
ar
X

iv
:h

ep
-l

at
/0

40
30

25
v2

  7
 A

pr
 2

00
4

An asymptotic formula for the pion decay

constant in a large volume

Gilberto Colangelo and Christoph Haefeli

Institut für Theoretische Physik, Universität Bern

Sidlerstr. 5, 3012 Bern, Switzerland

April 6, 2004

Abstract

We derive an asymptotic formula à la Lüscher for the finite volume
correction to the pion decay constant: this is expressed as an integral
over the 〈3π|Aµ|0〉 amplitude after proper subtraction of the pion pole
contribution. We analyze the formula numerically at leading and next-to-
leading order in the chiral expansion.

1. Introduction The analytical study of finite volume effects is becoming of
increasing importance as lattice calculations with dynamical fermions approach
smaller quark masses and aim at higher precision. Since these effects are dom-
inated by the lightest particles in the spectrum, the pions, and by their long
distance dynamics, one can study them in the framework of chiral perturbation
theory (CHPT) [1]. A number of analyses of these effects in different quantities
have recently appeared in the literature [2, 3]. One of these concerned the case
of the pion mass [2] and has shown that a leading order calculation may receive
very large corrections from the next-to-leading contribution even for small val-
ues of the quark masses, whereas even higher order corrections behave according
to expectations and show a convergent behaviour. This accurate study of the
convergence of the chiral series has been made possible by the use of Lüscher’s
asymptotic formula for the pion mass [4]. The formula relates its leading finite-
volume corrections to an integral over the ππ scattering amplitude in infinite
volume. Since the latter is known to next-to-next-to-leading order in the chiral
expansion [5], it is straightforward to evaluate Lüscher’s formula to the same
order in the chiral expansion.
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In view of the results for the pion mass, the question arises if one can derive
similar asymptotic formulae also for other quantities: as we will show in what
follows, this is the case. In the present article we concentrate on Fπ, derive an
asymptotic formula which relates it to the infinite-volume 〈3π|Aµ|0〉 amplitude
and analyze it numerically using the next-to-leading order calculation of this
amplitude [6]. The results show again large next-to-leading order corrections –
in this case we cannot explore the chiral expansion further because the two-loop
calculation of the 〈3π|Aµ|0〉 amplitude is not yet available.

2. The asymptotic formula Denote by Fπ,L the pion decay constant in a
box of size L. The asymptotic formula for ∆Fπ = Fπ,L −Fπ can then be written
as:

∆Fπ =
3

8π2MπL

∫ ∞

−∞

dy e−
√

M2
π
+y2LNF (iy) +O(e−M̄L) , (1)

where M̄≥
√

3/2Mπ and the amplitude NF (ν) is defined as follows. Consider the
amplitude for creation of three pions out of the vacuum with the axial current:

〈π1(p1)π
1(p2)π

3(p3)|A3
µ(0)|0〉 = (p1 + p2)µG(s1, s2, s3) (2)

+ (p1 − p2)µH(s1, s2, s3) + p3µF (s1, s2, s3) ,

where the superscripts on the pion states and axial current are isospin indices
and G, H and F are three scalar amplitudes of the variables s1,s2 and s3, with
s1 = (p2 + p3)

2 and cyclic permutations [6]. From the amplitude (2) one can
construct the combination which has two of the outcoming pions in an I = 0
state (the explicit relation is given below)

〈(2π)I=0π
3(p3)|A3

µ(0)|0〉 = (p1 + p2)µG0(s1, s2, s3) (3)

+ (p1 − p2)µH0(s1, s2, s3) + p3µF0(s1, s2, s3) .

This amplitude contains a pole in the unphysical region, for (p1 + p2 + p3)
2 =

Q2 = M2
π , which needs to be removed before proceeding further. We define

〈(2π)I=0π
3(p3)|A3

µ(0)|0〉S = 〈(2π)I=0π
3(p3)|A3

µ(0)|0〉

− Qµ

iFπT
I=0(s3, s1 − s2)

M2
π −Q2

, (4)

where T I=0(s, t − u) is the ππ scattering amplitude with isospin zero in the s
channel. We need the subtracted amplitude in the forward kinematic configura-
tion, i.e. for p1 = −p2, s3 = 0, where it becomes a function of one variable only,
ν = (s2 − s1)/(4Mπ):

pµ3〈(2π)I=0π
3(p3)|A3

µ(0)|0〉S |p1=−p2
= 2Mπνh0(ν) +M2

π f̄0(ν) , (5)
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where
h0(ν) = H0(2Mπ(Mπ−ν), 2Mπ(Mπ+ν), 0)

and analogously for f̄0 and where the bar on the F0 form factor denotes that it is
defined after subtraction of the pion pole (the form factor H0 remains unaffected
by the subtraction). The amplitude NF which enters the asymptotic formula for
the finite volume corrections to Fπ is defined as

NF (ν) = −i
(

2νh0(ν) +Mπf̄0(ν)
)

. (6)

The amplitudes H0 and F0 can be expressed in terms of F , G and H appearing
in (2):

F0(s1, s2, s3) = 3F123 +G231 +G312 −H231 +H312 ,

H0(s1, s2, s3) = 3H123 +
1

2
[F231 − F312 −G231 +G312 −H231 −H312] , (7)

where Xijk = X(si, sj, sk) with X = F,G,H .

3. Outline of the derivation The derivation of this formula is in large parts
analogous to the derivation of the formula for the pion mass, due to Lüscher [4].
In the following we simply outline the necessary steps to prove the formula and
refer the reader to the paper of Lüscher for details. The starting point of the
analysis is that one can rely on an effective Lagrangian description of the relevant
physics and analyze these finite volume effects in CHPT. As observed by Lüscher,
the precise form of the effective Lagrangian is never needed in the proof – on the
other hand, it is very useful to have it available if one wants to understand in
concrete terms these effects. As was shown by Gasser and Leutwyler one can
rigorously derive the consequence of chiral symmetry also if the system is closed
inside a large finite volume with the help of the effective Lagrangian technique
[1]. In particular the form of the local effective Lagrangian remains unchanged,
and the only difference with respect to infinite volume calculations comes from
the propagator for the pion field which becomes periodic in all spatial directions

G(x0, ~x) =
∑

~n∈Z3

G0(x
0, ~x+ ~nL) (8)

where G0(x) is the propagator in infinite volume.
The first step in Lüscher’s proof of the asymptotic formula for the pion mass

consists in showing that, for a generic loop diagram contributing to the self
energy of the pion, the dominating finite volume effect is obtained if one takes
all propagators in infinite volume (G(x) → G0(x)) except one, for which only the

2



a b

Figure 1: Graphical representation of the asymptotic formula. The wiggly
(straight) line represents the axial current (pion). The dash on the propagator
means that it is taken in finite volume (only the contribution with |~n| = 1 in the
sum (8)). Diagram a (b) illustrates the correction to Fπ (the shift of the pole
position) due to finite volume.

terms with |~n| = 1 in the sum in (8) should be kept1. The sum of all possible
contributions of this form from all possible loop diagrams gives the leading finite
volume corrections to the pion mass. The same conclusion is valid also for the
Feynman diagrams which renormalize the coupling between the axial current and
the pion – the fact that in this case one of the external legs is the axial current
instead of a pion does not touch the argument at all.

The second step in the proof consists in showing, by modifying the integration
contour in the complex plane, that this leading contribution can be written in a
very compact form, as an integral over an amplitude (the ππ scattering amplitude
in the case of the pion mass) defined in Minkowski space, analytically continued
to complex values of its arguments. Again, the same argument applies also to
the case of the pion decay constant: in this case, in all possible loop graphs
that renormalize the pion coupling to the axial current we have to single out
one internal pion propagator, break it up and put the resulting two external
legs on shell. The relevant amplitude in this case is the 〈3π|Aµ|0〉 amplitude,
as illustrated in Fig. 1a – the weight function which appears in the integral is
however exactly the same as in the pion mass case.

The kinematic configuration in which the amplitude must be evaluated is
also the same and corresponds, for the ππ amplitude, to forward scattering. The
〈3π|Aµ|0〉 amplitude is however singular for this kinematics because of a pole due
to one-pion exchange among the axial current and the three outgoing pions. This
singularity does not belong to the finite volume corrections to Fπ and should be
subtracted. The reason for the presence of this pole can be explained as follows:
the 〈π|Aµ|0〉 amplitude is defined as the residue at the pion pole of a two-point

1More precisely: this concerns only propagators which are contained in at least one loop,
cf. [4]
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function of the axial current and any interpolating field for the pion:

〈πa(q)|Ab
µ|0〉 = lim

q2→M2
π

(M2
π − q2)iqµδ

abP (q) (9)

P (q) = Nφq
µ

∫

dxeiqx〈0|Tφ1
π(x)A

1
µ(0)|0〉 ,

with Nφ the proper normalization factor which depends on the field φπ. In finite
volume both the residue as well as the position of the pole are shifted. Ignoring
the latter shift corresponds to multiplying PL(q) by (M2

π − q2) and not by the
correct (M2

π,L− q2) and then taking the limit q2 → M2
π . The result, expanded to

the leading term for asymptotically large volumes, contains a pole for q2 = M2
π

(M2
π − q2)PL(q) ∼ (M2

π − q2)
Fπ,L

M2
π,L − q2

= Fπ,L − Fπ∆M2
π

M2
π − q2

+ . . . , (10)

where ∆M2
π = M2

π,L −M2
π is also evaluated to leading order. Since the shift in

the pion mass is known and given by Lüscher’s formula, we can subtract the pole
(which is illustrated in Fig. 1b) and get the correct finite-volume value of the
pion decay constant. The result leads to the subtraction prescription given in
the previous section.

4. The coupling constant Gπ The formula presented here for Fπ can be
extended with obvious modifications also to other quantities, e.g. like Gπ, the
coupling constant of the pion to the pseudoscalar quark bilinear P i = q̄iγ5τ

iq

〈0|P i(0)|πk〉 = δikGπ . (11)

In this case the amplitude that should replace NF (ν) in the analogue of Eq. (1)
is the subtracted P → 3π amplitude in the limit p1 = −p2:

NG(ν) = lim
p1→−p2

[

〈(2π)I=0π
3(p3)|P 3(0)|0〉 − GπT

I=0(s3, s1 − s2)

M2
π −Q2

]

. (12)

In this particular case the Ward identity (m̂ ≡ (mu +md)/2)

FπM
2
π = m̂Gπ , (13)

which also holds in finite volume, makes the use of such a formula unnecessary:
from the finite-volume version of Eq. (13) one immediately obtains

∆Gπ

Gπ

=: RG = RF + 2RM , (14)

where RM is the relative shift for Mπ. On the other hand, since we have an
explicit expression for all three relative shifts for large volumes, Eq. (14) can be
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used as a nontrivial check on the asymptotic formulae. Indeed, all three relative
shifts can be expressed as an integral with the same weight function, and Eq. (14)
can be satisfied only if the same relation holds among the integrands:

NG(ν) = NF (ν)−
Fπ

Mπ

F (ν) , (15)

where F (ν) = T I=0(0, ν) is the forward scattering amplitude appearing in Lüscher’s
formula for Mπ. It is easy to verify that this relation follows from the Ward iden-
tity2

− iQµ〈π1(p1)π
1(p2)π

3(p3)|A3
µ(0)|0〉 = m̂〈π1(p1)π

1(p2)π
3(p3)|P 3(0)|0〉 , (16)

once the limit to the relevant kinematical configuration is taken and if one prop-
erly accounts for the pole at Q2 = M2

π present in both amplitudes.

5. The asymptotic formula in chiral perturbation theory As was shown
in [2], the Lüscher formula for the pion mass can be used very conveniently in
combination with the chiral expansion for the ππ scattering amplitude. The same
can be done for Fπ using the chiral expansion for the infinite-volume 〈3π|Aµ|0〉
amplitude, which has been calculated up to next-to-leading order in [6]. The
chiral expansion for the amplitude NF reads

NF (ν) =
Mπ

Fπ

[

NF
2 (ν̃) + ξNF

4 (ν̃) +O(ξ2)
]

, (17)

where ξ = (Mπ/4πFπ)
2 and ν̃ = ν/Mπ, and translates into a corresponding

expansion for ∆Fπ

RF :=
∆Fπ

Fπ

=
6

λ

[

ξIF2 (λ) + ξ2IF4 (λ) +O(ξ3)
]

, (18)

where λ = MπL. The integrals In can be given analytically in terms of a few
basic integrals:

IF2 (λ) = −2B0(λ) (19)

IF4 (λ) =

(

2ℓ̄1 +
4

3
ℓ̄2 − 3ℓ̄4 −

7

9

)

B0(λ) +

(

−8

3
ℓ̄1 −

32

3
ℓ̄2 +

112

9

)

B2(λ)

+
4

3

(

R0
0(λ)− R1

0(λ)− 10R2
0(λ)

)

− 13

6
R0′

0 (λ) +
8

3
R1′

0 (λ) +
20

3
R2′

0 (λ) ,

2Notice that in the definition of NF , Eqs. (5,6), the 〈3π|Aµ|0〉 amplitude is multiplied with
p
µ
3
and not with Qµ as in this Ward identity.
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where the integrals B2k and Rk
i are defined as

B2k(λ) =

∫ ∞

−∞

dỹ ỹ2k e−
√

1+ỹ2λ =
Γ(k + 1/2)

Γ(3/2)

(

2

λ

)k

Kk+1(λ) , (20)

and

R
k(′)
0 (λ) =

{

Re

Im

∫ ∞

−∞

dỹ ỹk e−
√

1+ỹ2 λ g(′) (2(1 + iỹ)) for

{

k even

k odd
, (21)

with3

g(x) = σ log
σ − 1

σ + 1
+ 2 , g′(x) =

1

x

[

2

σx
log

σ − 1

σ + 1
− 1

]

, (22)

with σ =
√

1− 4/x. These integrals (with the only exception of the primed Rk
0)

have already been introduced in [2].
We have evaluated numerically these corrections using the following values

for the chiral low energy constants [7]:

ℓ̄1 = −0.4± 0.6, ℓ̄2 = 4.3± 0.1, ℓ̄4 = 4.4± 0.2 . (23)

The results are displayed in Fig. 2 where we plot the modulus of RF as a function
of Mπ for volume sizes between 2 and 4 fm. We have studied the uncertainties
in RF which arise from the low energy constants (23) and found that they are
barely visible on the plot – we therefore omit them (in size they are similar to the
thickness of the lines). In the figure we compare the evaluation of the asymptotic
formula to leading and next-to-leading order also to the full one-loop calculation
of Gasser and Leutwyler [8], which can be given in a very compact form:

Fπ,L = Fπ

[

1− ξ g̃1(λ) +O(ξ2)
]

(24)

where

g̃1(λ) =
∑′

∫ ∞

0

dx e−
1

x
−x

4
(n2

1
+n2

2
+n2

3
)λ2

, (25)

where the prime indicates that the sum runs over all integer values of ni, exclud-
ing the term with all ni = 0.

In comparison to the pion mass, the finite volume corrections in Eq. (24) are
a factor 4 larger but negative – the sign difference is in accordance with the ob-
servation that in finite volume chiral symmetry is restored, i.e. the pion becomes
heavier and its decay constant tends to vanish. Apart from this quantitative
difference, the numerical analysis gives results which are qualitatively similar to
those obtained for the pion mass [2]:

3The function g(x) is related to the standard J̄ one-loop function through g(x) =
16π2J̄(xM2

π).
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Figure 2: The absolute value of the relative finite volume correction RF =
Fπ,L/Fπ − 1 as a function of Mπ for different volume sizes. We plot the leading
(LO) and next-to-leading order (NLO) in the chiral expansion of the asymptotic
formula (18) and also the full one-loop result in CHPT (24). The solid lines show
the sum of the full one-loop result and the NLO correction in the asymptotic
formula.

1. the finite volume corrections are exponentially suppressed for large values
of MπL and become negligible rather quickly;

2. the leading term in the chiral expansion of the asymptotic formula receives
large corrections even for the physical values of the quark masses – the
similarity to the pion mass results makes us however think that the series
will start to show a convergent behaviour at NNLO;

3. the leading term in the asymptotic expansion also receives large corrections
from the subleading ones whenever the finite volume effects are nonnegli-
gible;

4. since subleading terms are important both in the chiral as well as in the
asymptotic expansion, the best estimate of the size of these finite-volume
corrections is obtained by summing the subleading effects in both expan-
sions, as shown by the solid curves in Fig. 2.
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For example, in a recent calculation of Fπ on the lattice [11] with dynamical
fermions a volume of L = 2.5 fm size has been used, and pion masses as low
as 0.24 GeV. For these values the finite volume corrections evaluated with the
asymptotic formula to NLO (LO) are 1.5% (1.1%), whereas the full one-loop
calculation gives 1.6%. Adding both types of subleading effects we find a total
correction of 2%. In Ref. [12], L = 1.5 fm and Mπ = 0.4 GeV were used: in this
case the full one-loop calculation gives a 3.4% effect, whereas adding the NLO
chiral corrections we get to 4.5%. For the parameters used in [13] finite-volume
effects are negligible.

6. Conclusions We have derived an asymptotic formula for the pion decay
constant in a finite large volume along the same lines as Lüscher’s formula for the
pion mass [4]. The advantage offered by such a formula is a relatively easy access
to a study of higher order chiral corrections in finite volume effects. We have
evaluated these numerically and have shown that in Fπ these corrections are large,
analogously to what has been found for Mπ [2]. In the present case we could use
existing calculations of the relevant infinite-volume amplitude to evaluate next-
to-leading chiral corrections. Going one order higher in this expansion would
require the calculation of the 〈3π|Aµ|0〉 amplitude to two loops in CHPT.

The asymptotic formula derived here immediately applies (after the necessary
but obvious modifications) to other similar quantities, like Gπ. As we have
explicitly verified, the asymptotic formulae for Fπ and Gπ satisfy a Ward identity
that relates their ratio to M2

π/m̂: if one extracts the finite-volume expression for
Mπ from this Ward identity one recovers Lüscher’s formula. The formula applies
also to the decay constants of heavier mesons, like FK . In the latter case the
study of these finite volume effects [9] is of direct phenomenological interest in
view of the recent application of the lattice calculation of the FK/Fπ ratio to
the extraction of Vus [10] – it is worth mentioning that for this application the
required precision of the lattice result is at the percent level. The same formula
can also be applied to the decay constants of yet heavier mesons, like fD or
fB. In this case, however, the advantage provided by the asymptotic formula
with respect to a plain one-loop calculation (as recently performed in [14]) will
be of practical relevance only if the knowledge of the low energy constants of
the chiral Lagrangian describing the coupling of heavy mesons to pions [15] is
extended beyond leading order.
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