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A formulation of variational principles in terms of functional integrals is proposed for any type
of local plastic potentials. The minimization problem is reduced to the computation of a path
integral. This integral can be used as a starting point for different approximations. As a first
application, it is shown how to compute to second-order the weak-disorder perturbative expansion
of the effective potentials in random composite. The three-dimensional results of Suquet and Ponte-
Castañeda (1993) for the plastic dissipation potential with uniform applied tractions are retrieved
and extended to any space dimension, taking correlations into account. In addition, the viscoplastic
potential is also computed for uniform strain rates.
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I. INTRODUCTION

In the last decade, studies of disordered non-linear composites have forced new homogeneization methods in Me-
chanics. Most such methods rely on rigorous variational principles, from which exact optimal bounds can be deduced
(Ponte-Castañeda and Suquet, 1998). These principles are either standard minimum energy principles, or more refined
approaches using a linear reference material, be it homogeneous (Hashin and Shtrikman, 1962ab; Talbot and Willis,
1985), or even heterogeneous (Ponte-Castañeda, 1991; Suquet, 1993).
In the study of non-linear dielectric media as well, few exact results were previously available, save for the case

where the non-linearity in the response was treated as a perturbation of the linear behavior (Stroud and Hui, 1988).
In a recent pioneering work, Blumenfeld and Bergman (1989) computed the effective dielectric permittivity of a
strongly non-linear random medium to second order in a weak-disorder expansion; cf. also Bergman and Lee (1998).
The perturbative expansion was carried out by use of the Green function associated to the linear problem. An
analogous approach was subsequently undertaken by Suquet and Ponte-Castañeda (1993) on strongly non-linear
elastic composites. These results were then further extended to composites with inclusions of complex shapes (see,
eg., Ponte-Castañeda and Suquet (1998) for a review).
Perturbative results are important as testing-benches for self-consistent effective-medium theories. Linear self-

consistent formulae (Budianski, 1965) are known to give qualitatively correct predictions even for a high contrast
between the constituents of the random medium. They account for, e.g. the existence of a “rigidity threshold”,
i.e. a volumetric concentration of voids above which a porous linear elastic material loses its rigidity (Sahimi, 1998).
In addition to the fulfillment of exact non-linear bounds (Gilormini, 1995), criteria of acceptability for a non-linear
self-consistent formula include the recovery of second-order perturbative results, and also constraints on the critical
behavior near the rigidity threshold (Levy and Bergman, 1994) where field fluctuations are enhanced. In Mechanics, a
recent self-consistent effective-medium theory (Nebozhyn and Ponte-Castañeda, 1997) reproduces exact perturbative
results to second order, but its critical fluctuations have not been studied yet. An equivalent theory has been proposed
in electrostatics (Ponte-Castañeda and Kailasam, 1997). These result were derived from a variational principle.
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As a complement to classical means, functional methods originating from field theory (for a book on functional
methods see, e.g., Kleinert, 1995) and from the statistical physics of disordered systems (Mézard et al., 1987) were
recently harnessed to contribute to effective-medium studies (Barthlmy and Orland, 1993; Parcollet et al., 1996). They
have not yet spread in the mechanics community. Their major interest is that they not only provide a convenient
workhorse for implementing variational principles under various constraints, but that they also lend themselves to
approximations resulting in self-consistent effective-medium formulae (Budianski, 1965; Parcollet et al., 1996), some
of them being of a new type (Pellegrini and Barthélémy, 1999). With such methods, the problem of the minimization
of the potential becomes equivalent to the computation of a functional integral, as shown below. This single integral,
which may be written down for all types of local potentials, can then be approximated using standard tools (saddle
point methods, perturbative expansions, etc.).
The purpose of this article is to introduce in detail the specific mathematical apparatus needed to apply functional

methods to variational principles in mechanics. As a first application, we re-derive the result of Suquet and Ponte-
Castañeda (1993) for the weak-disorder expansion of a strongly non-linear viscoplastic composite assumed to be of
the Norton type. We extend it to any space dimension, and show how to take correlations into account.
We adopt an approach (Barthélémy and Orland, 1998) which utilizes the so-called “replica method” (Edwards and

Anderson, 1975) developed in the framework of spin glass theory (Mézard et al., 1987). The replica method enables one
to average over the disorder in a non-perturbative way, but is by no means compulsory in order to exploit the functional
formulation. It is however a most natural route towards extensions to self-consistent formulae. Specific applications
to self-consistent formulae for linear or non-linear materials (including the EMT) will be presented elsewhere.
The paper is self-contained, and is organized as follows. Section II introduces the variational formulations of the

problem and explains how to cast them under a functional form, either starting from the local viscoplastic potential
(expressed in terms of the stress tensor) or from the plastic dissipation potential (expressed in terms of the strain rate
tensor). We show that minimizing a potential amounts to computing the statistical average of the logarithm of some
suitably defined partition function. The computation is carried out with the replica method, explained in the text.
In Sec.III, we specialize to the perturbative expansion, beginning with the plastic dissipation potential (Sec. III A 1).
The results are then applied to the Norton law (Sec. III A 2). We retrieve the result of Suquet and Ponte-Castañeda
(1993), generalized to any space dimension. The perturbative calculation of the viscoplastic potential, slightly more
involved, is presented next, in Sec. III B. In both cases, the disorder is assumed to be site-disorder: the local potentials
are statistically uncorrelated from point to point, for simplification purposes. This restriction is overcome in section
IV, where spatial correlations (not necessarily isotropic) are introduced. Before concluding in Sec. VI, we comment
on the range of applicability of the method (Sec. V).
Technical details are left to appendixes. Appendix A is a brief reminder of the use of fourth-rank tensors in

mechanics, and defines various fundamental fourth-rank tensors employed hereafter. Various algebras and sub-algebras
encountered in the paper are also defined in this appendix, which ought be read before the reader goes through our
calculations. The determinant (det), trace (tr) and inversion (−1) operators will always be indexed by a label indicating
in which algebra or sub-algebra of operators they act. Useful formulae for restricted gaussian integrals over vectors or
second-rank tensors, which we could not find in the literature, are derived in Appendix B. Inversion and determinant
formulae for matrices in the replica space are given in Appendix C. Evaluations of functional integrals are relegated
to Appendix D. The Legendre transform between the perturbative expansions of the viscoplastic and of the plastic
dissipation potential is examined in Appendix E.
Before going on, we state our notational conventions: unless otherwise indicated, scalars are denoted by regular

typefaces (eg. a or A); vectors are denoted by bold typefaces (a); tensors of rank two by sans-serif typefaces (a)
[the exceptions are σ and Σ which appear in boldface], and tensors of rank four by capital Blackboard typefaces
(A). Tensor indices are denoted by roman letters (e.g. Aij), whereas replica indices are Greek letters. The Einstein
summation convention on repeated indices is used, except when the indices are underlined (Aii = trA, whereas Aii
denotes the ith diagonal element of A). Dyads (i.e. tensor products of vectors) are denoted omitting the tensor product
operator: A = ab is the dyad with components Aij = aibj.

II. THE PROBLEM AND ITS FORMULATION WITH REPLICAS

A. Variational principles and effective potentials

We adopt here the presentation of Ponte-Castañeda and Suquet (1998). Let σ(x) be the local stress (tensor) field,
and d(x) be the local strain rate (tensor) field deriving from the local velocity (vector) field v(x). The material
domain, of volume V , is denoted by Ω. Then the equilibrium equations on σ read, for x ∈ Ω (the upper index t

denotes the transpose):
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∇.σ = 0, (2.1)

σ = t
σ. (2.2)

In addition,

d =
1

2

[

∇v + t(∇v)
]

. (2.3)

The local constitutive relations are expressed by means of either the viscoplastic potential ψx or the plastic dissipation
potential φx, as:

σ =
∂φx
∂d

(d), d =
∂ψx

∂σ
(σ). (2.4)

The subscript x indicates that the potentials may vary from point to point in the material, according to the local
material properties. Both local potentials are usually convex functions of the fields, and are linked by the (Legendre)
duality relation

φx(d) = max
σ

[σ :d− ψx(σ)] . (2.5)

Classically, two types of boundary conditions are considered:
1) for boundary conditions of uniform traction (ut) on the boundary ∂Ω of the material, the heterogeneous material

is shown to be macroscopically described by a pair of effective potentials Ψ and Φ such that

Ψut(Σ) = min
σ/
{

∇.σ=0,σ=t
σ

σ.n=Σ.n on ∂Ω

ψx(σ), (2.6a)

Φut(D) = min
v/d=D

φx(d). (2.6b)

(the overline denotes a volume average on Ω, and n is the outward normal to Ω).
2) for boundary conditions of uniform strain rate (us) D on the boundary, the effective potentials are:

Ψus(Σ) = min
σ/
{

∇.σ=0,σ=t
σ

σ=Σ

ψx(σ), (2.7a)

Φus(D) = min
v/v=D.x on ∂Ω

φx(d). (2.7b)

For both types of boundary conditions, the effective potentials Φ and Ψ are shown (Suquet, 1987; Willis, 1989) to
be (Legendre) dual functions such that

Ψ(Σ) + Φ(D) = Σ :D, D =
∂Ψ(Σ)

∂Σ
, Σ =

∂Φ(D)

∂D
. (2.8)

In both cases Σ = σ and D = d. Depending on the boundary conditions considered, the latter equalities are either
definitions, or theorems (Hill, 1963). Therefore only one equation in each pair (2.6) or (2.7) is sufficient to characterize
the effective homogeneized material.
The problem considered in this article consists in computing the effective potentials for disordered materials. Eqs.

(2.6), (2.7) refer to one sample (one particular realization of the disorder). A key assumption is that the effective
potentials are self-averaging, i.e. that they do not depend on the sample at hand in the so-called “thermodynamic
limit”, where the size of the sample goes to infinity. In other words, the material contains in the various regions of its
bulk all the possible realizations of the disorder. Therefore, rather than carrying out the calculation of the effective
potentials for one particular configuration of the disorder (which is impossible), we arrive at the correct result by
considering statistical averages. For instance, in the limit V → ∞ we can as well write, instead of (2.6a):

Ψut(Σ) = 〈Ψut(Σ)〉 =
〈

min
σ/
{

∇.σ=0,σ=t
σ

σ.n=Σ.n on ∂Ω

ψx(σ)

〉

. (2.9)

Note that the statistical averaging operator 〈.〉 and the infimum operator do not commute (inverting the operators
would lead to the incorrect result that the effective potential is the average of the local potentials).
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B. Functional representations

The minimization problem is reformulated by extending to functionals the following straightforward result for scalar
functions:

miny∈[a,b]f(y) = − lim
β→∞

1

β
log

∫ b

a

dx e−βf(x). (2.10)

Note that this formula holds even if the minimum is met at several points in the interval.
Each infimum (2.6) or (2.7) is obtained for the state of the fields σ or d which minimize the potentials, among

all the possible states fulfilling the equilibrium and boundary constraints. In statistical mechanics, this problem is
analogous to that of finding the lowest energy state E0 of some hamiltonian H [s] functionally depending on some field
s(x). In this case, E0 is given by

E0 = − lim
β→∞

1

β
logZ, (2.11a)

Z = tr e−βH , (2.11b)

where the trace operator tr here denotes the sum over all the allowed states of the system, i.e. the configurations of
s. Indeed, the partition function Z is obviously dominated by exp(−βE0) in the limit β → ∞, where E0 ≡ H [s0] and
s0 is the configuration of s that minimizes H (β is the reciprocal of the temperature in statistical physics).
The means of summing over all the possible states of a continuous field subjected to constraints is to use functional

integrals (also termed path integrals) with suitably defined measures. With such a formalism, it is more convenient to
use the variational formulations (2.6b) and (2.7a) where the boundary conditions are implemented through volume
averages. We therefore write (with the additional statistical averages):
1) for uniform tractions [d is computed in terms of v by (2.3)],

Φut(D) = − lim
β→∞

1

β
〈logZut〉 , Zut =

∫

Dv δ(d− D) e−βφx(d), (2.12)

where δ is the Dirac distribution and

Dv =
∏

x∈Ω

dv(x), (2.13a)

δ(d− D) =
∏

i≤j

δ(dij −Dij); (2.13b)

For brevity, the constrained measure in (2.12) will be denoted by

Dutv = Dv δ(d− D). (2.14)

2) for uniform strain rates,

Ψus(Σ) = − lim
β→∞

1

β
〈logZus〉 , Zus =

∫

Dsσ δ(∇.σ)δ(σ −Σ) e−βψx(σ). (2.15)

with

Dsσ =
∏

x∈Ω

dsσ(x), (2.16a)

dsσ(x) = 2d(d−1)/4[
∏

i<j

δ
(

σij(x) − σji(x)
)

][
∏

i,j

dσij(x)], (2.16b)

δ(∇.σ) =
∏

i,x∈Ω

δ
(

∂kσki(x)
)

, (2.16c)

δ(σ −Σ) =
∏

i≤j

δ(σij − Σij). (2.16d)

The integration measure dsσ(x) allows one to integrate over all symmetric stress tensors (cf. Appendix B). The
normalization factor 2d(d−1)/4 in dsσ(x), where d is the space dimension, is of no importance but has been included
for consistency with Appendix B. We set:

Dusσ = Dsσ δ(∇.σ)δ(σ −Σ). (2.17)
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C. The replica method

Hereafter, we focus on Zut, but the following considerations apply mutatis mutandis to Zus. The statistical average
of logZut is a complicated quantity to evaluate directly. The replica method consists in writing

〈logZut〉 = lim
r→0

1

r
(〈Zrut〉 − 1), (2.18)

and in computing 〈Zrut〉 with r an integer (in the replica literature, the number of replicas, r, is usually denoted by n.
We do not use the latter in order to avoid confusions with the Norton exponent). At the end of the calculation, we
take the limit r → 0, assuming the analytical continuation is legitimate, which we cannot prove in general. Therefore
introducing r replicas vα of the field v, the partition function

Zrut =

r
∏

α=1

(
∫

Dutv
α e−βφx(dγ)

)

=

∫ r
∏

α=1

Dutv
α e−β

∑ r
γ=1 φx(dγ) (2.19)

is that of a system made of r replicas of the initial system. The greek labels (which exclude β, this symbol being
devoted to the reciprocal of the “temperature”) are replica labels running from 1 to r. The statistical average therefore
is

〈Zrut〉 =
∫ r
∏

α=1

Dutv
α
〈

e−β
∑ r

γ=1 φx(dγ)
〉

. (2.20)

For simplification purposes, we shall limit ourselves to site-disordered materials where the local potentials are
statistically uncorrelated from point to point (we explain in Sec. IV how to overcome this restriction). By definition
of site disorder, we have for any function F the property that

〈

F
(

ψx

(

σ(x)
))

F
(

ψy

(

σ(y)
))〉

=
〈

F
(

ψx

(

σ(x)
))〉 〈

F
(

ψy

(

σ(y)
))〉

if x 6= y. (2.21)

For this type of disorder, the average in (2.20) is readily carried out. Replacing the volume integral by a Riemann
sum

∫

dx → v
∑

x, where v denotes the unit “infinitesimal” volume element of the theory (here the size of v also is
the statistical correlation radius within which the potential is constant), one obtains

〈Zrut〉 =

∫ r
∏

α=1

Dutv
α
〈

e−(vβ/V )
∑ r

x,γ=1 φx(d
γ)
〉

=

∫ r
∏

α=1

Dutv
α

〈

∏

x

e−(vβ/V )
∑ r

γ=1 φx(d
γ)

〉

=

∫ r
∏

α=1

Dutv
α
∏

x

〈

e−(vβ/V )
∑r

γ=1 φx(d
γ)
〉

. (2.22)

This finally yields:

〈Zrut〉 =
∫ r
∏

α=1

Dutv
α exp

[
∫

dx

v
log
〈

e−(vβ/V )
∑ r

γ=1 φx(d
γ)
〉

]

, (2.23)

where we reintroduce the integral notation in the exponent. This is the usual shorthand notation used in functional
integral methods and has to be understood as the limit of a Riemann sum.
This expression, completed by (2.18) and (2.12), constitutes an exact functional representation of the variational

problem (2.6b) for the particular type of disorder under study, and is valid for any form of φx(d). In other words,
we recast a minimization problem under a computational form. Computing this integral exactly is equivalent to
solving the minimization problem. We note that before averaging, the replicas are independent from one another,
but are coupled after the average is carried out. Here appears an important feature of the replica method: the use
of replicated fields allows one to average over disorder by transforming the disordered problem into a non-disordered
one, but with couplings (if there were no couplings, averaging the logarithm would be a trivial matter). We are now
left with a complicated field-theory problem without disorder, consisting of r coupled fields, and we have to resort to
approximations. In the next section, we present a perturbative calculation of this integral.
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An important simplification arises from the fact that 〈Zrut〉 always shows up in the form 〈Zrut〉 = (Cβc)rf(r, β),
where f(0, x) = 1 and is a non-homogeneous function of x, C is a β-independent constant, and c is an exponent linked
to d, the space dimension. Therefore

− 1

β

1

r
(〈Zrut〉 − 1) = − 1

β

[

log(Cβc) +
1

r
log f(r, β) +O(r)

]

, (2.24)

and the multiplicative factor (Cβc)r does not contribute to the limit β → ∞. Hereafter, such multiplicative factors
will therefore systematically be dropped out of the calculations. This will be indicated by the proportionality symbol
∝ appearing instead of the equal sign in equations.

III. PERTURBATIVE CALCULATION

We detail in this section the perturbative calculation for Φ first, since it is simpler than that for Ψ. The latter
is examined next, once the reader has become acquainted with the method. In the following, we assume that the
d-dimensional material is rigid-viscoplastic, described by the dual [in the sense of (2.5)] Norton potentials (1 ≤ n ≤ ∞,
m = 1/n).

{

φx(d) = θmd
m+1
eq /(m+ 1)

tr2(d) = 0
, ψx(σ) = ωnσ

n+1
eq /(n+ 1), (3.1)

with

θm = σ0/ε̇
m
0 , ωn = ε̇0/σ

n
0 . (3.2)

The equivalent Mises norms σeq and deq are:

deq =

[

d− 1

d
tr
2
(d′2)

]1/2

, σeq =

[

d

d− 1
tr
2
(σ′2)

]1/2

. (3.3)

These are the d-dimensional counterparts of the usual three-dimensional definitions (for d = 3, we recover the factors
2/3 and 3/2). The deviatoric part of the stress or strain rate tensor has been denoted by a prime: a′ = a− tr2(a)I/d,
where a = σ or d.
The additional incompressibility constraint tr2(d) = ∇.v = 0, which characterize incompressible materials, can as

well be accounted for by adding a term (K/2) tr2(d)
2 to φx(d), and by letting the constant K → ∞ at the end of the

calculation. Instead, we shall implement it directly by multiplying the measure Dutv by a factor δ(∇.v). Both ways
actually amount to the same.
The constitutive parameters σ0 and ε̇0 decribe the material and are random functions of the position variable x,

uncorrelated from point to point, according to our site-disorder hypothesis. The exponent n is taken to be constant
in the material, for simplification purposes (but this is not a limitation of the method).

A. The plastic dissipation potential

1. General framework

Integral (2.23) is an exact expression for the effective potential. Its perturbation expansion is considered hereafter.
The measure Dutvα contains the term δ(d − D). This means that the main contribution to this integral is coming
from fields around D. Indeed, if we suppose that only the constant field d = D (i.e. v = D.x such that tr2(D) = 0)
contributes to the integral, we find the trivial lowest order result

Φut(D) = 〈φx(D)〉. (3.4)

We shall now seek the first corrective term, and compute (2.23) by integrating over fields v such that d differs little
from D. The perturbation expansion is obtained with Laplace’s method for asymptotic expansions of integrals (Bender
and Orszag, 1978). We therefore write

d = D+ e (3.5)

6



and expand the logarithm in (2.23) in powers of e. The linear and quadratic terms are then kept inside the main
exponential, and the rest is further expanded in e. We start from the expansion:

φx(D+ e) = φx(D) +W ′
ijeji +

1

2
W ′′
ij,klejielk +O(e3), (3.6)

with

W ′
ij(x) =

∂φx
∂dij(x)

∣

∣

∣

∣

d=D

, W ′′
ij,kl(x) =

∂2φx
∂dij(x)∂dkl(x)

∣

∣

∣

∣

d=D

. (3.7)

With a change of integration variables such that v now denotes the correction to D.x, the expansion of 〈Zrut〉 takes
the form (taking into account the incompressibility constraint):

〈Zrut〉 = 〈e−rβ v
V
φx(D)〉V

v

∫

∏

α

Dutv
αδ(∇.vα)

[

1 +O(e3)
]

× exp

[

−β〈W′〉e :
∑

α

e
α − 1

2

β

V

∑

αγ

∫

dx e
α(x) :Mαγ :eγ(x)

]

. (3.8)

The functional measure now is Dutv = Dv δ(e), and e = [∇v + t(∇v)]/2. Besides, we have introduced the matrix
Mαγ = M1δαγ − β(v/V )M2, with

M1 = 〈W′′〉e (3.9a)

M2 = 〈W′W′〉e − 〈W′〉e〈W′〉e. (3.9b)

The notation 〈·〉e stands for the weighted average

〈A(x)〉e ≡
〈A(x)e−rβ v

V
φx(D)〉

〈e−rβ v
V
φx(D)〉

= 〈A(x)〉 +O(r). (3.10)

Only the leading term in r is needed in (3.10) [a handwaving argument for this is that the sums over replicas in (3.8)
are at least proportional to r: the contribution is null for r = 0. They therefore already provide the linear terms in r
required for evaluating (2.18)], and we shall therefore in practice identify 〈.〉e with 〈.〉. Hereafter, square matrices in
the replica space are denoted by a double overbar. The identity in the replica space is Iαγ = δαγ , and we furthermore
define the matrix Uαγ = 1 for all α, γ, so that

M = M1I − β(v/V )M2U. (3.11)

The second-order term in the weak-disorder expansion of 〈Zrut〉 is provided by the gaussian integral (3.8) only,
neglecting the corrections O(e3) and higher. As in centered scalar gaussian integrals, the term proportional to e3

vanishes upon integration, and the next non-zero correction in fact is an O(e4). The aim of the paper being to explain
the functional method, we shall ignore such higher-order terms hereafter but they could as well be computed by
pursuing Laplace’s expansion scheme.
The details of the integration over v with measure Dutv are left to Appendix D. Taking into account that e is

expressed in terms of the gradient of v involves a change from v(x) to its Fourier components v(k). One finds

〈Zrut〉 ∝ 〈e−rβ v
V
φx(D)〉V

v

∏

k 6=0

{

det
2[⊥k̂],rep

[

Q
k̂
.
(

k̂.M.k̂
)

.Q
k̂

]

}−1/2

, (3.12)

where k̂ = k/k and Q
k̂
= I− k̂k̂.

We now calculate the determinant. Defining

M1 = Q
k̂
.(k̂.M1.k̂).Qk̂

, (3.13a)

M2 = Q
k̂
.(k.M2.k).Qk̂

, (3.13b)

we obtain, with the help of formulae (C2) in Appendix C:

det
2[⊥k̂],rep

[

Q
k̂
.
(

k̂.M.k̂
)

.Q
k̂

]

= 1 +

[

log det
2[⊥k̂]

(M1)− β
v

V
tr
2

(

M2.M
−12[⊥k̂]

1

)

]

r +O(r2). (3.14)
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Carrying out as in (2.18) the limit r → 0 in (3.12) it follows that

− 1

β
〈logZut〉 = 〈φx(D)〉 −

1

2

v

V

∑

k 6=0

tr
2

(

M2.M
−12[⊥k̂]

1

)

+ o(log(β)/β) + o(1/β). (3.15)

The sum over k 6= 0 . . . (divided by V ) can now be replaced by a d-dimensional integral [divided by (2π)d] over all the
Fourier modes k in the continuum limit, since the integrand is not singular at k = 0. The finite size of the elementary
cells of volume v is accounted for by an upper cut-off Λ in this integral. It is chosen such that

v

∫

k<Λ

dk

(2π)d
= 1. (3.16)

Hence Λ → ∞ when v → 0. We denote by Sd = 2πd/2/Γ(d/2) the area of the sphere of unit radius in Rd, and by

dΩ
k̂
the integration measure over the solid angle in the direction k̂ (dk = kd−1 dk dΩ

k̂
).

Letting β → ∞ in (3.15) we deduce, by (2.12):

Φut(D) = 〈φx(D)〉 −
1

2

∫

dΩ
k̂

Sd
tr
2

(

M2.M
−12[⊥k̂]

1

)

. (3.17)

This result is the second-order perturbation expansion valid for any potential φx(d) with the constraint tr2 d = 0.

2. Application to the Norton law

We evaluate the previous result (3.17) for the Norton potential (3.1). We write

θm = 〈θm〉+ δθm. (3.18)

Defining D̂ = D′/
√

tr2(D
′2), so that tr2(D̂.D̂) = tr4(D̂D̂) = 1, (3.7) and (3.9) entail:

M1 = m1J+m2D̂D̂, (3.19a)

M2 = m3D̂D̂, (3.19b)

where

m1 =
d− 1

d
〈θm〉Dm−1

eq , (3.20a)

m2 = (m− 1)m1, (3.20b)

m3 =
d− 1

d

〈

δθ2m
〉

D2m
eq . (3.20c)

Setting

D
k̂
= |Q

k̂
.D̂.k̂|2 = k̂.D̂2.k̂− (k̂.D̂.k̂)2, (3.21)

and introducing the unit vector û = Q
k̂
.D̂.k̂/|Q

k̂
.D̂.k̂|, we obtain

M1 =
m1

2

(

Q
k̂
− ûû

)

+
(

m2Dk̂
+
m1

2

)

ûû, (3.22a)

M2 = m3Dk̂
ûû. (3.22b)

Since Q
k̂
− ûû and ûû, are a pair of complementary orthogonal projectors in L(2[⊥ k̂]) (where Q

k̂
plays the role of

the identity), the inverse of M1, its product with M2 and the final trace in (3.17) are readily obtained, resulting in:

Φut(D) = 〈φx(D)〉 −
∫

dΩ
k̂

Sd

m3Dk̂

m1 + 2m2Dk̂

. (3.23)

Now replacing m1, m2 and m3 by their values (3.20) finally yields

Φut(D) =
θm eff(D)

m+ 1
Dm+1

eq , (3.24a)

θm eff(D) = 〈θm〉
[

1−
〈

δθ2m
〉

〈θm〉2
∫

dΩ
k̂

Sd

(m+ 1)D
k̂

1 + 2(m− 1)D
k̂

+O(
〈

δθ3m
〉

/ 〈θm〉3)
]

. (3.24b)

This result reduces to that of Suquet and Ponte-Castañeda (1993) for a space dimension d = 3.
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B. The viscoplastic potential

We undertake a similar calculation for the viscoplastic potential. It can be checked (cf. Appendix E) that the result-
ing perturbative expression (3.34) is linked by a Legendre transform to (3.24), the one for the dissipation potential,
though different boundary conditions are considered. This is a consequence of our working in the thermodynamic
limit where the volume of the system V → ∞ (in the calculations, this shows up essentially in that the Fourier sums
are carried out with k > 0, rather than with k > (2π)/L, where L would be the typical system size). As noticed
by Hill and Mandel in elasticity, the homogeneized stiffness tensor obtained with uniform strains on ∂Ω, and the
homogeneized compliances tensor obtained with uniform stresses on ∂Ω are inverse of one another up to terms of
order O

(

(ξ/L)3
)

in three dimensions, where ξ is the typical size of the heterogeneities [26]. They therefore become
exact inverses in the thermodynamic limit. The same effect is at play here. The viscoplastic potential can thus
directly be obtained from the dissipation potential as done in Appendix E. However we prefer to compute it from
scratch because differences with the previous section show up, and it may be useful to see what these are for future
purposes: indeed, as soon as one leaves exact perturbative expansions and deals with self-consistent estimates, one
approximation scheme worked out separately for dual potentials quite often generates two estimates which are not
duals of one another (a notable exception is the self-dual EMT theory). Treating in a symmetrical way the two
potentials is then a more sensible thing to do than working with only one.

1. General framework

We now have to compute

〈Zrus〉 =
∫ r
∏

α=1

Dutσ
α exp

[

1

v

∫

dx log
〈

e−β(v/V )
∑r

γ=1 ψx(σ
γ)
〉

]

. (3.25)

The perturbative expansion of the effective potential is carried out around the constant solution σ = Σ, writing
σ = Σ+ s. The expansion of ψx(Σ+ s) has the same form as (3.6). We now denote by W′ and W the first and second
derivatives of ψx(σ) evaluated at σ = Σ, respectively. Using s as integration variables, the expansion of 〈Zrus〉 is:

〈Zrus〉 ∝ 〈e−rβ v
V
ψx(Σ)〉V

v

∫

∏

α

D̃ssα
[

1 +O(s3)
]

× exp

[

−β v
V
〈W′〉e :

∑

α

sα − 1

2
β
1

V

∑

αγ

∫

dx sα(x) :Mαγ :sγ(x)

]

, (3.26)

where D̃ss = Dss δ(∇.s)δ(s) and Mαγ is defined as in Eqs. (3.9) and (3.11). Once again, the details of the integration

over s with measure D̃ss are left to Appendix D. The implementation of the constraint ∇.s = 0 involves a change
from s(x) to its Fourier components s(k). The result is:

〈Zrus〉 ∝ 〈e−rβ v
V
ψx(Σ)〉V

v

∏

k 6=0

{

det
4s′,rep

(M) det
2[⊥k̂],rep

[

Q
k̂
.

(

k̂.M
−14s′,rep

.k̂

)

.Q
k̂

]

}−1/2

. (3.27)

The determinants are once again straightforwardly obtained, and the limits r → 0 and β → ∞ carried out as in
the previous section. Setting now

M1 = Q
k̂
.(k̂.M

−14s′
1 .k̂).Q

k̂
, (3.28a)

M2 = Q
k̂
.(k.M

−14s′
1 :M2 :M

−14s′
1 .k).Q

k̂
, (3.28b)

the second-order perturbation expansion for the viscoplastic potential finally reads:

Ψus(Σ) = 〈ψx(Σ)〉 − 1

2

∫

dΩ
k̂

Sd

[

tr
4
(M2 :M

−14s′
1 )− tr

2

(

M2.M
−12[⊥k̂]

1

)]

. (3.29)

9



2. Application to the Norton law

Writing ωn = 〈ωn〉+ δωn, and Σ̂ = Σ′/
√

tr2(Σ
′2), we have

M1 = m1J+m2Σ̂Σ̂ = m1(J− Σ̂Σ̂) + (m1 +m2)Σ̂Σ̂ (3.30a)

M2 = m3Σ̂Σ̂, (3.30b)

where

m1 =
d

d− 1
〈ωn〉Σn−1

eq , (3.31a)

m2 = (n− 1)m1 (3.31b)

m3 =
d

d− 1

〈

δω2
n

〉

Σ2n
eq . (3.31c)

Noting that J − Σ̂Σ̂ and Σ̂Σ̂ are complementary orthogonal projectors in L(4s′), we compute M
−14s′
1 , M

−14s′
1 :M2

and M
−14s′
1 :M2 :M

−14s′
1 . Now introducing the unit vector û = Q

k̂
.Σ̂.k̂/|Q

k̂
.Σ̂.k̂|, we express M1 and M2 in terms of

Q
k̂
− ûû and ûû and compute the rest. With

Σ
k̂
= 1− 2|Q

k̂
.Σ̂.k̂|2 = 1− 2

[

k̂.Σ̂
2
.k̂− (k̂.Σ̂.k̂)2

]

, (3.32)

we arrive at

Ψus(Σ) = 〈ψx(Σ)〉 − 1

2

∫

dΩ
k̂

Sd

m3Σk̂

m1 +m2Σk̂

. (3.33)

Finally replacing m1, m2, m3 with their values (3.31) yields the desired expression for the effective Norton viscoplastic
potential:

Ψus(Σ) =
ωn eff(Σ)

n+ 1
Σn+1

eq , (3.34a)

ωn eff(Σ) = 〈ωn〉
[

1− 1

2

〈

δω2
n

〉

〈ωn〉2
∫

dΩ
k̂

Sd

(n+ 1)Σ
k̂

1 + (n− 1)Σ
k̂

+O(
〈

δω3
n

〉

/ 〈ωn〉3)
]

. (3.34b)

IV. OTHER TYPES OF DISORDER

We briefly discuss here how to cope with non site-disordered models, with possibly anisotropic correlations. It
suffices to write the average of the exponential in (2.20) simply as

〈

e−β
∑r

γ=1 φx(dγ)
〉

= exp
[

log
〈

e−β
∑ r

γ=1 φx(dγ)
〉]

(4.1)

and to expand the logarithm as in Sec. III A 1, only keeping the quadratic terms in the outer exponential. Equ. (3.8)
is unchanged, save for a slightly different (but equivalent) form for the first averaged prefactor, and for a modification
in the quadratic term in the main exponential. This term becomes

− 1

2

β

V

∑

α,γ

∫

dx dy eα(x) :Mαγ(x|y) :eα(y), (4.2)

where

M
αγ(x|y) = 〈W′′〉δαγδ(x − y)− β

V
[〈W′(x)W′(y)〉 − 〈W′(x)〉〈W′(y)〉] . (4.3)

This requires modifications in the calculations, but does not change their principle. One merely has to deal with
summations over another pair of indices, namely the coordinates x and y. Now the determinants, e.g. in (3.12),
become functional determinants and must simultaneously be evaluated as determinants of operators in the Fourier
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space, in addition to being operators on finite-dimensional vector spaces. However, this is not a serious problem in
the perturbative calculation considered here since only traces are required in the final second-order results.
In the case of translation-invariant disorder, the kernel Mαγ(x|y) is diagonal in the Fourier representation and

(3.12) still holds, provided that one writes M(k) (for its Fourier transform with respect to x− y) instead of M. The
two-point correlation function g(x) is defined by:

〈δθm(x)δθm(y)〉 =
〈

δθ2m
〉

g(x− y), (4.4a)

〈δωn(x)δωn(y)〉 =
〈

δω2
n

〉

g(x− y), (4.4b)

with

g(x = 0) =

∫

dk

(2π)d
g(k) = 1. (4.5)

The final results are then only modified as:

θm eff(D) = 〈θm〉
[

1−
〈

δθ2m
〉

〈θm〉2
∫

dk

(2π)d
(m+ 1)g(k)D

k̂

1 + 2(m− 1)D
k̂

+O(
〈

δθ3m
〉

/ 〈θm〉3)
]

, (4.6a)

ωn eff(Σ) = 〈ωn〉
[

1− 1

2

〈

δω2
n

〉

〈ωn〉2
∫

dk

(2π)d
(n+ 1)g(k)Σ

k̂

1 + (n− 1)Σ
k̂

+O(
〈

δω3
n

〉

/ 〈ωn〉3)
]

. (4.6b)

The Legendre duality property once again applies, whatever the nature of the correlations, and the result is once
again independent of the boundary conditions. The previous expressions for isotropic site-disorder are recovered using
g(x) = vδ(x). Ellipsoidal symmetry corresponds to a correlation function g(x) = g(|Z.x|), where Z is a symmetric
constant tensor (Willis 1977; Ponte-Castañeda and Suquet, 1995).

V. DISCUSSION

In this section, we address the range of applicability of the functional method. Firstly, a major concern of studies on
heterogeneous media is about bounds. In principle, the above functional formulation should be apt to deliver bounds,
at least as far as the initial expressions (2.12) and (2.15) are concerned. One might think, e.g. to use the convexity
properties of the exponential in order to obtain inequalities on approximations to the potentials. However, to the
knowledge of these authors, the replica method is an inadequate tool to use for subsequent calculations, if these are
to preserve inequalities. Indeed, a convexity equality of the type

µ
(

e
∑r

α=1 Vα
)

≥ eµ(
∑ r

α=1 Vα), (5.1)

where µ is some normalized functional measure and V is some potential, valid as long as the potential is replicated
r times, r ≥ 1, may not survive the limit r → 0. In the zero-replica limit indeed, quantities always positive when
r ≥ 1 may become negative, minima may transform into maxima (Parisi, 1984), and it is most often hard to conclude
on inequalities. The replica method has been invented, and employed, to find estimates (which can be of very good
quality) to free energies when disorder is present, not bounds.
Second, one must not confuse the initial functional formulation with the replica method, which we use as a tool in

order to work out averages. These are distinct matters. Actually, there are two starting points for the calculations:
either we transfer the statistical averages of the logarithm inside the functional integral by means of the replica
method, and carry out approximations on the effective potential

− 1

β
log
〈

e−β
∑

γ φx(dγ)
〉

, (5.2)

cf. (4.1). This is what we did in the paper. Either we carry out an approximation on the non-replicated initial
functional integral (2.12), then take the logarithm, and average afterwards only. Save for perturbative expansions,
the results will be different.
Third, all types of calculations feasible with classical methods (especially the perturbative ones) should translate

into simple approximation schemes to the basic equations (2.12) and (2.15). But we believe that the compact starting
point of the functional formulation might enable one to obtain non-perturbative results more easily, and of different
nature, than by classical means. There resides its main interest.
Finally, the trick consisting in writing the minimum of some functional as the limit of a particular functional integral

could be applied elsewhere, e.g., to compute variational expressions such as those presented in Ref. [23] (computing
a maximum can of course be done by identical means).
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VI. CONCLUSION

A field-theoretic method in order to compute the effective properties of highly non-linear composites has been
introduced. The minimization problem was shown to be equivalent to the computation of a functional integral.
We believe the main advantage of this formulation is that it is valid for all types of local potentials, and that it
can be used as a convenient starting point for approximations. As a first application, a weak-disorder second-order
perturbative calculation of this functional integral was presented. The second-order results of Suquet and Ponte-
Castañeda (1993) for the effective plastic dissipation potential (with uniform traction boundary conditions) were
recovered. In addition, the second-order correction to the viscoplastic potential was also obtained, and these results
were extended to correlated disorder. With this method, minimizing over a vector velocity field, or a tensor stress
field, is found to be equally feasible.
A natural extension of this work is to find a well-behaved non-perturbative approximation. Self-consistent calcula-

tions are currently under study.
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APPENDIX A: FOURTH-RANK TENSORS IN MECHANICS

Before briefly reminding the reader about the main properties of fourth-rank tensors in mechanics, we need to set
our notations about the various algebra and sub-algebras of linear operators that come into play.
We designate by L(2) the algebra of linear operators (second-rank d × d square matrices) M : Rd → Rd. Next,

fourth-rank tensors appear in mechanics as representations of linear operators M : L(2) → L(2). They can therefore
be considered as square matrices, the indices of which are pairs of indices, and their components are denoted byMij,kl,
such that i, j, k, l = 1, . . . , d. We denote the algebra they belong to by L(4). The product in L(4) is

(M :N)ij,kl =Mij,mnNnm,kl. (A1)

Hence applying M to a second-rank tensor N, we have

(M :N)ij =Mij,klNlk. (A2)

The identity I in L(4) is

Iij,kl = δilδjk, (A3)

and the trace is defined (and denoted) by

tr4M =Mij,ji. (A4)

Hence tr4I = d2.
The algebra L(2) can be split in the direct sum of that of symmetric traceless matrices [which we denote by L(2s′)],

diagonal matrices proportional to the identity [L(2d)], and anti-symmetric matrices [L(2a)]. The algebra of symmetric
matrices is the direct sum L(2s) = L(2s′)⊕L(2d). The algebra L(4) therefore admits three remarkable sub-algebras,
which we denote by L(4s′), L(4d), L(4a), generated by the mutually orthogonal projectors J, K and Ia respectively,
defined by

Jij,kl =
1

2
(δilδjk + δikδjl)−

1

d
δijδkl, (A5a)

Kij,kl =
1

d
δijδkl, (A5b)

Iaij,kl =
1

2
(δilδjk − δikδjl). (A5c)
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They obey I = Ia + J + K. Hence, the sub-algebras L(4s′), L(4d), L(4a) are that of the endomorphisms on L(2s′),
L(2d), L(2a) respectively. The operators J, K, and Ia are the appropriate identity operators in each sub-algebra. We
have

tr4J = d(d+ 1)/2− 1, (A6a)

tr4K = 1, (A6b)

tr4I
a = d(d− 1)/2. (A6c)

These numbers count the number of eigenvalues of each operator. In L(4s), the sub-algebra of the endomorphisms
on L(2s), the identity is Is = J+K:

Isij,kl =
1

2
(δilδjk + δikδjl), (A7)

and tr4I
s = d(d+ 1)/2. Note that L(4s′)⊕ L(4d) ⊂ L(4s), but the two sets are not equal.

Finally note that the inverse (resp. determinant) in L(4) of an operator M ∈ L(4s′) ⊕ L(4d) ⊕ L(4a) is the sum
(resp. product) of the inverses (reps. determinants) of its constituents in their respective sub-algebra.

APPENDIX B: GAUSSIAN INTEGRALS

1. Gaussian integrals over vector fields

We start from the well-known d-dimensional gaussian integral over a vector field λ (Kleinert, 1995). If M is a d× d
positive-definite symmetric matrix, and b any vector, then

∫

dλ exp

(

−1

2
λ.M.λ+ b.λ

)

=

[

(2π)d

det2(M)

]1/2

exp

(

1

2
b.M−12 .b

)

, (B1)

where the integration measure is dλ =
∏

i dλi.

This formula is meaningless if M is not invertible in L(2). However, let k̂ be a unit vector, b now be a real vector,

and M = M⊥ + ǫ2k̂k̂, where M⊥ is invertible only in L(2[⊥ k̂]), the set of the endomorphisms which operate in the

subspace of vectors orthogonal to k̂. Then M−12 = M
−12[⊥k̂]

⊥ + ǫ−2k̂k̂, det2(M) = ǫ2 det2[⊥k̂](M⊥), and

∫

dλ exp

(

−1

2
λ.M.λ+ ib.λ

)

=

[

(2π)d

ǫ2 det2[⊥k̂](M⊥)

]1/2

exp

[

−1

2
b.M−12[⊥k̂] .b− 1

2ǫ2
(b.k̂)2

]

. (B2)

Letting ǫ→ 0 and using the representation of the Dirac distribution

δ(x) = lim
ǫ→0

1√
2πǫ2

e−
1
2 (x/ǫ)

2

, (B3)

we obtain

∫

dλ exp

(

−1

2
λ.M⊥.λ+ ib.λ

)

=

[

(2π)d+1

det2[⊥k̂](M⊥)

]1/2

exp

(

−1

2
b.M−12[⊥k̂] .b

)

δ(b.k̂). (B4)

We define the integration measure over the vectors orthogonal to k̂ to be

dλ
[⊥k̂]

= δ(λ.k̂)dλ. (B5)

Multiplying both sides of (B4) by exp(ib.a), where a is a real vector, and integrating over b yields
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∫

db
[⊥k̂]

exp

(

−1

2
b.M−12[⊥k̂] .b+ ib.a

)

=

[

(2π)−(d+1)

det2[⊥k̂](M
−12[⊥k̂]

⊥ )

]1/2
∫

dλdb exp

[

−1

2
λ.M⊥.λ + ib.(λ+ a)

]

= (2π)d

[

(2π)−(d+1)

det2[⊥k̂](M
−12[⊥k̂]

⊥ )

]1/2
∫

dλ exp

(

−1

2
λ.M⊥.λ

)

δ(a+ λ)

=

[

(2π)d−1

det2[⊥k̂](M
−12[⊥k̂]

⊥ )

]1/2

exp

(

−1

2
a.M⊥.a

)

, (B6)

where δ(x) =
∏

i δ(xi). Note that we can exchange M
−12[⊥k̂]

⊥ and M⊥ in (B6). Moreover, M⊥ can be written

M⊥ = Q
k̂
.M.Q

k̂
, where Q

k̂
is the projector Q

k̂
= I− k̂k̂, for some M ∈ L(2). Besides, the b are now orthogonal to k̂

(because of the integration measure) so that b.Q
k̂
.M.Q

k̂
.b = b.M.b. Finally, the result can be analytically continued

to complex values of a. Changing the names of the variables, we therefore arrive at the formula

∫

dλ
[⊥k̂]

exp

(

−1

2
λ.M.λ+ b.λ

)

=

[

(2π)d−1

det2[⊥k̂](Qk̂
.M.Q

k̂
)

]1/2

exp

[

1

2
b.(Q

k̂
.M.Q

k̂
)−12[⊥k̂] .b

]

. (B7)

2. Gaussian integrals over tensors of rank 2

The generic gaussian integral over all matrices s ∈ L(2) is

∫

ds exp

(

−1

2
s :M :s + b :s

)

=

[

(2π)d
2

det4(M)

]1/2

exp

(

1

2
b :M−14 :b

)

, (B8)

where ds =
∏

ij dsij is the appropriate measure, M is a symmetric matrix of L(4), i.e. is such that Mij,kl = Mkl,ij .

This formula is a direct consequence of (B1) via a mapping of s onto a column vector in Rd2 . Once again, the integral
is meaningless in general if M is not invertible in L(4). We apply the same method as in Sec. B 1.

a. Gaussian integrals over symmetric matrices

Let b ∈ L(2) be real. We consider M = Ms + (ǫ2/2)Ia, where Ms ∈ L(4s) and is invertible in L(4s). Then
M−14 = M−14s

s + (2/ǫ2)Ia and det4(M) = det4s(M)(ǫ2/2)d(d−1)/2. Hence from (B8),

∫

ds exp

(

−1

2
s :M :s + ib :s

)

=

[

(2π)d
2

det4s(Ms)

]1/2
1

(ǫ2/2)d(d−1)/4
exp

(

−1

2
b :M−14s

s :b− 1

ǫ2
b :Ia :b

)

. (B9)

But b :Ia :b = (1/2)
∑

i<j(bij − bji)
2. Using (B3) and going to the limit ǫ→ 0, we find

∫

ds exp

(

−1

2
s :Ms :s+ ib :s

)

=

[

(2π)d
2

(4π)d(d−1)/2

det4s(Ms)

]1/2

exp

(

−1

2
b :M−14s

s :b

)

∏

i<j

δ(bij − bji). (B10)

We define the measure over the symmetric tensors of rank two as:

dss = 2d(d−1)/4[
∏

i,j<i

δ(sij − sji)] ds. (B11)
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Multiplying both sides of (B10) by exp(ib :a), and integrating with respect to b with db yields

∫

dsb exp

(

−1

2
b :M−14s

s :b+ ia :b

)

=

[

(2π)−d
2−d(d−1)/2

det4s(M
−14s
s )

]1/2
∫

db ds exp

(

−1

2
s :Ms :s+ i(s+ a) :b

)

= (2π)d
2

[

(2π)−d
2−d(d−1)/2

det4s(M
−14s
s )

]1/2
∫

ds exp

(

−1

2
s :Ms :s

)

δ(s+ a)

=

[

(2π)d(d+1)/2

det4s(M
−14s
s )

]1/2

exp

(

−1

2
a :Ms :a

)

, (B12)

where δ(x) =
∏

ij δ(xij). Whence the generic result for gaussian integrals over symmetric matrices, with M ∈ L(4):

∫

dss exp

(

−1

2
s :M :s + b :s

)

=

[

(2π)d(d+1)/2

det4s(Is :M :Is)

]1/2

exp

(

1

2
b : (Is :M :Is)−14s :b

)

. (B13)

b. Gaussian integrals over traceless symmetric matrices

If Is :M :Is is not invertible in L(4s), but only in L(4s′) for instance, the procedure can be repeated: let us assume

that M = Ms′ + ǫ2K, where Ms′ ∈ L(4s′). Starting from (B13) with b → ib, using (Is :M : Is)−14s = M
−14s′
s′ + K/ǫ2,

det4s(I
s :M :Is) = det4s′(Ms′ )ǫ

2 and letting ǫ→ 0, one finds:

∫

dss exp

(

−1

2
s :Ms′ :s+ ib :s

)

=

[

d(2π)d(d+1)/2+1

det4s′(Ms′ )

]1/2

exp

(

−1

2
b :M

−14s′
s′ :b

)

δ(tr2b). (B14)

We define the integration measure over symmetric traceless tensors to be

ds′s = d1/2δ(tr2s) dss. (B15)

As one easily checks, we have, with (B11)

∫

dsx exp(is :x) = 2d(d−1)/4(2π)d(d+1)/2[
∏

i

δ(sii)][
∏

i<j

δ(sij + sji)]. (B16)

Multiplying (B14) by exp(ia :b), and integrating over b with measure dsb, we deduce, using Ms′ = J :M :J, the result
for gaussian integrals over symmetric traceless tensors:

∫

ds′s exp

(

−1

2
s :M :s + b :s

)

=

[

(2π)d(d+1)/2−1

det4s′(J :M :J)

]1/2

exp

[

1

2
b : (J :M :J)−14s′ :b

]

. (B17)

c. Other gaussian integrals

For the sake of completeness, we finally give without demonstration the results for gaussian integrals over antisym-

metric tensors, with measure

das = 2d(d−1)/4[
∏

i

δ(sii)][
∏

i<j

δ(sij + sji)]ds, (B18)

and over diagonal tensors proportional to the identity, of the type sI/d, with measure

dds = d−1/2ds

∫

ds δ(s− sI/d). (B19)
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One finds

∫

das exp

(

−1

2
s :M :s + b :s

)

=

[

(2π)d(d−1)/2

det4a(Ia :M :Ia)

]1/2

exp

[

1

2
b : (Ia :M :Ia)−14a :b

]

(B20)

∫

dds exp

(

−1

2
s :M :s + b :s

)

=

[

2π

det4d(K :M :K)

]1/2

exp

[

1

2
b : (K :M :K)−14d :b

]

. (B21)

The last identity is trivial (scalar gaussian integral).

APPENDIX C: INVERSE AND DETERMINANT IN REPLICA SPACE

In replica space, A and B being replica-independent operators pertaining to some algebra A, the inverse and
determinant of a matrix of the type

M = AI +BU, (C1)

read

M
−1A,rep

= A−1AI − (A+ rB)−1ABA−1AU, (C2a)

det
A,rep

(M) = det
A

(A)r−1 det
A

(A+ rB) = 1 + r
[

log det
A

(A) + tr
A
(BA−1A )

]

+O(r2) (C2b)

The expansion derives from the operator identity (Kleinert, 1995) log det = tr log.

APPENDIX D: GAUSSIAN INTEGRALS OVER THE VELOCITY AND STRESS FIELDS

1. Integration over the velocity field

We detail here the steps leading to (3.12).
The Dirac distribution implementing the constraint ∇.v = 0 in (3.8) is exponentiated first: we introduce a scalar

field λ and write:

δ(∇.v) ∝
∫

Dλ exp

[

i

∫

dxλ(x)∇.v(x)

]

. (D1)

Then we Fourier transform the integrand. By definition, for any function f (which will be λ or s), the Fourier
transform is:

f(k) =

∫

dx eik.xf(x), f(x) =

∫

dk

(2π)d
e−ik.xf(k). (D2)

Since f(x) is real, we write for k 6= 0:

f(k) =
1√
2
[f (1)(k) + if (2)(k)], (D3a)

f(−k) =
1√
2
[f (1)(k) − if (2)(k)], (D3b)

where f (1) and f (2) are real functions of the wavevector; also, we set f(k = 0) = f (1)(0). This decomposition is
carried out for all λα(k) and vα(k).
Introducing the set K+ = {k/k1 > 0} ∪ {k/k1 = 0, k2 > 0} ∪ . . . ∪ {k/k1 = 0, . . . , kd−1 = 0, kd > 0}, a functional

measure Df over f(x) thus becomes in the Fourier representation

Df =
∏

x

df(x) ∝ df (1)(0)
∏

k∈K+

[df (1)(k)df (2)(k)]. (D4)
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Note that f (1) and f (2) are defined only for k ∈ K+. By Parseval’s identity, we have

∫

dxλ(x)∇.v(x) =

∫

K+

dk

(2π)d

[

λ(2)(k)v(1)(k).k − λ(1)(k)v(2)(k).k
]

. (D5)

As usual in functional methods, the latter integral is to be understood as a Riemann discrete sum by applying the
correspondence:

∫

dk

(2π)d
→ 1

V

∑

k

. (D6)

In particular, this allows one to separate the contribution of the mode k = 0. The argument of the exponential in
(3.8) is likewise transformed into a sum of Fourier modes via

∫

dx e
α(x) :Mαγ :eγ(x)

=
1

V
eα(1)(0) :Mαγ :eγ(1)(0) +

1

V

∑

k∈K+

[

eα(1)(k) :Mαγ :eγ(1)(k) + eα(2)(k) :Mαγ :eγ(2)(k)
]

=
1

V

∑

k∈K+

[

vα(1)(k).(k.Mαγ .k).vγ(1)(k) + vα(2)(k).(k.Mαγ .k).vγ(2)(k)
]

. (D7)

In the last equality, we have used the symmetry of Mαγ with respect to its tensor indices. Note that e(1) = −[kv(2) +
v(2)k]/2 and e(2) = [kv(1) + v(1)k]/2.
Because of the constraints δ(eα), the linear terms eα disappear from the exponential. There is no dependence of

the integrand with respect to λ(1)(0) nor to v(1)(0), so that integration over these variables only yields harmless
β-independent infinite multiplicative factors which we drop out, since they do not contribute to the final result in the
limit β → ∞. The reason is the same as that invoked in conjunction with Equ. (2.24). Such physically irrelevant
(because multiplicative) infinities are often encountered when dealing with functional integrals. They are related to
(here) unimportant normalization questions.
We therefore see that for each k 6= 0, mutually complex conjugate partial integrals A(k) =

∫

dλα(2)(k) dvα(1)(k)

[. . . ] and A∗(k) =
∫

dλα(1)(k)dvα(2)(k)[. . . ] show up in pairs, and can be evaluated independently from one another.
Renaming, in A(k), the integration variables into k-independent dλα and dvα, we arrive at

〈Zrut〉 ∝ 〈e−rβ v
V
φx(D)〉V

v

∏

k∈K+

|A(k)|2, (D8)

where

A(k) =

∫

(

∏

α

dλαdvα

)

exp

[

−1

2

β

V 2

∑

αγ

vα.(k.Mαγ .k).vγ +
i

V

∑

α

λα(vα.k)

]

(D9a)

∝
∫

[

∏

α

dvαδ(vα.k)

]

exp

[

−1

2

β

V 2

∑

αγ

vα.(k.Mαγ .k).vγ

]

(D9b)

∝ det
2[⊥k̂],rep

[

Q
k̂
.
(

k̂.M.k̂
)

.Q
k̂

]−1/2

, (D9c)

and Q
k̂
= I − k̂k̂ with k̂ = k/k. In the step from (D9b) to (D9c) we used formula (B7), trivially generalized to the

replica space, and discarded, among other irrelevant factors, a power of the modulus k. Equ. (3.12) finally follows
from the fact that A(k) = A(−k).

2. Integration over the stress field

We now detail the steps leading to (3.27), which differ little from above. Because of our considering the Norton
viscoplastic potential (which does not depend on σm) for explicit applications, the matrix M1 given in (3.30) is not

invertible in L(4s), but only in L(4s′). As a consequence [cf. (C2a)], M is not invertible in L(4s, rep), but only

17



in L(4s′, rep). This leads to peculiarities that have to be taken into account but does not change the principle of

the calculation. The equivalent of formula (3.27) for M invertible in L(4s, rep) is provided hereafter for the sake of
completeness.
The Dirac distribution implementing the constraint∇.s = 0 in the measure D̃ss is exponentiated by the introduction

of a vector field λ as:

δ(∇.s) ∝
∫

Dλ exp

(

i

∫

dxλ(x).[∇.s(x)]

)

=

∫

Dλ exp

(

i
1

V

∑

k∈K+

{

s(1)(k) : [kλ
(2)(k)]− s(2)(k) : [kλ

(1)(k)]
}

)

. (D10)

A reasoning paralleling that in Sec. D 1 yields:

〈Zrus〉 ∝ 〈e−rβ v
V
ψx(Σ)〉V

v

∏

k∈K+

|A(k)|2, (D11)

where now

A(k) =

∫

(

∏

α

dλαdss
α

)

exp

[

−1

2

β

V 2

∑

αγ

sα :Mαγ :sγ +
i

V

∑

α

sα : (kλ
α)

]

(D12a)

∝ det
4s′,rep

(M)−1/2

∫

(

∏

α

dλα
[⊥k̂]

)

exp

{

−1

2

k2

β

∑

αγ

λ
α.
[

k̂.
(

M
−14s′,rep

)αγ
.k̂
]

.λγ

}

(D12b)

∝ det
4s′,rep

(M)−1/2 det
2[⊥k̂],rep

[

Q
k̂
.

(

k̂.M
−14s′,rep

.k̂

)

.Q
k̂

]−1/2

, (D12c)

and Q
k̂
= I− k̂k̂, and k̂ = k/k. In the first step from (D12a) to (D12b), we used the formula (B14) generalized to the

replica space. The resulting factor δ(tr2 kλ) ∝ δ(k̂.λ) was absorbed in the measure dλα[⊥k̂] defined in (B5). Next,

we appealed to (B7), also extended to replica space. Equ. (3.27) follows. Had M been invertible in L(4s, rep), one
would have found

〈Zr〉 ∝ 〈e−rβ v
V
ψx(Σ)〉V

v

∏

k 6=0

{

det
4s,rep

(M) det
2,rep

[(

k̂.M
−14s,rep

.k̂

)]}−1/2

(D13)

instead.

APPENDIX E: THE LEGENDRE TRANSFORM

Though the plastic dissipation potential (3.24) and the viscoplastic potential (3.34) have been obtained for different
boundary conditions, we show here that they are linked by the Legendre transform (2.8).
Let us deduce (3.24) from (3.34), for instance, assuming that (2.8) holds between both. We write Φ(D) = Φ0(D) +

δΦ(D), Ψ(Σ) = Ψ0(Σ)+ δΨ(Σ), where Φ0(D) = 〈φx(D)〉, Ψ0(Σ) = 〈ψx(Σ)〉 are the leading terms in the perturbative
expansions, and δΦ(D) and δΨ(Σ) are the corrective terms. It is straightforward to check that Φ0(D) and Ψ0(Σ) are
Legendre duals: Φ0(D) + Ψ0(Σ) = Σ :D. Hence

Φ(D) = Σ :D−Ψ0(Σ)− δΨ(Σ) = Φ0(D)− δΨ(Σ), (E1)

so that δΦ(D) = −δΨ(Σ). Moreover, since Σ = ∂Φ(D)/∂D = ∂Φ0(D)/∂D+ ∂δΦ(D)/∂D, we obtain to second order

Φ(D) ≃ Φ0(D)− δΨ
(

∂Φ0(D)/∂D
)

. (E2)

The Legendre transform of Ψ0(Σ) = 〈ωn〉Σn+1
eq /(n+ 1) reads, with m = 1/n:

Φ0(D) = 〈ωn〉−mDm+1
eq /(m+ 1), tr

2
(D) = 0. (E3)
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In addition,

Σ′ ≃ d− 1

d
〈ωn〉−mDm−1

eq D, Σeq ≃ 〈ωn〉−mDm
eq. (E4)

These expressions for Σ′ and Σeq are correct to first order only. However, symmetry considerations show that Σ′ is

always proportional to D. Thus Σ̂ = D̂, whence from the definitions (3.21) and (3.32),

Σ
k̂
= 1− 2D

k̂
. (E5)

The weak-disorder expansion of Φ(D) has to be expressed in terms of θm = ω−m
n = 〈θm〉 + δθm. To second order,

we have

〈ωn〉 ≃ 〈θm〉−1/m

[

1 +
1

2

m+ 1

m2

〈δθ2m〉
〈θm〉2

]

,

〈

δω2
n

〉

〈ωn〉2
≃ 1

m2

〈

δθ2m
〉

〈θm〉2 . (E6)

Gathering these results into the perturbative expansion (E2) of Φ(D) finally yields (3.24) back, as announced.
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