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Abstract

Recent photoabsorption measurements have revealed a rich fine structure

in the collective charge-density excitation spectrum of few-electron quantum

dots in the presence of magnetic fields. We have performed systematic com-

putational studies of the far-infrared density response of quantum dots, using

time-dependent density-functional theory in the linear regime and treating

the dots as two-dimensional disks. It turns out that the main characteris-

tics observed in the experiment can be understood in terms of the electronic

shell structure of the quantum dots. However, new features arise if a break-

ing of the circular symmetry of the dots is allowed, leading to an improved

description of the experimental results.
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I. INTRODUCTION

The electronic structure and dynamics of quantum dots have been a subject of intense
study in recent time.1,2 Frequently one makes the simplifying assumption that the electrons
in quantum dots form a two-dimensional system confined by a parabolic potential of circular
symmetry. The electronic ground state can then be found either through diagonalization
schemes or using mean-field approaches such as Hartree theory or density-functional theory.
The former treatment is computationally much more demanding and has so far only been
used to describe few-electron systems, whereas the latter approach has been applied to
electron numbers of order 100. In either case, however, one finds that the main features
observed in the experiment (such as effects related to the electronic shell structure) are well
reproduced.

The model of a parabolic circular quantum dot is of course an idealization. It has already
been recognized in the early 90’s that explaining certain experimental features requires
including some deviation from parabolicity of the confining potential. A first study of this
kind has been performed by Broido et al.,3 who considered the ground state and far-infrared
(FIR) response of up to 30 electrons confined in a circular quantum disk of radius 100 nm.
Their approach, as well as a similar one by Gudmundsson and Gerhards,4 was based on a
Hartree plus RPA description of the electrons. Both studies showed that a correction to
the confining potential towards the edge of the dot that makes it steeper than the parabolic
potential leads to a blue shift of the collective dipole modes that increases with the number
N of electrons in the dot. In addition, it was found in Ref. 4 that one has to include
a deviation from circular symmetry in order to explain the anticrossing behavior in the
FIR spectra observed in the experiments by Demel et al.5 These findings were supported
by an exact diagonalization study of quantum dot helium by Pfannkuche and Gerhards.6

We finally mention a very recent study by Hirose and Wingreen7 that uses spin-density-
functional theory to describe the electronic shell structure and calculate addition energies
in elliptic dots.

The present work has been motivated by a recent series of experiments on self-assembled
InAs quantum dots performed in the group of J. P. Kotthaus in Munich.8–10 The experiments
use a combination of in situ capacitance spectroscopy and FIR absorption spectroscopy to
probe the ground state and collective charge-density excitations as a function of the electron
number per dot, 1 ≤ N ≤ 6. For N = 1, 2 one finds the well-known two-mode spectrum
described by the simple formula

ω± =

√

ω2
0 +

ω2
c

4
± ωc

2
, (1)

where ω0 is the characteristic frequency associated with a parabolic confinement potential,
and ωc = eB/m∗c is the cyclotron frequency for particles of charge e and mass m∗ in a
magnetic field B. However, for N > 2 the authors of Refs. 8,9 detect a much richer FIR
spectrum: the ω+ mode is observed to split up into three subpeaks (see Fig. 3 of Ref. 8).

The authors argue within a simple picture of non-interacting particles that the observed
splitting of the ω+ mode is caused by the non-parabolicity of the confining potential of
the quantum dots. Since for N = 3, 4, 5 the p-shell is only partly filled, the system can
perform transitions of the s → p and p → d type, which have slightly different energies,
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in contrast with the strictly parabolic case. This simple explanation, however, can only
account for a two-fold splitting of the ω+ mode. It is then further argued that the observed
third (somewhat weaker) signal is caused by effects related to electron-electron interaction.

It is the purpose of the present paper to provide a theoretical explanation of the three-
fold splitting of the ω+ mode observed in Ref. 8. Our approach is based on density-functional
theory for the ground state and linear response in the presence of a magnetic field. It will
turn out in the following that including electron-electron interaction effects alone is not
sufficient. Instead, the presence of the third subpeak is explained by a combination of the
non-parabolicity plus breaking of the circular symmetry of the confining potential.

The paper is organized as follows: in Section 2, we shall introduce our model for the
quantum dots, a two-dimensional disk, and we shall present the theoretical methods for
describing the electronic ground state and dynamics. In Section 3, we then discuss our
numerical results, and Section 4 gives our conclusions.

II. FORMAL FRAMEWORK

A. Ground-state calculation

The electronic ground state of a system in the presence of magnetic fields is described
by current-density-functional theory. The general formalism has been developed by Vignale
and Rasolt,11 and to date there exist several applications to quantum dots.12,13 Here, we
want to generalize the formalism, which originally had been developed for circular quantum
dots, to describe non-circular systems.

In the following, we shall make our lives a little easier, especially in view of the linear
response calculations later on, and neglect the dependence of the exchange-correlation (xc)
energy Exc on the current density jpσ. This dependence is known to cause only a small effect
in the electronic ground state of quantum dots. The xc vector potential then drops out, and
the Kohn-Sham equation as derived in Ref. 11 becomes

{

− ∇2

2m∗
− ie

2m∗c
(Aext(r) · ∇+∇ ·Aext(r))

+
e2A2

ext(r)

2m∗c2
+ vextσ(r) + vH(r) + vxcσ(r)

}

ψjσ(r)

= ǫjσψjσ(r) , (2)

where as usual vextσ and Aext denote the external scalar and vector potentials and vH(r) and
vxcσ(r) are the Hartree and xc potentials. In the following, the basic assumption is that the
quantum dots can be treated as two-dimensional systems. We then use polar coordinates
and write the external potential as a sum of the bare potential of the quantum dot plus the
Zeeman term:

vextσ(r, ϕ) = vdot(r, ϕ) +
1

2
g∗µBBσ . (3)

Here, µB = eh̄/2m, σ = ±1, and the specific form of vdot(r, ϕ) will be discussed in section
IIC below. In turn, the external vector potential is given by
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Aext(r, ϕ) =
B

2
r êϕ , (4)

corresponding to a uniform magnetic field B perpendicular to the dot. Next, we expand the
Kohn-Sham orbitals in polar coordinates as

ψjσ(r) =
∑

l

φjlσ(r) e
−ilϕ , (5)

where the φjlσ(r) are real. The spin density is then given by

nσ(r) = nσ(r, ϕ) =
∑

j

fjσ|ψjσ(r)|2

=
∑

jll′

fjσφjlσ(r)φjl′σ(r) e
i(l−l′)ϕ , (6)

where the fjσ denote occupation numbers of the orbitals. In the following, all calculations
will be performed at a small but finite temperature, T = 4.2 K, in order to avoid convergence
problems at small magnetic fields. The occupation numbers are then given by the thermal
distribution

fjσ =
1

1 + exp
(

ǫjσ−µ

kBT

) , (7)

and the chemical potential µ is fixed through the relation
∑

jσ fjσ = N . Next, the confining
potential of the dot is expanded as

vdot(r, ϕ) =
∑

l

vdot,l(r) e
−ilϕ . (8)

Similar expansions are made for the Hartree and xc potential. For the dot potential, the
angular components

vdot,l(r) =
1

2π

2π
∫

0

dϕ eilϕ vdot(r, ϕ) (9)

in general have to be obtained through straightforward numerical integration, and similarly
for the xc potential (for the latter we use the local-density approximation in the parametriza-
tion of Tanatar and Ceperley14). For the Hartree potential, one finds

vH,l(r) = 2πe∗2
∑

σ

∑

jnn′

n−n′=l

∞
∫

0

r′dr′ φjnσ(r
′)φjn′σ(r

′) Il(r, r
′) , (10)

where e∗ is the effective electronic charge, and the Il(r, r
′) involve integrals over Bessel

functions:

Il(r, r
′) =

∞
∫

0

dq Jl(qr)Jl(qr
′) . (11)
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The Il(r, r
′) can be expressed in terms of hypergeometric functions that can be further

reduced to complete elliptic integrals (see Ref. 3 for the case l = 1). Inserting everything
into the Kohn-Sham equation, we finally obtain

{

− 1

2m∗

(

d2

dr2
+

1

r

d

dr
− l2

r2

)

− elB

2m∗c

+
e2B2r2

8m∗c2
+

1

2
g∗µBBσ

}

φjlσ(r)

+
∑

k

[

vdot,k(r) + vH,k(r) + vxcσ,k(r)
]

φj l−k σ(r)

= ǫjσ φjlσ(r) . (12)

Eq. (12) couples the angular components of the Kohn-Sham orbitals (5). In practice, we of
course limit the expansions of the orbitals and potentials to a finite number of components,
−L, . . . , l, . . . , L, where L of the order 5 is sufficient to give convergence for the cases under
study. Solution of the Kohn-Sham equation (12) is then accomplished by discretization on
a logarithmic radial mesh with Ngrid ∼ 100 grid points.

B. Linear response

The FIR absorption spectra as measured in Refs. 8,9 are proportional to the photoab-
sorption cross section

σ(ω) =
4πω

c
Imα(ω) , (13)

where the dipole polarizability with respect to, say, the x-axis

α(ω) = − 2e

E0

∫

d3r x n1(r, ω) (14)

is obtained from the linear density response n1(r, ω) of the quantum dots to an external field
of the form

v1(r, ω) =
eE0x

2
, (15)

where E0 is the amplitude of the electric field strength. In order to calculate n1(r, ω) =
∑

σ n1σ(r, ω), we have to solve the linear spin-density response equation, which reads as
follows:

n1σ(r, ω) =
∫

d3r′ χσ(r, r
′, ω)

{

v1σ(r
′, ω)

+
∑

τ

∫

d3r′′
(

e∗2

|r′ − r′′| + fxcστ (r
′, r′′, ω)

)

n1τ (r
′′, ω)

}

,

(16)

i.e. we have to solve two coupled integral equations for n1↑ and n1↓. The Kohn-Sham
response function
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χσ(r, r
′, ω) =

∞
∑

j,k

(fkσ − fjσ)
ψ∗
kσ(r)ψjσ(r)ψ

∗
jσ(r

′)ψkσ(r
′)

εkσ − εjσ + ω + iη
(17)

is diagonal in the spins. Let us now expand the density response as

n1σ(r, ω) =
N
∑

n=−N

n1nσ(r, ω)e
inϕ , (18)

where in practice of course N ≤ L. Inserting the form (5) of the Kohn-Sham orbitals, the
response function is set up in the following way:

χσ(r, r
′, ω) =

N
∑

l,l′=−N

χll′σ(r, r
′, ω)eilϕe−il′ϕ′

, (19)

where we define

χll′σ(r, r
′, ω) =

∞
∑

j,k

(fkσ − fjσ)
Φjkl(r)Φjkl′(r

′)

εkσ − εjσ + ω + iη
(20)

with

ΦjkL(r) =
∑

l,l′

l′−l=L

φjl(r)φkl′(r) . (21)

For the xc kernel we use the adiabatic local-density approximation (ALDA)

fxc,στ (r
′, r′′, ω) =

d2exc
dnσ dnτ

∣

∣

∣

∣

∣

n0(r′)

δ(r′ − r′′)

= δ(r′ − r′′)
N
∑

m′=−N

fxc,m′στ (r
′) eim

′ϕ′

, (22)

where exc is the xc energy density of the homogeneous two-dimensional electron gas,14 and

fxc,m′στ (r
′) =

1

2π

2π
∫

0

dϕ′ d2exc
dnσ dnτ

∣

∣

∣

∣

∣

n0(r′)

e−im′ϕ′

. (23)

In the ALDA, the xc kernel is frequency independent and real (for a recent discussion of
alternative expressions for fxc see Ref. 15). The imaginary part of the Kohn-Sham response
function (17) thus has to be put in by hand. In the following, we choose a value of η = 0.1
meV, corresponding to about 0.1-1% of the excitation energies under study.

Inserting everything into the response equation (16), we obtain

n1lσ(r, ω) =

∞
∫

0

dr′ r′
N
∑

l′=−N

χll′σ(r, r
′, ω) v1l′σ(r

′, ω)

+ 4π2e∗2
∑

τ

∞
∫

0

dr′ r′
∞
∫

0

dr′′ r′′
N
∑

l′=−N

χll′σ(r, r
′, ω) n1l′τ (r

′′, ω)Il′(r
′, r′′)

+ 2π
∑

τ

∞
∫

0

dr′ r′
N
∑

l′,m=−N

χll′σ(r, r
′, ω) n1mτ (r

′, ω)fxc,(l′−m)στ (r
′) . (24)
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Solving for the density response n1(r, ω) = n1↑(r, ω) + n1↓(r, ω) for a given value of ω thus
requires inversion of a complex matrix of dimension 2Ngrid(2N + 1) = 1400 (for N = 3 and
Ngrid = 100), which poses no problem in practice.

C. External potential

Let us now turn to the specific form of the bare confining potential of the quantum dot,
vdot(r, ϕ), used to construct the electronic ground state in Sec. IIA. We first of all restrict
ourselves to considering only potentials that have inversion symmetry. In other words, the
expansion (8) of vdot(r, ϕ) contains only angular components vdot,l(r) with even l. We can
then replace eilϕ in eq. (9) by cos(lϕ). Furthermore, to reduce the computational effort we
shall restrict the values of l to l = 0,±2,±4.

We first consider the circularly symmetric part of the confining potential, vdot,0(r). This
component describes the degree of non-parabolicity of our quantum dot. Pfannkuche and
Gerhards6 assume a form

vdot,0(r) =
m∗

2
(ω2

0 r
2 + ω2

1 r
4) , (25)

where ω1 ≪ ω0. A different approach has been chosen by Broido et al.3: they construct
vdot,0(r) as the electrostatic potential associated with a two-dimensional jellium disk of radius
R and uniform positive areal charge density n+. Their result is

vdot,0(r) = v0 − 4e∗2n+RE
(

r

R

)

, r < R

vdot,0(r) = v0 − 4e∗2n+r

×
[

E
(

R

r

)

−
(

1− R2

r2

)

K
(

R

r

)

]

, r > R , (26)

where v0 = 2πe∗2n+R. Here, K and E denote complete elliptic integrals of the first and
second kind. It is easy to see that (25) is the small-r expansion of (26), identifying the
coefficients as

ω2
0 =

πe∗2n+

m∗R

ω2
1 =

3πe∗2n+

16m∗R3
. (27)

The main difference between the two forms of vdot,0(r) is that (25) grows as r
4 for large r,

whereas (26) approaches the constant v0 as 1/r. This difference is of less importance for
the electronic ground state, since the two potentials are very similar in the interior region of
the dot where the electronic density is concentrated, but it can be expected to substantially
affect the electronic excitations.

We now turn to the components of vdot that break the circular symmetry. In Refs.
4,6 this is accomplished by including terms of square symmetry, i.e. proportional to x2y2.
Similarly, one can add on terms proportional to x2 or y2, describing elliptic elongation of
the dot along the x or y axis.7 In this manner, one arrives at
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vdot,±2(r) = a r2

vdot,±4(r) = b r4 , (28)

which introduces two more adjustable parameters a and b, in addition to ω0 and ω1.
Again, an alternative approach to the construction of vdot(r, ϕ) is to start out with a

flat jellium disk of uniform positive charge n+, but this time with a non-circular shape
parametrized as R(ϕ). Once a particular form for R(ϕ) has been chosen, the associated
electrostatic potential is calculated as

vdot(r, ϕ) = ṽ0

− e∗2n+

2π
∫

0

dϕ′

R(ϕ′)
∫

0

r′ dr′
√

r2 + r′2 − 2rr′ cos(ϕ− ϕ′)
, (29)

where now

ṽ0 = e∗2n+

∫ 2π

0
dϕ′ R(ϕ′) . (30)

The r′-integral in (29) can be performed analytically, and the remaining integration over ϕ′

has to be done numerically for general R(ϕ′). If R(ϕ′) = const., one recovers the previous
result (26). The next step is then to construct the angular components vdot,l(r) using eq.
(9), which in general requires a second straightforward numerical integration.

The large-r behavior of the dot potential (29) is found to be

vdot(r → ∞, ϕ) = ṽ0 −
e∗2n+

2r

2π
∫

0

dϕ′R(ϕ′)2 , (31)

independent of ϕ. This means that for large distances only the l = 0 component of vdot(r, ϕ)
survives (approaching the constant ṽ0), and the higher-l components go to zero. This is again
in contrast with the form (28) for the non-circular components of the dot potential, which
(unphysically) keep increasing with distance. As noted before in the case of the circular dot,
this difference is not expected to have a large impact on the electronic ground state, but
it may become important for higher excitations. We therefore conclude that in general it
is preferable to work with dot potentials constructed according to eq. (29), thus avoiding
effects caused by an unphysical behavior in the large-r region.

III. RESULTS AND DISCUSSION

The experiments presented in Refs. 8,9 were performed on self-assembled InAs quantum
dots embedded into GaAs. The diameter of the dots is estimated to be about 20 nm and the
height to be about 7 nm. As outlined above, we treat the quantum dots as two-dimensional
systems. Within our model, we also ignore the presence of the wetting layer.

From their measurements, the authors of Refs. 8,9 deduce an effective mass m∗ = 0.08me

(where me is the bare electronic mass). Furthermore, we take the effective charge as e∗ =
e/
√
ε (e is the bare electronic charge), using ε = 15.15 for the dielectric constant, i.e. the
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bulk value of InAs, and we employ an effective g-factor g∗ = −0.44. For the curvature of
the bare confining potential of the dot close to its center, we take a value of ω0 = 45 meV,
which leads to n+ = 0.7× 1015 cm−2 via relation (27) (for R = 100 Å).

The specific form of the bare confining potential of the dot can now be constructed using
one of the two approaches discussed in Sec. IIC. In the following, our choice is to construct
vdot(r, ϕ) as the electrostatic potential associated with a disk whose radius is parametrized
as

R(ϕ) = R0 +R2 sin
2ϕ+R4 sin

2ϕ cos2ϕ . (32)

For R0, we take the estimated radius of the dots, i.e. R0 = 100 Å. The parameter R2

indicates an elliptic elongation of the quantum dot along the y-axis. We adopt a value of
R2 = 5 Å, as estimated In Ref. 8. For the parameter R4 that causes an anisotropy of square
symmetry, no direct experimental numbers are available. In the following we choose R4 = 83
Å, so that the value of R4 sin

2ϕ cos2ϕ is at most 20% of R0. The resulting shape of the dot,
a rectangle with rounded-off corners, is shown as inset in Fig. 1. For comparison, a circle
with radius R0 is also indicated.

In Fig. 1 we plot the angular components vdot,l(r) of the bare confining potential of
the quantum disk parametrized by (32). The top part shows the circularly symmetric part
vdot,0(r), together with a parabolic potential that would correspond to the case vdot(r) =
m∗ω2

0r
2/2. The bottom part shows the l = 2 and l = 4 components. Note that if the

elongation of the dot is along the x-axis [replace R2 sin
2 ϕ by R2 cos

2 ϕ in eq. (32)], then
vdot,2(r) changes sign. From Fig. 1 it is evident that the deviation from circular symmetry
affects the confining potential mainly in the region around the edge of the dot, whereas the
inner region of the dot sees a nearly parabolic potential.

Let us now discuss our main numerical results. Fig. 2 shows the calculated peak positions
of the photoabsorption cross section σ(ω) versus applied magnetic field, for a quantum dot
with N = 2 electrons. Here and in the following, we assume the quantum dots to be
elongated along the x-axis. We then calculate the photoabsorption spectra for two different
polarizations of the FIR radiation, in x- and y-direction, respectively. The symbols in Fig.
2 denote the average of the two spectra. For comparison, the full lines show the expected
behavior of ω± according to eq. (1), with a fitted value of ω0 = 46.8 meV. We see that for
higher magnetic fields, the calculated peaks follow the simple law of eq. (1). For small B,
however, some deviations occur, and a splitting of about 2 meV remains even for B = 0 T ,
in accordance with observation.8,9

For N = 2, the quantum dot contains a full s-shell,16 and the behavior is very similar to a
parabolic dot. As soon as the p-shell gets occupied, however, deviations from the parabolic
case become much more pronounced. In Fig. 3 we plot the FIR peak positions for an N = 3
quantum dot versus B. The intensities of the absorption peaks are approximately indicated
by the size of the symbols. The two top figures show results for the non-circular dot, for
two different polarizations of the FIR radiation: parallel to the direction of elongation of the
dot (the x-axis) and perpendicular to it. In both cases we find very rich spectra. For small
magnetic fields, there are substantial differences between the two polarizations, for B > 6
T these differences disappear.

The bottom part of Fig. 3 shows the spectra for a circular (but still non-parabolic) dot.
These results have been obtained by setting vdot,l(r) = 0 for l = ±2,±4, but using the same
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vdot,0(r) as in the two figures above. By comparison between the lower and the two upper
parts of Fig. 3, we can now clearly distinguish between those effects related to breaking the
circular symmetry and those caused by non-parabolicity. The latter leads to a splitting of the
ω+ mode into two almost equally strong subpeaks, ω

(1)
+ and ω

(2)
+ , separated by about 5 meV,

plus the appearance of a weaker signal connected with the ω− mode and approximately 10
meV below it. We mention that similar results have been previously obtained by Hawrylak
and coworkers.2,17

By introducing a non-circular anisotropy, the ω+ mode acquires a third subpeak ω
(3)
+ in

agreement with the experimentally observed behavior (see Fig. 3 of Ref. 9). We find that the
evolution of this signal with magnetic field is different from that of the two other subpeaks
of ω+: it becomes weaker with increasing B and its separation from ω

(1)
+ and ω

(2)
+ is growing.

To understand the origin of the three-fold splitting of ω+, it is helpful to resort to a
simple single-particle picture. Fig. 4 shows the energy levels of a single electron confined in
the bare potential of our quantum dot at B = 12 T , versus angular momentum quantum
number l (see footnote 16). The dashed lines connect energy levels to which one can assign
the same principal quantum number n. The distribution of energy levels shown in Fig. 4 is
very similar to that for a parabolic dot, which is governed by the formula

Enl = (2n+ |l|+ 1)

√

ω2
0 +

ω2
c

4
− ωc l

2
(33)

(see the discussion in the review article by Ashoori1). In contrast with the strictly parabolic
case, the vertical distances between the levels in Fig. 4 are not constant.

In this simple picture (which remains qualitatively valid for N > 1 even if the electron-
electron interaction is included), the subpeaks of ω+ can be identified with single-particle
transitions. For circular symmetry, these are governed by the selection rule for dipole transi-
tions, ∆l = ±1. In this simplified scenario, ω

(1)
+ and ω

(2)
+ arise from 1s → 1p− and 1p+ → 2s

transitions, as indicated in Fig. 4. Breaking the circular symmetry means that the selection
rule can be violated: we find that the ω

(3)
+ mode originates from the transition 1p+ → 1d−,

i.e. ∆l = −3. The oscillator strength of this mode is of course directly related to the degree
of anisotropy, which in our case is only small.

We have found that the position of ω
(3)
+ with respect to ω

(1)
+ and ω

(2)
+ is insensitive to

small variations in the choice of the parameters R2 and R4 in eq. (32). A weak signal at

ω
(3)
+ will be present even if only one of the two is nonzero. However, the value of R2 = 5

Å is more or less dictated by the experimentally observed splitting between ω+ and ω− for
N = 2 at zero magnetic field, see above. One then observes that choosing a finite value for
R4 increases the intensity of the third subpeak.

The central result of this work is presented in Fig. 5. It shows a comparison between the
calculated and measured8 peak positions in the photoabsorption spectra for quantum dots
with 1 ≤ N ≤ 6 electrons at B = 12 T . We find that the main experimental features are
reproduced by the calculation. For N = 1, 2, the system behaves very similarly to a circular
parabolic dot, as noted before, i.e. there are only two signals at ω+ and ω−. As soon as
the p-shell becomes occupied, i.e. for N ≥ 3, the ω+ mode splits up. As explained above,

the ω
(3)
+ signal (indicated here by the open circles) is related to a breaking of the circular

symmetry.

10



We note that the calculation yields a splitting between the three subpeaks of ω+ that is
greater than the one found in the experiment. Also, for N = 6 the experiment yields only a
single signal at ω+. These differences between theory and experiment are to be attributed
to the simplified nature of our model that treats the self-assembled dots as two-dimensional
disks. In particular, the observed differences at N = 6 are most likely due to our neglecting
the presence of the wetting layer.

The main effect of the wetting layer is to introduce a continuum of states above a certain
energy threshold2, limiting the number of bound states localized in the self-assembled dot.
As the number of electrons grows, the energy levels are shifted towards higher energies due to
the increasing interaction energy, and more and more states are pushed into the continuum,
up to a point where no additional electron can be bound. From the absence of ω

(2)
+ and

ω
(3)
+ for N = 6 observed in the experiment, we infer that the relevant states involved in

the transitions (2s and 1d−) would in reality fall into the wetting layer continuum and the
transitions would lose most of their strength. However, for N < 6 these states must still
be located in the discrete part of the energy spectrum, since the associated transitions are
present in the experiment.

This effect has been accounted for in Ref. 17 by using a truncated basis of only few bound
states in the numerical diagonalization, and it was indeed found that for N = 6 there is only
a single peak at ω

(1)
+ . However, the calculations in Ref. 17 assumed circular symmetry and

produced at most a twofold splitting of ω+ for N = 3, 4, 5, in contrast with experiment. We
therefore conclude that, in spite of the deviations from experiment mentioned above, our
calculations clearly establish that the presence of ω

(3)
+ for N = 3, 4, 5 is due to a breaking of

circular symmetry of the quantum dots.

IV. CONCLUSION

In this work, we have developed a theoretical description of collective charge-density
excitations of non-circular quantum dots in a magnetic field. The computational scheme
presented here allows one to obtain information on the geometry of quantum dots from
their electronic response properties.

Our specific aim was to reproduce and explain recent experimental results, obtained
for self-assembled InAs quantum dots. In these FIR photoabsorption measurements, one
detects a threefold splitting of the upper branch ω+ of the collective charge-density mode
in a magnetic field, depending on the number of electrons present in the dot. Our study
has shown that these experimental features are closely related to the shape of the dots:
in addition to non-parabolicity (due to the finite dot radius), it is essential to account for
anisotropy effects, leading to a non-circular confining potential. To our knowledge, we have
presented here the first fully self-consistent spin-density-functional calculations of ground
state plus linear response for anisotropic quantum dots with up to 6 electrons.

With our calculations we were able to reproduce and explain the main features of the
FIR spectroscopy measurements conducted in Refs. 8,9. However, the agreement was not
fully quantitative. This may be attributed to the simplicity of our model, which treats
self-assembled, lens-shaped (with a possible elliptic or pyramidal distortion) quantum dots
sitting on a wetting layer as two-dimensional quantum disks. It may safely be expected

11



that this model leads to much better quantitative results for quantum dot devices that are
produced by mesa-etching techniques, also known as vertical quantum dots18.
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FIG. 1. Angular components vdot,l(r) of the bare confining potential of a quantum disk

parametrized by eq. (32). The shape of the disk is shown in the inset, together with a circle of

radius R0 = 100 Å. Top: l = 0 component (full line). For comparison, the dashed line shows a a

parabolic potential with the same curvature in the interior region. Bottom: l = 2 (full line) and

l = 4 (dashed line) components.
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FIG. 2. Calculated peak positions of the photoabsorption spectrum for a non-circular,

non-parabolic quantum dot with N = 2 electrons. The full lines show the results one would

obtain for a circular parabolic dot, see eq. (1).
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FIG. 3. Calculated peak positions of the photoabsorption spectrum for a quantum dot with

N = 3 electrons. Bottom: non-parabolic but circular dot. Top and middle: non-parabolic,

non-circular dot, with polarization of the FIR radiation parallel (X) and perpendicular (Y) to

the direction of elongation. The ω+ mode splits up into three subpeaks, ω
(1)
+ , ω

(2)
+ and ω

(3)
+ , as

indicated.
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