoelectron
and the model system only appears in one parameter,
Ṽ /Ẽ = 2Ṽ R̃2, provided we use ω̃/Ẽ as variable. We
have further motivated that we can vary the parameters
δE and Ṽ independently.

VI. APPROXIMATE TREATMENTS

A. Perturbation approach to lowest order in Vkk′

The same problem can be also studied using the stan-
dard perturbation approach. We consider the expression
for the matrix elements M(s, k) in Eq. (51). To lowest
order in V , we can neglect V in the denominator of Eq.
(51). Inserting the completeness relation

∑

i |i〉〈i| = 1 in
terms of eigenstates |i〉 ≡ |k〉|s〉 we obtain

M(s, k) = 〈s|〈k|∆|Ψ0〉 (67)

+
∑

k′s′

Vks,k′ s′ [(E −H0 − T + iη)−1]k′ s′ ,k′s′ 〈s
′ |〈k′ |∆|Ψ0〉.

Using Eqs. (53, 54) we obtain

M (1, k) = − sin(ϕ+ θ)Mk

− sin2 ϕ sin(ϕ+ θ)
∑

k′

[

Vkk′Mk′

E − E1 − ǫk′ + iη

]

− sin 2ϕ cos(ϕ+ θ)

2

∑

k′

[

Vkk′Mk′

E − E2 − ǫk′ + iη

]

, (68)

M (2, k) = cos(ϕ+ θ)Mk

+ cos2 ϕ cos(ϕ+ θ)
∑

k′

[

Vkk′Mk′

E − E2 − ǫk′ + iη

]

+
sin 2ϕ sin(ϕ + θ)

2

∑

k′

[

Vkk′Mk′

E − E1 − ǫk′ + iη

]

, (69)

where Vkk′ = 〈k|Vsc|k′〉 and Mk = 〈k|∆|ψc〉. We can
then immediately calculate the photoemission spectra us-
ing Eq. (31).
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FIG. 6. r(ω)/r0(ω) from the semi-classical approximation
(SC), the first order perturbation expansion (PT) as well as
the exact time evolution calculations for different values of
the excitation energy δE and for U/t = 5.76. The remaining
parameters are taken from CuCl2 (RCl

0 = 4.71 a.u.).
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FIG. 7. The same as in Fig. 6 but varying the range DR0

instead of δE, where D is a scale factor. The parameters of
CuCl2 are used.

In Figs. 6 and 7 we compare the perturbation ex-
pansion with the exact time dependent calculation for
a realistic scattering potential in the symmetric case.
In the symmetric case we have δE = 2t

√
1 + r00 =

(U/2)
√

1 + 1/r00, and U = −Vsc(0). Since the ratio
r0(ω) was discussed extensively in Sec. IV, we here focus
on r(ω)/r0(ω), which describes the effect of the scattering
potential. We vary the excitation energy δE by varying
t, while keeping r00 constant. We also vary the poten-
tial range by replacing R0 in Eq. (11) by DR0 and then
varying D. With r00 fixed, δE is proportional to Vsc(0).
Thus a small δE and a small D make the perturbation
weak. The calculations are made for a range of parameter
values around those given for CuCl2 in Table II.

B. Semi-classical approach

We can also perform the photoemission calcula-
tion by assuming a classical trajectory of the emitted
photoelectron25, producing a time-dependent potential
which drives the dynamics of the the model. It has been
reported that the semi-classical approach can give the
unexpectedly good results for the systems with coupling
to plasmons.4,19,26 The essence of the semi-classical ap-
proach is to replace the scattering potential Vsc(r) by a
time-dependent potential using the charge density ρ(r, τ)
of the emitted electron, i.e.

Vsc(r) →
∫

drVsc(r)ρ(r, τ) = Vsc(vτ), (70)

where we have used ρ(r, τ) = δ(r − vτ). We can then
write the Hamiltonian as

H(τ) = H0(nc = 0) + V (τ), (71)

where H0(nc = 0) can be expressed in terms of the exact
final states (ψ1 and ψ2) in the presence of a core hole

H0(nc = 0) = E1ψ
†
1ψ1 + E2ψ

†
2ψ2. (72)

The time-dependent potential takes the form

V (τ) = nbVsc(vτ)

= V11(τ)ψ
†
1ψ1 + V22(τ)ψ

†
2ψ2 + V12(τ)(ψ

†
1ψ2 + ψ†

2ψ1),

(73)

where (cf. Eq. (54))

V11(τ) = sin2 ϕVsc(vτ), V22(τ) = cos2 ϕVsc(vτ),

V12(τ) = V21(τ) = −1

2
sin 2ϕVsc(vτ). (74)

The remaining system (target) is still purely quantum
mechanical, and we write its time-dependent wave func-
tion |Ψ(τ)〉 as

|Ψ(τ)〉 = a1v(τ)|ψ1〉e−iE1τ + a2v(τ)|ψ2〉e−iE2τ . (75)

The classical electron velocity v is determined by energy
conservation, that is, 1

2v
2 = ω̃. We have here chosen

the velocity corresponding to the satellite. We could also
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have performed two calculations, with the velocities cor-
responding to the leading peak and to the satellite, re-
spectively. In contrast to the approach used here, this
would, however, lead to the problem that the spectral
weight would not be normalized. Applying the time-
dependent Schrödinger equation to |Ψ(τ)〉, we obtain
a1v(τ) and a2v(τ),

i
∂

∂τ
a1v(τ) = V11(τ)a1v(τ) + V12(τ)a2v(τ)e

−iδEτ , (76)

i
∂

∂τ
a2v(τ) = V22(τ)a2v(τ) + V21(τ)a1v(τ)e

iδEτ , (77)

where δE (Eq. (30)) is the optical excitation energy.
Eqs. (76) and (77) are subject to the initial conditions
(cf Eq. 32)

asv(0) = ws. (78)

The final photoemission currents Ji(ω) is

Ji(ω) ∝ |aiv(τ0)|2, i = 1, 2. (79)

It is sufficient to perform the calculation up to τ = τ0 ≡
R0/v, since the potential vanishes for larger values of τ .
The relative intensity between main and satellite contri-
butions is given by r(ω) = J2(ω)/J1(ω) as before.
In Figs. 6 and 7 we compare the semi-classical and ex-

act results for a realistic potential in the symmetric case.
The semi-classical theory is inaccurate over most of the
energy range considered here. For large energies however,
the semi-classical theory comes much closer to the exact
result than does the PT. It is also clear that an increas-
ing δE (≃ Vsc(0)) does not noticeably affect the energy
for the adiabatic-sudden transition, where it strongly ef-
fects the maximum deviation. An increasing D on the
other hand not only strongly increases the maximum de-
viation, but also makes the adiabatic-sudden transition
energy smaller. The dependence on the parameters will
be investigated more extensively in the next section.

VII. ADIABATIC-SUDDEN TRANSITION

We are now in a position to address the adiabatic-
sudden transition and its dependence on the parameters.
The calculations are performed with the analytical ma-
trix elements in Eqs. (18, 20). First we study the dif-

ferent characteristic lengths, R̃d for the dipole matrix
elements, and R̃s and R̃sd for the scattering potential
matrix elements. We find that it makes sense to use
only one effective length R̃, and the corresponding en-
ergy Ẽ = 1/(2R̃2). As we remarked in Sec. VD, r/r0
as a function of ω̃/Ẽ depends on the parameters δE/Ẽ

and Ṽ /Ẽ, and also on the ”system” parameters θ and

ϕ. We vary δE independently of Ṽ , although for a given

model there is a direct relation between these two quanti-
ties. Part of this relation can be offset by using different
θ and ϕ (with r00 constant) but we do not explore this
possibility. The exact solution with a separable potential
is used to discuss the validity and breakdown of pertur-
bation theory. We find that Ṽ /Ẽ has a large effect on the
deviation from the sudden limit, but little effect on the
value of ω̃/Ẽ where the deviation becomes small, while

δE/Ẽ has a comparatively small effect on both magni-
tude and range of the deviation. For simplicity we use the
CuCl2 parameters θ = ϕ = 0.3, which gives r00 = 2.1.
For CuCl2 we further have Ṽ=-0.36 a.u., Ẽ=0.195 a.u.
(R̃=1.6 a.u.), and δE = 0.237 a.u., i.e., Ṽ /Ẽ = −1.85

and δE/Ṽ = −0.66. In our calculations, we vary Ṽ /Ẽ

and δE/Ṽ by typically a factor of two around these ref-
erence values.

A. Exact numerical treatment with analytic matrix

elements

We first illustrate the dependence on the ratio be-
tween the length scales R̃d, R̃s, and R̃sd. In Fig. 8
we show the results for different ratios R̃d/R̃s keeping

R̃sd/R̃d = 1. These results are obtained for Ṽ /Ẽs = −2.0

and δE/Ṽ = −0.5, where Ẽs = 1/(2R̃2
s) is the energy

scale set by the scattering potential length scale. Fig.
8 shows that as R̃d/R̃s is reduced the magnitude of the
”overshoot” is increased. There are, however, no quali-
tative changes.
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FIG. 8. The ratio r(ω)/r0(ω) as a function of R̃d/R̃s for a
fixed R̃sd/R̃s = 1 and for ϕ = θ = 0.3. The figure illustrates
that there are no qualitative changes as the length scales for
the dipole and scattering matrix elements become different.

Fig. 9 shows results for different values of R̃sd/R̃s for

a fixed R̃d/R̃s = 1. From Eq. (20) it can been seen that

this corresponds to varying the range of values k − k
′

where Vkk′ is large, without changing the range over
which Vkk varies. The figure illustrates that the over-
shoot becomes larger as R̃sd/R̃s is reduced. This is nat-

ural, since decreasing R̃sd effectively makes the scatter-
ing potential stronger by expanding the range of values
k−k′

with large scattering matrix elements. The qualita-
tive behaviour, however, is not changed. In view of Figs.
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8 and 9, we study below the case when R̃sd = R̃s = R̃d,
as mentioned in Sec. VD.
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FIG. 9. The ratio r(ω)/r0(ω) as a function of R̃sd/R̃s for
a fixed R̃d/R̃s = 1 and for ϕ = θ = 0.3. The figure illustrates
that there is no qualitative changes as the ratio of the two
length scales in the scattering matrix elements is varied.

Fig. 10 shows such results for different values of the
strength of the scattering potential Ṽ /Ẽ and for differ-

ent values of the excitation energy δE/Ṽ . In each panel

δE/Ṽ is kept fixed, but the ratio is varied by a factor of
four from Fig. 10a to Fig. 10c. Typically r(ω)/r0(ω) has
an overshoot for small values of ω̃. For somewhat larger ω
the ratio approaches unity and possibly becomes smaller
than unity. The overshoot can be fairly large and hap-
pens on a small energy scale (∼ Ẽ). In a few cases of
a large overshoot, r(ω)/r0(ω) does not become approx-

imately unity until ω̃ is several times Ẽ, although the
relevant energy scale is still Ẽ. In the case of an un-
dershoot, r(ω)/r0(ω) approaches unity from below very

slowly (energy scale much larger than Ẽ). The under-
shoot is, however, relatively small, and if we do not re-
quire a high accuracy, we consider the sudden approxi-
mation is valid when the overshoot becomes small. This
means that as the range of the scattering potential is
made larger, the sudden limit is reached at a smaller en-
ergy. This is the opposite to what one would expect from
the semi-classical theory. The figure illustrates that δE
is not the relevant energy scale. Since in each panel we
keep δE/Ṽ fixed, there is a variation of δE/Ẽ by a fac-

tor of four. Furthermore there is a variation of δE/Ṽ
by a factor of four in going from the top to the bottom
panel in Fig. 10. There is no corresponding change in
the energy for the adiabatic to sudden transition.

B. Separable potential

It is interesting to study a separable potential, since
it is then possible to obtain an analytical solution. This
makes it easier to interpret the results. It also allows the
study the effects of multiple scattering, i.e. the devia-
tions from first order perturbation theory. Fig. 11 shows
results of the exact and first order theory using the same
values of δE/Ṽ and Ṽ /Ẽ as in Fig. 10b. The separable
potential overestimates the magnitude of the overshoot

in r(ω)/r0(ω) quite substantially. Otherwise the results
are rather similar. For a qualitative discussion, we can
therefore use the separable potential.
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FIG. 10. The ratio r(ω)/r0(ω) as a function of ω̃/Ẽ for dif-
ferent values of Ṽ /Ẽ and δE/Ṽ and for ϕ = θ = 0.3. The
figure illustrates that Ẽ is an appropriate energy scale for the
adiabatic to sudden transition.

For simplicity, we consider δE = 0. We further put

Mk = (R̃k)2/
[

1 + (R̃k)3
]

= bk. This is a poor approxi-

mation for large k, but then anyhow also Vkk′ is poorly
represented by the separable potential. Our approxima-
tions lead to simple results for the functions C, D and E
entering in Eqs. (62-66).

C(ǫ) = −Ẽ
∑

k′

b2
k′

ǫ− ǫk′ + iη
(80)

and E(ǫ) = cosθM̃C(ǫ). Then

D(ǫ) = −cosθ
Ṽ

Ẽ

C(ǫ)

1 + (Ṽ /Ẽ)C(ǫ)
. (81)

Since Dk is independent of k in this approximation, we
have dropped the index k. The function C(ǫ) is shown
in Fig. 12. For ϕ = θ we can then write

r(ω)

r0(ω)
=

∣

∣

∣

∣

∣

∣

1− cos2ϕ
cos2ϕ

Ṽ
Ẽ
C(ω̃)/[1 + Ṽ

Ẽ
C(ω̃)]

1− 1
2
Ṽ
Ẽ
C(ω̃)/[1 + Ṽ

Ẽ
C(ω̃)]

∣

∣

∣

∣

∣

∣

2

. (82)

For a level ordering as indicated in Fig. 1, 0 < ϕ < π/4
and cos2ϕ/cos(2ϕ) ≥ 1. In our standard case with ϕ =
0.3, cos2 ϕ/ cos(2ϕ) = 1.11. Thus the term in the numer-

ator of Eq. (82) dominates. The factor 1 + (Ṽ /Ẽ)C(ω̃)
gives the multiple scattering, which is not included in the
first order perturbation theory, i.e. the first order result
is
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[

r(ω)

r0(ω)

]

PT

=

∣

∣

∣

∣

∣

∣

1− cos2 ϕ
cos 2ϕ

Ṽ
Ẽ
C(ω̃)

1− 1
2
Ṽ
Ẽ
C(ω̃)

∣

∣

∣

∣

∣

∣

2

. (83)

We now compare the behaviors of Eqs. (82) and (83),
to see the effects of using perturbation theory. For small
values of ω̃, ReC(ω̃) is positive and then changes sign at

about ω̃/Ẽ ∼ 2. Im C(ω̃) is always positive. Due to
our crude approximations for bk and Mk, C(ω̃) rapidly

becomes unreliable beyond ω̃/Ẽ = 2. Both for the exact
and perturbative expressions r/r0 goes from over- to un-
dershoot approximately when ReC(ω̃) = 0. This is some-
what earlier than in Fig. 11, where however δE = 0.5.
Comparing r(ω)/r0(ω) for the exact (Eq. (82)) and the
first order result (Eq. (83)), we find that the exact solu-
tion is larger when ReC(ω̃) >∼ ImC(ω̃), cf Fig. 11. This is
consistent with second order perturbation theory, which
is found to enhance r(ω)/r0(ω) for small ω̃ and reduce it
for large ω̃. For ω̃ = 0, C(ω̃) is purely real and slightly
larger than 0.1, thus multiple scattering gives a diver-
gence in both J1(ω̃) and J2(ω̃) when Ṽ /Ẽ ∼ −10. This
is due to the attractive potential V forming a bound state
from the continuum states.
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FIG. 11. The ratio r(ω)/r0(ω) for a separable scattering
potential (57). According to the exact result in upper panel,
the overshoot is substantially overestimated by the separable
potential compared to Fig. 10b, but there is still a qualita-
tive agreement with the more realistic model (20). The lower
panel shows how perturbation theory works and it illustrates
the effects of multiple scattering.

The important conclusion from analysing the separable
potential is that if Ṽ is not too large, first order pertur-
bation theory gives roughly the correct range over which

there are essential deviations from the sudden limit, while
multiple scattering increases the magnitude of these de-
viations for small ω̃ and slightly decreases them for larger
ω̃.
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FIG. 12. The function C(ǫ) relevant for a separable po-
tential is given in the upper panel. The low panel gives the
behaviors of F (ǫ) defined in Eq.(84). The dotted lines give
the asymptotic behaviors of F (ǫ) in Eq.(88).

We next discuss the physical interpretation of the ex-
pression (82) (or the perturbational expressions in (67,
68, 69)). Here unity (the first term in (67, 68, 69)) cor-
responds to a direct transition into the final continuum
state corresponding to energy conservation. The second
term (the last two terms in (67, 68, 69)) corresponds
to a virtual transition into some other continuum state
followed by one or several scattering events with the elec-
tron ending up in the continuum state corresponding to
energy conservation. Let us consider the virtual emission
into a continuum state with a larger energy than the fi-
nal state and let this be followed by one scattering event
into the final state. For a negative Ṽ the interference with
the direct event is then constructive. For small photon
energies such events dominate for two reasons. Firstly,
there are many more states available above the energy
corresponding to energy conservation than below, and
secondly the dipole matrix elements suppress the transi-
tions to the energies below. As a result, both the main
peak and the satellite are enhanced by the scattering ef-
fects. For the values of ϕ and θ considered here (< π/4),
the relative effect is stronger for the satellite. As a re-
sult r(ω)/r0(ω) is enhanced. For larger photon energies
ReC(ω̃) becomes negative. The density of states of par-
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tial waves with given l andm quantum numbers decreases
with energy (∼ 1/

√
ǫ)). This favours virtual emissions to

states below the final continuum state. Depending on the
model for bk andMk, these matrix elements may have the
same effect. As a result, Re C(ω̃) becomes slightly nega-
tive for large energies and the ratio r(ω)/r0(ω) is slightly
smaller than one.
The relevant energy scale for C(ω) is Ẽ. This is a com-

bination of the two effects discussed above. The turn on
of the dipole matrix elements on an energy scale of the
order Ẽ favors an increasing value of C over this energy
scale, while the density of states effects becomes more
important for larger energies. As a result, both Re C(ω)
and Im C(ω) have a maximum at an energy of the order

Ẽ.

C. Perturbational treatment with analytic matrix

elements

In this section we study the perturbation theory ex-
pression in more detail and without relying on a sepa-
rable potential. Instead we consider the more realistic
matrix elements in Eqs. (18) and (20), assuming that

R̃d = R̃s = R̃sd = R̃. We define a function Fk by

∑

k′

Vkk′Mk′

ǫ− ǫk′ + iη
≡ − Ṽ

Ẽ
MkFk(ǫ/Ẽ), (84)

which is possible due to the simple form of Vkk′ andMk′ .
Explicitly we have

Fk (ǫ) =
1

π

∫ ∞

0

x4dx

[1 + x2]
2

[

1 +
(

R̃k − x
)2

]

[x2 − ǫ− iη]

.

(85)

From Eqs. 68 and 69 we have

r(ω)

r0(ω)
= (86)

∣

∣

∣

∣

∣

∣

1− cos2 ϕ Ṽ
Ẽ
Fk2

(

ω̃
Ẽ

)

− sin 2ϕ sin(ϕ+θ)
2 cos(ϕ+θ)

Ṽ
Ẽ
Fk2

(

ω̃+δE
Ẽ

)

1− sin2 ϕ Ṽ
Ẽ
Fk1

(

ω̃+δE
Ẽ

)

− sin 2ϕ cos(ϕ+θ)
2 sin(ϕ+θ)

Ṽ
Ẽ
Fk1

(

ω̃
Ẽ

)

∣

∣

∣

∣

∣

∣

2

.

Since R̃k2 =
√

ω̃/Ẽ and R̃k1 =
√

(ω̃ + δE) /Ẽ we see,

as stated earlier, that r/r0 depends only on Ṽ /Ẽ, δE/Ẽ

and ω̃/Ẽ.
First we consider the limit of small values of k and δE.

For ω̃ = δE = 0 we have F0 (0) = 1/16, and

r(0)

r0(0)
=





1 + |Ṽ |

Ẽ
cosϕ cos θ/(16 cos(ϕ + θ))

1 + |Ṽ |

Ẽ
sinϕ cos θ/(16 sin(ϕ+ θ))





2

. (87)

If the more localized level a is above b (see Fig. 1) in
the initial state and below b in the final state (“shake-
down”), we have 0 < ϕ < π/4 and 0 < θ < π/4, and
the factor in the brackets is larger than unity. Thus in-
teraction effects enhance the ratio r(ω)/r0(ω). This cor-
responds to a constructive interference between intrinsic
and extrinsic effects. This is in contrast to the destructive
interference found for the plasmon case.4,5 The present
treatment, however, refers to the “shake-down” scenario,
and it is more appropriate to compare the plasmon case
with the ”shake up” case (−π/4 < ϕ < 0 < θ < π/4
and ϕ+ θ < 0). Then the expression (87) for r(ω)/r0(ω)
indeed becomes smaller than one, and the relative weight
of the satellite is reduced for small energies. We notice,
however, that both the satellite and the main peak are
enhanced by the interference, but that the main peak is
enhanced more in the ”shake-up” situation.
We next consider the case when k is large. Fk (ǫ) for

large k and ǫ is (with R̃k ≈ √
ǫ)

Fk (ǫ) =
1

2
√
ǫ

[

i− 1

2
√
ǫ
+ R̃k −

√
ǫ

]

. (88)

For the case when θ = ϕ we obtain

r(ω)

r0(ω)
− 1 = −|Ṽ |

2ω̃

1 + δE/Ẽ

2 cos(2ϕ)
+

|Ṽ |2
4ω̃Ẽ

(

cos4 ϕ

cos2(2ϕ)
− 1

4

)

.

(89)

Thus the approach to the sudden limit goes as 1/ω̃ with
a coefficient which depends on the parameters. With our
standard CuCl2 parameters, we have

r(ω)

r0(ω)
− 1 = −0.30

|Ṽ |
ω̃

(

1 +
δE

Ẽ

)

+ 0.24
|Ṽ |2
ω̃Ẽ

We note that for large |Ṽ |/Ẽ, and when |Ṽ | is large
enough compared to δE, the last (positive) term dom-
inates. The approach to the sudden limit is then set by

|Ṽ |2/Ẽ = 2
(

R̃Ṽ
)2

.

To evaluate Eq.(86) when δE = 0 we only need the
function F (ǫ),

F (ǫ) =
1

π

∫ ∞

0

x4dx

[1 + x2]
2
[

1 + (
√
ǫ − x)

2
]

[x2 − ǫ− iη]
.

We show F (ǫ) in the lower panel of Fig.12. The results
Eq. (88) for large values of ǫ are shown by the dotted
lines in the figure. Clearly the approach of Re F to its
asymptote is very slow. If we take δE = 0 we have the
same form as in first order perturbation theory with a
separable potential Eq. (83),

r(ω)

r0(ω)
=

∣

∣

∣

∣

∣

∣

1− cos2 ϕ
cos 2ϕ

Ṽ
Ẽ
F (ω̃)

1− 1
2
Ṽ
Ẽ
F (ω̃)

∣

∣

∣

∣

∣

∣

2

, (90)
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where we have put ϕ = θ. As shown in Fig. 12, F (ǫ) has

a qualitatively similar behavior as C(ǫ) for ǫ/Ẽ <∼ 2. As
in the case of the function C, the relevant energy scale is
Ẽ.
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FIG. 13. The ratio r(ω)/r0(ω) as a function of ω̃/Ẽ for
different values of Ṽ /Ẽ and δE/Ṽ .

In Fig. 13 we show r(ω)/r0(ω) as a function of ω̃/Ẽ for

a few values of δE/Ṽ and Ṽ /Ẽ. We see that r(ω)/r0(ω)
starts at a positive value (cf Eq. (87)), and reaches a

broad maximum at about ω̃/Ẽ ∼ 0.5 − 1.5. Compared
to the separable potential solution in Fig. 11, the over-
shoot behavior is robust up to fairly large energies, which
is due to ImF (ω̃) decaying more slowly than ImC(ω̃).
For much larger values of ω, (r/r0 − 1) decays as 1/ω̃,
as shown in Eq. (89). Here, based on the discussion in
Sec. VIIB, we can expect that as multiple scattering be-
comes important, the region where there is an overshoot
is substantially reduced and the region with an under-
shoot becomes larger. At the same time, the overshoot
intensity will be enhanced. These behaviors are actually
confirmed by comparing with the exact calculations given
in Fig. 10.

Fig. 13 illustrates that for intermediate values of ω̃,
when ReF dominates, (r/r0 − 1) goes as roughly |Ṽ |/ω̃
if δE/Ẽ is not too large. For larger (but not too large)
values of ω̃, ReF becomes small and ImF dominates.
Since ReF is positive for small energies, this leads to a
constructive interference between intrinsic and extrinsic
effects. For energies of the order Ẽ, ReF changes sign,
and the interference becomes weakly destructive. For
somewhat larger energies the extrinsic effects are mainly
determined by the imaginary part of F . From Eq. (89)
it follows that in perturbation theory the extrinsic effects
become small on the energy scale Ṽ 2/Ẽ.

D. Semi-classical approximation

In this section we analyze the adiabatic-sudden transi-
tion within the semi-classical framework. From the cou-
pled differential equations Eqs. (76) and (77) we can ob-
tain differential equations for ∂|aiv(τ)|2/∂τ , i = 1, 2. In-
tegration of these equations, leads to

|a2v(τ0)|2 − |a2v(0)|2

= 2Im

∫ τ0

0

V12(τ)a1v(τ)a
∗
2v(τ)e

iδEτdτ, (91)

where τ0 = R0/v is the time at which the emitted elec-
tron with the velocity v leaves the range R0 of the scat-
tering potential. |aiv(τ0)|2 − |aiv(0)|2 is a measure of the
deviation from the sudden limit. For small values of τ
both the coefficients aiv(τ) and the exponent eiδEτ are
approximately real and there is a small contribution to
the imaginary part of the integral in Eq. (91). As τ grows
there is, however, a contribution from both these sources.
To obtain a qualitative understanding of the semi-

classical approximation, we solve the Schrödinger equa-
tions Eqs. (76) and (77) to lowest order in 1/v. This
leads to

a1v(τ) = a1v(0) (92)

−i
∫ τ

0

dτ
′

[V11(τ
′

)a1v(0) + V12(τ
′

)a2v(0)]

and a similar result for a2v(τ). This gives

|a2v(τ0)|2 − |a2v(0)|2 =
1

2
sin(2ϕ)

{

1

2
sin(2θ) (93)

×
[
∫ τ0

0

dτVsc(τ)

]2

+ sin(2ϕ+ 2θ)δE

∫ τ0

0

dττVsc(τ)

}

.

To discuss the result, we for a moment assume a simple
τ -dependence of Vij(τ)

Vij(τ) = Vij(0)(1−
τ

τ0
), (94)

which corresponds to the r-dependence used in Eq. (22).
We note, however, that this form is too simple to describe
the behavior of the more realistic potential in Eq. (11).
Inserting Eqs. (92) and (94) in Eq. (93) gives

∆2 ≡ |a2v(τ0)|2 − |a2v(0)|2 =
1

4
Vsc(0) sin(2ϕ)

×
[

1

4
sin(2θ)Vsc(0) +

1

3
sin(2ϕ+ 2θ)δE

]

τ20 . (95)

We now extend this treatment to intermediate values
of v where the adiabatic to sudden transition takes place.
Using the expressions Eqs. (25), (28) and (30) to relate
δE and U = −Vsc(0) we obtain
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r(ω)

r00
− 1 =

∆2

sin2(2ϕ) cos2(2ϕ)
= − sin(2ϕ)

sin(2θ)

(δE)2τ20
12

.

(96)

Within the semi-classical theory the condition for the
sudden approximation is then

v

R0
=

1

τ0
≫ δE

√

sin(2ϕ)

12 sin(2θ)
. (97)

We are now in a position to discuss the approach to the
sudden limit. Within a semi-classical framework it seems
clear that we have to require that the hole potential is
fully switched on after a “short” time τ0 = v/R0, i.e.,
that the emitted electron leaves the range of the scatter-
ing potential after a short time. The question is, however,
what we mean by “short”. From Eq. (95) it follows that
the time-scale is set by both the inverse of δE and the
inverse of Vsc(0). In Eq. (97) we have used the relation
between δE and Vsc(0) to remove Vsc(0) from Eq. (97).
From Eq. (97) we obtain the condition for the sudden

approximation within the SC theory

ω̃ =
1

2
k2 ≫ (δE)2R2

0 =
(δE)2

2Ẽ
∼ Vsc(0)

2

Ẽ
. (98)

Thus, according to the semi-classical theory, the sudden
approximation requires that ǫk ≫ (δE)2/Ẽ. Compar-
ison with the full quantum mechanical calculations in
Fig. 10 shows that this criterion is not appropriate for
the range of parameters considered here. The reason is
that we have considered a parameter range where the
semi-classical theory is not very accurate.
It is interesting that the SC theory correctly predicts

that the weight of the satellite goes to zero at threshold.
Nevertheless, the SC theory does not give the correct
physics at the threshold. In the full quantum mechanical
calculation the weight of the satellite goes to zero due to
the effects of the dipole matrix element, which becomes
very small at small photoelectron energies. This effect is
not included in the SC theory. In the semi-classical treat-
ment, the small weight of the satellite is due to the fact
that the scattering potential between the outgoing slow
electron and the excitation means that the hole potential
is only switched on slowly. In the quantum mechanical
treatment, on the other hand, the scattering potential
leads to an enhancement of the relative weight of the
satellite close to the threshold for the shake-down case.

VIII. DISCUSSION

We have studied the photoemission spectrum of a sim-
ple model with a localized charge transfer excitation. We
have obtained exact numerical results for the spectrum
as a function of the photon energy ω and in particular
focussed on the ratio r(ω) between the weights of the

satellite and the main peak. These calculations are com-
pared with perturbational and semi-classical treatments.
The results have been analyzed using the latter two ap-
proaches.

An important effect in the ratio r(ω) is due to the
energy dependence of the dipole matrix elements and a
factor 1/(∂ǫk/∂k) ∼ 1/k in the expression for the spec-
trum. This leads to a suppression of the satellite close to
the threshold, but can lead to an overshoot further away
from the threshold. This effect was discussed in Sec. IV
and is described by r0(ω). If the interaction between the
emitted electron and the target is weak, this effect dom-
inates. It is determined by the excitation energy δE and
the relevant energy scale Ẽd of the dipole matrix element.
If δE/Ẽd is small, r0 reaches its limiting value from be-

low, while there is an overshoot if δE/Ẽd ≫ 1. In both
cases r0 reaches its limiting value for a kinetic energy of
the order a few times δE.

To study the effects of the scattering potential between
the emitted electron and the target we have focussed on
the ratio r(ω)/r0(ω). This quantity shows an overshoot
for small values of ω in the “shake-down” situation stud-
ied here. Depending on the parameters there may be
an undershoot for larger energies, which extends over a
large energy range. This undershoot is, however, fairly
small for the cases considered here. The sudden approx-
imation is then valid to a reasonable accuracy when the
overshoot has become small. We show that this happens
on the energy scale Ẽ = 1/(2R̃2), where R̃ is a typical
length scale of the scattering potential.

One of the main results of this paper is that for a cou-
pling to localized excitations, the adiabatic to sudden
transition takes place at quite small kinetic energies of
the photoelectron. This is in contrast to the large kinetic
energies needed for the case of coupling to plasmons. In
the plasmon case, the kinetic energy is typically so large
that the semi-classical treatment is a very good approx-
imation. The adiabatic to sudden transition is then ex-
pected to happen on the energy scale (ωqλ)

2,19 where
ωq and λ are the plasmon frequency and wavelength, re-
spectively. Since the long wavelength plasmons dominate
the transition, this happens at very large energies. For a
localized excitation, the relevant length scale of the scat-
tering potential is smaller, and the transition is expected
to take place at a smaller energy scale. Actually, the tran-
sition takes place at such a small energy that the semi-
classical theory is usually not valid any more. It is in-
teresting that the semi-classical theory therefore predicts
the opposite dependence on the range R̃ of the scattering
potential, namely as R̃2 instead of Ẽ = 1/(2R̃2).

For the ”shake-down” scenario considered here (the
two outer levels cross as the hole is created), we find con-
structive interference (increase of r(ω)/r0(ω)) between
the intrinsic and extrinsic processes at low photoelectron
energies. This is in contrast to the destructive interfer-
ence found in the plasmon case and to the reduction of
r(ω)/r0(ω) found here for the ”shake-up” case (no level
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crossing).
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TABLE I. The model Hamiltonian Eq.(1) can describe var-
ious charge transfer systems. The table indicates the meaning
of the states a and b for different cases.

a b

transition metal compounds 3d state ligand state

CO on surface 2π∗ state bulk(surface) state

Ce compounds 4f state 5d state

TABLE II. Used parameters for copper-dihalide com-
pounds.

U (eV) t (eV) δE (eV) R0 (a.u.) ε r(ω → ∞)

CuBr2 12.33 2.02 7.37 5.01 1.71 2.33

CuCl2 10.58 1.84 6.45 4.71 1.96 2.07

CuF2 8.62 1.63 5.41 3.86 2.26 1.75
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