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Abstract. The motion of relativistic particles around three dimensional black holes

following the Hamilton-Jacobi formalism is studied. It follows that the Hamilton-Jacobi

equation can be separated and reduced by quadratures in analogy with the four-

dimensional case. It is shown that: a) particles are trapped by the black hole indepen-

dently of their energy and angular momentum, b) matter always falls to the centre of the

black hole and cannot undertake a motion with stables orbits as in four dimensions. For

the extreme values of the angular momentum of the black hole, we were able to find exact

solutions for the equations of motion and trajectories of a test particle.
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Since the discovery of three-dimensional gravity [1] many efforts have been performed

in order to establish a closer analogy between three-dimensional gravity and the four-

dimensional case. Following this perspective, it was shown that in three dimensions there

are classical solutions [2] of the Einstein field equations that keep a narrow relation with the

Schwarzschild or Kerr solutions. These “black hole” (BH) like solutions exhibit a behaviour

similar to their four-dimensional homologous and keep also properties such as horizons or

thermodynamic features [3]. However, in spite of these results, it seems interesting to

investigate to what extent these analogies remain true. Following this research line, it was

found recently [4] other BH-like solution for a three-dimensional gravity characterized by

mass, charge and angular momentum. Hence, in many aspects, this solution is the natural

analog of the four-dimensional Kerr-Newman solution.

The purpose of the present letter is to analyse the motion of relativistic test particles

in the geometry found in [4] in order to understand some issues such as whether there

is trapping of particles by this BH or not, or whether it makes sense to talk about cross

section for capturing particles or not, etc.. This is an interesting point because some of

the solutions found in the literature are solutions with cone-like singularities (exhibiting

deficit angles) and in these cases, there is no trapping of particles for the same reason by

which there is no trapping of particles by cosmic strings [5].

More precisely we will show the following issues:

a) The associated Hamilton-Jacobi equation is separable and trivially reducible by qua-

dratures.

b) The two extreme cases, i.e., when the angular momentum of the BH is zero and

maximum respectively, the equations of motion can be integrated exactly.

c) The only possible trajectories for test particles, are those that fall into the singularity.

In order to show these results we start by using the Hamilton-Jacobi formalism, applied

originally by Kaplan and Carter for the Schwarzschild [6] and Kerr BH [7] respectively.

The authors in ref.[4] considered the action

I =
1

2π

∫

d2x dt
√
−g
[

R+ 2l−2
]

+B, (1)

where B is a surface term and the radius l is given by l = 1√
−Λ

, with Λ being the (negative)
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cosmological constant. They found that the corresponding Einstein’s equations are solved

by the following BH field

ds2 = −(N2 − r2Nφ)dt
2 +N−2dr2 + r2dφ2 + 2r2Nφdt dφ, (2)

where the lapse function N2 and Nφ are defined as

N2 = −M +
r2

l2
+

J2

4r2
, (3a)

Nφ = − J

2r2
. (3b)

In (3) M and J are two constants of integration that can be understood as the mass and

the angular momentum of the BH respectively.

As it was discussed in [4], the lapse function N2 vanishes for

r± = l

[

M

2

(

1±
√

1− J2

M2l2

)]

1

2

. (4)

The BH horizon is identified with r+, and it will exist only if M and J satisfy the relations

M > 0, |J | ≤ Ml. (5)

Observe that in the extreme case |J | = Ml both roots in (4) coincide.

In order to use the Hamilton-Jacobi equation

gµν
∂S

∂xµ

∂S

∂xν
+m2 = 0, (6)

we see that we need the contravariant components of the metric, which, after inverting

gµν , are given by

g00 = −N−2, g11 = N2,

g22 =
1

r2
(1− r2

N2
φ

N2
), g02 = g20 =

Nφ

N2
. (7)
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Substituting (7) in (6), the Hamilton-Jacobi equation for a relativistic test particle of

mass m becomes

−N−2

(

∂S

∂t

)2

+N2

(

∂S

∂r

)2

+
1

r2

(

1− r2
N2

φ

N2

)

(

∂S

∂φ

)2

+ 2
Nφ

N2

∂S

∂t

∂S

∂φ
+m2 = 0. (8)

The equation (8) can be easily separated with the aid of the following ansatz

S(r, φ, t) = −Et+ Lφ+ S1(r), (9)

where E and L are the energy and the angular momentum of the particle respectively.

Substituting (9) into (8) and solving for S1, we get

S1 =

∫

dr

N

√

√

√

√

(

E

N

)2

− L2

r2

[

1− r2
(

Nφ

N

)2
]

+ 2
NφEL

N2
−m2, (10)

and a solution of the Hamilton-Jacobi is obtained by quadratures.

The trajectory of the particle can be determined, as usual, by stating that ∂S
∂E

and ∂S
∂M

are constants respectively. However, we shall adopt another approach, and we shall obtain

the equations of motion directly from the so called first integral of the geodesic equation

[8]

Pµ = m
dXµ

dτ
= −gµν

∂S

∂Xν
, (11)

where τ is the proper-time of the test particle.

Substituting equations (7), (9) and (10) into (11), we obtain, after straightforward

calculations, that

m
dt

dτ
= − 1

N2
(E +NφL), (12a)

m
dφ

dτ
=

Nφ

N2
(NφL+E)− L

r2
, (12b)

m2

(

dr

dτ

)2

= (E +NφL)
2 −

(

LN

r

)2

−m2N2. (12c)

Equations (12a-12c) describe the motion of a relativistic test particle with mass m in

the geometry given by (2). Hence, we can analyse what kind of motion around the BH

can be described by the test particle.
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In order to see whether bounded orbits (which does not mean closed orbits) are allowed

by this geometry or not, the first thing we must do is to search for turning points. With

this goal, we just impose that the r.h.s. of (12c) must vanish. Hence, the turning points

are given, in principle, by
α

r2
+ βr2 + γ = 0, (13)

where we defined

α = L2M − 1

4
m2J2 − JLE, (14a)

β = −m2

l2
, (14b)

γ = −L2

l2
+ E2 +m2M. (14c)

Solving (13) we find the roots

R2
max = − 1

2β
[γ +∆], (15a)

R2
min = − 1

2β
[γ −∆], (15b)

where

∆ =
√

γ2 − 4αβ.

A necessary condition (but not sufficient) for R2
min to exist is that R2

min ≥ 0. Observ-

ing that β < 0 by (14b), this leads to the following condition

α ≤ 0, (16)

which must always hold.

Once we got expressions for the turning points Rmin and Rmax, we could be suggested

that both of them would always exist, or at least that they would exist for some values of

the parameters M and J (which characterizes the BH) and L and E (which characterizes

the orbit). This would lead us to the naive conclusion that bounded orbits are possible

for the case at hand. However, in order to have bounded orbits, we must also be sure that

Rmin is greater than the BH horizon, and as we shall see, this will never occur. We shall

establish the above result by using two different approaches.
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The first one makes use of the corresponding effective potential, which can be obtained

in the following way: we start in the same way as if we were interested in obtaining the

turning points (let us denote them by RTP ), that is, putting the r.h.s. of (12c) equal to

zero. This gives us an algebraic equation like F (RTP , E, L,M, J) = 0, which, after solving

for RTP , gives us the turning points. However, instead of solving for RTP , if we now

solve for E, and if we consider fixed values for L,M and J , we will get E = E(RTP ).

The effective potential Veff (r) will coincide precisely with this function, provided RTP is

thought as the variable r.

For the problem at hand a direct calculation of the effective potential yields

Veff (r) =
JL

2r2
+N(r)

√

(

L

r

)2

+m2, (17)

and a lengthy, but straightforward analysis shows that there are neither minima nor max-

ima in the region of physical interest1 (outside the BH horizon).

Hence, independently of its energy and angular momentum, a test particle always falls

into the singularity r = 0 and there are no stable orbits. As already mentioned, this result

does not have analog in four dimensions, where some stable orbits are allowed [6,9].

The same result can be reached by analysing the equations of motion (12). In fact, we

note that although the set of equations (12) is difficult of to solve, it is possible to extract

physical information from them.

Actually, for any value of the BH parameters, the only equation that can be exactly

integrated is (12c),
1

r2
= − 2β

γ +∆ sin x
, (18)

where x = 2
√
−β τ

m
.

From this equation we can infer some general consequences

(a) When ∆2 > 0 the motion of the particle can be bounded between two circles of radii

Rmax and Rmin respectively; if Rmin is smaller than the horizon such motion will

exist only until the particle reachs the gravitational radius where it will be captured

by the BH.

1 We have checked this result numerical and analitically.
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(b) If ∆2 = 0 the test particle will describe, in principle, a circular motion and again, it

will be possible only if its radius is greater than the horizon.

(c) If ∆2 < 0 the motion will not take place.

The conditions (a)-(b) imply relations between the parameters of the particle (m,L,E)

and the BH ones (M,J). For a circular motion this relation is

J =
(El − L)

2

m2l
+Ml, (19)

However, Ml is the maximum angular momentum of the BH which is physically

allowed and, as a consequence, a circular orbit is possible only if both relations J = Ml

and El = L are simultaneously satisfied.

On the other hand, the radius R0 of this circular orbit is given by (it suffices to

substitute ∆ = 0 into (15))

R0
2 =

−γ

2β
|J=Ml=ML

E

=
Ml2

2
= Rg

2, (20)

which is just the horizon (4) in the extreme case J = Ml. Thus, we conclude that,

although equation (18) gives an oscillating solution, the presence of the horizon implies

that a circular motion can never occur, which means that there is no minimum of Veff (r)

in the physical region.

Therefore, we have seen by using two different points of view that the three-dimensio-

nal BH just studied are objects that, although trap matter, never allow stable orbits for

test particles moving around them.

Now let us discuss some particular cases where we were able to obtain exact solutions

of the equations (12).

a) Case J = 0

This situation corresponds to have an anti- de Sitter metric provided we perform the

transformation t → t√
−M

in the metric (2). It is interesting to note that for this case (16)

imply M < 0 and, as a consequence, the limit J → 0 corresponds precisely the solution

discussed in [1]. The solutions of the corresponding equations of motion can be written as

1

r2
= − 2β

γ +∆′

sin x
, (21a)

∆
′

+ γ tan
x

2
= −2

√

ρ β tan(

√−ρ

L
φ), (21b)
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while the trajectory is given by

γ + 2β r2

∆′
= 2γ

∆
′

+ 2
√
ρ β tan (

√
−ρ

L
φ)

γ2 +
[

∆′ + 2
√
ρ β tan (

√
−ρ

L
φ)
]2

, (22)

with ∆
′

=
√

γ2 − 4ρβ and ρ = ML2.

Some geometrical properties of this solution are discussed, for instance, in [10-11].

b) Case J = Ml

This extreme case is interesting because the horizon still remains and the equations

(12) are notably simplified.

The solutions of the equations of motion are given by

1

r2
= − 2β

γ +∆ sin x

1√
−β

φ =
1

a2 − b2

[

(Ab−Ba) cos x

a+ b sin x
+ (Aa−Bb)J

]

, (23)

1√
−β

t =
1

a2 − b2

[

(Ab− aB) cos x

a+ b sin x
+ (A

′

a−B
′

b)J
]

,

where the coefficients are defined as

A = 2βLMl2 −Ml3Eβ + Lγ, B = L∆,

A
′

= l2Eγ +Ml3β, B
′

= l2E∆,

a = γ + βMl2, b = ∆,

and

J =







2√
a2−b2

tan−1

[

a tan x

2
+b√

a2−b2

]

if a2 > b2

1√
b2−a2

ln
[

a tan x

2
+b−

√
b2−a2

a tan x

2
+b+

√
b2−a2

]

if a2 < b2 .

The equation of the trajectory is tedious to write, so we avoid this calculation since

we shall not need it for future applications.

For the case of a charged BH, our results can be extended straightforwardly. In fact,

as it was discussed in [4] the electromagnetic coupling to the metric (2) corresponds to

perform the change

N2 → N2 +
Q2

2
ln

(

r

r0

)

, (24)
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being Q the electric charge of the BH and r0, a constant.

The new effective potential V Q
eff for this case has the same structure of that given

by (17), provided the replacement (24) is performed. Again, V Q
eff does not have neither

maxima nor minima and the same previous conclusions for the uncharged BH can be

reached. However, for the charged BH, the equations of motion become very complicated

to be solved analytically. This last example shows that the effective potential approach may

be sometimes more convenient than trying to solve directly the corresponding equations

of motion.
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[4] M. Bañados, C. Teitelboim and J. Zanelli, Phys. Rev. Lett. 69, 1819(1992).

[5] J. Gamboa and A. Segúı-Santonja, Class. and Quant. Grav. 9, L111(1992).

[6] S.A. Kaplan, Zh. Eksp. Fiz. 19, 951(1949).

[7] B. Carter, Phys. Rev. 174, 1559(1968).

[8] L.D. Landau and E.M. Lifshitz, Classical Theory of Fields, Pergamon Press (1975).

[9] D.C. Wilkins, Phys. Rev. D25, 814(1972).

[10] J.D. Brown and M. Henneaux, Comm. Math. Phys. 104, 207(1986).

[11] J.D. Brown, Lower Dimensional Gravity, World Scientific (1989).

9


