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Pressure dependence and non-universal effects of microscopic couplings on the

spin-Peierls transition in CuGeO3

R. Raupach, A. Klümper, F. Schönfeld
Institut für Theoretische Physik, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany

The theory by Cross and Fisher (CF) is by now commonly accepted for the description of the spin-
Peierls transition within an adiabatic approach. The dimerization susceptibility as the essential
quantity, however, is approximated by means of a continuum description. Several important exper-
imental observations can not be understood within this scope. Using density matrix renormalization
group (DMRG) techniques we are able to treat the spin system exactly up to numerical inaccuracies.
Thus we find the correct dependence of the equation of state on the spin-spin interaction constant
J , still in an adiabatic approach. We focus on the pressure dependence of the critical temperature
which is absent in the CF theory as the only energy scale with considerable pressure dependence is
J which drops out completely. Comparing the theoretical findings to the experimentally measured
pressure dependence of the spin-Peierls temperature we obtain information on the variation of the
frustration parameter with pressure. Furthermore, the ratio of the spectral gap and the transition
temperature is analyzed.

I. INTRODUCTION

Low dimensional quantum systems are currently of
considerable interest mainly due to the fascinating phase
transitions driven by strong quantum fluctuations. The
continuous interest from the theoretical side is provoked
by the discovery of many experimental systems realizing
quasi one-dimensional quantum systems. In the field of
spin-Peierls systems the discovery of the inorganic com-
pound CuGeO3 realized a milestone as many measure-
ments have been performed with high accuracy since.
Therefore, CuGeO3 has attracted much attention in ex-
perimental as well as in theoretical works. The high
temperature behaviour of CuGeO3 was found to be mod-
elled adequately by one-dimensional frustrated Heisen-
berg chains [1–4]. In the dimerized phase, many features
were shown to be consistent within an adiabatic descrip-
tion of the phonon degrees of freedom. This observation
comprises zero temperature [5–8] as well as thermody-
namic properties [4].
Even in one space dimension only a few exact results

exist particularly concerning thermodynamics. For in-
tegrable systems the thermodynamical potentials and
asymptotic behaviour of correlation functions are known.
A notorious problem is posed by response functions and
non-integrable systems in general. With respect to this,
the recently developed transfer matrix DMRG (TMRG)
[9–11] on the basis of transfer matrices [12] provides a
very powerful method to calculate thermodynamic quan-
tities of spin chains without any use of perturbative meth-
ods. This has been demonstrated in several applications
[4,11,13–17].
In this paper we study the influence of microscopic

coupling constants on the spin-Peierls transition tem-
perature. This allows for an understanding of the
considerable pressure dependence of the phase diagram

along the following line of reasoning. It is known
that external pressure affects the magnetic properties
of CuGeO3 considerably [3,18,19]. Fits for the magnetic
susceptiblity yield the change of the nearest-neighbour
spin interaction J and estimates for the frustration
paramter α. Using these data for J as function of pres-
sure we are able to explain the observed increase of the
spin-Peierls temperature and estimate the pressure de-
pendence of the next-nearest-neighbour exchange
The outline of the paper is as follows. In section II we

present the model and a motivation for our description
of the experimentally studied spin-Peierls systems. We
study the static dimerization susceptibility in section III.
Section IV is devoted to the computation of the critical
temperature as function of the spin exchange couplings
and external pressure, respectively. We give a compari-
son of our results with experimental measurements. In
section V we investigate the spectral gap and its ratio to
the spin-Peierls temperature. The conclusion is given in
section VI.

II. MODEL

In the inorganic spin-Peierls compound CuGeO3 the
magnetic interactions are attributed to Heisenberg spin
exchange. There is numerous evidence that in addition
to the nearest-neighbour interaction (J) a next-nearest-
neighbour exchange J ′ = αJ [1–3] with α = 0.35 has to
be taken into account. Usually the constant α is referred
to as frustration parameter.
At the spin-Peierls transition the system undergoes a

structural phase transition driven by the quantum spin
system coupled to the phonons. The spin-phonon cou-
pling is modelled by spin exchange integrals depending
linearily on the local displacements. The adiabatic treat-
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ment yields a quantum spin system coupled to just one
phonon mode with the commonly used Hamiltonian

Ĥ =
∑

i

{

J [(1 + δi)SiSi+1 + αSiSi+2] +
K

2
δ2i

}

, (1)

where Si are spin 1/2 operators, δi = (−1)iδ denotes
the modulation of the magnetic exchange couplings in
the dimerized phase. Here, we restrict ourselves to van-
ishing external magnetic field where the system shows a
phase transition from the uniform (U), i.e. δ = 0 to the
dimerized (D) phase (δ > 0).
The elastic energy can be expressed in terms of mi-

croscopic constants rendering (1) equivalent to an RPA
treatment of the phonon propagator for the full spin-
phonon system. Within RPA the condition for the phase
transition is identical to that for (1) as formulated in (4)
below if K is adjusted to the following value [20]

K =
J2

2

(

∑

i

λ2
i

MiΩ2
i

)

−1

=: CJ2. (2)

The sum runs over the spin-Peierls active modes. For
each mode i, Mi denotes the effective mass of the unit
cell, Ωi the frequency of the spin-Peierls active phonon
and λi the spin-phonon coupling constant. In particular,
K is proportional to J2. The constant C contains only
the microscopic parameters of the underlying lattice.
Our numerical investigations do not improve over those

of CF [21] with respect to the RPA treatment. However,
within the RPA approximation we deal with the complete
dynamics of the quantum spin system. Note that in Ref.
[21] a continuum description of the spin system was used
with a subsequent bosonization treatment which is be-
lieved to capture only the long distance asymptotics of
the correlation functions.

III. RESPONSE FUNCTIONS

The static dimerization susceptibility of the spin sys-
tem is defined by

Aα(x) = −J−1 lim
δ→0

∂2fα(x, δ)

∂δ2
, (3)

where x = T/J , and fα(x, δ) is the free energy per site for
system (1) with fixed dimerization δ, frustration α and
K set to zero. The response function A is nothing but
the correlation of the nearest neighbour spin exchange
SiSi+1 (dimer operator) at momentum q = π and energy
ω = 0. The U/D phase transition takes place for

Aα(xSP) = K/J = CJ. (4)

For details the reader is referred to [4].

Let us now review the results obtained by CF. Within
the bosonization approach they find x · Aα=0(x) = χ0

with χ0 ≈ 0.26. As a direct consequence by use of the
inversion of (4),

TSP = JA−1
α (CJ), (5)

this yields dTSP/dJ = 0. Of course, this is also clear
from the fact that the energy scale of the spin system
completely drops out due to scale invariance.
Fig. 1 shows a comparison of our TMRG results1 for

the function x · Aα(x) for various values of α with the
findings of CF and exact data for free fermions. The
enormous progress achieved by the numerical analysis
is the correct treatment of the spin system on the lat-
tice at practically all length scales. This improves over
the continuum limit approach in which the asymptotics
of correlation functions is incorrectly extended to short
distances. For the unfrustrated Heisenberg model, i.e.
α = 0, we are able to observe directly the deviations be-
tween the continuum limit and a lattice treatment of the
spin degrees of freedom.
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α=0.241

α=0

CF

free fermions

FIG. 1. Depiction of the function x·A(x) with x = T/J for:
free fermions, Heisenberg model in continuum limit (CF), and
TMRG results for frustration parameter α = 0, 0.241, 0.35.
The circels denote the relevant values for CuGeO3 (see text).

With respect to CuGeO3 we fix J by the requirement
that the experimental magnetic susceptibility equals that
of the strictly one-dimensional model at the critical point
leading to J = 130K (α = 0), J = 150K (α ≈

αc ≈ 0.2412 [1,22,23]), J = 160K (α = 0.35), and
J = 350K (free fermions). The circles in Fig. 1 denote

1We have used 24 states in the renormalization step and
have set the accuracy with respect to Trotter decomposition
to (TM)−1 = 0.05.
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the values of x ·Aα(x) at the experimentally determined
spin-Peierls temperature T 0

SP = 14.4K for CuGeO3 (see
e.g. [24–26]). These values imply constants (cf. Eq. 4)
C0 ≈ 0.019 K−1 (α = 0), C0.241 ≈ 0.040 K−1 (α = 0.241),
C0.35 ≈ 0.070 K−1 (α = 0.35), and Cff ≈ 0.0027 K−1 (free
fermions).
For the unfrustrated model the value xSP ·Aα=0(xSP)

almost coincides with the results of CF. However the
agreement happens only fortuitously since χ0 is a zero
temperature quantity. For other frustration parameters
qualitative and quantitative deviations from the CF-line
appear. The divergence of A(x) for free fermions, Heisen-
berg model with α < αc, α = αc, and α > αc, is log(x),
1/x× log. corrections [4,27], 1/x (see [22] and references
therein), and exponential [4], respectively. The quanti-
tative values for xSP ·A(xSP) also differ from each other.
We must conclude that it is risky to deduce quantita-
tive results from the bosonization approach as already
pointed out by CF. For applications to CuGeO3 it is fur-
thermore uncertain if the pure Heisenberg chain can even
yield the qualitative results correctly. From the analysis
of the susceptibility data at higher temperature we are
led to favour the frustration parameter α = 0.35 [2–4]
for which the behaviour of the response function devi-
ates considerably from χ0/x.

IV. PRESSURE DEPENDENCE OF THE

MAGNETIC SYSTEM

From (5) it is straight forward to deduce the depen-
dence of the spin-Peierls temperature on the variation of
the spin coupling constants. The relation is valid for ev-
ery fixed value of α. We first focus on the system with
α0 = 0.35 at ambient pressure.
The dependence of J and α on the external hydrostatic

pressure have already been obtained from the relation
between magnetostriction and the pressure dependence
of the magnetic susceptibility χ [3]. From our TMRG
data we find ∂χ

∂ ln J ≫
∂χ

∂ lnα at constant temperature.
These two quantities appear in the following expression,
dχ
dp =

∑

i
∂χ

∂ ln xi

∂ ln xi

∂p , where x1 = J and x2 = α. There-
fore, we conclude the value for the pressure dependence
of J to be more reliable than that of α. The authors of
Ref. [3] deduced a value of d ln J

dp = −7.0(5)%/GPa us-
ing the relation between magnetostriction and pressure
dependencies of J and α. Using in addition the exper-
imentally determined value for the pressure dependence
of the spin-Peierls temperature dTSP

dp ≈ 4.8 K/GPa [18]

we obtain the relation TSP(J) (thick black line in Fig. 2).
Due to the particular geometry involved in the super-

exchange mechanism we expect the magnetic exchange
energies to respond much more sensitively to the pres-
sure (bond-bending mechanism [28,29]) than the phonon
frequencies or the spin-phonon coupling constants. We
therefore consider C as independent of pressure which

applicability for CuGeO3 will break down at higher pres-
sure. The numerical results with C = C0.35 are shown in
Fig. 2. Obviously, a constant value of α = 0.35 (dashed-
dotted line) can not explain the observed behaviour, even
yielding a change of the critical temperature to opposite
direction.
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J’=const.
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FIG. 2. Variation of the spin-Peierls temperature versus
the relative change of the magnetic exchange coupling. The
lines show TMRG results for constant α and fixed C0.35. The
thick black line displays the experimental behaviour as an
implicit function of pressure. The dashed (dashed-dotted) line
shows the theoretical results for dJ ′/dp = 0 (dα/dp = 0). The
corresponding dependencies of α on the pressure are shown
in the inset.

From geometrical reasons we expect J ′ to be non-
decreasing. Assuming J ′ = constant to be realized, the
increase of TSP is too small by a factor of approximately
4 (as displayed by the thick dashed line in Fig. 2). Con-
sequentially, the main effect must be a strong increase
of J ′. The deduced dependence of α on the hydro-
static pressure fits well with d lnα

dp = 24 ± 2%/GPa (or
d lnJ′

dp = 17± 2%/GPa respectively) up to about 1.4 GPa
as displayed in the inset of Fig. 2. The error was deter-
mined assuming that the value of dTSP

dp involves an error of

±0.5K/GPa, where the uncertainty in d ln J
dp only playes a

secondary role. In general, already the weak requirement
that J is non-increasing with hydrostatic pressure gives
a minimum pressure dependence of d lnα

dp ≥ 20%/GPa.
The pressure dependence of α has already been investi-
gated in Ref. [3], however, with large error bounds which
are respected by our results. The divergence of d lnα

dp
at a finite pressure or in other words, an upper limit of
the critical temperature, is a physical prediction of the
chosen one-dimensional approach. It is mostly based on
a limited spontaneous gap as a function of α. But as
already mentioned above, we expect an agreement with
CuGeO3 only in the low pressure region.
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A similiar analysis can be done on the basis of the
unfrustrated Heisenberg model and free fermions. Eval-
uating the magnetic susceptibility data of Takahashi et
al. [18] we derive d lnJ

dp ≈ −5%/GPa (α = 0) and
d ln J
dp ≈ −6%/GPa (free fermions). In contrast to the

frustrated case, a change of α under pressure for these
initially unfrustrated models is not reasonable. The de-
duced theoretical BCS-ratio is too small by a factor of
about 3 for free fermions (or equivalently Hartree-Fock
calculations), in the case of the unfrustrated Heisenberg
model even by a factor of ≈ 15 (see Tab. I).
We must conclude that neither the unfrustrated

Heisenberg model nor Hartree-Fock results are able to
describe the physics of CuGeO3 correctly. In constrast
to this a Heisenberg model with parameters α0 = 0.35
ans d lnα

dp = 24%/GPa turns out to reproduce the exper-
imental findings up to about 1.4 GPa.

V. “BCS-RATIO”

Another interesting quantity is the ratio of the singlet-
triplet gap to the spin-Peierls temperature, known as
“BCS-ratio”. Combining the TMRG data for A with zero
temperature DRMG calculations for the singlet-triplet
gap as a function of α and the dimerization one gets a
relation between ∆ST and TSP. The results are shown in
the bottom section of Fig. 3.

10.0 15.0 20.0 25.0

TSP [K]

0

1

2

3

4

5

∆ST/TSP

α=0, C=C0

α0=0.35, C=C0.35

free fermions, C=Cff

Experiment

0.05 0.10 0.15 0.20

 TSP/J

0

1

2

3

4

5

 ∆ST/TSP

0.00 0.05 0.10 0.15 0.20 0.25
TSP/J

0.0

0.2

0.4

0.6

∆ST/J

α=0.5
α=0.35
α=0
free fermions

ambient
1 GPa

2 GPa

pressure
ambient

1 GPa

2 GPa

pressure

α=0.5
(p=1.46 GPa)

FIG. 3. Bottom: Singlet-triplet gap ∆ST as a function of
the spin-Peierls temperature. Symbols denote the DMRG re-
sults, the solid line shows the exact result for free fermions.
The thin lines show the expected behaviour from the scaling of
A (see text). Top left: Ratio of the spin gap and spin-Peierls
temperature (BCS ratio). Top right: BCS ratio, experiment
versus theory.

Using the scaling of A [4], the definition of the criti-
cal temperature and the dependence of the ground state

energy on small saturation dimerizations δ0 = δ(T = 0)
one finds

δ0 ≃ TSP
3/2 exp(−

∆0
ST

2
/TSP), (6)

ignoring logarithmic corrections for α < αc. Here ∆
0
ST

de-
notes the singlet-triplet gap for vanishing dimerization,
which is zero for α ≤ αc. In the next step we apply

∆ST−∆0
ST

≃ δ
2/3
0 [30,31] to derive an explicit asymptotic

relation between the gap and the spin-Peierls tempera-
ture,

∆ST −∆0
ST

≃ TSP exp(−
∆0

ST

3
/TSP), (7)

again neglecting logarithmic corrections for α < αc. The
thin lines in Fig. 3 show fits according to Eq. (7) in the
range up to T/J = 0.15. For α = 0.5 we used the known
value ∆0

ST
= 0.2338J [32,33], hence only performed a

one-parameter fit in the presented region. For α = 0.35
a spontanous gap of ∆0

ST
= 0.035J is used, also derived

by T = 0 DMRG. For α = 0 the predicted linear be-
haviour (cf. (7)) can not be seen due to the logarithmic
corrections. A linear extrapolation of our data points
shows a positive offset. However, this is consistent with
the presence of logarithmic corrections since we expect a
zero limit at T = 0 with infinite slope. The free fermions
show the well known behaviour ∆ST/TSP ≈ 1.76. We now
derive the BCS-ratio as a function of the spin-Peierls tem-
perature simply by dividing by TSP (upper left of Fig. 3).
Fistly we observe that the Heisenberg like models have a
distinctly larger BCS-ratio than free fermions.
For comparison to experiment we again fix the con-

stant C. Furthermore, the pressure dependence of J and
the frustration derived in section IV is taken into ac-
count here. The results are shown in the top right of
Fig. 3. Interestingly, the experimental result [18] com-
pares well with the low temperature asymptotics for free
fermions but showing a pronounced increase with pres-
sure which is not reproduced. From the investigations in
Ref. [4] we already know for Heisenberg models that the
gap and therefore the BCS-ratio is larger than the exper-
imentally observed one. This happens due to the strictly
one-dimensional treatment of CuGeO3 , i.e. the neglect
of the dispersion perpendicular to the chain which will
lower the true gap. The unfrustrated chain even yields
a qualitatively incorrect tendency of a decreasing BCS-
ratio under pressure the appropriately frustrated system
is at least able to explain the increase.

VI. CONCLUSION

The TMRG analysis of the spin-Peierls phase transi-
tion allows a complete treatment of the quantum dynam-
ics. In contrast to continuum descriptions correlations
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are respected at all length scales, which leads to the ex-
act response functions. Within the scope of an adiabatic
description, equivalent to RPA as in the CF theory, we
are able to study the influence of the spin-spin exchange
energy scale J on the critical temperature. We like to
emphasize that these results are a non-trivial improve-
ment over the CF theory which shows no dependence on
J at all. Moreover, frustrated models can be investigated
as well.
Using the pressure dependence of J it is possible to

study the dependence of the spin-Peierls temperature on
pressure. Neither Hartree-Fock calculations nor the un-
frustrated Heisenberg chain yield the strong increase as
measured. Once again, our investigations favour a frus-
tration of α = 0.35 for CuGeO3 at ambient pressure.
We find a rather strong dependence of the frustration
on pressure, d lnα

dp = 24 ± 2%/GPa, which agrees with

earlier studies [3].
The analysis of the “BCS-ratio” also gives a clear in-

dication that frustration is present in CuGeO3 , even
though some quantitative deviations can only be ex-
plained by residual perpendicular couplings. There is
evidence for a strong dependence of α on pressure from
the “BCS-ratio”.
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