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Abstract

We apply ideas from renormalization theory to models of cluster formation in nucleation and growth

processes. We study a simple case of the Becker-Döring system of equations and show how a novel coarse-

graining procedure applied to the cluster aggregation space affects the coagulation and fragmentation rate

coefficients. A dynamical renormalization structure is found to underlie the Becker-Döring equations, nine

archetypal systems are identified, and their behaviour is analysed in detail. These architypal systems divide

into three distinct groups: coagulation-dominated systems, fragmentation-dominated systems and those

systems where the two processes are balanced. The dynamical behaviour obtained for these is found to

be in agreement with certain fine-grained solutions previously obtained by asymptotic methods. This work

opens the way for the application of renormalization ideas to a wide range of non-equilibrium physicochemical

processes, some of which we have previously modelled on the basis of the Becker-Döring equations.

I Introduction

In this paper, we study the Becker-Döring cluster kinetic equations familiar from classical nucleation

theory [1] in which the monomer concentration (c1) is held constant

ċr = Jr−1 − Jr, (r ≥ 2), Jr = arcrc1 − br+1cr+1. (1)

Here cr represents the concentration of clusters containing r-monomers, the dot implies a time-

derivative, and Jr is the flux from clusters of size r to those of size r + 1. There are certain
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Figure 1: The effect of our coarse-graining dynamical renormalization on the two parameters θ, p in a

Becker-Döring model with rate coefficients which vary as a power p of the cluster size r, and with ratio of

aggregation to fragmentation rates θ. The dots show the fixed points of the mapping.

mathematical properties of the Becker-Döring system not immediately apparent from the equations

but crucial to its wide-ranging physical applicability. Firstly, the partition function, Qr, satisfies

arQr = br+1Qr+1 together with Q1 = 1 and formally yields the equilibrium solution ceqr = Qrc
r
1. The

relevance of this solution depends on the behaviour of Qr in the limit r → ∞; further analysis of

this is given in Section V, where specific examples are analysed in detail. The function

V ({cr}) =
∞∑

r=1

cr

(
log

(
cr

Qrcr1

)
− 1

)
, (2)

is monotonically decreasing and, provided it is bounded below, qualifies as a Lyapunov function

guaranteeing the convergence of arbitrary initial data to the equilibrium solution. We note that the

density ̺ =
∑

∞

r=1 rcr is not constant since monomers can be added to or removed from the system.

Finally there is a ‘weak form’ for the first equality in (1)

∞∑

r=2

grċr = g1J1 +
∞∑

r=1

[ gr+1 − gr ] Jr. (3)

In forthcoming analysis we assume initial conditions (cr(0)) which for large aggregation numbers

decay faster than any exponential in r.

II Coarse-graining of cluster aggregation space

We now perform a coarse-graining contraction of the infinite set of Becker-Döring equations by

systematically eliminating all the concentration variables except those which represent an aggregation

number Λr where

Λr = (r − 1)λ+ 1, r = 1, 2, 3, . . . . (4)
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We then relabel the retained concentrations by xr = cΛr
. The reduced fluxes are

Lr = αrxrx
λr

1 − βr+1xr+1, (5)

αr = TaΛr
aΛr+1 . . . aΛr+1−1, (6)

βr+1 = TbΛr+1bΛr+2 . . . bΛr+1
, (7)

where T is a constant which represents a change of timescale; the kinetic equations then reduce to

ẋr = Lr−1 − Lr, (r ≥ 2). (8)

This procedure is analogous to the Kadanoff block-spin renormalization procedure [5]; detailed in-

formation for cluster sizes between the aggregation numbers Λr is lost. For more details of this

procedure, see [3, 8]. If the contracted system is to faithfully approximate the original system, we

require that the special mathematical properties mentioned above are preserved under the coarse-

grained rescaling. We can then draw on our renormalization procedure to extract the structurally

stable phenomena present in the system.

The physical properties of the full Becker-Döring system (1) are shared by the contracted system

(5)–(8): the partition function satisfies αrQΛr
= βr+1QΛr+1

, hence xeq
r = QΛr

xΛr

1 is formally an

equilibrium solution. The function V ({xr}) =
∑

∞

r=1 xr(log(xr/QΛr
xΛr

1 )− 1) has the same properties

as (2). The weak form (3) is still valid if cr is replaced by xr and Jr by Lr. Finally the density in

the system is now defined by

̺ = x1 + λ
∞∑

r=1

[(r − 1)λ+ 1]xr. (9)

To apply renormalization ideas to this theory, we consider the repeated application of the coarse-

graining transformation (5)–(8), so we now reapply the contraction procedure with mesh size µ.

Defining new variables z1 = x1, zr = x(r−1)µ+1, and Ir as the flux from zr to zr+1, we find

żr = Ir−1 − Ir, (r ≥ 2), Ir = Arzrz
λµ
1 − Br+1zr+1, (10)

with Ar, Br determined from αr, βr in an analogous way to (6)-(7). A similar set of physical properties

holds for this system of equations as for the original Becker-Döring equations. Thus a repetition of the

coarse-grained contraction is identical to a single application with a larger mesh parameter λµ. This

shows that it is sufficient to consider a system of equations which has undergone a single contraction

with large λ.

III The case of constant coefficients

Although ultimately a theory capable of handling arbitrary forms of rate coefficients ar and br+1 is

our goal, for the sake of simplicity let us start by considering constant coefficients – that is ar = a,
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br = b. The parameter θ = ac1/b enables the system’s behaviour to be classified. The cluster

partition function is defined by Qr = (a/b)r−1 and the forward coefficients in the reduced model by

αr = Taλ, βr+1 = Tbλ. Thus the size-independent rate coefficients ar = a, br = b are mapped to

size-independent rate coefficients in the reduced model. This coarse-graining maps θ to θλ, leading

to three fixed points, θ = 0, 1,∞. The large-time asymptotics of systems with constant coefficients

have been analysed in detail in [8], where it is shown that the θ = 0 case converges to the equilibrium

solution, the θ = ∞ case converges to the steady-state solution xr = x1 by a diffusive wave which

moves through aggregation space in such a way that its position is given by r = s(t) ∼ t, and the θ = 1

case converges to the equilibrium solution xr = x1 by purely diffusive means (xr ∼ x1erfc(r/2
√
t)).

Ref [8] also shows that in order for the contracted system to preserve the correct large-time

asymptotics, the parameter T in (6)-(7) should take the value

T =
ac1 − b

λ(aλcλ1 − bλ)
; (11)

this temporal rescaling implies that our renormalization is dynamic [5]. Following this temporal

rescaling, the large-time limit of the density of the original system with θ > 1 then scales with

1
2
c1(ac1− b)t2, which is identical to the result given by the coarse-grained system (9); and both

V ({cr}) of equation (2) and λV (x) scale with −1
2
c1(ac1−b)2t2 log θ.

IV The case of power-law rate coefficients

In many systems the reaction rates are not independent of size as assumed above, but rather depend

on the size of the cluster according to some power law. We assume ar = arp, br+1 = brp, allowing

us to model surface-limited aggregation in d dimensions with p = 1− 1/d. The parameter θ = ac1/b

remains a useful tool for classifying behaviour; the partition function remains Qr = (a/b)r−1. The

forward coefficients in the reduced model are

αr = aλ {[(r − 1)λ+ 1][(r − 1)λ+ 2] . . . [rλ]}p . (12)

For asymptotically large λ these can be approximated by

logαr ∼ λ log a+ pλ
[
log(rλ)− 1 + (1−r) log

(
1− 1

r

)]
, (13)

so for simplicity we shall take αr = (aλprp)λ, which is asymptotically correct at large r and differs

only slightly at small values of r. In the same manner, the backward rate coefficients in the contracted

model are given by βr+1 = (bλprp)λ.

Our coarse-graining contraction maps the set of models with power law rate coefficients into itself.

The coarse-graining of power-law coefficients is only approximate when p 6= 0. However, the large-

time asymptotics is qualitatively preserved, provided that a similar temporal rescaling is performed

4



as in equation (11) [9]. For any given model the contraction maps the exponent p to λp. Following

a contraction with large λ, there are three cases to consider: p = 0, and large positive or negative

p. The reduced system also has a different θ-parameter, θ̃ = αrx
λ
1/βr+1 = θλ; thus the contraction

maps θ to θλ. The fixed points θ = 0, 1,∞ are therefore of most interest to us. Combining this

information, there are nine fixed points of the coarse-grained contraction in (θ, p) parameter space,

and these form the basis of the ensuing analysis.

Figure 1 shows schematically the effect of the contraction. In phase plane terminology, II has the

form of an unstable node, I, III, V, VIII are saddle points (although they are at the limits of the

allowable domain, so only have trajectories on one side of the fixed point), and IV, VI, VII, IX are

stable nodes. Cases I, IV, VII all have partition function Qr = 0 for r ≥ 2; in cases II, V, VIII the

partition function satisfies Qr = 1, whilst it is undefined in cases III, VI, IX since in all these cases

the fragmentation rate is zero. Having no equilibrium configuration, these three cases approach a

steady-state solution.

V Effect of perturbations on the fixed points

There are two reasons for wanting to study noisy coefficients: firstly any set of coefficients will be

subject to uncertainties, whether derived from experimental data or a mathematical model. Secondly,

systems are always susceptible to thermal (and in the models we study also spatial) fluctuations which

locally alter the rate coefficients. In both cases it is necessary to know whether the models used are

stable to minor variations in rate coefficients.

Firstly we allow each reaction rate (ar, br+1 for r = 1, 2, . . .) to be independently perturbed by a

small amplitude random fluctuation of the form

ar = arp(1 + νξr), br+1 = brp(1 + νχr+1), r = 1, 2, . . . . (14)

with ν ≪ 1 and ξr, χr+1 being independent random variables with zero mean satisfying ξr, χr+1 =

O(1). Such perturbations have no effect on the leading order equilibrium or steady-state solutions,

or the large time asymptotics.

A more interesting case is that in which the presence of noise in the rate coefficients is allowed

to alter their leading order behaviour at large r. To examine these, we perturb the forward and

backward rate coefficients according to

ar = arp + δr, br+1 = brp + εr+1, r = 1, 2, . . . . (15)

where δr, εr+1 have characteristic magnitude ν ≪ 1. We now investigate the effect of such perturba-

tions on the equilibrium and steady-state solutions. Since we assume c1 = 1, the partition function is

5



the equilibrium solution. However, as described in [8], there are cases where the equilibrium config-

uration formally has infinite mass and is hence not relevant; the system then approaches one of the

family of steady-state solutions in which all fluxes, Jr, are equal. The steady-state flux is determined

by requiring the most rapid decay in cr as r → ∞. We now apply these ideas to the nine fixed points

isolated earlier.

Case I: p = 0, θ = 0. Since the non-perturbed case has ar = 0 for all r, the partition function and

the equilibrium solution are then zero; introducing perturbations removes this degeneracy, and the

equilibrium solution then becomes rapidly decaying in r, namely cr = O(νr−1), where ν is a small

parameter representing the typical size of perturbations δr.

Case II: p = 0, θ = 1. In this case, introducing perturbations to the rates modifies the partition

function from Qr = 1 to

Qr ∼ 1 +
r∑

k=1

(δk − εk+1), (16)

so small amplitude noise in the coefficients does not affect the leading-order behaviour of the system.

Case III: p = 0, θ = ∞. In the absence of perturbations, there is no partition function for this

case; when present, Qr ∼
∏r−1

k=1(1/εk). However, this case converges to a steady-state rather than the

equilibrium. When perturbations are included, the steady flux is J = 1 + (δ1−ε2) + O(ν2), which

implies that the concentrations asymptote to cr = 1 + (δ1−ε2+εr+1−δr) +O(ν2).

Case IV: p ≫ 1, θ = 0. As in case I, where noise is absent the partition function, Qr, is zero for

r ≥ 2. Introducing noise removes this degeneracy, for small ν, Qr ∼ O(νr−1). Thus, as in Case I,

the equilibrium solution rapidly decays with r.

Case V: p ≫ 1, θ = 1. The balance of aggregation and fragmentation implies that Qr ≡ 1 in the

case with no noise. The addition of noise to the rates alters this, to

Qr = 1 +
r−1∑

k=1

(
δk − εk+1

kp

)
+O(ν2), (17)

wherein we see that the alteration to the partition function only affects the O(ν) correction term,

leaving the leading order behaviour (Qr ∼ 1) unaltered.

Note that if p > 1 then the system does not evolve to the equilibrium solution, but instead is

attracted to a steady-state solution with more rapid decay in the limit r → ∞. Perturbing the rate

coefficients modifies this state to

cr = 1− 1

ζ(p)

r−1∑

k=1

1

kp
+

r−1∑

k=1

δk − εk+1 − J1

kp
, (18)

where J1 = (1/ζ(p))
∑

∞

k=1(δk−εk+1)/k
p, which has constant flux J = 1/ζ(p) + J1.

6



Case VI: p ≫ 1, θ = ∞. In this case the system approaches a steady-state solution, with flux

J = 1 + (δ1 − 2−pε2) +O(ν2), implying

cr =
1

rp

[
1 +

(
δ1 − 2−pε2 +

εr+1

(r+1)p
− δr

rp

)]
. (19)

Thus noise in the rate coefficients has a minor effect on the solution.

Case VII: p ≪ −1, θ = 0. Formally we have,

Qr =
r−1∏

k=1

δk
kp + εk+1

, (20)

thus when r = O(1), Qr = O(νr−1). However, when r = rc := O(ν1/p)

cr ∼ [(ν1/p)!]−p exp(ν1/p log ν). (21)

For r ≥ rc, the perturbations have the same magnitude as the non-random part of the rate coefficient,

thus all subsequent Qr values depend strongly on the perturbations δk, εk and have the order of

magnitude given by (20).

Case VIII: p ≪ −1, θ = 1. In the noiseless case this system converges to the equilibrium solution

cr = 1. When noisy coefficients are introduced, this solution may cease to be valid since at large r,

the noise will be a leading-order effect. For small r we construct an asymptotic approximation to

the modified equilibrium solution

cr = 1 +
r−1∑

k=1

k−p(δk−εk+1) +O(ν2). (22)

This approximation to the solution ceases to be valid at large r, where cr = O(1). We expect cr to

remain O(1) for all values of r, but to vary from cr = 1 by significant amounts at large r.

Case IX: p ≪ −1, θ = ∞. In the absence of noise, this case approaches the divergent steady-state

cr = r−p (with flux J = 1). For small amplitude noise, a modified form of this solution persists

cr=
1

rp

[
1 +

(
δ1−2−pε2−

δr
rp

+
εr+1

(r+1)p

)]
+O(ν2); (23)

however, this ceases to be valid when r = O(ν1/p). For values of r of this magnitude and larger,

perturbations to the rates cannot be neglected as they constitute a leading-order effect in the system;

and cr = O(1/ν) for all r ≥ O(ν1/p).

VI Effect of perturbations on the coarse-grained reaction rates

In this section we examine the effect which the coarse-graining contraction procedure has on the

perturbed rate coefficients. In particular, we investigate whether small amplitude noise in the full
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description of the model maps to small amplitude noise in the reduced description. On inserting (15)

into (6)-(7) with T = λ−pλ, we obtain

αr = aλrpλ +∆r, βr+1 = bλrpλ + Er+1, (24)

where ∆r, Er+1 represent the perturbations in the contracted descriptions and depend respectively

on the δk, εk. For each of the nine fixed points (in which a, b = 0, 1) we calculate the leading order

form of this dependence.

Case I: p = 0, θ = 0. Since a = 0, b = 1, we have αr = ∆r = O(νλ), and βr+1 = 1 +O(ν) Thus

following contraction, the perturbations remain small.

Case II: p = 0, θ = 1. Following the coarse-graining contraction, the reaction rates are given

by αr, βr = 1 + O(ν). So the perturbations remain the same order of magnitude in the contracted

model as in the full.

Case III: p = 0, θ = ∞. The domination of aggregation is not altered by the presence of small

noise, since αr = 1 +O(ν) and βr = O(ν).

Case IV: p ≫ 1, θ = 0. The contracted rates are given by αr = rpλ +O(ν) and βr+1 = O(ν); in

the latter, we have made the approximation (13) valid for large r. The system remains fragmentation-

dominated.

Case V: p ≫ 1, θ = 1. For large r, the rates in the contracted system have the form αr, βr+1 =

rpλ+O(ν) Thus the noise will not cause any change to the leading order form of the rate coefficients.

Case VI: p ≫ 1, θ = ∞. The domination of aggregation persists, since following contraction

αr = rpλ +O(ν) whilst βr+1 = O(νλ).

Cases VII–IX: p ≪ −1. The formulas for ∆r, Er+1 in these cases are identical to cases IV,V,VI

respectively. However, here p < 0 so that at large cluster sizes r, the perturbations will be of the same

order of magnitude as the deterministic part of the rate coefficients. This occurs when r = O(ν1/p).

In Cases I–VI, the noise indeed remains small in the contracted description of the model hence

these may be termed universality classes, whilst in Cases VII-IX, this is not the case. In these last

three cases, at large aggregation numbers, the noise in the full description is not small relative to

the power law component of the rate coefficient, and this is reflected in the contracted model. In

Cases VII–IX perturbations to the power-law rate coefficients play a major role in the kinetics at

large cluster sizes r, as they do in the full model. Thus Cases VII-IX may be termed universality

classes if the added noise decays faster than the given power law as r → ∞.
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VII Conclusions

We have applied renormalization ideas to the Becker-Döring model of cluster-formation. A novel

feature of this work is that it is the cluster aggregation space which is rescaled, rather than a spatial

dimension. Moreover, a dynamical renormalization is required to correctly maintain the time-scales

of the growth and fragmentation processes following the rescaling of aggregation space. In the case

of the power-law model, nine fixed points of the renormalization procedure have been identified and

analysed in greater detail, quantitatively providing nine types of large-time asymptotics which may

be exhibited by the system. Five of these systems tend to equilibrium, and the remaining four to

steady-state solutions. The pure fragmentation cases (I,IV,VII) all tend to the trivial equilibrium

xr = δr,1.

In Cases I, IV, VII, a diffusive wavefront invades the large-r region where cluster concentrations are

zero, leaving the equilibrium solution behind the wavefront. In Cases II, V and VIII the equilibrium

solution is approached by purely diffusive mechanisms, no advection being present in the system. If

p > 1 in Case V, then the system approaches a steady-state solution rather than the equilibrium

solution, since the steady-state has faster decay at large aggregation numbers. This case is thus

similar to Cases III, VI, IX, all of which approach steady-states rather than true thermodynamic

equilibrium. However, their large-time asymptotics are more akin to Cases I,IV,VII, being dominated

by a diffusive wave which moves into the large r-domain.

Thus for the first time we have identified universality classes present in the Becker-Döring equa-

tions, in that any system with power-law coefficients can be classified into one of the nine cases which

correspond to fixed points of our contraction, and this qualitatively determines the system’s large-

time behaviour. In physical terms, our demonstration that a renormalization structure underpins the

Becker-Döring equations carries with it the implication that universal behaviour can be identified

in the approach of such systems to equilibrium or steady-states. In a forthcoming paper [9], we

shall discuss the temporal behaviour in detail. In the case of the Becker-Döring equations, this is a

very welcome development, since it dispenses with the need to specify in full detail all the generally

unknown fine-grained rate coefficients. For example the partition function is left unchanged by the

coarse-graining, as is the equilibrium solution and the steady-state solution. At the end of Section III

we showed that the large-time behaviour of both the density and the Lyapunov function (free energy)

were left invariant by our coarse-grain rescaling. It is perhaps worth pointing out here, however, that

consideration of the asymptotic limit implied by the renormalization procedure is not necessarily

always appropriate, e.g. for systems in which it is crucial to retain some level of fine-grained detail

in order to properly capture the dynamics.

The successful application of the renormalization techniques reported here opens the way for a
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study of generalised Becker-Döring equations using similar methods; it also furnishes a firm theo-

retical foundation for the analyses we have previously given of various generalisations of the basic

Becker-Döring theory to a wide range of processes of physicochemical interest, including micelle and

vesicle formation and self-reproduction [3, 4], generalised nucleation and growth phenomena [7], and

macromolecular sequence selection in biopolymers [10].
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