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Spin tunneling and phonon-assisted relaxation in Mn12-acetate

Michael N. Leuenberger∗ and Daniel Loss†

Department of Physics and Astronomy, University of Basel

Klingelbergstrasse 82, 4056 Basel, Switzerland

We present a comprehensive theory of the magnetization relaxation in a Mn12-acetate crystal in
the high-temperature regime (T & 1 K), which is based on phonon-assisted spin tunneling induced
by quartic magnetic anisotropy and weak transverse magnetic fields. The overall relaxation rate as
function of the longitudinal magnetic field is calculated and shown to agree well with experimental
data including all resonance peaks measured so far. The Lorentzian shape of the resonances, which
we obtain via a generalized master equation that includes spin tunneling, is also in good agreement
with recent data. We derive a general formula for the tunnel splitting energy of these resonances.
We show that fourth-order diagonal terms in the Hamiltonian lead to satellite peaks. A derivation
of the effective linewidth of a resonance peak is given and shown to agree well with experimental
data. In addition, previously unknown spin-phonon coupling constants are calculated explicitly. The
values obtained for these constants and for the sound velocity are also in good agreement with recent
data. We show that the spin relaxation in Mn12-acetate takes place via several transition paths of
comparable weight. These transition paths are expressed in terms of intermediate relaxation times,
which are calculated and which can be tested experimentally.

PACS numbers: 75.45.+j, 75.30.Gw, 75.50.Tt, 75.30.Pd

I. INTRODUCTION

The magnetization relaxation in the molecular magnet
Mn12-acetate with chemical formula, [Mn12(CH3COO)16
(H2O)4O12]· 2CH3COOH · 4H2O, (henceforth abbrevi-
ated as Mn12) has attracted much recent interest since
several experiments1,2,3,4,5 have indicated unusually long
relaxation times — about two months at a temperature
of about 2 K — as well as pronounced peaks in the re-
laxation time6,7,8 in response to a varying magnetic field
Hz when applied along the easy axis of the Mn12 crys-
tal. These peaks correspond to an increased relaxation
rate of the magnetization of Mn12 and occur when Hz is
tuned to multiples of about 0.44 T. According to earlier
suggestions9,10 this phenomenon has been interpreted as
a manifestation of resonant tunneling of the magnetiza-
tion, often referred to as macroscopic quantum tunneling
(MQT). A qualitative explanation goes as follows. From
the microscopic point of view a Mn12 cluster acts like
a giant spin with length s = 10 as long as the external
magnetic field is small compared to the exchange inter-
actions between the Mn ions, which is fulfilled in the
experimental range considered in this paper. The relax-
ation rate of the magnetization increases at field values
where the spin states become pairwise degenerate. It is
this degeneracy that determines the resonance condition.
As the external field Hz is moved away from a resonance
the spin states are no longer perfectly degenerate, and
therefore the tunneling probability becomes smaller and
thus the relaxation rate. Since the spin system couples
to the environmental phonons of the Mn12 crystal, the
energy levels of the spin states are smeared out. This
leads to homogeneously broadened resonance peaks that
are of Lorentzian shape. There are also other sources
which lead to broadening of the resonances, such as hy-
perfine and dipolar fields.11 They give rise to inhomoge-

neous broadening with Gaussian-shaped peaks.12,13 How-
ever, this stands in contrast to the measured resonance
peaks, which are nearly perfect Lorentzians.11 Further-
more, the width of the hyperfine induced Gaussians12,14

turns out to be smaller for T & 1 K than the width of the
Lorentzians obtained below and seen in the experiment.15

Similarly, dipolar interactions have been ruled out by ex-
periments on diluted samples.16 Thus, for temperatures
T & 1 K we can safely neglect hyperfine and dipolar
fields, and the dominant source of the peak broadening
can be explained consistently by spin-phonon effects only.
In a critical comparison between model calcu-

lations12,14,17,18,19,20 and experimental data6,7,11 Fried-
man et al.11 point out that a consistent explanation of
the experimentally observed relaxation is still missing. A
good starting point for theoretical calculations has been
formulated by Villain et al.,17 where the relaxation is de-
scribed in terms of spin-phonon interaction and a general-
ized Orbach process. However, this approach does not in-
clude the dependence on the external field Hz . Also, one
of the main challenges for theory is to explain the overall
shape of the relaxation curve as well as the nearly perfect
Lorentzian shape of the measured resonance peaks.11

In this work we perform a model calculation of the
magnetization relaxation which is based on phonon-
assisted tunneling. We present a self-consistent theory
which is for the first time in reasonably good agreement
both with the overall relaxation rate (including all res-
onances) measured by Thomas et al.7 (see Fig. 3) and
with the Lorentzian shape of the first resonance peaks
(see Figs. 7 and 8) measured by Friedman et al.11 with
high precision for four different temperatures.
Our model, which is introduced in Sec. II, contains

five independent parameters: three anisotropy constants
A ≫ B ≫ B4, the misalignment angle θ (angle between
field direction and easy axis, the latter being taken along
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the z axis), and the sound velocity c. The anisotropy con-
stant B4 and the angle θ are responsible for the spin tun-
neling. This will be explained in Sec. III. Moreover, we
derive the spin-phonon coupling constants in Sec. II. It
turns out from our calculations that these constants can
be expressed in terms of the anisotropy A. The constants
A,B,B4 have already been measured21,22 and are known
within some experimental uncertainty. We achieve opti-
mal agreement between our theory and data if we pro-
ceed as follows. In accordance with Ref. 11 we set θ = 1◦,
while the constants A,B,B4 are fitted to the relaxation
data by observing, however, the constraints that A,B,B4

are allowed to vary only within the range of their experi-
mental uncertainties. The sound velocity c has not been
directly measured yet (to our knowledge). However, spe-
cific heat measurements42 yield the Debye temperature of
Mn12, from which a sound velocity can be deduced that is
in excellent agreement with our fit of the sound velocity
c = (1.45−2.0)×103 m/s (see Sec. IV). Thus, in contrast
to previous results12,14,17,18,19 our theory is in reasonably
good agreement not only with the relaxation data7,11 but
also with all experimental parameter values known so far
(see Figs. 3, 7, and 8). In addition, new predictions are
made which can be tested experimentally: the sound ve-
locity c and the intermediate relaxation times τn, as well
as satellite peaks.
In Sec. III, extending previous work,12,14,17,18,19 we

make use of a generalized master equation which treats
phonon-induced spin transitions between nearest and
next-nearest energy levels as well as resonant tunneling
due to quartic anisotropies and transverse fields on the
same footing, which results in the Lorentzian shape of
the resonances. We derive the effective linewidth of the
Lorentzian peaks (see Sec. VI) as well as a generalized
formula of the tunnel splitting energy (see Sec. III). In
Sec. IV, we obtain the relaxation time by exactly diag-
onalizing the master equation. In Sec. V, solving the
master equation analytically, we identify the dominant
transition paths (see Figs. 9 and 10) and show that the
magnetization reversal is not dominated by just one sin-
gle path but rather by several paths which can be of com-
parable weight. We finally note that some of the results
of the present paper have been published in Ref. 23 in a
short and less general form. Here we present details of the
derivation of these results and generalize them in various
ways, leading to new results such as satellite peaks in the
overall relaxation curve, relaxation time of an individual
relaxation path, an analytical expression for the effective
linewidths, and a generalized tunnel splitting formula.

II. MODEL

In accordance with earlier work12,14,17,18,19,24 we use
a single-spin Hamiltonian H = Ha + HZ + Hsp + HT

including spin-phonon coupling. This model turns out to
be sufficient to describe the behavior of the Mn12-acetate

molecule (for temperatures T & 1 K). In particular,

Ha = −AS2
z −BS4

z (1)

represents the magnetic anisotropy where A ≫ B > 0.
The anisotropy −AS2

z is depicted in Fig. 1. We define
the easy axis to lie along the z direction.
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FIG. 1. Anisotropy energy −Am2 −Bm4.

Here, S is the spin operator with s = 10, and A/kB =
0.52 − 0.56 K,21,22 and B/kB = (1.1 − 1.3) × 10−3 K
(Refs.21 and22) are the anisotropy constants (kB is the
Boltzmann factor). The Zeeman term

HZ = gµBHzSz (2)

describes the coupling between the external magnetic
field Hz and the spin S. The g factor is known to be
g = 1.9.25

We denote by |m〉, −s ≤ m ≤ s, the eigenstates of
Ha +HZ with eigenvalue

εm = −Am2 − Bm4 + gµBHzm. (3)

If the external magnetic field Hz is increased, one ob-
tains doubly degenerate spin states whenever a level m
coincides with a level m′ on the opposite side of the well
(separated by the barrier given by A). The resonance
condition for double degeneracy, i.e., εm = εm′ , leads to
the resonance field

Hmm′

z =
n

gµB

[

A+B
(

m2 +m′2
)]

. (4)

As usual, we refer to n = m +m′ = even (odd) as even
(odd) resonances.
The Hamiltonian

HT = −1

2
B4

(

S4
+ + S4

−

)

+ gµBHxSx , (5)

makes tunneling between Sz states possible, where S± =
Sx ± iSy, and B4 is the fourth-order anisotropy con-
stant. Hx = |H| sin θ is the transverse field, with θ
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being the misalignment angle. Hx is assumed to be
much smaller than Hz, i.e., θ is at most a few de-
grees. From experiments21 it is known that B4/kB =
(4.3 − 14.4) × 10−5 K. Finally, the most general spin-
phonon coupling26 which is allowed by the tetragonal
symmetry of the Mn12 crystal in leading order is given
by

Hsp = g1(ǫxx − ǫyy)⊗ (S2
x − S2

y) +
1

2
g2ǫxy ⊗ {Sx, Sy}

+
1

2
g3(ǫxz ⊗ {Sx, Sz}+ ǫyz ⊗ {Sy, Sz})

+
1

2
g4(ωxz ⊗ {Sx, Sz}+ ωyz ⊗ {Sy, Sz}) , (6)

=
1

2
g1(ǫxx − ǫyy)⊗ (S2

+ + S2
−) +

i

4
g2ǫxy ⊗ (S2

− − S2
+)

+
1

4
g3[(ǫxz − iǫyz)⊗ {S+, Sz}

+ (ǫxz + iǫyz)⊗ {S−, Sz}]

+
1

4
g4[(ωxz − iωyz)⊗ {S+, Sz}

+ (ωxz + iωyz)⊗ {S−, Sz}] , (7)

where gi, i = 1, 2, 3, 4, are the spin-phonon coupling con-
stants, which we shall determine in the following.
The linear strain tensor is defined by ǫ = ∇u, where

u(x, y, z) is the displacement field. Symmetrization of
the strain tensor yields

ǫαβ =
1

2

(

∂uα

∂β
+

∂uβ

∂α

)

, (8)

while the antisymmetrized linear strain tensor reads

ωαβ =
1

2

(

∂uα

∂β
− ∂uβ

∂α

)

, (9)

with α, β = x, y, z. To determine gi occurring in Eq. (6)
we follow Dohm and Fulde.27 The displacement

u = δφ× x (10)

(in leading order) is generated by rotation only. The
infinitesimal rotation angle can be calculated by acting
with ∇x (with respect to the position x) on both sides
of Eq. (10),

δφ =
1

2
∇× u =





ωyz

ωzx

ωxy



 . (11)

Applying infinitesimal rotations on the spin vector S




1 0 0
0 1 ωyz

0 −ωyz 1









1 0 ωxz

0 1 0
−ωxz 0 1









Sx

Sy

Sz





=





Sx + ωxzSz

Sy − ωxzωyzSx + ωyzSz

ωxzSx − ωyzSy − Sz



 , (12)

we find (to leading order in ωαβ) that the easy axis term,
−AS2

z , is transformed into

A(ωxz{Sx, Sz}+ ωyz{Sy, Sz}). (13)

Comparison with the last term in Eq. (6) then yields
g4 = 2A.
If the rotation matrices Rα, α = x, y, z, are expanded

up to second order, one finds terms that include symmet-
ric elements of the strain tensor ǫ,

Rx =





1 0 0
0 1− 1

2δφ
2
x −δφx

0 δφx 1− 1
2δφ

2
x



 , (14)

Ry =





1− 1
2δφ

2
y 0 −δφy

0 1 0
δφy 0 1− 1

2δφ
2
y



 , (15)

Rz =





1− 1
2δφ

2
z −δφz 0

δφz 1− 1
2δφ

2
z 0

0 0 1



 . (16)

Now we obtain from u = RzRyRxx− x

u = δφ× x− 1

2





(

δφ2
y + δφ2

z

)

x
(

δφ2
x + δφ2

z

)

y
(

δφ2
x + δφ2

y

)

z



 . (17)

By keeping derivatives of δφα, up to second order we find
δφ2

x = εxx − εyy − εzz, and cyclic permutation of (x,y,z).
After inserting the rotated spin vector RxRyS into
−AS2

z = −A(S2 − S2
x − S2

y) we get for the right-hand
side

A (ǫxx − ǫyy)
(

S2
x − S2

y

)

+O(ǫ2), (18)

where we retain only terms that induce spin transitions.
Comparing with the spin-phonon Hamiltonian (6) one
sees immediately that g1 = A, and thus

g1 = g4/2 = A. (19)

Thus the coupling constants g1 and g4 are explicitly ex-
pressed in terms of the anisotropy A.
Finally, we note that the terms in Eq. (6) that are pro-

portional to g1,2 produce second-order transitions with
∆m = ±2, while the ones proportional to g3,4 pro-
duce first-order transitions with ∆m = ±1. Thus,
Eq. (19) implies that first-order and second-order tran-
sitions are equally important for the relaxation. In fol-
lowing Abragam and Bleaney,28 it is now very plausi-
ble to adopt the approximations |g2| ≈ g1 = A and
|g3| ≈ g4 = 2A (the sign is irrelevant for the transition
rates calculated below).
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III. MASTER EQUATION INCLUDING SPIN

TUNNELING

A. Generalized master equation

In this section we derive a master equation that de-
scribes the relaxation of the spin due to phonon-assisted
transitions including resonances due to tunneling. For
this we make use of a standard formalism29,30 suitable to
describe a system (spin) coupled to a heat bath reservoir
(phonons), the latter of which is in thermodynamic equi-
librium described by the canonical density matrix ρph for
free phonons. That means we start from the full Hamil-
tonian H = H0 +Hph+Hsp, where H0 = Ha +HZ +HT

represents the system, Hph the phonon heat bath, and
Hsp given in Eq. (6) is of the form Hsp =

∑

iQi ⊗ Fi,
where Qi is a spin operator and Fi is a phonon operator.
The generalized master equation in the interaction pic-
ture (I) in Born and Markoff approximation reads [see
Eq. (8.1.22) in Ref. 29]

ρ̇I(t) = −
(

1

~

)2
∑

ij

∫ ∞

0

dt′′

×
{[

Qi(t), Qj(t− t′′)ρI(t)
]

〈Fi(t
′′)Fj〉

−
[

Qi(t), ρ
I(t)Qj(t− t′′)

]

〈FjFi(t
′′)〉

}

, (20)

where Qi(t) = eiH0tQie
−iH0t. Equation (20) is valid

for the situations where the correlation time τc in the
heat bath is much smaller than the relaxation time τ
of the spin system. Indeed, the assumption is satisfied
here since a rough estimate for thermal phonons yields
τc ∼ ~/kBT ∼ 10−11 s, at T = 1 K, whereas it will turn
out that τ & 1 s (see below). In this case, the integral
kernel gives a vanishing contribution for times t′′ larger
than τc, and thus one can extend the upper limit of the
time integral to infinity and replace ρ(t− t′′) by ρ(t) (see
also Ref. 30, Chap. 13).
As our undamped Hamiltonian H0 has also non-

diagonal elements in the |m〉-basis it proves con-
venient to formulate the generalized master equa-
tion in the Schrödinger picture, i.e., with ρI(t) =
e(i/~)H0tρ(t)e−(i/~)H0t, we get

ρ̇(t) =
i

~
[ρ(t),H0]−

(

1

~

)2
∑

ij

∫ ∞

0

dt′′

×{[Qi, Qj(−t′′)ρ(t)] 〈Fi(t
′′)Fj〉

− [Qi, ρ(t)Qj(−t′′)] 〈FjFi(t
′′)〉} . (21)

As the tunnel splitting generated by HT is smaller than
the level spacing of H0, i.e., Emm′ < |εm − εm′ | (see be-

low), we can approximate the free propagator e−(i/~)H0t
′′

within the integral kernel by e−(i/~)(Ha+HZ)t
′′

in the
rest of our calculations.31 Next, we take the matrix ele-
ments of Eq. (21) using ρmm′ = 〈m |ρ|m′〉, ρm = ρmm,

Umm′ = e−
i
~
(εm−εm′ )t′′ , and with the definitions29,32

Γ+
mkln =

1

~2

∑

i,j

〈m |Qi| k〉 〈l |Qj |n〉
∫ ∞

0

dt′′Uln 〈Fi(t
′′)Fj〉 ,

Γ−
mkln =

1

~2

∑

i,j

〈m |Qi| k〉 〈l |Qj |n〉
∫ ∞

0

dt′′Umk 〈FjFi(t
′′)〉 ,

γm′m =
∑

k

(

Γ+
m′kkm′ + Γ−

mkkm

)

− Γ+
mmm′m′ − Γ−

mmm′m′ ,

Wmn = Γ+
nmmn + Γ−

nmmn, (22)

it follows from Eq. (21) that

ρ̇mm′ =
i

~
[ρ,H0]mm′ + δmm′

∑

n6=m

ρnWmn − γmm′ρmm′ ,

(23)

where we have considered only the secular terms [i.e., the
“coarse-grained” derivative was taken with respect to t in
Eq. (20)]29 and set [, ]mm′ = 〈m |[, ]|m′〉. The relaxation
of the magnetization is entirely based on Eq. (23).
The difference to the usual master equation is that

Eq. (23) takes also off-diagonal elements of the density
matrix ρ(t) into account. This is essential to describe
tunneling of the magnetization, which is caused by the
overlap of the Sz states.
The diagonal elements (m = m′) of Eq. (23) yield the

master equation

ρ̇m =
i

~
[ρ,H0]mm +

∑

n6=m

ρnWmn − ρm
∑

n6=m

Wnm. (24)

The equation for the off-diagonal elements (m 6= m′),

ρ̇mm′ =
i

~
[ρ,H0]mm′ − γmm′ρmm′ , (25)

can be simplified in the following way. Accord-
ing to Eq. (7), Qi is an element of the set
{

S2
+, S

2
−, S+Sz, SzS+, S−Sz, SzS−

}

. Hence, we see that

Γ+
mmm′m′ = Γ−

mmm′m′ = 0, and we get

γm′m = γmm′ =
1

2

∑

n

(Wnm′ +Wnm)

=
1

2
(Wm +Wm′) , (26)

where we use the abbreviation Wm =
∑

n Wnm.
Evaluation of Eq. (22) leads immediately to Fermi’s

golden rule for transition rates in first quantization [see
Eq. (8.2.3) in Ref. 29]:

Wmn =
2π

~

∑

NN ′

|〈mN |Hsp|nN ′〉|2 〈N ′ |ρph|N ′〉

× δ (EN ′ − EN − εm + εn) . (27)

Explicit evaluation yields (see Appendix A),
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Wm±1,m =
A2s±1

12πρc5~4
(εm±1 − εm)3

eβ(εm±1−εm) − 1
,

Wm±2,m =
17A2s±2

192πρc5~4
(εm±2 − εm)3

eβ(εm±2−εm) − 1
, (28)

where s±1 = (s ∓ m)(s ± m + 1)(2m ± 1)2, and s±2 =
(s∓m)(s±m+1)(s∓m−1)(s±m+2). The mass density
ρ for Mn12 is given by 1.83× 103 kg/m3.33 Here, c is the
sound velocity of the Mn crystal, which is the only free
parameter in our theory. As already mentioned, we are
not aware of direct measurements of c (but see below).
Note that the transition rates Wm±1,m,Wm±2,m are very
sensitive to variations of the sound velocity c, as the latter
enters with the fifth power.

B. Spin tunneling

We include now the spin tunneling in the generalized
master equation (23). Let |m〉 and |m′〉 be two eigen-
states of Ha + HZ on the left and right sides of the
barrier, respectively. |m〉 and |m′〉 are degenerate when

δHz = Hmm′

z −Hz vanishes. In the presence of tunnel-
ing, induced by HT, the two states form (anti)symmetric
levels split by Emm′ (for δHz = 0). By using time-
independent perturbation theory in higher order the tun-
nel splitting energy Emm′ can be evaluated,34

Emm′ = 2
Vm,m−1

εm−1 − εm

Vm−1,m−2

εm−2 − εm
· · ·V−m′+1,−m′ . (29)

Note that in this expression only steps with ∆m = ±1
are allowed. However, for the present purpose we need
to generalize Eq. (29) to situations where potentials
Vmi,mi+1 ∈ R with arbitrary steps ∆m = mi − mi+1

(m > mi > mi+1 > m′, i = 1, . . . , N − 1) can occur. As
we will show in Appendix B this is indeed possible by
using resolvent techniques, and we find

Emm′ = 2

∣

∣

∣

∣

∣

∣

∣

∑

m1,...,mN
mi 6=m,m′

Vm,m1

εm − εm1

N−1
∏

i=1

Vmi,mi+1

εm − εmi+1

VmN ,m′

∣

∣

∣

∣

∣

∣

∣

,

(30)

where N is the lowest order of the degenerate perturba-
tion theory, by means of which Eq. (30) has been derived
(Nth-order secular equation35), giving a nonvanishing
contribution to Emm′ . For the potentials Vmi,mi+1 we in-
sert combinations of terms occurring inHT. For example,
the anisotropy B4 leads to transitions ∆m = ±4, while
the misalignment Hx leads to transitions ∆m = ±1. The
summations in Eq. (30) can be thought of as summation
over different paths in the Hilbert space connecting |m〉
with |m′〉.
Continuing the evaluation of the first part of Eq. (23)

we project the undamped Hamiltonian H0 by P =
∑

n=m,m′ |n〉 〈n| on the two-state system {|m〉 , |m′〉},

which yields the two-state Hamiltonian in the presence
of a bias field (see Fig. 2)

HT = ξm |m〉 〈m|+ Emm′

2
|m〉 〈m′| + (m ↔ m′) (31)

=̂

[

ξm
Emm′

2
Emm′

2 ξm′

]

= PH0P,

with ξm = εm + gµBδHzm and the energy eigenvalues

ET = 1
2

[

ξm + ξm′ ±
√

(ξm − ξm′)
2
+ E2

mm′

]

. HT pro-

vides a valid description as long as the level splitting
remains smaller than the level spacing, i.e.,

∆ =
√

(ξm − ξm′)2 + E2
mm′ ≪ |εm(′) − εm(′)±1|. (32)

We have checked that between two main resonances this
condition is satisfied for the states |mT〉 and |m′

T〉 of the
dominant paths and for each degenerate pair of states
|m〉, |m′〉 with εm, εm′ ≤ εmT , εm′

T
(see Sec. V).

Next we insert the two-state Hamiltonian HT into the
generalized master equation (23), which yields

ρ̇m =
iEmm′

2~
(ρmm′ − ρm′m)−Wmρm +

∑

n6=m,m′

Wmnρn

(33)

and

ρ̇mm′ =−
(

i

~
ξmm′ + γmm′

)

ρmm′+
iEmm′

2~
(ρm−ρm′) , (34)

where ξmm′ = ξm − ξm′ , and likewise for m ↔ m′. Ul-
timately, we are interested in the overall relaxation time
τ of the quantity ρs − ρ−s (see Sec. V) due to phonon-
induced transitions. This τ turns out to be much longer
than τd = 1/γmm′ , which is the decoherence time of
the decay of the off-diagonal elements ρmm′ ∝ e−t/τd

of the density matrix ρ. Thus, we can neglect the time-
dependence of the off-diagonal elements, i.e., ρ̇mm′ ≈ 0.
Physically this means that we deal with incoherent tun-
neling for times t > τd.

36 Inserting then the stationary
solution of Eq. (34) into Eq. (33), which leads to the
complete master equation including resonant as well as
nonresonant levels,

ρ̇m = −Wmρm +
∑

n6=m,m′

Wmnρn + Γm′

m (ρm′ − ρm) , (35)

where

Γm′

m = E2
mm′

Wm +Wm′

4ξ2mm′ + ~2 (Wm +Wm′)
2 (36)

is the transition rate from m to m′ (induced by tunnel-
ing) in the presence of phonon damping.38 The relaxation

dynamics of the resonances described by 1/Γm′

m ∼ 10−7 s
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(see Fig. 15) turns out to be much faster than the phonon-

induced overall relaxation, i.e., 1/Γm′

m ≪ τ & 1s (see
Fig. 3). Thus, our derivation based on the assumption

τ ≫ τd is self-consistent since 1/Γm′

m ∼ τd. Note that
Eq. (35) is now of the usual form of a master equation,
i.e., only diagonal elements of the density matrix ρ(t)
occur. For levels k 6= m,m′, Eq. (35) reduces to

ρ̇k = −Wkρk +
∑

n

Wknρn. (37)

We note that Γm′

m has a Lorentzian shape with respect
to the external magnetic field δHz occurring in ξmm′ .
The Hz dependence of Wm around the resonances turns
out to be much weaker (see below) and can be safely

ignored. It is thus this Γm′

m that will determine the peak
shape of the magnetization resonances (see below and
Figs. 3–8). Note that in Figs. 3–8 these Lorentzians are
truncated at the center of the peak by the spin-phonon
transition rates Wm and Wm′ in such a way that the
effective linewidth (defined as the width at half of the
height of the truncated peak) is much larger than (Wm+
Wm′)/2. This needs some further explanations, which are
given in Sec. VI, after we have discussed the relaxation
times.
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FIG. 2. Tunneling configuration.

IV. RELAXATION TIME

A. Numerical diagonalization of the master equation

In this section we give the results of our exact eval-
uation obtained by a numerical diagonalization of the
master equation. For convenience we now write down
the master equation (35) as a vector equation,

~̇ρ(t) = W̃ ~ρ(t), (38)

where the elements of the vector ~ρ(t) are the diagonal ele-
ments of the density matrix ρ. Within the interval In1,n2

[see Eq. (65)] delimited by the two main resonances n1

and n2 only the tunneling rates Γ
m′

1
m1 and Γ

m′
2

m2 [Eq. (36)]
for which m1+m′

1 = n1 and m2+m′
2 = n2 (see Sec. VA)

are allowed to be included for self-consistency reasons:
the tunnel splitting (32) entering Γ is only valid within
this interval In1,n2 . If wi, i = 1, 2, . . . , 21, are the eigen-

values of the rate matrix W̃ , the dominant relaxation
time of the spin system is given by

τ = max
i

{

− 1

Re wi

}

. (39)

The eigenvalues wi turn out to be nondegenerate with
the smallest one being far separated by a factor of at
least 104 from the remaining ones. The result is plotted
in Fig. 3, where the overall relaxation rate τ is shown as
a function of Hz at T = 1.9 K. It is important to note
that all the resonance peaks are of Lorentzian shape. We
note that in our model the even resonances are induced
by the quartic B4 anisotropy, whereas the odd resonances
are induced by product combinations of B4S

4
± and HxSx

terms [see Eq. (30)]. For the plot in Fig. 3 we set θ = 1◦ in
accordance with the experimental uncertainty,11 leading
to a maximal transversal field Hx of about 350 G.
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FIG. 3. Full line: semilogarithmic plot of calculated relax-
ation time τ as function of magnetic field Hz at T = 1.9
K. The optimal fit values (see text) are A/kB = 0.54 K,
B/kB = 1.1 × 10−3 K, and B4/kB = 8.5 × 10−5 K, θ = 1◦,
and c = 1.45×103 m/s. Dots and error bars: data taken from
Ref. 7.

B. Comparison with experimental data

For comparison we also include in Fig. 3 the data re-
ported by Thomas et al.7,39 We have optimized the fit
(as explained in the Introduction) in such a way that the
fits of the model parameters, given by

A/kB = 0.54 K, (40)

B/kB = 1.1× 10−3 K, (41)

B4/kB = 8.5× 10−5 K, (42)

6



are roughly within the reported experimental uncertain-
ties of Refs. 21 and 22 (see above). The value of B4 is in
excellent agreement with recent measurements performed
in Ref. 40. Our fit of the sound velocity yields

c = 1.45× 103 m/s. (43)

There is a difference between odd and even resonances,
i.e., the relaxation time τ at an even resonance peak is
about three times smaller than the one at a subsequent
odd resonance peak. It should be mentioned that almost
identical plots are obtained for 0.5◦ . θ . 3◦, as can be
seen in Figs. 3–6. The present theory holds for |Hx| .
1000 G (which is well satisfied here), otherwise the shift
of the levels |m〉 due to the perturbation HxSx must be
taken into account. For example, for the resonance n=3
the relevant tunneling takes place between |4〉 and |−1〉.
The dominant second-order shift

〈1 |gµBHxSx| 0〉 〈0 |gµBHxSx| 1〉
ε1 − ε0

+
〈1 |gµBHxSx| 2〉 〈2 |gµBHxSx| 1〉

ε1 − ε2
= kB × 40 mK

≪ |ε1| = kB × 2.3 K (44)

clearly shows that the unperturbed states {|m〉} are a
good zeroth-order approximation. It is also important
to know whether the second-order shifts caused by the
perturbation HT are negligible compared to the tunnel
splitting EmTm′

T
. Explicitly, we find

∣

∣

∣
∆

(2)
2 −∆

(2)
−6

∣

∣

∣
/kB = 8.5 mK (n = 4),

∣

∣

∣
∆

(2)
1 −∆

(2)
−4

∣

∣

∣
/kB = 13.2 mK (n = 3),

∣

∣

∣
∆

(2)
3 −∆

(2)
−5

∣

∣

∣
/kB = 5.0 mK (n = 2),

∣

∣

∣
∆

(2)
2 −∆

(2)
−3

∣

∣

∣
/kB = 0.5 mK (n = 1),

∣

∣

∣
∆

(2)
4 −∆

(2)
−4

∣

∣

∣
/kB = 0 (n = 0), (45)

where ∆
(2)
mT is the second-order shift of the unperturbed

states |mT〉 of the dominant paths. These renormaliza-
tions cause a very small shift of the resonance peaks, e.g.,
the shift for n = 3 is 0.6 mT. The relevant tunnel split-
ting energies of the odd and even resonances are about
the same (except E4,−1):

E4,−4 ≈ E3,−2 ≈ E5,−3 ≈ kB × 45 mK,

E4,−1/kB ≈ 130 mK, E6,−2/kB ≈ 40 mK. (46)

For comparison, E2,−2/kB ≈ 1 K [see also Eq. (66)]. In
conclusion, the diagonal elements of the shifts of the non-
degenerate perturbation theory are much smaller than
the off-diagonal elements of the shifts of the degenerate
perturbation theory (see Appendix B). Thus our assump-
tion of quasidegeneracy is very well satisfied.
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FIG. 4. Full line: semilogarithmic plot of calculated relax-
ation time τ as function of magnetic field Hz at T = 1.9 K.
Here θ = 0.5◦ has been chosen. Dots and error bars: data
taken from Ref. 7.
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FIG. 5. Full line: semilogarithmic plot of calculated relax-
ation time τ as function of magnetic field Hz at T = 1.9 K.
Here θ = 2◦ has been chosen. Dots and error bars: data taken
from Ref. 7.
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FIG. 6. Full line: semilogarithmic plot of calculated relax-
ation time τ as function of magnetic field Hz at T = 1.9 K.
Here θ = 3◦ has been chosen. Dots and error bars: data taken
from Ref. 7.
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We note that there are satellite peaks in Figs. 3–6, the
origin of which will be explained below in Sec. V.
In Figs. 7 and 8 we plot the peaks of the first resonance

at Hz = 0, which is induced only by the B4 anisotropy,
for four different temperatures, namely T = 2.5, 2.6, 2.7,
and 2.8 K. The four peaks (like all others) are of single
Lorentzian shape as a result of the two-state transition
rate Γm′

m given in Eq. (36). For comparison we plot in
Figs. 7 and 8 the data reported by Friedman et al.11 for
the same temperatures (no error bars, however, are given
in Ref. 11). The optimal fit values are

A/kB = 0.56 K, (47)

B/kB = 1.3× 10−3 K, (48)

B4/kB = 14.4× 10−5 K, (49)

c = 2.0× 103 m/s. (50)

-0.04 -0.02 0.02 0.04

1

2

3

4

5

Hz[T]

Γ[10-4s-1]

FIG. 7. Full line: plot of calculated relaxation rate Γ = 1/τ
as function of Hz for the first resonance peak at T = 2.6 K.
The Lorentzian shape is due to Γm′

m in Eq. (36). The optimal
fit values (see text) are A/kB = 0.56 K, B/kB = 1.3 × 10−3

K, and B4/kB = 14.4 × 10−5 K, θ = 1◦, and c = 2.0 × 103

m/s. Dots: data taken from Ref. 11.
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Γ[10-4s-1]

(a)

(b)

(c)

(d)

FIG. 8. Full lines: semilogarithmic plots of calculated re-
laxation rate Γ = 1/τ as function of Hz for the first resonance
peak at (a) T = 2.5 K, (b) T = 2.6 K, (c) T = 2.7 K, and
(d) T = 2.8 K. All peaks are of single Lorentzian shape. The
optimal fit values are the same as in Fig. 7. Dots: data taken
from Ref. 11.

Note that these values are the same for all four tem-
peratures, which means that our peaks fit also the tem-
perature dependence of the relaxation time. The fitting
parameters turn out to be somewhat larger than the ones
used in Fig. 3 [see Eqs. (40)–(42)], which could be caused
by sample differences, e.g., in volume-to-surface ratio
and/or in shape anisotropy of the samples, etc. Indeed,
the sample of Ref. 11 consists of many small crystallites
in contrast to the single crystal used by Thomas et al.7 In
any case, the differences are small, and the sound veloc-
ity c seems to be within the expected order of magnitude.
Clearly, it would be highly desirable to check this predic-
tion by an independent and direct measurement of c. On
the other hand,41 we can get an independent estimate for
c from the specific heat and the Debye temperature ΘD

which was recently measured in Mn12.
42 The reported

value is ΘD = (38 ± 4) K, and making use of the Debye
relation43

kBΘD = ~ωD = ~ckD, with n =
k3D
6π2

=
1

V0
, (51)

we find

c = (1.77− 2.18)× 103 m/s, (52)

where ωD is the Debye frequency, kD the Debye wave
vector, and V0 = 3716 Å3 the unit-cell volume. Com-
paring this value for c with the one obtained before, see
Eqs. (43) and (50), we see that the agreement is very
good. This result corroborates not only our prediction of
c but also our values obtained for the spin-phonon cou-
pling constants gi.
Finally we also mention that the prefactor

A2s±1/12πρc
5
~
4 of our spin-phonon rates [Eq. (28)] is

in excellent agreement with the value of the parameter
denoted by C in a recent paper.44 Note that their fit of
the parameter44 C is not as precise as ours, because C is
assumed to be independent of the spin states {|m〉}.
To summarize our results obtained so far, we see that

the agreement between theory and experiment is satis-
factory; in particular we emphasize that there is no free
fit parameter. Thus, our model and its evaluation seems
to contain the essential physics responsible for the mag-
netization relaxation in Mn12.

C. Comparison with previous results

In comparison to previous results we obtain much bet-
ter agreement between theory and experiment for the fol-
lowing reasons. For this comparison we can restrict our-
selves to the work of Fort et al.,18 since — as far as we
are aware of — it has produced the best agreement with
the relaxation data7 thus far. First, the spin-phonon cou-
pling constants g1, g2, and g3 are explicitly given in our
work for the first time (g4 has been found before14). As
shown in Sec. II we find them to be of order A = 0.56 K,
and it is this value which leads to good agreement with

8



all known experimental data which involve these coupling
constants.6,7,44 In contrast, Fort et al.18 set arbitrarily
the gi’s to values of 15 K and 30 K, which is clearly in
contradiction to our microscopic values. Moreover, our
value for the fit parameter B4 fulfills the constraints of
independent measurements,13,16,21,22 while Fort et al.18

obtain a B4 value which is about 30 times smaller than
the measured value in Ref. 21. From Figs. 7 and 8 we see
that the temperature dependence of the relaxation time
agrees quite well with the measurements of Friedman et

al.11. Such a fit has not been attempted before.

V. RELAXATION PATHS

A. Analytical result

In order to get a better physical understanding for the
relaxation process of the spin system it is instructive to
determine the dominant transition paths via which the
spin can relax into its ground state. For this we derive an
approximate analytic expression for the relaxation time
denoted by τ∗ (to distinguish it from the exact τ obtained
in the previous section). First, we solve the master equa-
tion for one particular transition path n which does not
intersect with other paths. For Hz ≥ 0 we find (deriva-
tion is given below)

τn =
1

1 + eβ(ε−s−εs)

∑

{mi}n

eβ(εmi
−εs)

Ω
mi+1
mi

, (53)

where Ω
mi+1
mi = Ωmi→mi+1 = Wmi+1mi or Γ

mi
mi+1

, depend-
ing on the particular path n characterized by the sum
over the levels m (see Figs. 9 and 10). Equation (53)
holds for arbitrary initial (εi) and final (εf ) energies, and
for arbitrary steps ∆m = mi+1 −mi (see below).
We now turn to the derivation of the relaxation time

of a cascade including the external field Hz. For this we
need to go beyond the results obtained previously17 for
Hz = 0, which requires a non-trivial extension. We start
with rewriting the master equation (35) as

ρ̇s = Ωs
m1

ρm1 − Ωm1
s ρs,

ρ̇mj = Ωmj
mj+1

ρmj+1 +Ωmj
mj−1

ρmj−1

− Ωmj+1
mj

ρmj − Ωmj−1
mj

ρmj ,

ρ̇−s = Ω−s
mp

ρmp − Ω
mp

−s ρ−s, (54)

with mj ∈ ]−s, s[ , mj > mj+1, j = 1, . . . , p ≤ 2s − 1,
and ρ̇mj = dρmj/dt. We consider now the stationary
limit of Eq. (54) which we define by

ρ̇s = −J, ρ̇mj = 0, ρ̇−s = J, (55)

where the first and last equation express conservation of
the probability current J , which we assume positive for
Hz ≥ 0 and independent of m. Equation (55) leads to
p+ 1 equations,

J(t) = Ωmi+1
mi

ρmi − Ωmi
mi+1

ρmi+1 , (56)

and by solving for ρmi+1 we get

ρmi =
Ωmi

mi+1

Ω
mi+1
mi

ρmi+1 +
J

Ω
mi+1
mi

, (57)

where we have introduced i = 0, . . . , p ≤ 2s−1, andm0 =
s. To simplify the following treatment we assume detailed
balance also for the tunneling processes. This approxi-
mation has little effect on the final result which turns out
to agree very well with the exact relaxation time τ where
no such approximations are invoked. Inserting then the

detailed balance relation Ωmi
mi+1

/Ω
mi+1
mi = eβ(εmi+1

−εmi
)

one obtains

ρmi = eβ(εmi+1
−εmi

)ρmi+1 +
J

Ω
mi+1
mi

. (58)

In order to get an equation that depends on ρ−s and ρs
only one has to sum over the following p+ 1 equations:

ρs = eβ(εm1−εs)ρm1 +
J

Ωm1
s

,

eβ(εm1−εs)ρm1 = eβ(εm2−εs)ρm2 +
Jeβ(εm1−εs)

Ωm2
m1

,

eβ(εm2−εs)ρm2 = eβ(εm3−εs)ρm3 +
Jeβ(εm2−εs)

Ωm3
m2

,

...

eβ(εmp−ε−s)ρmp = eβ(ε−s−εs)ρ−s +
Jeβ(εmp−εs)

Ω−s
mp

,

ρs = eβ(ε−s−εs)ρ−s + J
∑

mi

eβ(εmi
−εs)

Ω
mi+1
mi

. (59)

In the special case of Hz = 0, i.e., εs − ε−s = 0, Eq. (59)
agrees with previous results.14

Taking the time derivative of Eq. (59) and using
ρ̇−s/ρ̇s = −1 we find

ρ̇±s = ± J̇

1 + eβ(ε−s−εs)

∑

mi

eβ(εmi
−εs)

Ω
mi+1
mi

, (60)

and thus

ρ̇s − ρ̇−s = 2
J̇

1 + eβ(ε−s−εs)

∑

mi

eβ(εmi
−εs)

Ω
mi+1
mi

= −2J. (61)

The solution of the last differential equation is

J(t) = J0e
−t/τ∗

, (62)

with the relaxation time

τ∗ =
1

1 + eβ(ε−s−εs)

∑

mi

eβ(εmi
−εs)

Ω
mi+1
mi

, Hz ≥ 0. (63)
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Finally, the summation
∑

{mi}n
in Eq. (53) is defined as

the summation
∑

mi
in Eq. (63) taken only from minitial

to mfinal + 1, where |minitial〉 , |mfinal〉 denote any two
neighboring vertices (where paths intersect) in Figs. 9,
16, 18, and 20 (see below).
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FIG. 9. Spin relaxation paths (from m = 10 to m = −10)
for 0 ≤ gµBHz ≤ A + 13B. Full lines: thermal transitions
due to phonons. Dashed lines: dominant tunneling transitions
due to B4 and Hx terms. Dotted lines: tunneling transitions
that lead to satellite peaks [included in the numerical diag-
onalization of the master equation (38)]. The states where
paths intersect are denoted as vertices.

•
|10〉

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......................

................

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........................

................

•
|−10〉

........................................................................................................................................................................................................................
......
....

......

......
....

............................................................................................................................................................................................................................................................................................................................................................................................................................
....
.......
......
...

τ1 τ7

•|4〉 ......
......
......
......
......
......
......
......
......
......
......
..................

................

τ3

• |−4〉

..........................................................................
......
....

......

......
....

τ4 τ6

•|2〉

τ5

• |−2〉...................................................................................................................................................................................................................................................................................................... ...............
.

...................................................................................................................................................................................................................................................................................................... ................

τ2 τ8

FIG. 10. Serially reduced diagram associated with Fig. 9.
In order to understand the analytical evaluation of the re-
laxation diagram in Fig. 9 better, tunneling transitions that
lead to satellite peaks are excluded. The relaxation times
τn are given in Eq. (53). For |Hz| . 0.05 T only the path
τ1 → τ3 → τ7 is dominant (see Figs. 7 and 8).

Similarly one can solve the rate equations (55) for J <
0 ⇔ Hz ≤ 0. Then we obtain

τ∗ =
1

1 + eβ(εs−ε−s)

∑

mi

eβ(εmi
−ε−s)

Ωmi
mi+1

, Hz ≤ 0, (64)

which for Hz = 0 (i.e., ε−s = εs) and steps ∆m = ±1
reduces to the result found in Ref. 14.
If there is more than one path contributing to the re-

laxation (which is typically the case in the region between

two resonances), we have to account for intersections at
vertices. For this we associate with each path a proba-
bility current Jn = ρ̇n, and interpret Eq. (53) in terms
of a serial circuit with the summands playing the role of
“resistances.” This allows us then to set up flow diagrams
for Jn (see Figs. 9, 10, and 16–21), which obey the analog
of Kirchhoff’s rules:
(K1)

∑

n Jn = 0: The sum over all incoming and out-
going currents vanishes at a vertex (current conserva-
tion).
(K2)

∑

n Jnτn = ∆N : The sum over all voltage drops
(Jnτn) is equal to the source-drain voltage ∆N = ρs−ρ−s

for any closed path (probability conservation).

The total probability current is given by J = ∆Ṅ . For
every interval

In1,n2 =
[

H
mT,1m

′
T,1

z , H
mT,2m

′
T,2

z

]

(65)

[see Eq. (4)], where n1 = mT,1+m′
T,1, n2 = mT,2+m′

T,2,
0 ≤ n1 = n2 + 1 ≤ 3, a set of equations is given by
the rules (K1) and (K2). For every set we derive the
relaxation time τ∗n1,n2

= ∆N/J .
Figure 9 shows the complete, Fig. 10 its serially re-

duced flow diagram for 0 ≤ Hz ≤ 1
gµB

(A+ 13B). From

(K1) we get

J = J1 + J2, J2 + J5 = J6 ,

J1 = J3 + J4, J3 + J6 = J7 ,

J4 = J5 + J8, J7 + J8 = J ,

while from (K2) we get

∆N = J1τ1 + J3τ3 + J7τ7 ,

J3τ3 = J4τ4 + J5τ5 + J6τ6 ,

J2τ2 = J1τ1 + J4τ4 + J5τ5 ,

J8τ8 = J5τ5 + J6τ6 + J7τ7 .

From these equations we obtain
τ∗0,1(Hz) = (τ4τ1τ5τ2+ τ8τ4τ1τ2+ τ8τ1τ5τ2+ τ8τ4τ1τ6+

τ4τ7τ5τ2 + τ4τ7τ2τ6 + τ8τ7τ5τ6 + τ8τ7τ2τ4 + τ4τ7τ5τ6 +
τ8τ7τ2τ3 + τ4τ7τ2τ3 + τ8τ4τ3τ7 + τ8τ3τ5τ7 + τ4τ3τ5τ7 +
τ8τ3τ2τ6 + τ8τ4τ3τ2 + τ4τ3τ2τ6 + τ8τ4τ3τ6 + τ8τ3τ5τ2 +
τ8τ3τ5τ6 + τ8τ7τ5τ2 + τ8τ1τ2τ6 + τ8τ1τ5τ6 + τ3τ1τ5τ6 +
τ8τ3τ1τ6 + τ7τ1τ5τ2 + τ3τ1τ2τ6 + τ3τ1τ5τ7 + τ7τ1τ2τ6 +
τ7τ1τ5τ6 + τ7τ1τ2τ4 + τ8τ6τ1τ7 + τ4τ1τ5τ7 + τ8τ4τ1τ7 +
τ8τ3τ1τ2 + τ7τ1τ2τ3 + τ8τ3τ1τ7 + τ3τ1τ5τ2 + τ8τ1τ5τ7 +
τ8τ7τ2τ6 + τ8τ4τ7τ6 + τ4τ3τ5τ6 + τ4τ3τ5τ2 + τ4τ1τ2τ6 +
τ4τ1τ5τ6)/(τ8τ5τ2 + τ8τ5τ6 + τ8τ3τ2 + τ8τ4τ3 + τ4τ5τ6 +
τ8τ4τ6+τ8τ4τ2+τ4τ2τ6+τ4τ7τ6+τ8τ3τ5+τ7τ2τ6+τ7τ5τ6+
τ7τ5τ2+τ7τ2τ3+τ4τ1τ5+τ3τ1τ5+τ8τ1τ5+τ8τ3τ1+τ3τ2τ6+
τ3τ5τ6+τ3τ5τ2+τ3τ5τ7+τ4τ3τ7+τ4τ3τ5+τ8τ6τ1+τ3τ1τ7+
τ7τ1τ6+τ4τ1τ6+τ3τ1τ6+τ4τ1τ7+τ8τ4τ1+τ8τ2τ6+τ4τ5τ2+
τ4τ3τ6 + τ2τ4τ7 + τ7τ1τ5).
When τ∗0,1 is plotted as function of Hz there is no vis-

ible difference between the exact τ obtained in Sec. IV
and this approximate τ∗, which confirms that the dia-
gram in Fig. 9 contains the physically relevant relaxation
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paths for the interval I0,1. Similar results are obtained
for the other intervals, whose diagrams and calculations
are shown in Appendix C.
Finally, near a resonance [|δHz | < w′, see Eq. (74)]

the above expression for τ∗ [Eq. (53)] strongly simplifies
since we find that there is only one dominant relaxation
path which involves only one tunneling channel. This fi-
nally explains why the peak shape is given by a single
Lorentzian. We call the five strongest broadened reso-
nances in Figs. 3–6 the main resonances. For every main
resonance n we have identified [using Eq. (53)] its dom-
inant path and its associated tunneling channel between
the states |mT〉 and |m′

T〉. These states are

n mT m′
T

0 4 −4
1 3 −2
2 5 −3
3 4 −1
4 6 −2

(66)

Our calculation of the intermediate relaxation times τn
provides a further prediction which could be tested with
NMR techniques of the type described in Ref. 44.

B. Satellite peaks

Beside the main resonances there are also other nar-
rower resonances (see Figs. 3-6) that are a direct con-
sequence of the fourth-order anisotropy constant B [see
Eq. (1)]. Indeed, if the plots around one peak are magni-
fied further, satellite peaks become visible (see Figs. 11–
14). In order to understand the occurrence of these satel-
lite peaks it is instructive to look at Fig. 18 below. There
are several paths which can be used in the relaxation
process. As we include the fourth-order anisotropy term,
−BS4

z , the resonance condition is not the same for every
level [see Eq. (4)]. Hence, very narrow peaks show up,
which can be seen only at high resolution. In Fig. 18
several additional tunneling paths, some of which are re-
sponsible for the satellite peaks in Figs. 11 and 12, have
to be drawn (represented by the dotted lines in Fig. 18).
For example, the tunnel splitting energy of the path from
|4〉 to |−2〉 is proportional to HxB4Hx (third-order per-
turbation), where the ordering of the factors corresponds
to the chosen path. Due to the presence of H2

x the width
of the satellite peak (see next section) depends on the
misalignment angle θ. If one takes a close look at our
high resolution plots this difference between Fig. 11 and
Fig. 12 is observable. It must be noted that we consider
only tunnel splitting energies up to second order in B4

and third order in Hx (also combinations such as B2
4H

3
x)

for all the main and satellite peaks. Narrower satellite

peaks are neglected.45 The distance dm2m2
′

m1m1
′ between a

satellite peak and its associated main peak caused by a
main resonance is given by Eq. (4),

dm2m2
′

m1m1
′ =

∣

∣

∣
Hm1m1

′

z −Hm2m2
′

z

∣

∣

∣

=

∣

∣

∣

∣

nB

gµB

(

m2
1 +m1

′2 −m2
2 −m2

′2
)

∣

∣

∣

∣

, (67)

where m1, m1
′ (m2, m2

′) are responsible for the satellite
(main) peak, and n = m1 +m1

′ = m2 +m2
′. It would

be interesting to search experimentally for these satellite
peaks, which requires a higher experimental resolution of
the peaks than achieved so far.

0.7 0.8 0.9 1
Hz[T]

10
4

10
5

10
6

τ[s]

FIG. 11. Full line: semilogarithmic plot of calculated re-
laxation time τ as function of magnetic field Hz at T = 1.9
K in the interval 3A/2gµB ≤ Hz ≤ 5A/2gµB with a higher
resolution. The tunneling transition from |5〉 and |−3〉 is re-
sponsible for the main peak. Two satellite peaks are visible.
The left (right) one is due to the tunneling channel between
|4〉 and |−2〉 (|6〉 and |−4〉). Here θ = 2◦ has been chosen.
Dots and error bars: data taken from Ref. 7.

0.7 0.8 0.9 1
Hz[T]

10
4

10
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10
6

τ[s]

FIG. 12. Same plot as in Fig. 11, but with a misalignment
angle of θ = 3◦. Dots and error bars: data taken from Ref. 7.
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FIG. 13. Full line: semilogarithmic plot of calculated re-
laxation time τ as function of magnetic field Hz at T = 1.9
K in the interval 7A/2gµB ≤ Hz ≤ 9A/2gµB with a higher
resolution. The tunneling transition from |6〉 and |−2〉 is re-
sponsible for the main peak. Two satellite peaks are visible.
The left (right) one is due to the tunneling channel between
|5〉 and |−1〉 (|7〉 and |−3〉). Here θ = 2◦ has been chosen.
Dots and error bars: data taken from Ref. 7.
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FIG. 14. Same plot as in Fig. 13, but with a misalignment
angle of θ = 3◦. Dots and error bars: data taken from Ref. 7.

VI. WIDTH OF THE LORENTZIANS

In this section we give a physical interpretation of
the effective half-width of the Lorentzian peaks in our
plots. In order to get an expression for the width of
our main and satellite peaks consider a Lorentzian Γ(Hz)
with linewidth w (see Fig. 15). If the upper part of this
Lorentzian is cut off (where the curve is already very nar-
row) and both ends are connected by a horizontal line one
obtains a curve that still has the same single Lorentzian
shape for all practical purposes but now with an effective
linewidth w′ > w. Changing the tunnel matrix element
Emm′ results in a different truncation of the Lorentzian,
thus changing the effective linewidth w′. We shall now
estimate the effective linewidth w′ and compare it with
the one obtained from the exact 1/τ . Taking only the
largest terms of Eq. (53) gives a rough approximation of

the relaxation time near a resonance where the states |m〉
and |m′〉 are degenerate,

τ ′ =
1

1 + eβ(ε−s−εs)

(

eβ(εm+2−εs)

Wm,m+2
+

eβ(εm′−εs)

Wm′−2,m′

+
eβ(εm−ε−s)

Γm′

m

)

, (68)

Using the detailed balance relation

Wm,m+2

Wm+2,m
= eβ(εm+2−εm) (69)

we obtain the following approximation:

τ ′ =
eβ(εm+2−εs)

1 + eβ(εs−εs)

(

2

Wm,m+2
+

1

Γm′

m

)

, (70)

where we assumed that Wm,m+2 ≈ Wm′−2,m′ .46 In the

limit ξmm′ → 0 the phonon-damped tunneling rate Γm′

m

is much larger than Wm,m+2, so

lim
ξmm′→0

τ ′ ≈ 2eβ(εm+2−εs)

(

1 + eβ(ε−s−εs)
)

Wm,m+2

. (71)

The half-width of τ ′(Hz), denoted by w′, is then deter-
mined by the condition τ ′(w′/2) = τ ′(0)/2. This condi-
tion is fulfilled when

Γm′

m =
Wm,m+2

2
. (72)

Thus we obtain the expression for the effective linewidth
w′,

w′ =
2
√
Wm +Wm′

|m−m′|gµB

[

E2
mm′

Wm,m+2
− ~

2 (Wm +Wm′)

4

]1/2

.

(73)

Since the height E2
mm′/~2 (Wm +Wm′) of the Lorentzian

Γm′

m is very large compared to its linewidth |m −
m′|gµBw/~ = (Wm +Wm′) /2 and Wm + Wm′ ≈
2Wm,m+2 for the dominant paths (see Sec. V) we get
the following reasonably accurate approximation for the
effective linewidths in our plots:

w′ =
23/2Emm′

|m−m′|gµB
. (74)

Comparison with our exact calculations of the relaxation
time shows that w′ of Eq. (74) gives a very good estimate
for the effective linewidth of the peaks in our plots (see
Figs. 3–8 and 11–15).
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FIG. 15. Truncated Lorentzian Γ−4

4 with A/kB = 0.56
K, B/kB = 1.3 × 10−3 K, and B4/kB = 14.4 × 10−5 K,
θ = 1◦, and c = 2.0 × 103 m/s, w′ = 37.4 mT (w′ agrees
very well with the width of the Lorentzian in Fig. 7), and
Γ−4

4 (w′/2) = 2.4 × 106 s−1. The truncation is indicated by
the dashed line.

VII. CONCLUSION

We have presented a comprehensive theoretical de-
scription of spin relaxation due to phonon-induced tran-
sitions and tunnel resonances. Deriving a generalized
master equation (in Born and Markoff approximation)
we obtain an exact numerical evaluation of the overall re-
laxation time τ as function of the longitudinal magnetic
field Hz comprising Lorentzian-shaped peaks. In order to
perform this evaluation we calculate the phonon-assisted
transition rates of the spins, the spin-phonon coupling
constants, and the tunnel splitting energy, for which a
generalized formula is derived. The fourth-order diago-
nal terms in the Hamiltonian give rise to satellite peaks,
the experimental observation of which requires a higher
resolution of τ(Hz) than achieved so far. Our approx-
imate analytical solution of the master equation yields
a clear physical understanding of the relaxation process
by revealing the relaxation paths that are followed by
the spin. This solution provides the prediction of all in-
volved intermediate relaxation times τn, which can be
tested experimentally. The results of our model calcula-
tion agree well with all known data. For the first time
we have been able to get agreement between theory and
the entire relaxation curve. In addition, we have obtained
reasonable agreement between theory and four single res-
onance peaks recently measured to high accuracy at four
different temperatures. The formalism presented in this
work has been applied to the specific parameter values of
Mn12, but many results derived here are generally valid
and can be used for similar spin systems as well.
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APPENDIX A: SPIN-PHONON RATES

In order to evaluate the spin-phonon rates Wmn of
Eq. (27) we first change to the Fourier representation.
If q is a phonon wave vector, we can write u(x) as fol-
lows:

u(x) =
1√
N

∑

q

u(q)eiq·x, (A1)

with N being the number of unit cells. Hence

ǫ(x) =
i√
N

∑

q





qxux(q) qxuy(q) qxuz(q)
qyux(q) qyuy(q) qyuz(q)
qzux(q) qzuy(q) qzuz(q)



 eiq·x.

(A2)

After (anti)symmetrization, these matrix elements can
be inserted into the expression (7),

Hsp =
1√
N

∑

j,q

i

{

1

2
g1[qxux(q)− qyuy(q)] ⊗ (S2

+ + S2
−)

+
i

8
g2[qxuy(q) + qyux(q)]⊗ (S2

− − S2
+)

+
1

8
g3[qxuz(q) + qzux(q)

− i(qyuz(q) + qzuy(q))] ⊗ {S+, Sz}

+
1

8
g3[qxuz(q) + qzux(q)

+ i(qyuz(q) + qzuy(q))] ⊗ {S−, Sz}

+
1

8
g4[qxuz(q) + qzux(q)

− i(qyuz(q) + qzuy(q))] ⊗ {S+, Sz}

+
1

8
g4[qxuz(q) − qzux(q)

+ i(qyuz(q)− qzuy(q))] ⊗ {S−, Sz}} eiq·Rj . (A3)

Rj are the positions of the Mn12 molecules.
We proceed with the canonical transformation

(u,p) → (c†, c). c(†) = ǫqc
(†)
q annihilates (creates) a

phonon with wave vector q and polarization ǫq, and

u(q) =

√

~

2Mωq

(

c† + c
)

, (A4)

where M is the mass per unit cell. Inserting Eq. (A4)
into Eq. (A3) and considering only the spin of the Mn12
molecule at Rj = 0 yields
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Hsp =
∑

q

i

√

~

2NMωq

×
{

1

2
g1[qx(c

†
x + cx)− qy(c

†
y + cy)]⊗ (S2

+ + S2
−)

+
i

8
g2[qx(c

†
y + cy) + qy(c

†
x + cx)]⊗ (S2

− − S2
+)

+
1

8
g3[(qx − iqy)(c

†
z + cz)

+ qz(c
†
x + cx − ic†y − icy)]⊗ {S+, Sz}

+
1

8
g3[(qx + iqy)(c

†
z + cz)

+ qz(c
†
x + cx + ic†y + icy)]⊗ {S−, Sz}

+
1

8
g4[(qx − iqy)(c

†
z + cz)

− qz(c
†
x + cx − ic†y − icy)]⊗ {S+, Sz}

+
1

8
g4[(qx + iqy)(c

†
z + cz)

− qz(c
†
x + cx + ic†y + icy)]⊗ {S−, Sz}

}

. (A5)

This expression can be used to evaluate the transition
probability. We employ the following standard relations:

c |n〉 =
√
n |n− 1〉 ,

c† |n〉 =
√
n+ 1 |n+ 1〉 ,

S− |s,m〉 =
√

(s+m)(s−m+ 1) |s,m− 1〉 ,
S+ |s,m〉 =

√

(s−m)(s+m+ 1) |s,m+ 1〉 . (A6)

The transition rate W−2 = Wm−2,m [see Eq. (27)] for
m → m−2 (εm−2 ≷ εm) can now be calculated in second
quantization (nα = nq,α, α = x, y, z denotes the num-
ber of phonons with wave vector q, polarization mode λ,
and oscillation direction α, and the thermal average over
phonons is left implicit),

W−2 =
2π

~

∑

q′

| 〈nq′ ∓ 1,m− 2 |Hsp|nq′ ,m〉 |2δ′±

=
∑

q

π

NMωq

[

g21
4

(

qx

〈

nx ∓ 1|c(†)x |nx

〉

− qy

〈

ny ∓ 1|c(†)y |ny

〉)2

×
∣

∣

〈

m− 2|S2
−|m

〉∣

∣

2

+
g22
64

(

qx

〈

ny ∓ 1|c(†)y |ny

〉

+ qy

〈

nx ∓ 1|c(†)x |nx

〉)2

×
∣

∣

〈

m− 2|S2
−|m

〉∣

∣

2
]

δ±

=
1

4

∑

q

πs−2

NMωq

(

nq +
1

0

)

×
[

g21(qx − qy)
2 +

g22
16

(qx + qy)
2

]

δ±, (A7)

where s−2 = (s+m)(s−m+ 1)(s+m− 1)(s−m+ 2),

and δ(′
)
± = δ(±(εm−2 − εm)− ~ωq(′)).

With the approximation g1 = A ≈ g2 and the thermal
average 〈nq〉 = 1/(eβ~ωq − 1) one obtains

W−2 =
1

4

∑

q

πA2s−2

NMωq

(qx − qy)
2 + 1

16 (qx + qy)
2

± (e±β~ωq − 1)
δ±.

(A8)

As a next step the sum is replaced by an integral
[

((1/N)
∑

q → (a3/(2π)3)
∫

d3q
]

and the density ρ =

M/a3 is inserted,

W−2 =
A2s−2

32π2ρ

∫

d3q

ωq

(qx − qy)
2 + 1

16 (qx + qy)
2

± (e±β~ωq − 1)
δ±.

(A9)

After changing to spherical coordinates one gets

W−2 =
17A2s−2

192πρ

∫ ∞

0

dq

ωq

q4

± (e±β~ωq − 1)
δ±. (A10)

Assuming a linear dispersion relation ωq = cq, where c is
the sound velocity, and using ε = ~ωq = ~cq one obtains

W−2 =
17A2s−2

192πρc5~4

∫ ∞

0

dε
ε3

± (e±β~ωq − 1)
δ±

=
17A2s−2

192πρc5~4
(εm−2 − εm)3

eβ(εm−2−εm) − 1
. (A11)

In the same way we get

W+2 =
17A2s+2

192πρc5~4
(εm+2 − εm)3

eβ(εm+2−εm) − 1
, (A12)

with s+2 = (s−m)(s+m+ 1)(s−m− 1)(s+m+ 2).
The transition rates for m → m± 1 can be calculated

in the same manner as above with g4 = 2A ≈ g3,

W±1 =
A2s±1

12πρc5~4
(εm±1 − εm)3

eβ(εm±1−εm) − 1
, (A13)

where s±1 = (s ∓ m)(s ± m + 1)(2m ± 1)2, and ρ =
1.83× 103 kg/m3.33

APPENDIX B: LEVEL SPLITTING

In this appendix we derive a formula for the tun-
nel splitting energy which is applicable to potentials
Vmi,mi+1 ∈ R with arbitrary ∆m = mi − mi+1 (m >
mi > mi+1 > m′, i = 1, . . . , N − 1). According to Kato’s
theory47 the expansion of the resolvent

G(z) =
1

z −H0 − λV
(B1)

leads to a rigorous treatment of the perturbation theory,
which is very useful to evaluate high-order perturbation
terms. We use the notation of Messiah.47
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Let N be the order of the perturbation. Then the
projection operator P =

∑

m |m〉 〈m|, consisting of the

degenerate states {|m〉}, and the operator
(

H − E0
a

)

P
are expanded as follows:

P = P0 +

∞
∑

N=1

λNA(N),
(

H − E0
a

)

P =

∞
∑

N=1

λNB(N),

with

A(N) = −
∑

(N)

Sk1V Sk2V · · ·V SkN+1,

B(N) = −
∑

(N−1)

Sk1V Sk2V · · ·V SkN+1 ,

where

Sk =

{

−P0, if k = 0,
Q0

ak , if k ≥ 1,
,

Q0 = 1− P0,
Q0

ak
= Q0

1

(E0
a −H0)

k
Q0,

and the sum
∑

(N) has to be taken over all combinations

k1, k2, . . . , kN+1 with the restriction k1+k2+· · ·+kN+1 =
N .
The following general secular equation must be solved:

det (Ha − χKa) = det (Ca) = 0, (B2)

where we have introduced the abbreviation Ca = Ha −
χKa. The χ are the eigenvalues of the perturbed states.
Ha and Ka are defined by

Ha = P0HPP0 = E0
aKa + P0

∞
∑

N=1

λNB(N)P0, (B3)

Ka = P0PP0 = P0 + P0

∞
∑

N=1

λNA(N)P0. (B4)

Thus we have now

Ca =
(

E0
a − χ

)

P0 +
(

E0
a − χ

)

∞
∑

N=1

λNP0A
(N)P0

+

∞
∑

N=1

λNP0B
(N)P0. (B5)

Equation (B5) is the general formula for finding the per-
turbed eigenvalues and eigenstates. We apply it now to
the situation of our two degenerate spin states |m〉 and
|m′〉. The following derivation refers to the off-diagonal
elements of Eq. (B5).
The factors P0A

(N)P0 and P0B
(N)P0 do not vanish if

k1 = kN+1 = 0. As we look for the lowest-order pertur-
bation that gives a contribution to the tunnel splitting
Emm′ , the projection operators Ski , i = 2, . . . , N , must
not be equal to −P0, i.e., ki 6= 0, i = 2, . . . , N . Hence,

we get the following combinations for the lowest-order
perturbation,

for A(N) : k2 = k3 = · · · = ki−1 = 1, ki = 2,

ki+1 = . . . = kN = 1, i = 2, · · · , N, (B6)

for B(N) : k2 = k3 = · · · = kN = 1. (B7)

In the case of weak perturbation the second term of
Eq. (B5) is much smaller than the third one. Thus the
secular equation reads as follows:

Ca =
(

E0
a − χ

)

P0 + (diagonal elements)

+
∞
∑

N=1

λN
∑

m1,...,mN
mi 6=m,m′

|m〉 Vm,m1

εm − εm1

×
N−1
∏

i=1

Vmi,mi+1

εm − εmi+1

VmN ,m′ 〈m′| . (B8)

Thus we arrive at formula (30).

APPENDIX C: APPLICATION OF

KIRCHHOFF’S RULES

In this appendix we make use of Kirchhoff’s rules (K1)
and (K2) in order to evaluate the diagrams of the relax-
ation paths. Each diagram and its evaluation is valid
for the interval between two main peaks. The solu-
tion τ∗n1,n2

of the Kirchhoff equations between the peaks
n1 = m1 + m′

1 and n2 = m2 + m′
2 is not written down

explicitly, since it is too lengthy and the calculation is
straightforward.
(1) 1

gµB
(A+ 13B) ≤ Hz ≤ 2

gµB
(A+ 34B):

From J = J1 + J2, J1 = J3 + J4, J4 = J5 + J8, J2 +
J5 = J6, J3 + J6 = J7, J7 + J8 = J , and ∆N =
J1τ1 + J3τ3 + J7τ7, J3τ3 = J4τ4 + J5τ5 + J6τ6, J2τ2 =
J1τ1+J4τ4+J5τ5, J8τ8 = J5τ5+J6τ6+J7τ7, one can im-
mediately evaluate the relaxation time τ∗1,2(H) = ∆N/J
(see Figs. 16 and 17).
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FIG. 16. Spin relaxation paths (from m = 10 to m = −10)
for 1

gµB
(A+ 13B) ≤ Hz ≤ 2

gµB
(A+ 34B). Full lines: ther-

mal transitions due to phonons. Dashed lines: dominant tun-
neling transitions due to B4 and Hx terms. Dotted lines:
tunneling transitions that lead to satellite peaks [included in
the numerical diagonalization of the master equation (38)].
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FIG. 17. Serially reduced diagram associated with Fig. 16.
In order to understand the analytical evaluation of the re-
laxation diagram in Fig. 16 better, tunneling transitions that
lead to satellite peaks are excluded. The relaxation times τn
are given in Eq. (53).

(2) 2
gµB

(A+ 34B) ≤ Hz ≤ 3
gµB

(A+ 17B):

From J = J1+J2, J1 = J3+J4+J7, J2+J4 = J5, J3+J5 =
J6, J6 + J7 = J , and ∆N = J1τ1 + J3τ3 + J6τ6, J3τ3 =
J4τ4 + J5τ5, J2τ2 = J1τ1 + J4τ4, J7τ7 = J4τ4 + J5τ5 +
J6τ6, one can immediately evaluate the relaxation time
τ∗2,3(H) = ∆N/J (see Figs. 18 and 19).
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FIG. 18. Spin relaxation paths (from m = 10 to m = −10)
for 2

gµB
(A+ 34B) ≤ Hz ≤ 3

gµB
(A+ 17B). Full lines: ther-

mal transitions due to phonons. Dashed lines: dominant tun-
neling transitions due to B4 and Hx terms. Dotted lines:
tunneling transitions that lead to satellite peaks [included in
the numerical diagonalization of the master equation (38)].
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FIG. 19. Serially reduced diagram associated with Fig. 18.
In order to understand the analytical evaluation of the re-
laxation diagram in Fig. 18 better, tunneling transitions that
lead to satellite peaks are excluded. The relaxation times τn
are given in Eq. (53).

(3) 3
gµB

(A+ 17B) ≤ Hz ≤ 4
gµB

(A+ 40B):

From J = J1+J2, J1 = J3+J4, J4 = J5+J7, J2+J3+J5 =
J6, J6 + J7 = J , and ∆N = J1τ1 + J3τ3 + J6τ6, J3τ3 =
J4τ4 + J5τ5, J2τ2 = J1τ1 + J4τ4 + J5τ5, J7τ7 = J5τ5 +
J6τ6, one can immediately evaluate the relaxation time
τ∗3,4(H) = ∆N/J (see Figs. 20 and 21).
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FIG. 20. Spin relaxation paths (from m = 10 to m = −10)
for 3

gµB
(A+ 17B) ≤ Hz ≤ 4

gµB
(A+ 40B). Full lines: ther-

mal transitions due to phonons. Dashed lines: dominant tun-
neling transitions due to B4 and Hx terms. Dotted lines:
tunneling transitions that lead to satellite peaks [included in
the numerical diagonalization of the master equation (38)].
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FIG. 21. Serially reduced diagram associated with Fig. 20.
In order to understand the analytical evaluation of the re-
laxation diagram in Fig. 20 better, tunneling transitions that
lead to satellite peaks are excluded. The relaxation times τn
are given in Eq. (53).

APPENDIX D: FIRST-ORDER VS.

SECOND-ORDER TRANSITION

We show in this section that second-order transitions
lead to a much faster relaxation of the spin system than
first-order transitions if the coupling constants are equal.
The relaxation rate Γ(1) of the cascade with transitions
∆m = ±1 has been calculated by Villain et al.17 (see
Fig. 22),

Γ(1) =
3

2π

|V1,0|2
~4ρc5

(ε0 − ε1)
3 e−β∆

1− e−β(ε0−ε1)

=
3

2π

|V1,0|2
~4ρc5

[

∆

s2

]3
e−β∆

1− e−β∆/s2
. (D1)

∆ = 100A is the energy barrier.
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FIG. 22. Cascade with ∆m = −1 and H = 0.

We have extended this expression by taking higher-
order transitions into account. If we take a cascade with
transitions ∆m = ±2, for the case s=10, we obtain

Γ(2) =
3

2π

|V2,0|2
~4ρc5

(ε0 − ε2)
3 e−β∆

1− e−β(ε0−ε2)

=
3

2π

|V2,0|2
~4ρc5

[

∆

(s/2)2

]3
e−β∆

1− e
−β ∆

(s/2)2

. (D2)

Comparing to the relaxation rate Γ(1) with s = 10, an
increase by a factor

Γ(2)

Γ(1)
≈ 106

56
= 64 (D3)

is obtained, assuming V (1) ≈ V (2) (see Abragam and
Bleaney,28 p. 563, for experimental evidence).
Now we calculate the relaxation rate by means of for-

mula (63) with Γ(1) = 1/τ∗, ∆m = ±1, and Γ(2) = 1/τ∗,
∆m = ±2. If there is a fast transition via tunneling be-
tween levels m = 4 and m′ = −4 for Hz = 0 at T = 1.9
K, we get the following more accurate estimation:

Γ(2)

Γ(1)
= 11.7. (D4)

The same can be done if the fastest transition takes place
via tunneling between levels m = 2 and m′ = −2 for
Hz = 0 at T = 1.9 K,

Γ(2)

Γ(1)
= 49.0. (D5)

From these results it is obvious that second-order transi-
tions lead to a faster relaxation. Note that it is Eq. (19)
together with Eq. (28) which imply that the ratios (D4)
and (D5) are of the same order as the ratio (D3). This
provides a theoretical justification for the approximation
V (1) ≈ V (2).
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H. U. Güdel, H. V. Irodova, and A. Caneschi,
Phys. Rev. Lett. 83, 628 (1999).

41 J. R. Friedman (private communication).
42 A. M. Gomes, M. A. Novak, R. Sessoli, A. Caneschi, and

D. Gatteschi, Phys. Rev. B 57, 5021 (1998).
43 N. W. Ashcroft and N. D. Mermin, Solid State Physics

(Saunders College Publishing, Philadelphia, 1976).
44 A. Lascialfari, Z. H. Jang, F. Borsa, P. Carretta, and

D. Gatteschi, Phys. Rev. Lett. 81, 3773 (1998).
45 If one takes tunnel splittings due to higher-order perturba-

tions in B4 and Hx into account, more but much narrower
satellite peaks appear, see T. Pohjola, H. Schoeller, and
M. N. Leuenberger, D. Loss (unpublished).

46 The ratio Wm,m+2/Wm′−2,m′ is approximated by 1. One
can see from Eq. (28) that this approximation is well sat-
isfied near a resonance (i.e., within w′).

47 A. Messiah, Quantum Mechanics (de Gruyter, New York,
1991).

18


