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Spin tunneling and phonon-assisted relaxation in Mnj;-acetate
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We present a comprehensive theory of the magnetization relaxation in a Mniz-acetate crystal in
the high-temperature regime (T 2 1 K), which is based on phonon-assisted spin tunneling induced
by quartic magnetic anisotropy and weak transverse magnetic fields. The overall relaxation rate as
function of the longitudinal magnetic field is calculated and shown to agree well with experimental
data including all resonance peaks measured so far. The Lorentzian shape of the resonances, which
we obtain via a generalized master equation that includes spin tunneling, is also in good agreement
with recent data. We derive a general formula for the tunnel splitting energy of these resonances.
We show that fourth-order diagonal terms in the Hamiltonian lead to satellite peaks. A derivation
of the effective linewidth of a resonance peak is given and shown to agree well with experimental
data. In addition, previously unknown spin-phonon coupling constants are calculated explicitly. The
values obtained for these constants and for the sound velocity are also in good agreement with recent
data. We show that the spin relaxation in Mnj2-acetate takes place via several transition paths of
comparable weight. These transition paths are expressed in terms of intermediate relaxation times,
which are calculated and which can be tested experimentally.

PACS numbers: 75.45.4j, 75.30.Gw, 75.50.Tt, 75.30.Pd

I. INTRODUCTION

The magnetization relaxation in the molecular magnet
Mn;q-acetate with chemical formula, [Mn;2(CH3COO0)q4
(H20)4012]- 2CH3COOH - 4H50, (henceforth abbrevi-
ated as Mnjs) has Eﬁﬁﬁed much recent interest since
several experlments it Bl have indicated unusually long
relaxation times — about two months at a temperature
of about 2 K as well as pronounced peaks in the re-
laxation tlmeH*HH in response to a varying magnetic field
H, when applied along the easy axis of the Mnjs crys-
tal. These peaks correspond to an increased relaxation
rate of the magnetization of Mnjs and occur when H, is
tuned to mHﬁples of about 0.44 T. According to earlier
suggestionsid this phenomenon has been interpreted as
a manifestation of resonant tunneling of the magnetiza-
tion, often referred to as macroscopic quantum tunneling
(MQT). A qualitative explanation goes as follows. From
the microscopic point of view a Mnjs cluster acts like
a giant spin with length s = 10 as long as the external
magnetic field is small compared to the exchange inter-
actions between the Mn ions, which is fulfilled in the
experimental range considered in this paper. The relax-
ation rate of the magnetization increases at field values
where the spin states become pairwise degenerate. It is
this degeneracy that determines the resonance condition.
As the external field H, is moved away from a resonance
the spin states are no longer perfectly degenerate, and
therefore the tunneling probability becomes smaller and
thus the relaxation rate. Since the spin system couples
to the environmental phonons of the Mnjs crystal, the
energy levels of the spin states are smeared out. This
leads to homogeneously broadened resonance peaks that
are of Lorentzian shape. There are also other sources
which lead to broadenlng.f the resonances, such as hy-
perfine and dipolar ﬁelds They give rise to inhomoge-

neous broadening with Gaussian-shaped peaks.@>B How-
ever, this stands in contrast to the measured_resonance
peaks, which are nearly perfect Lorentzians. Fur
more, the width of the hyperfine induced Gaussian ¥
turns out to be smaller for 7' 2 1 K than the width of t

Lorentzians obtained below and seen in the experiment.

Similarly, dipolar interactions have been ruled out by ex-
periments on diluted samples.ld Thus, for temperatures
T 2 1 K we can safely neglect hyperfine and dipolar
fields, and the dominant source of the peak broadening
can be explained consistently by spin-phonon effects only.

@Egrﬂpaﬁson between mﬁﬁeﬁ calcu-
latlons and experimental databthd Fried-
man et al point out that a consistent explanation of

the experimentally observed relaxation is still missing. A
good starting point for theﬁtical calculations has been
formulated by Villain et al.,Bd where the relaxation is de-
scribed in terms of spin-phonon interaction and a general-
ized Orbach process. However, this approach does not in-
clude the dependence on the external field H,. Also, one
of the main challenges for theory is to explain the overall
shape of the relaxation curve as well as the nearly pecfect
Lorentzian shape of the measured resonance peaks.

In this work we perform a model calculation of the
magnetization relaxation which is based on phonon-
assisted tunneling. We present a self-consistent theory
which is for the first time in reasonably good agreement
both with the overall relaxation rate {including all res-
onances) measured by Thomas et al.l (see Fig. E) and
with the Lorentzian shape of the first resonance-peaks
(see Figs. E and E measured by Friedman et al. E with
high precision for four different temperatures.

Our model, which is introduced in Sec. D, contains
five independent parameters: three anisotropy constants
A > B> By, the misalignment angle 6 (angle between
field direction and easy axis, the latter being taken along
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the z axis), and the sound velocity ¢. The anisotropy con-
stant By and the angle 6 are responsible for the spin tun-
neling. This will be explained in Sec. . Moreover, we
derive the spin-phonon coupling constants in Sec. [I. It
turns out from our calculations that these constants can
be expressed in terms of the anisotro The constants
A, B, By have already been measuredé3'Ed and are known
within some experimental uncertainty. We achieve opti-
mal agreement between our theory and data if we pro-
ceed as follows. In accordance with Ref. [L1] we set 6 = 1°,
while the constants A, B, B4 are fitted to the relaxation
data by observing, however, the constraints that A, B, By
are allowed to vary only within the range of their experi-
mental uncertainties. The sound velocity ¢ has not been
directly measured yet (1@ our knowledge). However, spe-
cific heat measurementsta yield the Debye temperature of
Mn, from which a sound velocity can be deduced that is
in excellent agreement with our fit of the sound velocity
c=(1.45—2.0) x lﬁﬂﬁ@ Sec. [V]). Thus, in contrast
to previous resultstrtaLd: @ our theory is in reagonably
good agreement not only with the relaxation datalltd but
also with all experimental parameter values known so far
(see Figs. E, E, and ) In addition, new predictions are
made which can be tested experimentally: the sound ve-
locity ¢ and the intermediate relaxation times 7,,, as well
as satellite peaks.

In Sec. , extending previous WOYk,E’D’H’B’E we
make use of a generalized master equation which treats
phonon-induced spin transitions between nearest and
next-nearest energy levels as well as resonant tunneling
due to quartic anisotropies and transverse fields on the
same footing, which results in the Lorentzian shape of
the resonances. We derive the effective linewidth of the
Lorentzian peaks (see Sec. V1) as well as a generalized
formula of the tunnel splitting energy (see Sec. ) In
Sec. m, we obtain the relaxation time by exactly diag-
onalizing the master equation. In Sec. ﬁ, solving the
master equation analytically, we identify the dominant
transition paths (see Figs. d,and [Lld) and show that the
magnetization reversal is not dominated by just one sin-
gle path but rather by several paths which can be of com-
parable weight. We finally note that some of the results
of the present paper have been published in Ref. @ in a
short and less general form. Here we present details of the
derivation of these results and generalize them in various
ways, leading to new results such as satellite peaks in the
overall relaxation curve, relaxation time of an individual
relaxation path, an analytical expression for the effective
linewidths, and a generalized tunnel splitting formula.

II. MODEL

In accordance with earlier work@*@*ﬂ@*@@ we use
a single-spin Hamiltonian H = H, + Hz + Hsp + Hr
including spin-phonon coupling. This model turns out to
be sufficient to describe the behavior of the Mns-acetate

molecule (for temperatures T' > 1 K). In particular,
H, = —AS? — BS? (1)

represents the magnetic anisotropy where A > B > 0.
The anisotropy —AS? is depicted in Fig. . We define
the easy axis to lie along the z direction.
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FIG. 1. Anisotropy energy —Am? — Bm*.

Here, S is tb@@in operator with s = 10, and A/kp =
0.52 _EIO 56 KPVA and B/kp = (1.1 — 1.3) x 1073 K
(RefsEd andEd) are the anisotropy constants (kp is the
Boltzmann factor). The Zeeman term

HZ = gMBHzSz (2)

describes the coupling between the external magnetic
field H Hnd the spin S. The g factor is known to be
g=109.

We denote by |m), —s < m < s, the eigenstates of
Ha + Hyz with eigenvalue

em = —Am? — Bm* + gupH,m. (3)

If the external magnetic field H, is increased, one ob-
tains doubly degenerate spin states whenever a level m
coincides with a level m’ on the opposite side of the well
(separated by the barrier given by A). The resonance
condition for double degeneracy, i.e., €, = €./, leads to
the resonance field

’ n
H™ = — [A+ B (m*+m?)]. 4
T B@ ) @)
As usual, we refer to n = m +m’ = even (odd) as even
(odd) resonances.
The Hamiltonian

1
Hr = =5 Bu (S5 +52) + gupH. S, , (5)

makes tunneling between S, states possible, where S1 =
Sy £1Sy, and By is the fourth-order anisotropy con-
stant. H, = |H|sin# is the transverse field, with 6



being the misalignment angle.
much smaller than H., die., 6 is at most a few de-
grees. From experiments&d it is known that By/kp =
(4.3 — 14.4) x 10=° K. Finally, the most general spin-
phonon coupling®d which is allowed by the tetragonal
symmetry of the Mnjs crystal in leading order is given
by

H, is assumed to be

1
Hep = g1(€zz — €yy) ® (Sz — S;) + §g2€my ® { Sz, Sy}

1
+ 593(60s @ {0, 52} + €2 © {5, S2})

1
+ 594(“12 ®{Smusz}+wyz ®{Syasz})7 (6)
1 .
= _gl(ewm - 6yy) ® (Si + SE) + 392611/ & (S’E — Si)

2

1 )
+ 193[(€mz —iey:) ® {54, S}
+ (€22 + iEyZ) ® {S'_, Sz}]

4

1 .
+ 194[(wwz - ZWyZ) ®{S4,5:}

+ (Waz + twy,) @ {S-, 5.}, (1)

where g;, i = 1,2, 3,4, are the spin-phonon coupling con-
stants, which we shall determine in the following.

The linear strain tensor is defined by ¢ = Vu, where
u(z,y, z) is the displacement field. Symmetrization of
the strain tensor yields

1 (Ous Oug
eaﬁ—§<ﬁ+%>v (8)
while the antisymmetrized linear strain tensor reads
1 (Ouq Oug
=552 -2, 9
Yl =9 ( o 804) ©)

ine g; occurring in Eq. (E)
The displacement

with «, 8 = z,y, 2. To dete
we follow Dohm and Fulde.

u=4d¢p xx (10)
(in leading order) is generated by rotation only. The
infinitesimal rotation angle can be calculated by acting
with Vx (with respect to the position x) on both sides

of Eq. ([I0),

Wy z
Wz

5¢:%qu: (11)

Wiy

Applying infinitesimal rotations on the spin vector S

1 0 0 1 0 wys Sz
0 1 wy 0 1 0 Sy
0 —w,. 1 —wee 01 S

Sy + WS,

= | Sy — Warwy: Sz +wy:S: |
Wy Sz — wWyzSy — S

(12)

we find (to leading order in w,g) that the easy axis term,
—AS? | is transformed into
A(wgz{ Sz, Sz} + wy{Sy, S:}). (13)

Comparison with the last term in Eq. (ﬂ) then yields
g4 = 2A.

If the rotation matrices R, a = x,y, z, are expanded
up to second order, one finds terms that include symmet-
ric elements of the strain tensor e,

1 0 0
Ry = |0 1-306; —0¢, |, (14)
|0 6pp  1— 3002 |
[1—-3602 0 —d¢,
R, = 0 1 0 , (15)
5py 0 1— 3607 |
[1-1062 —00. 0]
R, = d¢. — 2092 0 (16)
|0 0 1]
Now we obtain from u = R, Ry R,x — x
(62 +6¢2) x
u=06pxx—=| (0¢5 +0¢2)y (17)

(692 +092) 2

By keeping derivatives of d¢,,, up to second order we find
§¢2 = €4z — Eyy — €22, and cyclic permutation of (x,y,z).
After inserting the rotated spin vector R,R,S into
—AS? = —A(S® — 52 — 57) we get for the right-hand
side
A(egy — €yy) (S’i — S’S) + 0(62), (18)
where we retain only terms that induce spin transitions.
Comparing with the spin-phonon Hamiltonian (E) one
sees immediately that g1 = A, and thus
g1 =0g4/2=A. (19)
Thus the coupling constants g; and g4 are explicitly ex-
pressed in terms of the anisotropy A.

Finally, we note that the terms in Eq. @) that are pro-
portional to gi 2 produce second-order transitions with
Am = =2, while the ones proportional to ¢34 pro-
duce first-order transitions with Am = +1. Thus,
Eq. (L9) implies that first-order and second-order tran-
sitions are equally important f@ the relaxation. In fol-
lowing Abragam and BleaneyEd it is now very plausi-
ble to adopt the approximations |ga| &~ g1 = A and
lgs| = g4 = 2A (the sign is irrelevant for the transition
rates calculated below).



IIT. MASTER EQUATION INCLUDING SPIN
TUNNELING

A. Generalized master equation

In this section we derive a master equation that de-
scribes the relaxation of the spin due to phonon-assisted
transitions including resonances due to E}gehng. For
this we make use of a standard formalism! suitable to
describe a system (spin) coupled to a heat bath reservoir
(phonons), the latter of which is in thermodynamic equi-
librium described by the canonical density matrix ppp for
free phonons. That means we start from the full Hamil-
tonian H = Ho + Hph + Hep, where Ho = Ha +Hz +Hr
represents the system, Hpn the phonon heat bath, and
Hsp given in Eq. (E is of the form Hy, = ), Qs ® F;,
where @; is a spin operator and F; is a phonon operator.
The generalized master equation in the interaction pic-
ture (I) in Born and Markoff approximation reads [see
Eq. (8.1.22) in Ref. Rg]

p%n-—(%f%jﬁmdw

x {[Qi(1), Q;(t —t")p ()] (Fi(t") Ey)
= [Qi(1), " (OQ;(t =t (FFi(t"))},  (20)

where Q;(t) = eotQ;e~"Mot.  Equation (R0) is valid
for the situations where the correlation time 7. in the
heat bath is much smaller than the relaxation time 7
of the spin system. Indeed, the assumption is satisfied
here since a rough estimate for thermal phonons yields
T ~ h/kpT ~ 10711 s at T = 1 K, whereas it will turn
out that 7 2 1 s (see below). In this case, the integral
kernel gives a vanishing contribution for times ¢’ larger
than 7., and thus one can extend the upper limit of the
time integral to infinity and replace p(t —t") by p(t) (see
also Ref. , Chap. 13).

As our undamped Hamiltonian #, has also non-
diagonal elements in the |m)-basis it proves con-
venient to formulate the generalized master equa-
tion in the Schrédinger picture, ie., with p!(t) =
/Mot () e=(/MHot "o got

Mﬂ=%hﬁ%Hd—(%y§:Amﬁ”

< A{[Qi, Qi (=t")p(] (Fi(t") Fy)
= [Qi, p(1) Qs (=t (FFi(t")) } (21)

As the tunnel splitting generated by Hr is smaller than
the level spacing of Hy, i.e., Enm < |€m — emr| (see be-
low), we can approximate the free propagator e~ @/ Hot”
within the integral kernel by e~ (/M(HatH2)t" i the
rest of our calculations.Ed Next, we take the matrix ele-
ments of Eq. (k1) using Pmms = (m|p|m émm,
Uy = e~ 7 Em==m)t" " and with the deﬁnltlons

Tian = mZ QIR Q1) [t (F(E).
Dt = WZ @MZMW/dﬂm@MM%
Ym/m = Z m'kkm’ + kakm) - F:;mm’m’ - 1—‘l;nmbm’fn’?
it follows from Eq. (1) that
. )
Pmm! = ﬁ [p7H0]mm’ + O Z anm" — Ymm/ Pmm/
n#m
(23)

where we have considered only the secular terms [i.e., the
“coarse-grained” derivative was taken with respect to t in
Eq. (@)iﬁband set [,],m = (m|[,]]m'). The relaxation
of the magnetization is entirely based on Eq. (|

The difference to the usual master equation is that
Eq. (3) takes also off-diagonal elements of the density
matrix p(¢) into account. This is essential to describe
tunneling of the magnetization, which is caused by the
overlap of the S, states.

The diagonal elements (m = m') of Eq. (R3) yield the

master equation

et D W = o Y Wam. (24)

p vaO

The equation for the off-diagonal elements (m # m’),

. )

Pmm’ = i_:L [pv HO]mm/ — Ymm' Pmm’ (25)
can be simplified in the following way. Accord-
ing to BEq. (@), Q; is an element of the set
{5’3,52 S+SZ,SZS’+,S_S’Z,S’ZS_}. Hence, we see that

Fjr_me ‘'m’ F;me 'm! O, and we get
= -2 > Wamr + Wom)
Ym'm = Ymm/' = 5 2 . .
1
=5 W+ W), (26)

where we use the abbreviation W,,, = En Wom.-
Evaluation of Eq. (29) leads immediately to Fermi’s

golden rule for transition rates in first quantization [see
Eq. (8.2.3) in Ref. R]:
2 2
Winn = 7 Z [(mN [Hep| nN')|" (N" [ ppn| N')
NN’

X 5(EN/—EN—Em+En) . (27)

Explicit evaluation yields (see Appendix A),



A5y (ema1 —Em)®
127rpc5h4 eBlemti—em) — 1’
17A%519  (emz2 — Em)®

= 1927 p Rt PEmizem) — 1 (28)

Wm:l:l,m

Wm:l:2,m

where s11 = (s Fm)(s £m + 1)(2m £ 1)2, and 542 =
(sFm)(stm=+1)(sFm—1)(stm+2). mass density
p for Mnj5 is given by 1.83 x 10® kg/m3 B3 Here, c is the
sound velocity of the Mn crystal, which is the only free
parameter in our theory. As already mentioned, we are
not aware of direct measurements of ¢ (but see below).
Note that the transition rates Wy, +1,m, Wm+2,m are very
sensitive to variations of the sound velocity c, as the latter
enters with the fifth power.

B. Spin tunneling

We include now the spin tunneling in the generalized
master equation (B3). Let |m) and |m’) be two eigen-
states of H, + Hz on the left and right sides of the
barrier, respectively. |m) and |m’) are degenerate when
0H, = H;”m, — H, vanishes. In the presence of tunnel-
ing, induced by Hr, the two states form (anti)symmetric
levels split by E.m (for 6H, = 0). By using time-
independent perturbation theory in higher opder the tun-
nel splitting energy E,,.,,» can be evaluated,

Vm,mfl Vm717m72

Enm =2 o V*m'Jrl,*m/' (29)

Em—1 —EmEm—-2 —Em

Note that in this expression only steps with Am = +1
are allowed. However, for the present purpose we need
to generalize Eq. (@) to situations where potentials
Vinismiz, € R with arbitrary steps Am = m; — miq
(m>m; >mip1 >m/,i=1,...,N—1) can occur. As
we will show in Appendix B this is indeed possible by
using resolvent techniques, and we find

N-1
E 2 Vm,ml Vmi7mi+1 V
mm’ — myn,m’|
My, m N Em — Emy i—1 Em — 5mi+1
myEm,m/ =
(30)

where N is the lowest order of the degenerate perturba-
tion theory, by means of whi;@Eq. (@) has been derived
(Nth-order secular equationPd), giving a nonvanishing
contribution to Eyp,., . For the potentials Vi, i, , we in-
sert combinations of terms occurring in Hr. For example,
the anisotropy By leads to transitions Am = +4, while
the misalignment H, leads to transitions Am = £1. The
summations in Eq. @) can be thought of as summation
over different paths in the Hilbert space connecting |m)
with |m/).

Continuing the evaluation of the first part of Eq. (£9)
we project the undamped Hamiltonian Hg by P =
> n=m.m 1) (n| on the two-state system {|m),[m')},

which yields the two-state Hamiltonian in the presence
of a bias field (see Fig. fl)

E

Hr =& Im) (m| + % m) (m!| +(m < m')  (31)

é’ Epme
;[Em 2 ]—PHOP7

B G

with &, = em + gupdH,m and the energy eigenvalues

vides a valid description as long as the level splitting
remains smaller than the level spacing, i.e.,

ﬁT pro-

A= f(en — ) + By < lemor — morial- (32)

We have checked that between two main resonances this
condition is satisfied for the states |mr) and |m/.) of the
dominant paths and for each degenerate pair of states
[m), [m') with em,ens < €y, Emy, (see Sec. M).

Next we insert the two-state Hamiltonian Hr into the
generalized master equation (), which yields

1Emm

2h

(pmm/ - pm/m) - mem + Z Wmnpn

n#m,m’

Pm =

(33)
and

Z.E1m7n’

2h

. )
Pmm/ = — <f_1€mm’ + 'Ymm/) Pmm’ + (pm—Pm/) ’ (34)

where & = & — &, and likewise for m < m/. Ul-
timately, we are interested in the overall relaxation time
7 of the quantity ps — p—s (see Sec. M) due to phonon-
induced transitions. This 7 turns out to be much longer
than 74 = 1/9mms, which is the decoherence time of
the decay of the off-diagonal elements pp,: o e /7
of the density matrix p. Thus, we can neglect the time-
dependence of the off-diagonal elements, i.e., pmm: ~ 0.
Physically this means that we deal with incoherent tun-
neling for times ¢ > 74.Ed Inserting then the stationary
solution of Eq. (B4) into Eq. (BJ), which leads to the
complete master equation including resonant as well as
nonresonant levels,

pm = —WmpPm + Z Wmnpn +Fz (pm’ - pm)u (35)
n#m,m’
where

Fm/ o E2 Wm + Wm’
m mm 4572,17,1/ + ﬁ2 (Wm + Wm/)2

(36)

is the transition rate from m to m’ (indyiced by tunnel-
ing) in the presence of phonon damping.Bd The relaxation

dynamics of the resonances described by 1/ I‘ﬁ/ ~107"s



(see Fig. E) turns out to be much faster than the phonon-
induced overall relaxation, ie., 1/T7 < 7 > 1s (see
Fig. E) Thus, our derivation based on the assumption
T > 74 is self-consistent since 1 /l"ﬁ/ ~ T4. Note that
Eq. @) is now of the usual form of a master equation,
i.e., only diagonal elements of the density matrix p(t)
occur. For levels k # m,m’, Eq. (BH) reduces to

pr = —Wgpr + Z Whin pn. (37)

We note that Fﬁl has a Lorentzian shape with respect
to the external magnetic field §H, occurring in & .
The H, dependence of W,, around the resonances turns
out to be much weaker (see below) and can be safely
ignored. It is thus this F%, that will determine the peak
shape of the magnetization resonances (see below and
Figs. B») Note that in Figs. E»E these Lorentzians are
truncated at the center of the peak by the spin-phonon
transition rates W,, and W,,, in such a way that the
effective linewidth (defined as the width at half of the
height of the truncated peak) is much larger than (W,,, +
W) /2. This needs some further explanations, which are
given in Sec. V1, after we have discussed the relaxation
times.

Energy

\ [4) = J5 (Im) — |m"))
N CAE |
|S) = L (Im) + [m'))

2

ox 0H,

FIG. 2. Tunneling configuration.

IV. RELAXATION TIME
A. Numerical diagonalization of the master equation

In this section we give the results of our exact eval-
uation obtained by a numerical diagonalization of the
master equation. For convenience we now write down
the master equation @) as a vector equation,

Ft) = W), (38)

where the elements of the vector 5(t) are the diagonal ele-
ments of the density matrix p. Within the interval I, n,
[see Eq. (63)] delimited by the two main resonances ny
and ng only the tunneling rates I‘ﬁ/} and Fﬁ% [Eq. ]
for which my+m} = n; and ma+mb = na (see Sec. )
are allowed to be included for self-consistency reasons:
the tunnel splitting (BJ) entering T is only valid within
this interval I, n,. If wi, i =1,2,...,21, are the eigen-
values of the rate matrix W, the dominant relaxation
time of the spin system is given by

1
= — . 39
T mzax{ Re wl} ( )

The eigenvalues w; turn out to be nondegenerate with
the smallest one being far separated by a factor of at
least 10 from the remaining ones. The result is plotted
in Fig. B, where the overall relaxation rate 7 is shown as
a function of H, at T' = 1.9 K. It is important to note
that all the resonance peaks are of Lorentzian shape. We
note that in our model the even resonances are induced
by the quartic B4 anisotropy, whereas the odd resonances
are induced by product combinations of B4Si and H,S,

terms [see Eq. (B0))]. For the plot in Fig. [ we setf = 1° in
accordance with the experimental uncertaintytd leading

to a maximal transversal field H, of about 350 G.

T[s]

10°
10°
10*
103
102
10
1 H,[T]
0 0.5 1 1.5

FIG. 3. Full line: semilogarithmic plot of calculated relax-
ation time 7 as function of magnetic field H, at T" = 1.9
K. The optimal fit values (see text) are A/kp = 0.54 K,
B/kp =11 x 102 K, and By/kp =85 x 107° K, 6 = 1°,
and Cﬂ: 1.45 x 10* m/s. Dots and error bars: data taken from
Ref. [1.

B. Comparison with experimental data

For comparison we alsxﬁ @clude in Fig. E the data re-
ported by Thomas et al.lBEd We have optimized the fit
(as explained in the Introduction) in such a way that the
fits of the model parameters, given by

A/kp = 0.54 K, (
B/kp =1.1x107% K, (
By/kp =85x107° K, (

o NI
N = O
S~— N N



are roughly within the reported experimental uncertain-
ties of Refs. R1] and BJ (see above). The value of By is in
excellent agreement with recent measurements performed
in Ref. @ Our fit of the sound velocity yields

c=1.45x 10° m/s. (43)

There is a difference between odd and even resonances,
i.e., the relaxation time 7 at an even resonance peak is
about three times smaller than the one at a subsequent
odd resonance peak. It should be mentioned that almost
identical plots are obtained for 0.5° < 6 < 3°, as can be
seen in Figs. f- i The present theory holds for |H,| <
1000 G (which is well satisfied here), otherwise the shift
of the levels |m) due to the perturbation H,S, must be
taken into account. For example, for the resonance n=3
the relevant tunneling takes place between |4) and |—1).
The dominant second-order shift

€1 — €0

1 H;5.|2) (2 H,.5;|1

L oppHaS0|2) @loppHaSel ) _ ) 40
€1 — &2

< |<€1| = kB x 2.3 K (44)

clearly shows that the unperturbed states {|m)} are a
good zeroth-order approximation. It is also important
to know whether the second-order shifts caused by the
perturbation Hr are negligible compared to the tunnel
splitting Ep,m; . Explicitly, we find

AP AP kg =85 mK  (n=4),

AP — AP kg =132 mK  (n=3),
AP AP kg =50mK  (n=2),

AP AP kg =05mK  (n=1),

AP = A [k =0 (n=0), (45)

where Ag)T is the second-order shift of the unperturbed
states |mt) of the dominant paths. These renormaliza-
tions cause a very small shift of the resonance peaks, e.g.,
the shift for n = 3 is 0.6 mT. The relevant tunnel split-
ting energies of the odd and even resonances are about
the same (except Fy _1):

E47,4 ~ E37,2 ~ E57,3 ~ kB X 45 IIlI{7
E4,—1/kB ~ 130 mK, Eﬁ)_2/1€B ~ 40 mK. (46)

For comparison, Fy,_o/kp ~ 1 K [see also Eq. (6)]. In
conclusion, the diagonal elements of the shifts of the non-
degenerate perturbation theory are much smaller than
the off-diagonal elements of the shifts of the degenerate
perturbation theory (see Appendix B). Thus our assump-
tion of quasidegeneracy is very well satisfied.

1 H,[T]
0 0.5 1 1.5

FIG. 4. Full line: semilogarithmic plot of calculated relax-
ation time 7 as function of magnetic field H, at T = 1.9 K.
Here 0 = 0.5° has been chosen. Dots and error bars: data
taken from Ref. ﬂ
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FIG. 5. Full line: semilogarithmic plot of calculated relax-
ation time 7 as function of magnetic field H, at T = 1.9 K.
Here 6§ = 2° has been chosen. Dots and error bars: data taken
from Ref. ﬁ
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FIG. 6. Full line: semilogarithmic plot of calculated relax-
ation time 7 as function of magnetic field H, at T = 1.9 K.
Here 6 = 3° has been chosen. Dots and error bars: data taken
from Ref. ﬁ



We note that there are satellite peaks in Figs@»ﬁ, the
origin of which will be explained below in Sec. [V].

In Figs. ﬁ andE we plot the peaks of the first resonance
at H, = 0, which is induced only by the B, anisotropy,
for four different temperatures, namely T = 2.5,2.6, 2.7,
and 2.8 K. The four peaks (like all others) are of single
Lorentzian shape as a result of the two-state transition
rate l"ﬁ/ given in Eq. (B). For comparison we plgt in
Figs. E and E the data reported by Friedman et alkd for
the same temperatures (no error bars, however, are given
in Ref. [[1)). The optimal fit values are

A/kp = 0.56 K, (47)

B/kp =13 x 1073 K, (48)

By/kp =144 x 107° K, (49)
c=2.0x10% m/s. (50)

rrios™j

HZ[T]
-0.02 0.02 0.04

-0.04

FIG. 7. Full line: plot of calculated relaxation rate I' = 1/7
as function of H, for the first resonance peak at T' = 2.6 K.
The Lorentzian shape is due to FZZI in Eq. (@) The optimal
fit values (see text) are A/kp = 0.56 K, B/kp = 1.3 x 1073
K, and By/kp = 144 x 107° K, § = 1°, and ¢ = 2.0 x 10°
m/s. Dots: data taken from Ref. @

rr1o~*s™j

H,[T]
-0.04 -0.02 0

0.02 0.04

FIG. 8. Full lines: semilogarithmic plots of calculated re-
laxation rate I' = 1/7 as function of H. for the first resonance
peak at (a) T = 25K, (b) T =26 K, (¢) T = 2.7 K, and
(d) T = 2.8 K. All peaks are of single Lorentzian shape. The
optimal fit values are the same as in Fig. ﬂ Dots: data taken
from Ref. EI

Note that these values are the same for all four tem-
peratures, which means that our peaks fit also the tem-
perature dependence of the relaxation time. The fitting
parameters turn out to be somewhat larger than the ones
used in Fig. [ [see Eqs. (10)- ()], which could be caused
by sample differences, e.g., in volume-to-surface ratio
and/or in shape anisotropy of the samples, etc. Indeed,
the sample of Ref. @ consists of many small crystallites
in contrast to the single crystal used by Thomas et al.l In
any case, the differences are small, and the sound veloc-
ity ¢ seems to be within the expected order of magnitude.
Clearly, it would be highly desirable to check this predic-
tion by an independent and direct measurement of ¢. On
the other hand M we can get an independent estimate for
¢ from the specific heat and the Debye temperature © p
which was recently measured in Mnj;o4 The reported
value isﬁp = (38 £4) K, and making use of the Debye
relationl

k3 1
kpOp = hwp = hckp, with n = —& = (51)
61

=
we find
c=(1.77 — 2.18) x 10® m/s, (52)

where wp is the Debye frequency, kp the Debye wave
vector, and Vy = 3716 A3 the unit-cell volume. Com-
paring this value for ¢ with the one obtained before, see
Eqs. () and (BQ), we see that the agreement is very
good. This result corroborates not only our prediction of
¢ but also our values obtained for the spin-phonon cou-
pling constants g;.

Finally we also mention that the prefactor
A%syq/127pc®h* of our spin-phonon rates [Eq. (R§)] is
in excellent agreement with the walue of the parameter
denoted by Cdn a recent paper.td Note that their fit of
the parameter™ C' is not as precise as ours, because C' is
assumed to be independent of the spin states {|m)}.

To summarize our results obtained so far, we see that
the agreement between theory and experiment is satis-
factory; in particular we emphasize that there is no free
fit parameter. Thus, our model and its evaluation seems
to contain the essential physics responsible for the mag-
netization relaxation in Mnjs.

C. Comparison with previous results

In comparison to previous results we obtain much bet-
ter agreement between theory and experiment for the fol-
lowing reasons. For this comparison we can restrict our-
selves to the work of Fort et al.kd since — as far as we
are aware of — it has produced the best agreement with
the relaxation datall thus far. First, the spin-phonon cou-
pling constants g1, g2, and g3 are explicitly givenin our
work for the first time (g4 has been found beforé@? As
shown in Sec. @ we find them to be of order A = 0.56 K,

and it is this value which leads to good agreement with



all known E:ﬁ;@rimen‘cal data which involxe these coupling
constants.HE3 In contrast, Fort et alkd set arbitrarily
the g¢;’s to values of 15 K and 30 K, which is clearly in
contradiction to our microscopic values. Moreover, our
value for the fit parameter @ﬁ%s the constraints
independent measurements, while Fort et al.
obtain a B, value which is about 30 times smaller than
the measured value in Ref. R1. From Figs. [] and [ we see
that the temperature dependence of the relaxation time
agrees quite well with the measurements of Friedman et
al.ll. Such a fit has not been attempted before.

V. RELAXATION PATHS
A. Analytical result

In order to get a better physical understanding for the
relaxation process of the spin system it is instructive to
determine the dominant transition paths via which the
spin can relax into its ground state. For this we derive an
approximate analytic expression for the relaxation time
denoted by 7* (to distinguish it from the exact 7 obtained
in the previous section). First, we solve the master equa-
tion for one particular transition path n which does not
intersect with other paths. For H, > 0 we find (deriva-
tion is given below)

1 eBlem; —€s)
[ e ea—=n) — g (53)
{mi}n
where Q z+1 — Qmi—>mi+1 = Wmi+1mi or sz+17 depend_

ing on the particular path n characterized by the sum
over the levels m (see Figs. ] and [[)). Equation (53)
holds for arbitrary initial (g;) and final (e) energies, and
for arbitrary steps Am = m; 1 — m; (see below).

We now turn to the derivation of the relaxation time
of a cascade including the external field H,. For this we
need to go beyond the results obtained previously®=! for
H, = 0, which requires a non-trivial extension. We start
with rewriting the master equation (Bg) as

/’s = Q5 pmy — 2 ps,
- Qz;+1pm]‘+1 + Qm; 1pmj—1

_ Qmﬁrlpm‘ _ ng_ s
p—s = Qmppmp - Q—sp S5 (54)

with m; € ]—s,s[, m; > mjq11, j=1,...,p <2s—1,
and ppm; = dpm;/dt. We consider now the stationary
limit of Eq. (b4) which we define by

Ps = —J, ij =0, p—s = J, (55)

where the first and last equation express conservation of
the probability current J, which we assume positive for
H. > 0 and independent of m. Equation (f5) leads to
p+ 1 equations,

J(t) = 92?1/)77% - Q Z+1pmi+17 (56)
and by solving for p,,,,, we get

mig1 I (57)

pmi = Qmi+1 pmz‘+1 + Qmi+1 )
uz uz

where we have introduced i =0,...,p < 2s—1,and mg =
s. To simplify the following treatment we assume detailed
balance also for the tunneling processes. This approxi-
mation has little effect on the final result which turns out
to agree very well with the exact relaxation time 7 where
no such approximations are invoked. Inserting then the
detailed balance relation Qi /Qui*t = e?
one obtains

(Emi+1 —€m;)

Pm; = eﬂ(ami+l_€mi)pmi+1 + (58)

S
o

In order to get an equation that depends on p_, and ps
only one has to sum over the following p + 1 equations:

_ J
Ps = eﬁ(sml ES)Pml + QTU
B B Jeﬁ(5m1753)
eBlem, Es)pml — Bemy ES)ng + —gm
mi
B B Jeﬁ(5m2 753)
eBlems Es)pm2 — Blemg ES)ng + —gm
ma2

JeP(Emp—es)

eﬁ(smpfsfs)pmp — eﬁ(sfsfss)pis 4 = ,
mp

_ Ble—u—c) gy e 59
pS_e p S+ Z m1+1 ( )

In the special case of H, = Oﬂl e,es—¢e_s =0, Eq. (@)
agrees with previous results.

Taking the time derivative of Eq. (§Y) and using
p—s/ps = —1 we find

. 66(€m1 Es
Pts = :tl + 65 £_s—¢s) Z Qitt (60)
and thus
ﬂ 5771 53
. . (& i
95—075:21_’_6[38 S—ES)Z 1+1
= —-2J. (61)

The solution of the last differential equation is
J(t) = Joe 7, (62)

with the relaxation time

" 1
[ T, Z




Finally, the summation » ., , in Eq. (B3) is defined as
the summation Zmi in Eq. (g) taken only from mipy;tial
to0 Manal + 1, where |Minitial) , |Mfnal) denote any two
neighboring vertices (where paths intersect) in Figs. [,

L4, [(§, and PQ (see below).

[0)

|10) |—10)

FIG. 9. Spin relaxation paths (from m = 10 to m = —10)
for 0 < gupH. < A+ 13B. Full lines: thermal transitions
due to phonons. Dashed lines: dominant tunneling transitions
due to Bs and H, terms. Dotted lines: tunneling transitions
that lead to satellite peaks [included in the numerical diag-
onalization of the master equation (@)] The states where
paths intersect are denoted as vertices.

75

T4
T3

[4)

T1 7

< ]
|10) |—10)

FIG. 10. Serially reduced diagram associated with Fig. E
In order to understand the analytical evaluation of the re-
laxation diagram in Fig. E better, tunneling transitions that
lead to satellite peaks are excluded. The relaxation times
Tn are given in Eq. (@) For |H.| < 0.05 T only the path
T1 — T3 — 77 is dominant (see Figs. || and E)

Similarly one can solve the rate equations @) for J <
0 < H, <0. Then we obtain

1 eBlem; ——s)
N 1+ efleae=s) Qmi+1

my

*

T

, H, <0, (64)

which for H, = 0 (i.e., e_s = &5) and steps Am = +1
reduces to the result found in Ref. @

If there is more than one path contributing to the re-
laxation (which is typically the case in the region between
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two resonances), we have to account for intersections at
vertices. For this we associate with each path a proba-
bility current J,, = p,, and interpret Eq. @) in terms
of a serial circuit with the summands playing the role of
“resistances.” This allows us then to set up flow diagrams
for .J,, (see Figs. I, [Lq, and [Ld-R1]), which obey the analog
of Kirchhoff’s rules:

(K1) >°,, Jn = 0: The sum over all incoming and out-
going currents vanishes at a vertex (current conserva-
tion).

(K2) >°,, Jumn = AN: The sum over all voltage drops
(Jn7n) is equal to the source-drain voltage AN = ps—p_;
for any closed path (probability conservation).

The total probability current is given by J = AN. For
every interval

’
HmT,2mT,2
) z

Iy, = |:H;71T,1mT,1 (65)
[see Eq. ([))], where ny = mr +mi 1, ng = mra+mry,,
0 <m =ny+1 < 3, aset of equations is given by
the rules (K1) and (K2). For every set we derive the
relaxation time 7,5 . = AN/J.

Figure E shows the complete, Fig. its serially re-
duced flow diagram for 0 < H, < ﬁ (A +13B). From

(K1) we get

J=Jhi+J2, Jo+J5=1Js,
Ji=J3+Jy, J3+Js=J7r,
Jy=Js+Jg, Jr+Js=J,

while from (K2) we get

AN = Jim + J313 + J777,
J313 = Jama + J575 + 676,
Joro = i + Jama + J575
Jsms = J575 + Je76 + Jr77 .

From these equations we obtain

To1(Hz) = (TaT1T5T2 + T8TaT1 T2 + TgT1T5To + TR T4T1T6 +
T4T7T5Te + TuTrTeTe + T8T7T5T6 + T8T7vTeTa + TaTrT5Te +
T8T7ToTs + T4T7ToTs + T8T4T3T7 + T8T3T5Tr + T4T3TsT7 +
T8T3ToTe + T8T4T3T2 + T4T3ToTe + T8T4aT3Te + TRT3Ts5T2 +
TRT3T5T6 + T_T7T5Te + T8T1TeTe + T8T1T5T6 + T3T1T5T6 +
TRT3T1T6 + TrT1T5Te + T3T1TeTe + T3T1T5T7 + TvT1T2Te +
TrT1TsTe + TrT1TaT4 + T8TeT1T7 + TaT1T5T7 + TRT4T1T7 +
T8T3T1Te + TyT1TaTs + T8T3T1Ty + T3T1T5T2 + TRT1T5T7 +
TRT7T2Te + TRTaT7Te + TaT3T5Te + TaT3Ts5Te + TaT1T2Te +
TaT17576) [ (TsTsTo + TsTsTe + TeT3T2 + T8TaTs + TaTs576 +
TRTATe +T8TaTo +T4ToTe +TuTrTe+T8T3Ts +TrTaTe +TrT5T6 +
TrT5Te+TrToTs+T4T1Ts +T3T1T5 +T8T1 75 +T8T3T1 +T3T2T6 +
T3Ts5Te+T3T5To+T3Ts5T7+TaT3T7+TaT3Ts+78T¢T1 +T3T1T7+
TrT1Te+TaT1Te+T3T1Te+TaT1T7+T8T4T1 +78T2Te+TaT5T2+
TAT3Te + ToTaT7 + T77'17'5).

When 73 ; is plotted as function of H, there is no vis-
ible difference between the exact 7 obtained in Sec. m
and this approximate 7%, which confirms that the dia-
gram in Fig. E contains the physically relevant relaxation



paths for the interval Iy ;. Similar results are obtained
for the other intervals, whose diagrams and calculations
are shown in Appendix C.

Finally, near a resonance [|6H,| < w', see BEq. (74)]
the above expression for 7 [Eq. (é)] strongly simplifies
since we find that there is only one dominant relaxation
path which involves only one tunneling channel. This fi-
nally explains why the peak shape is given by a single
Lorentzian. We call the five strongest broadened reso-
nances in Figs. E«E the main resonances. For every main
resonance n we have identified [using Eq. (F3)] its dom-
inant path and its associated tunneling channel between
the states |mr) and [m7). These states are

/
my

—4
—2
-3
-1
—2

AW~ O3
@pbcnwppﬂs

Our calculation of the intermediate relaxation times 7,
provides a further prediction which could be tested with
NMR techniques of the type described in Ref. @

B. Satellite peaks

Beside the main resonances there are also other nar-
rower resonances (see Figs. BH) that are a direct con-
sequence of the fourth-order anisotropy constant B [see
Eq. )] Indeed, if the plots around one peak are magni-
fied further, satellite peaks become visible (see Figs. E,
[[4). Tn order to understand the occurrence of these satel-
lite peaks it is instructive to look at Fig. @ below. There
are several paths which can be used in the relaxation
process. As we include the fourth-order anisotropy term,
—BS?, the resonance condition is not the same for every
level [see Eq. ({f)]. Hence, very narrow peaks show up,
which can be seen only at high resolution. In Fig. E
several additional tunneling paths, some of which are re-
sponsible for the satellite peaks in Figs. and , have
to be drawn (represented by the dotted lines in Fig. .
For example, the tunnel splitting energy of the path from
|4) to |—2) is proportional to H,BsH, (third-order per-
turbation), where the ordering of the factors corresponds
to the chosen path. Due to the presence of H? the width
of the satellite peak (see next section) depends on the
misalignment angle 6. If one takes a close look at our
high resolution plots this difference between Fig. @ and
Fig. is observable. It must be noted that we consider
only tunnel splitting energies up to second order in By
and third order in H, (also combinations such as B H?)
for all the main and_satellite peaks. Narrower satellite
peaks are neglected.2d The distance dzfﬂf: between a
satellite peak and its associated main peak caused by a
main resonance is given by Eq. (),

11

’ !’ !
mama’ __ mimi’ _ pymama
dmlml’ - ‘Hz Hz
nB 2 2
2 ! 2 /
= —(m1+m1 —m5 —mo ) , (67)
guB

where my, my’ (ma, my’) are responsible for the satellite
(main) peak, and n = my +m1’ = ma +mo’. It would
be interesting to search experimentally for these satellite
peaks, which requires a higher experimental resolution of
the peaks than achieved so far.

T[s]

H,[T]

0.7 0.8 0.9 1

FIG. 11. Full line: semilogarithmic plot of calculated re-
laxation time 7 as function of magnetic field H, at T' = 1.9
K in the interval 34/2gup < H. < 5A/2gup with a higher
resolution. The tunneling transition from |5) and |—3) is re-
sponsible for the main peak. Two satellite peaks are visible.
The left (right) one is due to the tunneling channel between
|[4) and |—2) (|6) and |—4)). Here § = 2° has been chosen.
Dots and error bars: data taken from Ref. ﬁ
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FIG. 12. Same plot as in Fig. 7 but with a misalignment
angle of @ = 3°. Dots and error bars: data taken from Ref. ﬂ
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FIG. 13. Full line: semilogarithmic plot of calculated re-
laxation time 7 as function of magnetic field H, at T = 1.9
K in the interval 7TA/2gup < H. < 9A/2gup with a higher
resolution. The tunneling transition from |6) and |—2) is re-
sponsible for the main peak. Two satellite peaks are visible.
The left (right) one is due to the tunneling channel between
|5) and |—1) (|7) and |—3)). Here # = 2° has been chosen.
Dots and error bars: data taken from Ref. [1.
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H, [T
1.5 1.6 1.7 1.8 1.92[]

FIG. 14. Same plot as in Fig. 7 but with a misalignment
angle of @ = 3°. Dots and error bars: data taken from Ref. ﬂ

VI. WIDTH OF THE LORENTZIANS

In this section we give a physical interpretation of
the effective half-width of the Lorentzian peaks in our
plots. In order to get an expression for the width of
our main and satellite peaks consider a Lorentzian T'(H,)
with linewidth w (see Fig. [L]). If the upper part of this
Lorentzian is cut off (where the curve is already very nar-
row) and both ends are connected by a horizontal line one
obtains a curve that still has the same single Lorentzian
shape for all practical purposes but now with an effective
linewidth w’ > w. Changing the tunnel matrix element
E,,m results in a different truncation of the Lorentzian,
thus changing the effective linewidth w’. We shall now
estimate the effective linewidth w’ and compare it with
the one obtained from the exact 1/7. Taking only the
largest terms of Eq. (@) gives a rough approximation of
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the relaxation time near a resonance where the states |m)
and |m') are degenerate,

, 1 eBemi2—es) eBlemr—es)
T = +
1+ 6'8(875_83) Wm,m+2 Wm’—Z,m’
6’8(57"7575) 68
F ) o
Using the detailed balance relation
Wm.m+2 5(5 _
S EE  Plemz—em) 69
Wm+2,m ( )

we obtain the following approximation:

2 1
Wm,m+2 F%/ ’

where we assumed that Wy, mi2 = Wi —om @ In the

limit &,y — 0 the phonon-damped tunneling rate I‘ﬁ/
is much larger than W, »,42, so

, eﬂ(57n+2_55)

= 1+ eﬁ(5s*55)

(70)

9eP(Emta—es)

(]_ —|— 66(573_55)) Wm,m-‘r? ’

lim 7’ =~

Emm/ —0

(71)

The half-width of 7/(H,), denoted by w’, is then deter-
mined by the condition 7/(w’/2) = 7/(0)/2. This condi-
tion is fulfilled when

4 Wm m
= T” (72)

Thus we obtain the expression for the effective linewidth

w',

o W AW [ B2 B (Wi + W) 1/2
lm —m/|gup [ Winmie 4
(73)

Since the height E2,,/h? (W, + Wy,) of the Lorentzian
7 is very large compared to its linewidth |m —
m'|gupw/h = (Wp, + W) /2 and W, + Wy
2Wynmi2 for the dominant paths (see Sec. M) we get
the following reasonably accurate approximation for the
effective linewidths in our plots:

m/’

~
~

23/2 Epm

W=
|m —m/|gup

(74)
Comparison with our exact calculations of the relaxation

time shows that w’ of Eq. (@) gives a very good estimate
for the effective linewidth of the peaks in our plots (see

Figs. §-H and [L1-f13).
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FIG. 15. Truncated Lorentzian F;4 with A/kp = 0.56
K, B/kg = 1.3 x 1073 K, and Bs/kp = 14.4 x 107° K,
6 =1° and ¢ = 2.0 x 10° m/s, w' = 37.4 mT (w’ agrees
very well with the width of the Lorentzian in Fig. ﬂ)7 and
;4w /2) = 2.4 x 10% s7!. The truncation is indicated by

the dashed line.

VII. CONCLUSION

We have presented a comprehensive theoretical de-
scription of spin relaxation due to phonon-induced tran-
sitions and tunnel resonances. Deriving a generalized
master equation (in Born and Markoff approximation)
we obtain an exact numerical evaluation of the overall re-
laxation time 7 as function of the longitudinal magnetic
field H, comprising Lorentzian-shaped peaks. In order to
perform this evaluation we calculate the phonon-assisted
transition rates of the spins, the spin-phonon coupling
constants, and the tunnel splitting energy, for which a
generalized formula is derived. The fourth-order diago-
nal terms in the Hamiltonian give rise to satellite peaks,
the experimental observation of which requires a higher
resolution of 7(H,) than achieved so far. Our approx-
imate analytical solution of the master equation yields
a clear physical understanding of the relaxation process
by revealing the relaxation paths that are followed by
the spin. This solution provides the prediction of all in-
volved intermediate relaxation times 7,, which can be
tested experimentally. The results of our model calcula-
tion agree well with all known data. For the first time
we have been able to get agreement between theory and
the entire relaxation curve. In addition, we have obtained
reasonable agreement between theory and four single res-
onance peaks recently measured to high accuracy at four
different temperatures. The formalism presented in this
work has been applied to the specific parameter values of
Mn;iga, but many results derived here are generally valid
and can be used for similar spin systems as well.
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APPENDIX A: SPIN-PHONON RATES

In order to evaluate the spin-phonon rates W,,, of
Eq. (27) we first change to the Fourier representation.
If q is a phonon wave vector, we can write u(x) as fol-
lows:

u(x) el (A1)
- 5w
with IV being the number of unit cells. Hence
qmum(q) Grty(q) gouz(q) |
e(x) \/— Z Qyua(q) qyuy(a) qyus(q) | 9™
Qzuz(Q) qzuy(q) q-Uz (q)
(A2)

After (anti)symmetrization, these matrix elements can
be inserted into the expression (),

Hap = fz o{ gnlasun(@ - (@l (53 + 52)

+ 22l (@) + aya(@)] (52 - 53)
+ %93[%7%( ) + qzuz(q)
—i(qyuz(a) + gzuy(a))] @ {4, S.}
+ %g3[qxuz( )+ P z(q)

+ i(gyus(aq) + ¢zuy(q))] ® {S-, 5.}
+ %.94[(&”,2( )+ qzu m(q)
—i(qyuz(a) + gzuy(aq))] @ {S4, S.}

1

+3 (a) |
g=uy(q))] © {S-, 8.} } "I,

R; are the positions of the Mn;2 molecules.

_94[QIUZ( ) q:uz\q

+i(gyu=(a) — (A3)

We proceed with the canonical transformation
u,p) — (cf,c). ¢ = e ¢ annihilates (creates) a
qCq

phonon with wave vector q and polarization €4, and

u(q) = “21\;&)(1 (CT—FC),

where M is the mass per unit cell. Inserting Eq. (A4)
into Eq. (AJ) and considering only the spin of the Mni,
molecule at R; = 0 yields

(A4)



=2

X{

(3
+ 2lan(c) + ) + ay(ch + )] (52 -

+ 5l

+ q.(ch + e — icL

. \/ 2Nqu

gilaz(ch + c2) — gy (ch +¢,)] @ (52 + 52)

N | =

5%)
qz — iQy)(CZ +c¢2)
—icy)] ® {5+, S:}

1 .
+ _93[((11 + Wy)(cl + CZ)

8
+ q:(ck + co +icl +ic,)] ® {S_, 8.}

1 .
+ golla - iqy)(cl +c2)

— q.(ch 4 ¢p — ic; —icy)] @ {5+, 5.}
1 .
+ gal(ae +igy) (el +cz)
- QZ( (A5)

This expression can be used to evaluate the transition
probability. We employ the following standard relations:

cln) =+/nn—1),

c'n) =vn+1n+1),

_s,m) =/(s+m)(s—m+1)|s,m—1),
Sils,m) =+/(s—m)(s+m+1)|s,m+1). (A6)

The transition rate W_g = Wy,_o.m [see Eq. (R7)] for
m — m—2 (eym—2 2 &) can now be calculated in second
quantization (ny = nga, @ = ,y, 2 denotes the num-
ber of phonons with wave vector q, polarization mode A,
and oscillation direction a, and the thermal average over

phonons is left implicit),

el +ep + ic;fj +icy)] ® {5-,5.}}.

W_o = Z | (ngr F 1,m — 2| Hep| ngr, m) |26
Z Nqu
91 1 1 2
4 qr Nz + |C |n;E - qu TLU + |C |7’Ly

X Km - 2|Sz|m>‘2
g2

x |(m = 2/82|m)|*] b
i ()

2

where s_o = (s+m)(s—m+1)(s+m—1)(s —m+2),
hwq(/)).

TS_2
NMwq

% (4, +qy) } O,

and 6('; =6(£(em—2 —Em) —

() 1))
+ £ (0 (ny F 1UeldIny ) + 4y (no F 1S s ))

(A7)
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With the approximation g3 = A = go and the thermal
average (ng) = 1/(e®™4 — 1) one obtains

W, = 42

7TA2$ 2
Nqu

- Qy)2 + %6(% + Qy)2
+ (ePhwa — 1)

Ot.

(A8)

As a next step the sum is replaced by an integral
[((1/]\]) Y~ (@3/2n)%) [ & ] and the density p =
M /a3 is inserted,

W, — A2S_2 d3q (Qz - Qy)2 + %G(QI + Qy)2
_9 = e

0t.

3272p | wy + (ePhwa — 1)
(A9)
After changing to spherical coordinates one gets
17A%s_5 [ dg 7t
W_g=——— — ——— 9 A10
? 1927p /0 wq £ (eTPhwa —1) £ (AL0)

Assuming a linear dispersion relation w, = cq, where c is
the sound velocity, and using ¢ = hw, = hcg one obtains

17A%s_o > g3
de ————9§
/0 y + (eiﬁhw] - 1) -

Wﬁ -
27 1927pcihA

17A%s_ m—2 — Em)>
_ S—o  (Em—2—€m) ' (A11)
192mpcdht eflem—2—em) — 1
In the same way we get
174545 (emy2 —m)®
W+2 B 1927Tpc5h4 eBlemta—em) — 1’ (A12>
with s40 = (s —m)(s +m+1)(s —m —1)(s + m +2).

The transition rates for m — m £ 1 can be calculated
in the same manner as above with g4 = 24 = g3,

A%si1 (emt1 —em)?
127 pcd R4 eBlemti—em) — 17

Wiy = (A13)

where sy =

Em (s+m+1)2m £ 1)% and p =
183><103kg/m

APPENDIX B: LEVEL SPLITTING

In this appendix we derive a formula for the tun-
nel splitting energy which is applicable to potentials

Vinimisn € R with arbitrary Am = m; — mip1 (m >
m; >mi >m' i=1,...,N—1). According to Kato’s
theoryt the expansion of the resolvent
a(2) : (B1)
)= —
z—Hy—\V

leads to a rigorous treatment of the perturbation theory,
which is very useful to evaluate high-order perturbation
terms. We use the notation of Messiah.



Let N be the order of the perturbation. Then the
projection operator P = )" |m) (m|, consisting of the
degenerate states {|m)}, and the operator (H — E3) P
are expanded as follows:

P=Py+ Y NWAM (H-E)P=> ANBW),
N=1

N=1
with
AN = N " ghyghy ..y gk
(N)
BN = — N ghyshy...yghve,
(N-1)
where
Sk_ —PQ, 1fk=0,
Tl % ifk>1,0
_ Qo 1
QO—l_P07 F_QoQO

and the sum () has to be taken over all combinations
kl, k2, ey k:N+1 with the restriction kl —|—I€2—|— . '+I€N+1 =
N.

The following general secular equation must be solved:

det (H, — xK,) = det (Ca) = 0, (B2)

where we have introduced the abbreviation C, = H, —
xKq. The x are the eigenvalues of the perturbed states.
H, and K, are defined by

H, = L HPPy = EJK, + Py Y ANBWNIR,  (B3)
N=1

K, = PyPPy=Py+ P, Z AN AN P
N=1

(B4)
Thus we have now

Ca

(B —x) Po+ (EQ—x) > ANRAMNPR,
N=1

+ > MWRBMPR,. (B5)

N=1

Equation (BJ) is the general formula for finding the per-
turbed eigenvalues and eigenstates. We apply it now to
the situation of our two degenerate spin states |m) and
|m’). The following derivation refers to the off-diagonal
elements of Eq. (@)

The factors PyA™Y) Py and PyB®™) Py do not vanish if
k1 = kn+1 = 0. As we look for the lowest-order pertur-
bation that gives a contribution to the tunnel splitting
E\ymy, the projection operators S¥, i = 2,..., N, must
not be equal to — Py, i.e., k; # 0,7 = 2,...,N. Hence,
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we get the following combinations for the lowest-order

perturbation,
for A(N) : k2:k3: Zkl_l :1,ki:2,
ki+1=...:kN:1,Z:2,' ,N, (BG)
for BM) : kg=ks=---=ky=1 (B7)

In the case of weak perturbation the second term of
Eq. @) is much smaller than the third one. Thus the
secular equation reads as follows:

Ca

(E — X) Po + (diagonal elements)

> v,
+ AN —mm

Em — Eml

m)

(B8)
Thus we arrive at formula (B0).

APPENDIX C: APPLICATION OF
KIRCHHOFF’S RULES

In this appendix we make use of Kirchhoff’s rules (K1)
and (K2) in order to evaluate the diagrams of the relax-
ation paths. Each diagram and its evaluation is valid
for the interval between two main peaks. The solu-
tion 7., .. of the Kirchhoff equations between the peaks
ny = my +mj and ny = mg + mj is not written down
explicitly, since it is too lengthy and the calculation is
straightforward.

(1) 5z (A+13B) < H. < A+ 34B):

2
i

From J = Ji + Jo, i = J3 + Ju, Ju = J5 + Jg, Jo +
Js = Jg,J3 + Jsg = Jr,Jr +Jg = J, and AN =
Jim + J313 + Jr17, 33 = Juma + Js575 + JeT6, JoT2 =
J1711+ JaTa + I575, Js 78 = J575 4+ JgT6 + J7T7, Oone can im-
mediately evaluate the relaxation time 77 o(H) = AN/J

i)

(see Figs. [[q and




FIG. 16. Spin relaxation paths (from m = 10 to m = —10)
for ﬁ (A+13B) < H, < ﬁ (A+34B). Full lines: ther-
mal transitions due to phonons. Dashed lines: dominant tun-
neling transitions due to B4 and H, terms. Dotted lines:
tunneling transitions that lead to satellite peaks [included in
the numerical diagonalization of the master equation (@)]

75

T3

T1 7

L b
|10) |—10)

FIG. 17. Serially reduced diagram associated with Fig. .
In order to understand the analytical evaluation of the re-
laxation diagram in Fig. E better, tunneling transitions that
lead to satellite peaks are excluded. The relaxation times 7,
are given in Eq. (@)

(2) 57 (A+34B) < H. < ;2= (A+17B):

From J = Ji+Jo, J1 = J3s+Jy+J7, Jo+Jy = J5, J3+J5 =
Js,Jg + Jr = J, and AN = Jimy + J3713 + Jg76, J3T3 =
JaTy + Js575, Jam2 = JiT1 + JaTa, Jrmr = JaTs + J575 +
J6Tg, one can immediately evaluate the relaxation time

754(H) = AN/J (see Figs. [[§ and [L9).

[4)

16)

18)

[|—10)

FIG. 18. Spin relaxation paths (from m = 10 to m = —10)
for ﬁ (A+34B) < H. < ﬁ (A+17B). Full lines: ther-
mal transitions due to phonons. Dashed lines: dominant tun-
neling transitions due to By and H, terms. Dotted lines:
tunneling transitions that lead to satellite peaks [included in

the numerical diagonalization of the master equation (@)]

16

T4

15)

3

76

T2 —

[10) |—10)

FIG. 19. Serially reduced diagram associated with Fig. @
In order to understand the analytical evaluation of the re-
laxation diagram in Fig. better, tunneling transitions that
lead to satellite peaks are excluded. The relaxation times 7,
are given in Eq. (@)

(3) 0= (A+17B) < H. < 2= (A +40B):
From J = Ji+J2, J1 = J3+Jy, Jy = S5+ J7, Jo+J3+J5
Js, Jg + J7 = J, and AN = Jy11 + J373 + Jg76, J373
Juty + J57s, Jara = Jim 4 Jama + J575, J7mr = J5Ts +
JeTe, one can immediately evaluate the relaxation time
T3 4(H) = AN/J (see Figs. B and p1]).

12)

[—10)

FIG. 20. Spin relaxation paths (from m = 10 to m = —10)
for ﬁ (A+17B) < H. < ﬁ (A+40B). Full lines: ther-
mal transitions due to phonons. Dashed lines: dominant tun-
neling transitions due to By and H, terms. Dotted lines:
tunneling transitions that lead to satellite peaks [included in
the numerical diagonalization of the master equation (@)]
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75
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16) |-2)
T3
1 6
L
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[ b
|10) |—10)

FIG. 21. Serially reduced diagram associated with Fig. @
In order to understand the analytical evaluation of the re-
laxation diagram in Fig. better, tunneling transitions that
lead to satellite peaks are excluded. The relaxation times 7,
are given in Eq. (@)

APPENDIX D: FIRST-ORDER VS.
SECOND-ORDER TRANSITION

We show in this section that second-order transitions
lead to a much faster relaxation of the spin system than
first-order transitions if the coupling constants are equal.

The relaxation rate T'™) of the cascade with trarﬁtions

Am = =£1 has been calculated by Villain et alld (see
Fig. p3),
I‘(l) — 3 |‘/1;0|2 ( e )3 e_BA
T or htpcd 0 ! 1 — e—B(eo—e1)
3 [Vigl? [A]? e P2
_ 3 Mol 1A ¢ . (D1)
21 htpcd | 2| 1 —e PBA/s

A = 100A is the energy barrier.

10)

FIG. 22. Cascade with Am = —1 and H=0.

We have extended this expression by taking higher-
order transitions into account. If we take a cascade with
transitions Am = %2, for the case s=10, we obtain

3 |V |2 e*ﬁA
2 _ 2 2,0 _ 3 -
P = S g €0~ ) TR
ile,oP{ A r i (D2)
2w Wpet |2P) 1_, P

Comparing to the relaxation rate IV with s = 10, an
increase by a factor

r® 1o¢

o~ 5 0 (D3)
is obtairéd, assuming VY ~ V® (see Abragam and
Bleaney,B p. 563, for experimental evidence).

Now we calculate the relaxation rate by means of for-
mula (63) with I = 1/7*, Am = +1, and T® = 1/7*,
Am = £2. If there is a fast transition via tunneling be-
tween levels m =4 and m' = —4for H, =0at T = 1.9
K, we get the following more accurate estimation:

r®@
The same can be done if the fastest transition takes place
via tunneling between levels m = 2 and m’ = —2 for
H.,=0atT =19 K,

r®@

From these results it is obvious that second-order transi-
tions lead to a faster relaxation. Note that it is Eq. ([L9)
together with Eq. (B§) which imply that the ratios (D4)
and (D) are of the same order as the ratio (DJ). This
provides a theoretical justification for the approximation
v xy@),
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