
ar
X

iv
:c

on
d-

m
at

/9
90

73
82

v2
  [

co
nd

-m
at

.s
tr

-e
l]

  2
9 

Ju
l 1

99
9

Superconductivity and Quantum Spin Disorder in Cuprates

Moshe Havilio∗ and Assa Auerbach†

Physics Department, Technion, Haifa 32000, Israel

(April 26, 2024)

A fundamental connection between superconductivity and quantum spin fluctuations in underdoped
cuprates, is revealed. A variational calculation shows that Cooper pair hopping strongly reduces the
local magnetization m0. This effect pertains to recent neutron scattering and muon spin rotation
measurements in which m0 varies weakly with hole doping in the poorly conducting regime, but
drops precipitously above the onset of superconductivity.
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When holes are introduced into the copper oxide planes
of high Tc cuprates, spin and charge correlations change
dramatically. The local magnetization m0, measured
by µSR [1] and elastic neutron scattering [2] on e.g.
La2−xSrxCuO4, reveals a qualitative difference between
the insulating and superconducting phases: m0 is rather
insensitive to doping in the poorly conducting regime
0 ≤ x ≤ 0.06, but drops precipitously above the on-
set of superconductivity at x > 0.06, becoming unde-
tectable at optimal doping x ≈ 0.15. Theoretically, holes
can cause dilution and frustration in the Heisenberg an-
tiferromagnet, which create spin textures: either random
(“spin glass”) or with ordering wavevector away from
(π, π) (sometimes called “stripes”) [3]. However, the ap-
parent reduction of local magnetization by the onset of
superonductivity, is a novel and poorly understood ef-
fect. Theory must go beyond purely magnetic models,
and involve the superconducting degrees of freedom.

We find that this problem is amenable to a variational
approach, using hole-doped Resonating Valence Bonds
(RVB) states, originally suggested by Anderson for the
spin correlations of high Tc cuprates [5–7].

These RVB states are excellent trial states for doped
Mott insulators, with large Hubbard repulsion U :
(i) Configurations with doubly occupied sites are ex-
cluded.
(ii) Marshall’s sign criterion for the magnetic energy [8]
is satisfied, and Heisenberg antiferromagnetism at zero
doping is accurately recovered.
(iii) For doped systems, spin and charge correlations are
parameterized independently, without explicit spin nor
gauge symmetry breaking.

These are important advantages over commonly used
Spin Density Wave, Hartree-Fock and BCS wavefunc-
tions for the antiferromagnet, metal and superconducting
phases respectively. RVB states permit an unbiased de-
termination of ground state spin and charge correlations
appropriate for the cuprates.

A phenomenological low energy effective Hamiltonian
is used, with two major components: Heisenberg inter-
action for spins, and single or Cooper pair hoppingng
kinetic energy for fermion holes.

Our key results are as follows:
(i) For the magnetic energy alone, the local magneti-

zation m0 is weakly dependent on doping concentration.
This holds independently of inter-hole correlations for ei-
ther randomly localized or extended states.
(ii) In contrast to (i), m0 is strongly reduced by the ki-
netic energy of Cooper pair hopping, which correlates the
reduction ofm0 with the rise of superconducting stiffness,
and hence [9] the transition temperature Tc.

Our results agree with the experimentally reported cor-
relation between m0 and Tc [1,2]. This relation appears
to be weakly dependent on the precise hole density. A
brief discussion concludes the paper.

The Wavefunctions: The hole-doped RVB states are
compactly defined by

Ψ[u, v;x] = PG(x)ψ̄[u, v]

ψ̄[u, v] ≡ exp
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Where a†i , b
†
i and f †

i are Schwinger bosons and hole
fermions respectively [10], i = 1, . . . L2 is a site index on
the square lattice, and PG(x) is the Gutzwiller projec-
tion onto states with no double occupancies. As a result
of the projection, Ψ can be written as a sum over bond
configuations of singlets and hole pairs which cover the
lattice as depicted in Fig. 1.
u(rij) and v(rij) are independent spin and hole bond

parameters respectively. uij ≥ 0 connects i on sublattice
A to j ∈ B respectively, which ensures Marshall’s sign.
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FIG. 1. A bond configuration in the doped RVB states
Ψ[u, v]. Solid (empty) circles represent spins (holes) with
bond correlations uij (vkl).
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The expectation value of an observable O is computed
by a sum over loop coverings:

〈O〉 =
∑

γ,Λγ

WΛ,γOΛ,γ ,

WΛ,γ =
1

〈Ψ[u, v]|Ψ[u, v]〉 det
ij∈γ

2|vij |
∏

λ∈Λγ



2
∏

(i,j)∈λ

uij



 . (2)

Λγ denotes a list of directed loops {λα} which cover the
lattice except for subset γ of xL2 hole sites. W are pos-
itive Boltzmann weights, with which the Monte Carlo
Metropolis step is defined following Refs. [6,7]. Ergodic-
ity and convergence of our program was checked against
precise transfer matrix results [13].

The Gutzwiller Approximation (GA) amounts to drop-
ping the projector P(x) in state (1) and setting Ψ → ψ̄,
after adjusting the overall normalization of u and v to
satisfy the global constraints 〈na

i + nb
i〉 = (1 − x), and

〈nf
i 〉 = x. ψ̄ is a Fock state of decoupled spins and holes,

with easily computable correlations [11,12].
For the spin correlations we use power law decaying

functions up(r) ≡ 1/rp. The single variational param-
eter p determines the long range spin correlations and
local magnetization [14]. (Other forms for u(r), with
qualitatively similar results, will be described elsewhere
[12]).

We discuss four cases of inter-hole correlations:

vγ
ins(rij) =

{

1 (i, j) ∈ γ
0 (i, j) /∈ γ

vmet(r) = 1/L2
∑

k∈Σ e
−ik·r

vα(r) =
∑

η̂ cα(η̂)δr,η̂, α = s, d

(3)

where η̂ are nearest neighbor vectors on the square lat-
tice, cs = 1 and cd = η̂2

x − η̂2
y .

vγ
ins puts the xL2 holes on random sites. This state

describes an insulator with disordered localized charges.
vmet has filled Fermi pockets Σ, containing xL2 occu-

pied k-states centered around (±π/2,±π/2) in the Bril-
louin zone [15]. It describes weakly interacting holes in
a “metallic” state. In real space, vmet(rij) decays slowly

as ∼ r−3/2. Correlations in this state were previously
computed by Bonesteel and Wilkins [7].
vs and vd describe tightly bound hole pairs in relative

s and d-wave symmetry respectively.
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FIG. 2. (a) The local magnetization squared of doped RVB
wavefunctions Ψ[up, v] versus the variational power p, defined
by the bond parameters up(r) = 1/rp. Lattice size is 40× 40,
and hole concentration is 10%. Results are agree well with the
Gutzwiller approximation (solid line). The hole bond param-
eters v are defined in Eq.3. Note that m2

0 is weakly dependent
on v; the data for v = vs, overlaps that of vd. (b) Finite size
scaling of m0(L) for p = 3.3 which indicates vanishing local
magnetization at L → ∞.

Order parameters: The local magnetization m0(L) is
defined by m2

0 = 1/L2
∑

j〈SiSj〉pe−i(π,π)rij . In Fig.2(a),

m2
0(p) for Ψ[up, v;x = 0.1] is plotted for various choices of

v. The GA (solid line) seems to work well for m0(p). Fi-
nite size scaling in Fig.2(b) indicates vanishing long range
order m0 → 0 at pc = 3.3, which lowers the bound given
previously by Ref. [6]: at pc ≤ 5. The GA approximation
at L→ ∞ suggests that pc ≤ 3 [12].

The superconducting singlet order parameters are

∆s,d
i =

∑

η̂

cs,d(η̂)∆i,i+η̂

∆ij = f †
i f

†
j (aibj − biaj)/

√
2 (4)

By gauge invariance imposed by the Gutzwiller projector,
〈∆s,d〉 = 0. However, Ψ[u, vs(d);x > 0] describe true s
(d)-wave superconductors as seen by the (off-diagonal)
long range order in ∆s,d [12].

In contrast, the insulator states Ψ[u, vins, x] and the
“metallic” states Ψ[u, vmet, x] have no long range super-
conducting order of either symmetry [12].

Effective Hamiltonians: Magnetic order is driven by
the diluted Heisenberg model [14],

HJ = J
∑

〈ij〉

Si · Sj(1 − f †
i fi)(1 − f †

j fj) (5)

where e.g. Sx + iSy ≡ a†b. In Fig. 3 the expecta-
tion value Emag(p) = 〈HJ 〉 is plotted as a function of
m2

0(p) for x = 0.1 and various choices of v from (3).
Within numerical errors all states minimize HJ at around
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pmin ≈ 2.7, which by Fig. 2(a) yields local magnetiza-
tion of m2

0 = 0.08 ≈ m2
0(0)(1 − 2x), where m0(0) agrees

with the ground state local magnetization of the undoped
Heisenberg model [16]. We have found that pmin ≈ 2.7
appears to be independent of x in for 0 ≤ x ≤ 0.15.
Thus we conclude that aside from the trivial kinematical
constraints, the hole density and correlations have little
effect on the magnetic energy at low doping.

A single hole hopping in the antiferromagnetic back-
ground has been shown by semiclassical arguments
[17,10], to be effectively restricted at low energies to hop-
ping between sites on the same sublattice: Next we con-
sider the single hole hopping process

Ht′ =
∑

〈ik〉∈A,B

t′ikf
†
i fk(a†kai + b†kbi) (6)

where i, k are removed by two adjacent lattice steps, and
t′ > 0. Unconstrained, the single hole ground state of
Ht′ has momentum on the edge of the magnetic Bril-
louin zone, in agreement with exact diagonalization of
t − J clusters [18]. (Note: inter-sublattice hopping (the
t-term in the t-J model) is a high energy process in the
antiferromagnetic background. It primarily renormalizes
t′ and the quasiparticle’s short distance structure [17,10].

The single holes hopping (6) prefers the metallic state
v = vmet over the superconductor v = vs, vd [12]. It
also prefers longer range u(r) and thus actually enhances
magnetic order at low doping. This is a type of a Nagaoka
effect, where mobile holes seperately polarize each of the
sublattices ferromagnetically.

Now we consider Cooper pairs hopping terms

HJ′

= −J ′





∑

ijk

∆†
ij∆ik +

∑

〈ij〉,̃ij̃

∆†
ij∆ĩj̃



 (7)

The first term is derived from the large U Hubbard model
to order J ′ = t2/U [10]. It includes a rotation of the sin-
glet pair, which prefers vd over vs. The second term is
a parallel translation of singlets. It prefers superconduc-
tivity with v = vd over metallic states with v = vmet

[19].
In Fig. 3 the ground state energy Eph of (7) is plotted

for v = vd, x=0.1 and L=40. For v = vs, Eph > 0.
The variational energy is minimized at p = 3.35, which
by the finite size scaling of Fig.2(b) indicates vanishing
m0 at large L. Note the striking difference between the
minima of Emag and Eph. Thus, Cooper pair hopping
drives the groundstate toward a spin liquid phase!
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FIG. 3. The magnetic energy Emag (5) and Cooper pair
hopping energy Eph (7) versus local magnetization squared
m2

0, used as a variational parameter. The density of holes
is 0.1 and lattice size is L = 40. The magnetic energy is
minimized at m2

0 ≈ 0.08, consistent with a diluted quan-
tum Heisenberg antiferromagnet, and is weakly dependent
on inter-hole correlations. The points of Emag(vs) overlaps
Emag(vd). In contrast, Cooper pair hopping prefers vanish-

ing m0 at L → ∞.

A simple explanation is that pairs can hop with greater
overlap when parallel bonds have maximum singlet com-
ponents. When u(r) is longer ranged, triplet contribu-
tions are larger, which inhibits pair delocalization. In-
cidentally, the Gutzwiller approximation (GA) fails to
predict this effect since it decouples the local correlations
between spins and hole pairs.

Since HJ′

is the effective model which drives supercon-
ductivity it produces phase stiffness, which in the contin-
uum approximation is given by

HJ′ ≈ V0

2

∫

d2x(∇φi)
2 (8)

The stiffness constant V0 can be determined variation-
ally from the RVB states, by imposing a uniform gauge
field twist on the bond parameters vi,j → vi,jexp(i(xi +
xj)φ/2L) and measuring Eph(φ) to find V0 = d2Eph/dφ

2.
Following Ref. [9], at low doping for the square lattice

V0 is roughly equal to Tc.
results In Fig.(4) we show our main result: The stag-

gered magnetization m0 for HJ + HJ′

is plotted against
the superconducting to magnetic stiffness ratio V0/J for
different doping concentrations x = 0.05, 0.1, 0.15.

Two primary observations are made: (i) The local
magnetization is sharply reduced at relatively low su-
perconducting stiffness (and Tc/J). (ii) The relation be-
tween m0 and V0/J appears to be weakly dependent on
the precise hole concentration.
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FIG. 4. The relation between thermodynamic local mag-
netization mL=∞

0 and superconducting phase stiffness V0 (re-
lated to Tc, see text). J is the Heisenberg exchange energy.
The points are considered upper bounds on m0, which may
even vanish for V0/J ≥ 0.2.

Discussion: Because of finite size uncertainty, m0 in
Fig.(4) is an upper bound on the thermodynamic local
magnetization. The GA extrapolation suggests that m0

may actually vanish already V0/J ≥ 0.2. This is in qual-
itative agreement with the doping dependent of the local
magnetization measured by Refs. [2,1], which diminishes
rapidly above the onset of superconductivity.

In a quantized theory of stripes [20], mechanisms for
diminishing m0 assume anisotropic magnetic couplings,
or fluctuating anti-phase domain walls. A direct connec-
tion between superconductivity and m0 is not obvious in
these approaches.

In a recent projected SO(5) theory [21], spins and hole-
pairs dynamics have been considered with excluded dou-
ble occupancies. A variational relation is obtained be-
tween superconducting stiffness and the magnetic order
parameter, which resembles the results of this paper.
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