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We extend the study of the light hadron spectrum and the quark mass in two-flavor QCD to
smaller sea quark mass, corresponding to mPS/mV = 0.60–0.35. Numerical simulations are carried
out using the RG-improved gauge action and the meanfield-improved clover quark action at β = 1.8
(a = 0.2 fm from ρ meson mass). We observe that the light hadron spectrum for small sea quark
mass does not follow the expectation from chiral extrapolations with quadratic functions made
from the region of mPS/mV = 0.80–0.55. Whereas fits with either polynomial or continuum chiral
perturbation theory (ChPT) fails, the Wilson ChPT (WChPT) that includes a2 effects associated
with explicit chiral symmetry breaking successfully fits the whole data: In particular, WChPT
correctly predicts the light quark mass spectrum from simulations for medium heavy quark mass,
such as mPS/mV ∼> 0.5. Reanalyzing the previous data with the use of WChPT, we find the mean
up and down quark mass being smaller than the previous result from quadratic chiral extrapolation

by approximately 10%, mMS

ud (µ = 2 GeV) = 3.11(17) [MeV] in the continuum limit.

PACS numbers: 11.15.Ha,12.38.Gc

I. INTRODUCTION

Recent years have witnessed steady progress in the lattice QCD calculation of the light hadron spectrum [1].
In the quenched approximation ignoring quark vacuum polarization effects, well-controlled chiral and continuum
extrapolations enabled a calculation of hadron masses with an accuracy of 0.5–3% [2]. At the same time the study
established a systematic deviation of the quenched light hadron spectrum from experiment by approximately 10%.
We then have made an attempt of full QCD calculation that allows chiral and continuum extrapolations within a
consistent set of simulations [3]. The deviations from experiment in the light hadron spectrum are significantly reduced
and the light quark mass decreases by about 25% with the inclusion of dynamical u and d quarks. With currently
available computer power and simulation algorithms, however, the sea quark mass that can be explored is far from
the physical value and a long chiral extrapolation is involved to get to the physical u and d quark mass.
An attempt has been made to push down the simulation to a small quark mass corresponding to mPS/mV ≈

0.3 in full QCD with the Kogut-Susskind(staggered)-type quark action [4]. The staggered action, however, poses
a problem of flavor mixing, which would modify the hadron spectrum and its quark mass dependence near the
chiral limit. The staggered action also suffers from ambiguities in hadron operators and has a potential problem
of non-locality. The Wilson-type quark actions have the advantage of simplicity: they are local and respect flavor
symmetry, but a larger computational cost limits the simulations to relatively large quark masses corresponding to
mPS/mV ∼> 0.6 [3, 5, 6, 7, 8, 9, 10, 11]. An important problem is to examine whether chiral extrapolations from such
a quark mass range lead to results viable in the chiral limit.
Chiral extrapolations are usually made with polynomials in the quark mass. The problem is that they are not

consistent with the logarithmic singularity expected in the chiral limit. In reality, the physical quarks are not exactly
massless and hence the polynomial extrapolation should in principle work. However, increasingly higher orders are

∗ Present address: Department of Physics, Nagoya University, Nagoya 464-8602, Japan
† Present address: Department of Physics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
‡ Present address: Center for Computational Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
§ Present address: Department of Biological Sciences, Imperial College, London SW7 2AZ, U.K.
¶ Present address: Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

http://arxiv.org/abs/hep-lat/0404014v3


2

needed should one wish to increase the accuracy of the extrapolation. It is compelling to estimate the systematic
errors due to higher order contributions when the data are extrapolated using a low-order polynomial.
An alternative choice for chiral extrapolations is to incorporate chiral perturbation theory (ChPT) [12]. The present

lattice data, however, are not quite consistent with the ChPT predictions. The high-statistics JLQCD simulation
of two-flavor full QCD, using the plaquette gauge action and the O(a)-improved Wilson quark action at β = 5.2
(a = 0.0887(11) fm; the spatial size L ≃ 1.06–1.77 fm), shows no signature for the logarithmic singularity in the
pion mass and pion decay constant [11]. A possible reason for the failure to find the chiral logarithm is that sea
quark masses, corresponding to mPS/mV = 0.8–0.6, are too large. Higher order corrections of ChPT may have to be
included to describe the data, as suggested from a partially quenched analysis, which shows that mPS/mV = 0.4–0.3
is required for the convergence of one-loop formula [13, 14]. Another possibility is explicit chiral symmetry breaking
of the Wilson quark actions that may invalidate the ChPT formulae. Modifications due to finite lattice spacings may
be needed for an analysis of data obtained on a coarse lattice.
Recently studies were made to adapt ChPT to the Wilson-type fermion at finite lattice spacings (WChPT) [15,

16, 17, 18], with subtle differences in the order counting, and hence the resulting formulae for observables, among the
authors. The work [16] assumes the O(a) chiral symmetry breaking effects being smaller than those from the quark
mass, and only the effects linear in lattice spacing are retained in the chiral Lagrangian. This contrasts to the authors
of Refs. [17, 18] who include the O(a2) effects in the chiral Lagrangian, however, with different order countings. In
Ref. [17] the O(a) terms are treated as being comparable to the quark mass term while the O(a2) terms are assumed
to be subleading: in this case, O(a) effects are essentially absorbed into the redefinition of the quark mass in the
one-loop formulae and the O(a2) terms provide additional counter terms. In Ref. [18], on the other hand, the terms of
O(a2) are kept at the leading order, because the existence of parity-broken phase and vanishing of pion mass depend
on them in a critical way [15]. The coefficients of chiral logarithm terms receive O(a) contributions, and hence the
logarithmic chiral behavior is modified at a finite lattice spacing. Similar attempts to include the O(a2) flavor mixing
for the staggered-type quark action were made in Refs. [19, 20, 21].
The qq+q collaboration [22] applied the one-loop ChPT and WChPT with the prescription of Refs. [16, 17] to their

data obtained at mPS/mV = 0.9–0.5. Their simulations were made at coarse lattices of a = 0.19 fm (β = 5.1) and
0.28 fm (β = 4.68) using the plaquette gauge action and the unimproved Wilson quark action (L ≈ 3 fm). They
reported that their data are described by these formulae. However, their sea quark masses are not quite small, and,
since large scaling violation is suspected with unimproved actions at coarse lattice spacings and lattice artifacts are
suggested at strong couplings [23], it should be demonstrated at weaker couplings in order that the discretization
effects are actually under control. The UKQCD collaboration reported a result at mPS/mV = 0.44(2) obtained with
the actions and the lattice spacing the same as those of JLQCD, with L ≈ 1.6 fm [24]. They indicated the pion decay
constant to bend slightly downward at this quark mass, but further work is required for quantitative comparison with
the ChPT predictions.
In this paper, we follow up on our previous two-flavor full QCD work [3] with an RG-improved gauge action and

tadpole-improved O(a)-improved Wilson-clover quark action atmPS/mV = 0.80–0.55 and attempt to lower the quark
mass to give mPS/mV down to 0.35. Since the computational costs grows rapidly toward the chiral limit, roughly
proportional to (mPS/mV )

−6 [25], we concentrate our effort on the coarsest lattice of a ≈ 0.2 fm at β = 1.8, while
using improved actions.
Generation of configurations below mPS/mV ≈ 0.5 demands technical improvements. The BiCGStab algorithm

sometimes fails to converge, which we overcome by an improvement called BiCGStab(DS-L) [26, 27]. Another problem
is the emergence of instabilities in the HMC molecular dynamics evolution [28, 29]. This seems to be caused by
very small eigenvalues of the Dirac operator, leading to the change of the molecular dynamics orbit from elliptic
to hyperbolic. The only resolution at present is to reduce the time step size. In this manner, we generated 4000
trajectories at mPS/mV ≈ 0.6, 0.5 and 0.4 and 1400 trajectories at the smallest quark mass of mPS/mV ≈ 0.35
on a 123 × 24 lattice with L ≈ 2.4 fm. To examine the finite-size effect, we also generated 2000 trajectories at
mPS/mV ≈ 0.6 and 0.5 on a 163 × 24 lattice with L ≈ 3.2 fm.
We calculate the light hadron spectrum and the quark mass on these configurations, and examine the validity of

the quadratic chiral extrapolations by comparing the extrapolations made in the previous work with our new data at
smaller quark masses. It turns out that the new data are increasingly lower than the extrapolation toward a smaller
sea quark mass. We then examine how our data compare with the WChPT formulae, and whether WChPT fits using
only the previous data at large quark masses predict correctly the new small quark mass data. This serves as a test
to verify the viability of WChPT and of chiral extrapolations.
Computing for the present work was made on the VPP5000/80 at the Information Processing Center of University

of Tsukuba. We used 4 or 8 nodes, each node having the peak speed of 9.6 Gflops. The present simulation costed
0.119 Tflops·years of computing time measured in terms of the peak speed.
This paper is organized as follows. We describe configuration generations in Sec. II. The method of measurement

of hadron masses, decay constants, quark masses and the static quark potential is explained in Sec. III. The finite-
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size effects on hadron masses are also discussed in the same section. Sec. IV discusses chiral extrapolations with
conventional polynomials, and those based on ChPT are presented in Sec. V. Our conclusion is given in Sec. VI.
Preliminary results of these calculations were reported in Ref. [30].

II. SIMULATION

For the gauge part we employ the RG improved action defined by

Sg =
β

6

{

c0
∑

x,µν

W 1×1
µν (x) + c1

∑

x,µν

W 1×2
µν (x)

}

. (1)

The coefficients c0 = 3.648 of the 1 × 1 Wilson loop and c1 = −0.331 of the 1 × 2 Wilson loop are determined by an
approximate renormalization group analysis [31]. They satisfy the normalization condition c0+8c1 = 1, and β = 6/g2.
For the quark part we use the clover quark action [32] defined by

Sq =
∑

x,y

qxDx,yqy, (2)

Dx,y = δxy − κ
∑

µ

{

(1− γµ)Ux,µδx+µ̂,y + (1 + γµ)U
†
x,µδx,y+µ̂

}

− δxycSWκ
∑

µ<ν

σµνFµν , (3)

where κ is the hopping parameter, Fµν the standard clover-shaped lattice discretization of the field strength and

σµν = (i/2)[γµ, γν ]. For the clover coefficient we adopt a meanfield improved value cSW = u−3
0 [33] where

u0 =
(

W 1×1
)1/4

=
(

1− 0.8412β−1
)1/4

, (4)

using the plaquette W 1×1 calculated in one-loop perturbation theory [31]. This choice is based on our observation
that the one-loop calculation reproduces the measured values well [34].
Our simulation is performed at a single value of β = 1.8 using two lattice sizes 123× 24 and 163× 24 to study finite

size effects. The lattice spacing fixed from mρ at the physical sea quark mass is 0.2 fm. We adopt four values of the
sea quark mass corresponding to the hopping parameter κsea = 0.14585, 0.14660, 0.14705 and 0.14720. This choice
covers mPS/mV = 0.60–0.35, extending the four values κsea = 0.1409, 0.1430, 0.1445, and 0.1464 corresponding to
mPS/mV = 0.80–0.55 studied in Ref. [3]. The simulation parameters are summarized in Table I, where we also list
the number of nodes (PE’s) employed and the CPU time per trajectory. Gauge configurations are generated using
the Hybrid Monte Carlo (HMC) algorithm [35, 36]. The trajectory length in each HMC step is fixed to unity. We
use the leap-frog integration scheme for the molecular dynamics equation.
The even/odd preconditioned BiCGStab [37] is one of the most optimized algorithms for the Wilson quark matrix

inversion to solve the equation DxyGy = Bx. However, BiCGStab sometimes fails to converge at small sea quark
masses. While the CG algorithm is guaranteed to converge, it is time-consuming. We find that the BiCGStab(L)
algorithm [38], which is an extension of BiCGStab to L-th order minimal residual polynomials, is more stable [27].
Figure 1 illustrates for a very light valence quark mass corresponding to mPS/mV = 0.27 that the BiCGStab(L),
while not convergent for L = 1 and 2, succeeds to find the solution for L = 4. In practice, however, too large L also
frequently introduces another instability from possible loss of conjugacy among the L vectors. The optimum value of L
depends on simulation parameters. To avoid a tuning of L at each simulation point, we employ the BiCGStab(DS-L)
algorithm [26]. This is a modified BiCGStab(L) in which a candidate of the optimum L is dynamically selected. We
find that BiCGStab(DS-L) is much more robust than the original BiCGStab at small quark masses. We also find that,
at large quark masses where the conventional BiCGStab converges, the computer time required for BiCGStab(DS-L)
is comparable. See Fig. 2. Therefore, we adopt BiCGStab(DS-L) at all values of our sea quark masses.
We employ the stopping condition ||DG−B|| < ∆ in HMC. The value of ∆ in the evaluation of the fermionic force

is chosen so that the reversibility over unit length is satisfied to a relative precision of order 10−8 or smaller for the
Hamiltonian,

|∆H | = |Hreversed −H0|, (5)

where Hreversed is the value of the Hamiltonian obtained by integrating to t = 1 and integrating back to t = 0. We
also check the reversibility violation in the link variable,

|∆U | =
√

∑

n,µ,a,b

U reversed
µ,a,b (n)− U0

µ,a,b(n), (6)
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where the sum is taken over all sites n, colors a, b and the link directions µ. We illustrate our check in Fig. 3,
where results at κsea = 0.14585 and κsea = 0.14705 on 20 thermalized configurations separated by 100 trajectories
are shown. When the sea quark mass is large (κsea = 0.14585,mPS/mV = 0.6), the violation does not show any
clear dependence on the stopping condition. For small sea quark mass (κsea = 0.14705, mPS/mV = 0.4), however,
it depends on the stopping condition significantly. We must be careful with the choice of the stopping condition at
small sea quark mass. We use a stricter stopping condition in the calculation of the Hamiltonian in the Metropolis
accept/reject test. Table I shows our choice of ∆ together with the average number, Ninv, of the BiCGStab(DS-L)
iterations in the quark matrix inversion for the force calculation.
In the course of configuration generation by the HMC algorithm, we sometimes encountered extremely large values

of dH ≡ Htrial −H0, the difference of the trial and starting Hamiltonians. Similar experiences have been reported by
other groups [28, 29]. Empirically this phenomenon occurs more frequently for smaller sea quark masses at a fixed step
size, and can be suppressed by decreasing the step size. A typical example is shown in Fig. 4. In our runs we employ
a step size dt small enough for this purpose. As a consequence our runs have a rather high acceptance 80–90%.
It is possible that this phenomenon is connected to the appearance of very small eigenvalues of the Wilson-clover
operator toward small quark masses. In the right panel of Fig. 4, we show the norm ||D−1(D†)−1φ|| (triangles) and
the contribution of the smallest eigenvalue of γ5D to the norm (filled squares). We observe that the jump of dH
(open circles) is associated with a peak of the norm, and that the peak is saturated by the contribution of the smallest
eigenvalue. We suspect that such small eigenvalues cause some modes of the HMC molecular dynamics evolution to
change its character from elliptic to hyperbolic, leading to divergence of the Hamiltonian. We defer a further study
of this problem to future publications.
We accumulate 4000 HMC trajectories at κsea = 0.14585, 0.14660 and 0.14705 and 1400 trajectories at κsea =

0.14720 on the 123 × 24 lattice. We also accumulate 2000 trajectories at κsea = 0.14585 and 0.14660 on the 163 × 24
lattice. Measurements of light hadron masses and the static quark potential are carried out at every 5 trajectories.

III. MEASUREMENT

A. Hadron masses

The meson operators are defined by

M(x) = q̄(f)(x)Γq(g)(x), Γ = I, γ5, γµ, γ5γµ, (7)

where f and g are flavor indices and x is the coordinates on the lattice. The octet baryon operator is defined as

Ofgh(x) = ǫabc
(

q(f)a(x)TCγ5q
(g)b(x)

)

q(h)c(x), (8)

where a, b, c are color indices and C = γ4γ2 is the charge conjugation matrix. Decuplet baryon correlators are
calculated using an operator defined by

Dfgh
µ (x) = ǫabc

(

q(f)a(x)TCγµq
(g)b(x)

)

q(h)c(x). (9)

For each configuration quark propagators are calculated with a point and a smeared source. For the smeared source,
we fix the gauge configuration to the Coulomb gauge and use an exponential smearing function ψ(r) = A exp(−Br)
for r > 0 with ψ(0) = 1. We chose A = 1.25 and B = 0.50 as in our previous study [3]. In order to reduce the
statistical fluctuation of hadron correlators, we repeat the measurement for two choices of the location of the hadron
source, tsrc = 1 and Nt/2 + 1(= 13) and take the average over the two [11]:

1

2

(

〈

H(tsrc + t)H(tsrc)
†
〉

tsrc=1
+
〈

H(tsrc + t)H(tsrc)
†
〉

tsrc=Nt/2+1

)

. (10)

This procedure reduces the statistical error of hadron correlators typically by 30 to 40%, which suggests that the
statistics are increased effectively by a factor of 1.7 to 2. For further reduction of the statistical fluctuation, we take
the average over three polarization states for vector mesons, two spin states for octet baryons and four spin states for
decuplet baryons.
Figures 5 and 6 illustrate the quality of effective mass plots. For mesons, an acceptable plateau of the effective

mass is obtained from hadron correlators with the point sink and the doubly smeared source. Signals are much worse
for baryons.
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We carry out χ2 fits to hadron correlators, taking account of correlations among different time slices. A single
hyperbolic cosine form is assumed for mesons, and a single exponential form for baryons. We set the lower cut of
the fitting range as tmin = 6 for mesons and tmin = 5 for baryons, which is determined by inspecting stability of the
resulting mass. The upper cut (tmax) dependence of the fit is small and, therefore, we fix tmax to Nt/2 for all hadrons.
Our choice of fit ranges and the detailed results of hadron masses are given in tables of Appendix A. Statistical errors
of hadron masses are estimated with the jack-knife procedure. We adopt the bin size of 100 trajectories from an
analysis of the bin size dependence of errors as discussed below in Sec. III E.

B. Quark masses

We calculate the mean up and down quark mass through both vector and axial-vector Ward identities. The two
types of quark masses, denoted by mVWI and mAWI respectively, differ at finite lattice spacings because of explicit
violation of chiral symmetry by the Wilson term.
A bare VWI quark mass is defined by

mVWI
quark =

1

2

(

1

κ
− 1

κc

)

. (11)

The critical hopping parameter κc is determined by chiral extrapolations as discussed in Sec. IV and V. A bare AWI
quark mass is calculated using the fourth component of the improved axial-vector current

Aimp
4 = A4 + cA∂4P, (12)

where P is the pseudoscalar meson operator, Eq. (7) with Γ = γ5, and ∂4 is the symmetric lattice derivative. Then,
mAWI

quark is obtained through

mAWI
quark =

mPSC
s
A

2Cs
P

. (13)

The amplitudes Cs
A and Cs

P are calculated as follows. We determine the pseudoscalar meson mass mPS and Cs
P by

〈P l(t)P s(0)†〉 = Cs
P [exp(−mPSt) + exp(−mPS(Lt − t))] , (14)

where the superscripts l and s distinguish local and smeared operators. Keeping mPS fixed, we extract Cs
A from

〈Aimp,l
4 (t)P s(0)†〉 = Cs

A [exp(−mPSt)− exp(−mPS(Lt − t))] . (15)

The renormalized quark masses in the MS scheme at 2 GeV are obtained as follows. The VWI up and down quark
mass

mV WI
ud =

1

2

(

1

κud
− 1

κc

)

, (16)

with κud the hopping parameter at the physical point, is renormalized using one-loop renormalization constants and
improvement coefficients at µ = 1/a:

mVWI,MS
ud (µ = 1/a) = Zm

(

1 + bm
mVWI

ud

u0

)

mVWI
ud

u0
. (17)

Similarly the renormalized AWI quark mass is obtained by

mAWI,MS
ud (µ = 1/a) =

ZA

(

1 + bA
mV WI

ud

u0

)

ZP

(

1 + bP
mV WI

ud

u0

)mAWI
ud , (18)

where mAWI
ud is the value of mAWI

quark extrapolated to κud. The determination of κud is discussed in Sec. IV and V.
Since non-perturbative values for the renormalization coefficient ZA and the improvement parameters cA, bA etc. are
not available for our combination of actions in two-flavor QCD, we adopt one-loop perturbative values calculated in
Refs. [39, 40] improved with the tadpole procedure using u0 given in Eq.(4). The MS quark masses at µ = 1/a are
evolved to µ = 2 GeV using the four-loop beta function [41, 42].
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C. Decay constants

The pseudoscalar meson decay constant is calculated by

fPS = 2κu0ZA

(

1 + bA
mVWI

quark

u0

)

Cs
A

Cs
P

√

Cl
P

mPS
, (19)

where Cl
P is determined by

〈P l(t)P l(0)†〉 = Cl
P [exp(−mPSt) + exp(−mPS(Lt − t))] , (20)

keeping mPS fixed to the value from 〈P l(t)P s(0)†〉.
The vector meson decay constant fV is defined as

〈0|Vi|V 〉 = ǫifVmV , (21)

where ǫi is a polarization vector. The procedure to obtain the vector meson decay constant is parallel to that for fPS .
The vector meson correlator with a smeared source is fitted with

〈V l(t)V s(0)†〉 = Cs
V [exp(−mV t) + exp(−mV (Lt − t))] , (22)

which determines mV and Cs
V . Using mV as an input we fit the correlator

〈V l(t)V l(0)†〉 = Cl
V [exp(−mV t) + exp(−mV (Lt − t))] , (23)

where the amplitude Cl
V is the only fit parameter. A renormalized vector meson decay constant is then obtained

through

fV = 2κu0ZV

(

1 + bV
mVWI

u0

)

√

Cl
V

mV
, (24)

where we also use one-loop perturbative values for ZV and bV [39, 40]. We do not include the improvement term

cV ∂̃νTnµν because the corresponding correlator is not measured.

D. Static quark potential

We calculate the static quark potential V (r) from the temporal Wilson loops W (r, t)

W (r, t) = C(r) exp (−V (r)t) . (25)

We apply the smearing procedure of Ref. [43]. The number of smearing steps is fixed to its optimum value Nopt = 2
at which the overlap to the ground state C(r) takes the largest value. Let us define an effective potential

Veff (r, t) = log [W (r, t)/W (r, t+ 1)] . (26)

Examples of Veff are plotted in Fig. 7, from which we take the lower cut of tmin = 2. As shown in Fig. 8, we do not
observe any clear indication of the string breaking. Therefore, we carry out a correlated fit to V (r) = Veff (r, tmin)
with

V (r) = V0 −
α

r
+ σr. (27)

Here we do not include the lattice correction to the Coulomb term calculated perturbatively from one lattice-gluon
exchange diagram [44], since rotational symmetry is well restored for our RG-improved action. The Sommer scale r0
is defined through [45]

r20
dV (r)

dr

∣

∣

∣

∣

r=r0

= 1.65. (28)
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We determine r0 from the parameterization of the potential V (r):

r0 =

√

1.65− α

σ
. (29)

The lower cut of the fit range in Eq. (27) is determined as rmin =
√
2 from inspection of the rmin dependence of

r0. With rmin <
√
2, χ2/dof takes an unacceptably large value, while α becomes ill-determined with rmin >

√
3. On

the other hand, the rmax dependence of r0 is mild. Therefore, we fix rmax to Ns/2. We estimate the systematic error

of the fit as follows. The fit of Eq. (27) is repeated with other choices of the range: tmin = 3 or rmin =
√
3. The

variations in the resulting parameters and r0 are taken as systematic errors. The parameters in Eq. (27) and r0 are
presented in Table II.

E. Autocorrelation

The autocorrelation in our data is studied by the cumulative autocorrelation time

τcumO (∆tmax) =
1

2
+

∆tmax
∑

∆t=1

ρO(∆t), (30)

where ρO(t) is the autocorrelation function

ρO(∆t) =
ΓO(∆t)

ΓO(0)
, ΓO(∆t) = 〈(O(t)− 〈O〉) (O(t+∆t)− 〈O〉)〉. (31)

A conventional choice for ∆tmax is the first point where ρO vanishes because ρO should be positive when the statistics
are sufficiently high. We take ∆tmax = 50 from the plaquette shown in Fig. 9. In Table III, we give τcumO for (i)
the plaquette which is measured at every trajectory, (ii) the pseudoscalar meson propagators at t = Nt/4, and (iii)
the temporal Wilson loop with (r, t) = (2, 2). Fig. 10 shows the autocorrelation time for the plaquette. Combining
the previous (open circles) and the new (filled circles) data, we observe a trend of increase for smaller quark masses.
A sharp rise expected toward the chiral limit, however, is not seen. Our statistics may not be sufficient to estimate
autocorrelation times reliably near the chiral limit.
The bin size dependence of the jack-knife errors of hadron masses and Wilson loops is exhibited in Figs. 11. The

jack-knife errors reach plateaus at bin size of 50–100 trajectories. The situation is similar on 163 × 24. Therefore, we
take the bin size of 100 trajectories in the error analysis.

F. Finite-size effects

In Figs. 12 and 13, we present meson and AWI quark masses as a function of the spatial volume. The results
obtained on 123 × 24 and 163 × 24 lattices are mutually consistent within errors. For baryons, there may be some
indication in our data at mPS/mV = 0.50 (κsea = 0.14660) that the light baryon masses mN and m∆ decrease by
1–3% (0.8–3.1σ) as shown in Fig. 14. The effect is only around 2σ, and higher statistics are needed to confirm if the
difference can be attributed to finite-size effects. Finite-size effects in r0 are expected to be much smaller than those
in hadron masses. Our results in Fig. 15 confirm this. In the following analysis, we use data obtained on the 123× 24
lattice.

IV. CHIRAL EXTRAPOLATION WITH POLYNOMIALS

Extrapolation of the lattice simulation data to physical values requires some parameterization of the data as
functions of the quark mass. In this section, we employ polynomials in quark masses. We work with the two data
sets, the one obtained in the previous work that covers mPS/mV = 0.80–0.55 (the large quark mass data set), and
the other obtained in the present work that covers mPS/mV = 0.60–0.35 (the small quark mass data set), and with
the combined data set of the two. For the large mass data set we borrow the fit from the previous work.
We fit hadron masses in lattice units rather than those normalized by r0. With our choice of the improved actions,

r0 exhibits only a mild sea quark mass dependence as shown below in Sec. IVC, and hence introducing r0 does not
change convergence of chiral extrapolations. From practical side, r0 suffers from a large systematic error on coarse
lattices with a = 0.2 fm. Hence fits become less constraining if hadron masses are normalized by r0.
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A. Pseudoscalar meson mass and AWI quark mass

A quadratic form fitted well our previous lattice data of the pseudoscalar meson mass with a reasonable χ2/dof ∼
1 [3]. As shown in Fig. 16, however, our new data at small sea quark masses deviate significantly from the quadratic
fit. Inclusion of the small quark mass data set in the quadratic fit rapidly increases χ2/dof to ∼ 10. In addition, the
determination of the critical hopping parameter κc becomes unstable as shown in Fig. 17. A reasonable χ2/dof and
a stable fit are achieved only when we extend the polynomial to quartic,

m2
PS = BPSmVWI

quark + CPS(mV WI
quark)

2 +DPS(mV WI
quark)

3 + EPS(mVWI
quark)

4, (32)

where mV WI
quark is given in Eq.(11) and κc is taken as a fit parameter. The quartic polynomial provides the best fit

among our tests varying the order of polynomials.
Since m2

PS may be affected by the logarithmic singularity of ChPT, we examine the convergence of extrapolations,
i.e., whether it depends on the order of polynomials, using mAWI

quark that has no logarithmic singularities. Along with

the case of m2
PS , the new data at small quark masses deviate from the quadratic fit obtained from the large quark

mass data, as depicted in Fig. 18. We fit mAWI
quark by

mAWI
quark = BAWImVWI

quark + CAWI(mV WI
quark)

2 +DAWI(mV WI
quark)

3 + EAWI(mVWI
quark)

4. (33)

The fit range and order dependence are given in Fig. 19. (mV WI
quark)

4 terms are needed again to obtain a reasonable

χ2/dof .
We find that κc determined from m2

PS agrees with that from mAWI
quark within errors. Hence we simultaneously fit

m2
PS and mAWI

quark to determine κc. The resulting independent and simultaneous fits to m2
PS and mAWI

quark are presented

in Tables IV and V, respectively. The difference in mass from the fits including (mVWI
quark)

5 is taken as systematic
errors. These errors represent only uncertainties within polynomial extrapolations. As shown in Sec. VB, WChPT
fits sometimes lead to values beyond these systematic errors.

B. Vector meson mass

We fit vector meson mass with a cubic polynomial in m2
PS ,

mV = AV +BVm2
PS +DVm4

PS + FVm6
PS (34)

with the results shown in Fig. 20 and Table VI. As in the case of m2
PS and mAWI

quark, systematic deviations from the

previous fit are observed, although the difference (7% or 3.6σ in the chiral limit) is smaller. Inclusion of terms m4
PS

and m6
PS gives a good fit with a satisfactory Q. We estimate the systematic error from higher order terms by the

difference from the fit with m8
PS term.

The effects of vector meson decays are not considered in the fit. If a vector meson decays into two pseudoscalar
mesons, a vector meson with the momentum p = 2π/L will take a different energy depending on whether it is
polarized parallel or perpendicular to the momentum direction, because of mixing of one vector meson state and two
pseudoscalar meson state [46, 47]. We find no indication of vector meson decays as shown in Fig. 21. Our sea quark
masses and the lattice size do not seem to be enough to allow the decay.

C. Decay constants, baryon masses and Sommer scale

Chiral extrapolations are carried out for pseudoscalar and vector meson decay constants and octet and decuplet
baryon masses using cubic polynomials in m2

PS ,

fPS,V = AfPS ,fV +BfPS,fV m2
PS +DfPS ,fV m4

PS + F fPS ,fV m6
PS , (35)

moct,dec = Aoct,dec +Boct,decm2
PS +Doct,decm4

PS + F oct,decm6
PS . (36)

The results are presented in Figs. 22 and 23 and Tables VII and VIII. While the decay constants show clear deviations
from the previous fit, baryon masses are almost on the fit. We gather that the latter is an accidental effect that is
caused by a compensation of the downward shift of baryon masses expected toward a small quark mass with an
upward finite-size shift caused by somewhat too small a lattice (L = 2.4 fm) for baryons (see Sec. III F).
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The Sommer scale r0 is often extrapolated linearly in m2
PS . Since we find a curvature in our data, however, we

adopt the same form as that for the vector meson masses,

1

r0
= Ar0 +Br0m2

PS +Dr0m4
PS + F r0m6

PS . (37)

The results are seen in Fig. 24 and Table IX.

D. Results at the physical point

The physical point is defined by empirical pion and ρ meson masses, Mπ = 0.1350 GeV and Mρ = 0.7711 GeV.
With our polynomial fit, the physical point mπ for mPS is determined by solving the equation,

mπ

AV +BVm2
π +DVm4

π + FVm6
π

=
Mπ

Mρ
. (38)

The ρ meson mass at the physical point mρ is obtained by Eq. (34) with mPS = mπ, which determines the lattice
spacing aρ = 0.2007(38) fm. The lattice spacing can also be determined from r0 taking its phenomenological value
R0 = 0.49 fm. Using Eq. (37) instead of Eq. (34), we have

mπ

Ar0 +Br0m2
π +Dr0m4

π + F r0m6
π

=MπR0. (39)

Substitution of mπ to Eq. (37) leads to r0 at the physical point, yielding an alternative lattice spacing ar0 , ar0 =
0.2119(61) fm, which is consistent with aρ within 2σ.
We calculatemV WI

ud using κud defined bymPS(κud) = mπ, andm
AWI
ud by Eq. (33), and then convert to renormalized

quark masses in the MS scheme at 2 GeV (see Sec. III B). Table X presents a summary of the parameters at the
physical point, obtained with polynomial extrapolations, together with comparisons with the quadratic fit in the
previous work. The difference between old and new results is generally 4–8% except for the VWI quark mass for
which a difference more than 20% is observed (see Fig. 25). The latter is caused by a shift of κc, with which even a
small shift leads to an amplified change in the mean up and down quark mass.

V. CHIRAL EXTRAPOLATION BASED ON CHPT

We first examine the one-loop formulae from continuum ChPT, which have already been tested in [11, 22]. We
then attempt a fit based on WChPT including effects of O(a2) chiral symmetry violation due to the Wilson term.

A. ChPT extrapolation

The one-loop formulae [12, 14] derived from ChPT in the continuum limit are

m2
PS

2B0mquark
= 1 +

1

2

2B0mquark

(4πf)2
log

2B0mquark

Λ2
3

(40)

fPS = f

(

1− 2B0mquark

(4πf)2
log

2B0mquark

Λ2
4

)

, (41)

where B0, f , Λ3 and Λ4 are parameters to be obtained by fits. The coefficient 1/2 in front of the logarithm is
a distinctive prediction of ChPT. Since several parameters are common in the two formulae, we fit m2

PS and fPS

simultaneously. Correlations between m2
PS and fPS are neglected in the fits for simplicity. Thus, the χ2/dof serves

only as a guide to judge the relative quality of the fits. We estimate the errors by the jackknife method. We try both
mAWI

quark and mV WI
quark (Cases 1 and 2 in what follows) for mquark that appears in these formulae. For mquark = mVWI

quark,

we use κc determined in Eq. (33) since mAWI
quark has no logarithmic singularities in ChPT. From the fits summarized

in Table XI, we find:

Case 1 (mquark = mAWI
quark) : When we fit the data over the whole range mPS/mV = 0.80–0.35, we are led to a

large χ2/dof ∼ 70. By restricting the fitting interval to mPS/mV = 0.60–0.35 we obtain a reasonable fit
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with χ2/dof = 1.9, which is plotted in Fig. 26. As one observes in the second panel of this figure, which
shows m2

PS/2m
AWI
quark appearing in the left hand side of Eq.(40), the chiral logarithm may be visible only at

mPS/mV ∼< 0.40.

Case 2 (mquark = mVWI
quark) : In contrast to Case 1, m2

PS/2m
VWI
quark increases toward the chiral limit in the whole mass

range, which is seen in Fig. 27. Nevertheless, the situation is similar. A fit over the whole rangemPS/mV = 0.80–
0.35 leads to χ2/dof ∼ 100. To obtain an acceptable fit, we have to remove the data at large quark masses.
The best fit obtained for the range mPS/mV = 0.60–0.35 is shown in Fig. 27.

In neither case do we draw the clear evidence for the chiral logarithm for pseudoscalar mesons.
For the vector meson, we adopt the formula based on ChPT in the static limit [48].

mV = AV +BVm2
PS + CVm3

PS . (42)

This cubic form describes our data well as shown in Fig. 28 (see Table XII for numbers).
For octet and decuplet baryons we employ a similar cubic formula [49]

moct,dec = Aoct,dec +Boct,decm2
PS + Coct,decm3

PS , (43)

which also reproduces our data well (Fig. 29 and Table XIII).
In order to present predictions at the physical point, we carry out extrapolations using the data atmPS/mV = 0.60–

0.35. From Eq. (42) the physical point mπ for mPS is given by

mπ

AV +BVm2
π + CVm3

π

=
Mπ

Mρ
. (44)

The lattice spacing is determined to be aChPT
ρ = 0.192(10) fm. For the vector meson, a fit for the whole range

mPS/mV = 0.80–0.35 is acceptable, as seen in Table XII. We will use this fit in Sec. VB with aChPT
ρ = 0.2009(21) fm

for this case.
The masses of non-strange baryonsN and ∆ are determined by substituting mπ tomPS in Eq. (43). The bare quark

mass at the physical point mud and the pion decay constant fπ are obtained from Eqs. (40) and (41). Renormalized
quark masses are calculated with mud as in the case of polynomial extrapolations. These results are compiled in
Table XIV.
We observe 5–10% differences between the ChPT fits over mPS/mV = 0.60–0.35 and the quadratic polynomial

fits over mPS/mV = 0.80–0.55 obtained in the previous work. The numbers are tabulated in Table X. These
differences are similar in magnitude to those we found with higher order polynomial extrapolations using the whole
range mPS/mV = 0.80–0.35. An exception is the VWI quark mass on which we shall make a further comment below.

B. WChPT extrapolation

1. WChPT without resummation

ChPT adapted to Wilson-type quark actions on the lattice (WChPT) has been addressed in Refs. [15, 16, 17, 18].
An important point [18] is that O(a2) chiral breaking terms in the chiral Lagrangian are essential to generate the
parity-flavor breaking phase transition [15], which is necessary to explain the existence of massless pions for Wilson-
type quark actions [50, 51, 52]. Therefore, we must include the O(a2) terms in the leading order. In this counting
scheme, the one-loop formulae read [18],

m2
PS = AmVWI

quark

(

1 + ωPS
1 mV WI

quark log

(

AmV WI
quark

Λ2
3

)

+ ω0 log

(

AmV WI
quark

Λ2
0

))

, (45)

mAWI
quark = mVWI

quark

(

1 + ωAWI
1 mV WI

quark log

(

AmV WI
quark

Λ2
3,AWI

)

+ ω0 log

(

AmV WI
quark

Λ2
0

))

, (46)

fPS = f

(

1− ωfPS

1 mV WI
quark log

(

AmV WI
quark

Λ2
4

))

. (47)
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Here κc in mV WI
quark, A, f , ω0, ω

PS
1 , ωAWI

1 , ωfPS

1 , Λ3, Λ3,AWI , Λ0 and Λ4 are free parameters, and the overall factor of

mAWI
quark is absorbed in ω0 and Λ0. We note that A consists of O(a0) and O(a1) parts, ω0 ∼ O(a2), ωAWI

1 ∼ O(a) and

ωPS
1 =

1

2

(A+ wπ
1 a)

(4πf0)2
, (48)

ωfPS

1 =
(A+ wfπ

1 a)

(4πf0)2
, (49)

where f0 is the pion decay constant in the continuum and chiral limit, which can be different from f by O(a). The

constants wπ
1 and wfπ

1 are O(a0).
There are two features in these formulae worth emphasizing. First, the coefficients of mquark logmquark terms

receive contributions of O(a). This is in contrast to continuum ChPT, in which these coefficients take universal
values. Second, there are terms of the form a2 logmquark which are more singular than the mquark logmquark terms
toward the chiral limit at a finite lattice spacing. Thus WChPT formulae predict the chiral behavior at finite lattice
spacings that is different from what is expected from ChPT in the continuum limit.
We fit mPS and mAWI

quark simultaneously, neglecting correlations between them. The errors are estimated by the

jackknife method. We then fit fPS with A and κc fixed from Eqs. (45) and (46). We give the results in Fig. 30 and
Tables XV and XVI. Fig. 30 demonstrates that the one-loop WChPT formulae explain our data over the whole range
mPS/mV = 0.80–0.35.

2. Resummed WChPT

While fits with Eqs. (45) and (46) work well for the whole range of quark mass we measured, extrapolation to the
physical point is still problematic because the ω0 logm

VWI
quark terms become larger than the leading terms in the chiral

limit. A way out has been proposed in Ref. [18] in which leading singularities around the chiral limit is resummed.
The resulting formulae read,

m2
PS = AmVWI

quark

(

− log

(

AmVWI
quark

Λ2
0

))ω0
(

1 + ωPS
1 mVWI

quark log

(

AmV WI
quark

Λ2
3

))

, (50)

mAWI
quark = mVWI

quark

(

− log

(

AmVWI
quark

Λ2
0

))ω0
(

1 + ωAWI
1 mV WI

quark log

(

AmV WI
quark

Λ2
3,AWI

))

, (51)

where the fitting parameters are κc inm
VWI
quark, A, ω0, ω

PS
1 , ωAWI

1 , Λ3, Λ3,AWI and Λ0. The minus sign in the resummed

part is introduced to keep − log(AmV WI
quark/Λ

2
0) positive. We note that fPS is not affected by the resummation except

for a shift of κc.
As with the case of WChPT without resummation, these resummed WChPT formulae describe our data for the

whole range of mPS/mV = 0.80–0.35. The results are seen in Fig. 31 and Tables XVII and XVIII.
The magnitude of the leading and the one-loop contributions is plotted in Fig. 32 as a function of mquark. In

contrast to WChPT without resummation, which is shown in the second panel of the figure, the one-loop contribution
of resummed WChPT fit remains small in the the whole range of quark mass we explored, including the chiral
limit. This confirms the convergence of the resummed WChPT formulae. Furthermore, the resulting parameters are
comparable with phenomenological estimates; we obtain Λ3 = 0.15(15) [GeV] and Λ4 = 2.44(13) [GeV] as compared
to Λ3 = 0.2–2.0 [GeV] and Λ4 = 1.26(14) [GeV], respectively, from Ref. [12, 53]. A more accurate examination
requires extrapolation to the continuum limit, which is left for studies in the future.
In the present fit, the mquark logmquark terms are sizably suppressed due to O(a) corrections for the pseudoscalar

meson mass. In the combination m2
PS/2m

AWI
quark, (ω

PS
1 − ωAWI

1 ) represents the strength of the chiral logarithm. The

resummed WChPT fit gives (ωPS
1 − ωAWI

1 ) = 0.24(13), while in continuum ChPT we expect ωPS
1 = A/32π2f2

0 = 2.7
and ωAWI

1 = 0, with the phenomenological value of f0 = 0.086 GeV, ignoring O(a) dependence in A. Namely,
the coefficient of the logarithm is suppressed to about 10% of the ChPT value by O(a) contributions in m2

PS and
mAWI

quark. It is important to repeat a similar analysis at a smaller lattice spacing to verify that the magnitude of the
mquark logmquark coefficient converges toward the value predicted by ChPT.
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3. Results at the physical point

Since WChPT formulae are not available for the vector meson, we adopt Eq. (42) to fix the physical point for mπ. A
fit for the whole data in the range mPS/mV = 0.80–0.35 yields aChPT

ρ = 0.2009(21) fm. Substituting mπ to Eq. (50)

and using aChPT
ρ , we obtain the VWI quark mass at the physical point mV WI

ud . Eqs. (51) and (47) with mVWI
ud then

yield mAWI
ud and fπ respectively (Table XIX).

Let us compare the resummed WChPT results with those of the quadratic polynomial obtained with the original
data over the range mPS/mV = 0.80–0.55 (Table X) and the fits using ChPT formula in the continuum limit for
mPS/mV = 0.60–0.35 (Table XIV). The lattice spacing, the AWI quark mass, and the pion decay constant take
similar values among higher order polynomials, ChPT and resummed WChPT formulae. An exception is the VWI
quark mass which significantly depends on the functional forms for the chiral extrapolation. (see Fig. 33). Our final
values for the light quark mass at a = 0.2 fm are:

mV WI,MS
ud (µ = 2 GeV) =

{

1.314(99) [MeV] (resummed WChPT)
1.796(51) [MeV] (polynomial)

(52)

mAWI,MS
ud (µ = 2 GeV) =

{

2.902(36) [MeV] (resummed WChPT)
2.927(53) [MeV] (polynomial)

(53)

The sensitivity of the VWI quark mass on the functional form of chiral extrapolation is due to closeness of κud to the
critical value κc. A small variation of κc is easily amplified in the up and down quark mass which is determined by
the difference 1/κud − 1/κc.

4. Chiral extrapolation from large quark masses

Finally, we test if WChPT explains the deviations of our new data at small quark masses from the quadratic
extrapolation of the data atmPS/mV = 0.80–0.55. A motivation of this test is the rapid increase of the computational
time to simulate QCD toward small sea quark masses on fine lattices. If WChPT correctly predicts the small quark
mass behavior from heavy sea quark mass simulations for mPS/mV ≥ 0.5, it will be a great help for our studies.
We apply the resummed WChPT formulae to the large quark mass data set at β = 1.80. Since the number of data

points at mPS/mV ≥ 0.5 is small for a stable fitting, we introduce a restriction: Λ3 = Λ3,AWI . Fig. 34 (see Table XIX
for numerical values) compares the fit from the large quark mass data set and that using the data for the entire mass
range. The resummed WChPT fit using the large quark mass data set alone describes the small sea quark mass data
very well. This contrasts to the polynomial extrapolation. Our observation suggests that WChPT may provide a
valuable tool to carry out an accurate chiral extrapolation using simulations with not too small quark masses.
Encouraged by this, we apply the resummed WChPT to the two additional data sets at mPS/mV = 0.80–0.55

obtained at smaller lattice spacings at β = 1.95 and 2.1 (a = 0.16 and 0.11 fm) in the previous work. A simultaneous

linear continuum extrapolation using mVWI,MS
ud and mAWI,MS

ud , combined with the results for β = 1.8, leads to

mMS
ud (µ = 2 GeV) = 3.06(18) [MeV] (resummed WChPT fit) (54)

where the error is statistical only. When we use our whole data of mPS/mV = 0.80–0.35 at β = 1.80, we obtain

mMS
ud (µ = 2 GeV) = 3.11(17) [MeV] (resummed WChPT fit with our whole data) (55)

This is compared to our previous result using the quadratic extrapolation:

mMS
ud (µ = 2 GeV) = 3.45(10) [MeV] (quadratic fit) (56)

The resummed WChPT results in a 10% decrease in the mean up and down quark mass. This is demonstrated in
Fig. 35.

VI. CONCLUSIONS

In this paper, we have pushed our previous study of two-flavor QCD down to a sea quark mass as small as
mPS/mV = 0.35, using the RG-improved gauge action and the clover-improved Wilson quark action. We have



13

found that our new data at mPS/mV = 0.60–0.35 show clear deviations from the prediction of the previous chiral
extrapolations based on quadratic polynomials, which implies that higher order terms were needed to describe the
behavior at a small sea quark mass. On the other hand, our current data do not show the clear quark mass dependence
expected from ChPT in the continuum: the chiral logarithm may appear only below mPS/mV ∼ 0.4. This result
contrasts with that of the qq+q collaboration [22] based on unimproved plaquette glue and Wilson quark actions, but
is not dissimilar to that of UKQCD [24].
We have provisionally ascribed the major reason for the failure of continuum ChPT to explicit chiral symmetry

breaking of the Wilson term, which is significant on our lattice of a = 0.2 fm. We have then made a test of WChPT in
which the effect of the Wilson term is accommodated, and found the resummed one-loop WChPT formulae that take
account of the effects up to O(a2) describe well our entire data. Convergence tests indicate that resummed WChPT
gives well-controlled chiral extrapolations. The use of WChPT generally leads to modifications of various physical
observables at the physical point by about 10%, compared with those obtained in the quadratic extrapolation at this
lattice spacing. A much larger modification, however, is seen with the light quark mass defined through vector Ward
identity: the WChPT extrapolation decreases it by 30%.
We note in particular that the resummed WChPT extrapolation from our previous data at mPS/mV = 0.80–

0.55 predicts correctly the new data at mPS/mV = 0.60–0.35. Encouraged by this fact, we attempted a continuum
extrapolation of the light quark mass using the resummed WChPT fits to the previous data at mPS/mV = 0.80–0.55

but on finer lattices with a = 0.16 and 0.11 fm. We find in the continuum limit, mMS
ud (µ = 2 GeV) = 3.11(17) [MeV],

which is smaller than the previously reported result by approximately 10%. Our work suggests that WChPT provides
us with a valuable theoretical framework for chiral extrapolations.
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APPENDIX A: HADRON MASSES

Measured hadron masses are summarized in Tables XX–XXVII. Our choice of the fitting range and resulting value
of χ2/dof are also given in these tables.
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TABLE I: Run parameters of the present simulation. The step size dt is given by the inverse of the number of the molecular
dynamics steps (#MD), and hence not listed. We denote the tolerance parameter in the stopping condition for the quark
matrix inversion in calculations of the force by ∆force and the average number of iterations by Ninv . Number of node (PE’s)
of VPP5000/80 used for the present calculation, and the CPU time required per trajectory in units of hour are also given. The
number of trajectory is denoted by Ntraj .

123 × 24 on 4PE on 4PE on 4PE on 8PE

κsea 0.14585 0.14660 0.14705 0.14720

#MD 200 333 400 800 1000 1250 1600

Accept. 0.76 0.72 0.84 0.82 0.90 0.87 0.91

Ntraj 4000 1750 2250 680 3320 100 1300

∆force 10−10 10−11 10−11 10−12

Ninv 87 147 232 318

Hour/traj. 0.23 0.56 0.69 2.0 2.6 2.2 3.2

mPS/mV 0.609(2) 0.509(5) 0.413(8) 0.349(19)

163 × 24 on 4PE on 8PE

κsea 0.14585 0.14660 0.14705 0.14720

#MD 200 250 333 500 – –

Accept. 0.61 0.71 0.79 0.80 – –

Ntraj 800 1200 325 1675 – –

∆force 10−10 10−11 – –

Ninv 92 158 – –

Hour/traj. 0.50 0.61 0.69 1.03 – –

mPS/mV 0.604(3) 0.509(4) – –

TABLE II: String tension σ and Sommer scale r0 at simulated sea quark masses. The first error is statistical. The second and
third ones are the systematic errors due to the choice of tmin and rmin.

123 × 24

κsea tmin rmin σ r0

0.14585 2
√
2 0.322(6)(−42)(+91) 2.004(8)(+58)(+77)

0.14660 2
√
2 0.289(5)(−8)(+64) 2.107(8)(+37)(+54)

0.14705 2
√
2 0.278(5)(−38)(+34) 2.167(9)(+80)(+25)

0.14720 2
√
2 0.255(8)(−10)(+42) 2.237(17)(+10)(+34)

163 × 24

κsea tmin rmin σ r0

0.14585 2
√
2 0.313(11)(−10)(+90) 2.011(10)(+17)(+72)

0.14660 2
√
2 0.270(6)(+7)(+66) 2.131(11)(+20)(+39)
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TABLE III: Autocorrelation time for plaquette (τ cum
plaq ), pseudoscalar meson propagator at Nt/4 (τ cum

PS ) and Wilson loop with
(r, t) = (2, 2) (τ cum

W ). All values are in units of HMC trajectory.

123 × 24

κsea 0.14585 0.14660 0.14705 0.14720

τ cum
plaq 7.6(1.8) 11.7(2.3) 9.5(2.1) 8.9(3.2)

τ cum
PS 7.9(1.6) 7.2(1.5) 5.3(1.2) 3.0(1.0)

τ cum
W 8.1(1.9) 12.6(2.9) 11.3(2.2) 13.0(4.4)

163 × 24

κsea 0.14585 0.14660 0.14705 0.14720

τ cum
plaq 14.1(3.9) 8.8(2.1) – –

τ cum
PS 10.3(2.8) 4.9(1.6) – –

τ cum
W 14.1(3.8) 10.1(4.3) – –

TABLE IV: Parameters of independent polynomial chiral fits to AWI quark masses and pseudoscalar meson masses as a
function of the VWI quark mass.

mPS/mV κc BAWI CAWI DAWI EAWI χ2/dof Q

0.80–0.35 0.147502(14) 1.961(60) −10.5(1.9) 71(20) −201(67) 4.38/3 0.22

mPS/mV κc BPS CPS DPS EPS χ2/dof Q

0.80–0.35 0.147514(15) 12.05(33) −55.7(9.0) 359(89) −966(281) 4.17/3 0.24

TABLE V: Parameters of simultaneous polynomial chiral fits to AWI quark masses and pseudoscalar meson masses as a
function of the VWI quark mass. The first error is statistical and the second is a systematic one due to the higher order term
for the chiral extrapolation.

mPS/mV κc BAWI CAWI DAWI EAWI χ2/dof

0.80–0.35 0.147508(14)(+7) 1.938(54)(−60) −9.8(1.7)(+3.3) 65(18)(−67) −181(60)(+541) 8.89/7

BPS CPS DPS EPS Q

12.18(31)(−20) −58.9(8.6)(+7.9) 389(85)(−126) −1053(269)(+880) 0.26

TABLE VI: Parameters of polynomial chiral fits to vector meson mass. The first error is statistical and the second is a
systematic one due to the higher order term for the chiral extrapolation.

mPS/mV AV BV DV F V χ2/dof Q

0.80–0.35 0.770(15)(−6) 0.790(72)(+47) −0.304(97)(−116) 0.063(39)(+113) 1.10/4 0.89

TABLE VII: Parameters of polynomial chiral fits to pseudoscalar and vector meson decay constants.

mPS/mV AfPS BfPS DfPS F fPS χ2/dof Q

0.80–0.35 0.1239(26)(−83) 0.165(17)(+86) −0.076(27)(−264) 0.018(12)(+296) 17.2/4 0.0018

mPS/mV AfV BfV DfV F fV χ2/dof Q

0.80–0.35 0.228(12)(−15) 0.265(59)(+127) −0.156(85)(−336) 0.039(35)(+340) 2.31/4 0.68

TABLE VIII: Parameters of polynomial chiral fits to octet and decuplet baryon masses.

mPS/mV Aoct Boct Doct F oct χ2/dof Q

0.80–0.35 1.051(23)(+21) 1.41(12)(−19) −0.51(18)(+56) 0.097(78)(−591) 4.96/4 0.29

mPS/mV Adec Bdec Ddec F dec χ2/dof Q

0.80–0.35 1.381(37)(+8) 1.03(19)(−7) −0.17(29)(+18) −0.022(126)(−186) 0.75/4 0.95
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TABLE IX: Parameters of polynomial chiral extrapolation of r0.

mPS/mV Ar0 Br0 Dr0 Fr0 χ2/dof Q

0.80–0.35 0.432(12)(−7) 0.207(89)(+99) −0.11(14)(−32) 0.032(64)(+364) 0.37/4 0.99

TABLE X: Results of physical quantities obtained by polynomial chiral fits using data at mPS/mV = 0.80–0.35. The results
of the previous quadratic fits at mPS/mV = 0.80–0.55 [3] are also shown. The first error is statistical and the second is a
systematic one due to the higher order term for the chiral extrapolation. Only statistical errors are given for the previous
results.

Quartic fit (this study) a Quadratic fit [3] Difference

fit range in mPS/mV 0.80–0.35 0.80–0.55

aρ[fm] 0.2007(38)(−14) 0.2150(22) −7%(6.5σ)

κud 0.147440(13)(+7) 0.147540(16) −0.1%(6.3σ)

mV WI,MS

ud (µ = 2 GeV)[MeV] 1.796(51)(+18) 2.277(27) −21%(18σ)

mAWI,MS

ud (µ = 2 GeV)[MeV] 2.927(53)(−55) 3.094(35) −6%(4.8σ)

fπ [GeV] 0.1248(31)(−59) 0.1288(33) −3%(1.2σ)

fρ[GeV] 0.2294(74)(−111) 0.2389(47) −4%(2.0σ)

mN [GeV] 1.060(27)(+24) 1.016(16) +4%(2.8σ)

m∆[GeV] 1.377(39)(+16) 1.270(23) +8%(4.7σ)

aFor vector meson masses, decay constants and baryon masses, we employ cubic fit functions in m2

PS
as Eqs. (34)–(36).

TABLE XI: Chiral extrapolation of pseudoscalar meson masses and decay constants based on the continuum ChPT formulae
at one-loop with mquark = mAWI

quark and mquark = mV WI
quark. κc has been determined with mAWI

quark. The value of κc is shown in
Table IV.

mPS/mV BAWI
0 fAWI ΛAWI

3 ΛAWI
4 χ2/dof Q

0.80–0.35 3.838(15) 0.12162(47) 1.553(10) 2.633(15) 849/12 10−174

0.60–0.35 3.398(52) 0.1130(20) 0.902(71) 2.591(98) 11.2/6 0.083

mPS/mV BV WI
0 fV WI ΛV WI

3 ΛV WI
4 χ2/dof Q

0.80–0.35 6.886(22) 0.13225(35) 2.4018(85) 2.463(11) 1417/12 10−296

0.60–0.35 6.582(87) 0.1145(18) 1.645(83) 2.262(72) 17.5/6 0.0076

TABLE XII: Parameters of chiral fits to vector meson mass based on continuum ChPT.

mPS/mV AV BV CV χ2/dof Q

0.80–0.35 0.7692(86) 0.897(32) −0.346(23) 1.39/5 0.93

0.60–0.35 0.731(45) 1.31(49) −0.85(60) 0.33/2 0.85

TABLE XIII: Parameters of chiral fits to octet and decuplet baryon masses based on continuum ChPT.

mPS/mV Aoct Boct Coct χ2/dof Q

0.80–0.35 1.043(14) 1.641(68) −0.632(51) 5.13/5 0.40

0.60–0.35 1.011(52) 2.08(59) −1.23(74) 2.23/2 0.33

mPS/mV Adec Bdec Cdec χ2/dof Q

0.80–0.35 1.351(20) 1.353(88) −0.481(66) 1.24/5 0.94

0.60–0.35 1.428(86) 0.52(93) 0.53(1.15) 0.23/2 0.89
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TABLE XIV: Results of physical quantities obtained by continuum one-loop ChPT chiral fits using data at mPS/mV = 0.60–
0.35. For the mquark = mV WI

quark case, κc has been fixed to the value determined from the quartic fit to mAWI
quark shown in Table IV.

The errors are statistical.

continuum ChPT
(

mquark = mAWI
quark

)

continuum ChPT
(

mquark = mV WI
quark

)

aρ[fm] 0.192(10)

κud 0.147445(14) 0.1474431(65)

mV WI,MS

ud (µ = 2 GeV)[MeV] 1.609(89) 1.625(81)

mAWI,MS

ud (µ = 2 GeV)[MeV] 2.66(13) 2.68(13)

fπ [GeV] 0.1219(64) 0.1231(65)

mN [GeV] 1.074(69)

m∆[GeV] 1.47(11)

TABLE XV: Parameters of chiral fits to pseudoscalar meson and AWI quark masses based on WChPT.

mPS/mV κc A ω0 ωPS
1 ωAWI

1 Λ0 Λ3 ΛAWI
3 χ2/dof Q

0.80–0.35 0.147445(27) 6.312(44) −0.40(13) −2.0(1.4) −2.0(1.4) 0.91(35) 1.95(15) 1.77(23) 11.9/8 0.16

TABLE XVI: Parameters of chiral fits to pseudoscalar meson decay constants based on WChPT. κc and A has been fixed to
the values in Table XV.

mPS/mV f ωfPS

1
Λ4 χ2/dof Q

0.80–0.35 0.1233(17) 3.73(30) 2.44(13) 18.1/5 0.0028

TABLE XVII: Parameters of chiral fits to pseudoscalar meson and AWI quark masses based on the resummed WChPT.

mPS/mV κc A ω0 ωPS
1 ωAWI

1 Λ0 Λ3 ΛAWI
3 χ2/dof Q

0.80–0.35 0.147459(20) 6.354(59) 0.542(46) 0.65(51) 0.42(49) 0.397(56) 0.15(15) 0.07(16) 11.0/8 0.20

TABLE XVIII: Parameters of chiral fits to pseudoscalar meson decay constants based on the resummed WChPT. κc and A
has been fixed to the values in Table XVII.

mPS/mV f ωfPS

1
Λ4 χ2/dof Q

0.80–0.35 0.1227(17) 3.78(30) 2.44(13) 18.2/5 0.0028

TABLE XIX: Results of physical quantities obtained by the resummed WChPT fits using data at mPS/mV = 0.80–0.35. The
results are compared with the results of the resummed WChPT fits using our previous data at mPS/mV = 0.80–0.55.

RWChPT RWChPT a Difference

fit range in mPS/mV 0.80–0.35 0.80–0.55

aρ[fm] 0.2009(21) 0.2022(38) −1%(0.3σ)

κud 0.147409(16) 0.14736(22) +0.03%(0.2σ)

mV WI,MS

ud (µ = 2 GeV)[MeV] 1.314(99) 1.10(64) +19%(0.3σ)

mAWI,MS

ud (µ = 2 GeV)[MeV] 2.902(36) 2.945(60) −1%(0.7σ)

fπ [GeV] 0.1238(21) 0.1368(43) −10%(3.0σ)

aFor mPS/mV = 0.80–0.55 data, we employ a restriction Λ3 = Λ3,AWI .
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TABLE XX: Meson masses and bare AWI quark masses on 123 × 24 lattice.

κsea mPS [tmin, tmax] χ2/dof mV [tmin, tmax] χ2/dof mAWI
quark

0.14585 0.6336(14) [6,12] 0.76(84) 1.0405(38) [6,12] 0.40(51) 0.06340(34)

0.14660 0.4789(23) [6,12] 1.60(1.19) 0.9410(81) [6,12] 2.36(1.02) 0.03632(39)

0.14705 0.3520(29) [6,12] 0.60(77) 0.8526(148) [6,12] 0.67(81) 0.01952(30)

0.14720 0.2893(61) [6,12] 0.50(93) 0.8300(413) [6,12] 0.95(92) 0.01296(49)

TABLE XXI: Decay constants on 123 × 24 lattice. Here for the renormalization factor we employ κc determined from a
simultaneous fit to m2

PS and mAWI
quark in Table V.

κsea fPS [tmin, tmax] fV [tmin, tmax]

0.14585 0.1785(14) [6,12] 0.3118(33) [6,12]

0.14660 0.15784(87) [6,12] 0.2874(57) [6,12]

0.14705 0.1413(14) [6,12] 0.2496(97) [6,12]

0.14720 0.1412(41) [6,12] 0.2422(239) [6,12]

TABLE XXII: Baryon masses on 123 × 24 lattice.

κsea mN [tmin, tmax] χ2/dof m∆ [tmin, tmax] χ2/dof

0.14585 1.5357(69) [5,12] 0.65(76) 1.7722(97) [5,12] 0.74(83)

0.14660 1.3619(92) [5,12] 0.85(66) 1.6061(183) [5,12] 1.45(97)

0.14705 1.2054(165) [5,12] 0.69(96) 1.5110(268) [5,12] 1.28(81)

0.14720 1.1791(417) [5,12] 0.99(62) 1.5300(1020) [5,12] 0.62(1.23)

TABLE XXIII: Plaquette and rectangular loops on 123 × 24 lattice.

κsea

〈

W 1×1
〉 〈

W 1×2
〉

0.14585 0.504529(56) 0.249916(70)

0.14660 0.508445(69) 0.254866(88)

0.14705 0.511202(68) 0.258350(86)

0.14720 0.512632(144) 0.260157(186)
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TABLE XXIV: Meson and bare AWI quark masses on 163 × 24 lattice.

κsea mPS [tmin, tmax] χ2/dof mV [tmin, tmax] χ2/dof mAWI
quark

0.14585 0.6333(19) [6,12] 0.72(52) 1.0488(43) [6,12] 0.82(76) 0.06378(47)

0.14660 0.4781(16) [6,12] 3.55(2.04) 0.9403(70) [6,12] 1.41(93) 0.03642(40)

TABLE XXV: Decay constants on 163 × 24 lattice. Here for the renormalization factor we employ κc determined from a
simultaneous fit to m2

PS and mAWI
quark in Table V.

κsea fPS [tmin, tmax] fV [tmin, tmax]

0.14585 0.1804(23) [6,12] 0.3151(45) [6,12]

0.14660 0.1592(16) [6,12] 0.2913(48) [6,12]

TABLE XXVI: Baryon masses on 163 × 24 lattice.

κsea mN [tmin, tmax] χ2/dof m∆ [tmin, tmax] χ2/dof

0.14585 1.5567(91) [5,12] 1.97(92) 1.7804(113) [5,12] 0.64(54)

0.14660 1.3257(118) [5,12] 1.58(91) 1.5899(124) [5,12] 0.96(77)

TABLE XXVII: Plaquette and rectangular loops on 163 × 24 lattice.

κsea

〈

W 1×1
〉 〈

W 1×2
〉

0.14585 0.504482(75) 0.249850(90)

0.14660 0.508338(61) 0.254739(76)
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FIG. 27: Test of simultaneous continuum ChPT fit with the quark mass defined through the vector Ward identity. Open
symbols are the results obtained in our previous study [3].
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FIG. 33: Comparisons of the polynomial and the resummed WChPT fits to pseudoscalar meson mass and AWI quark mass
determined at mPS/mV = 0.80–0.35. Circles show the lattice data and the square is the extrapolated result at the physical
point. Open symbols are the results obtained in our previous study [3].

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

6.80 6.85 6.90 6.95 7.00 7.05 7.10
 1 / κsea 

 mPS
2  

 mquark
AWI  

quadratic fit with mPS/mV=0.80−0.55
RWChPT fit with mPS/mV=0.80−0.55

0.00

0.05

0.10

0.15

0.20

0.25

6.77 6.78 6.79 6.80 6.81 6.82
 1 / κsea 

 mPS
2  

 mquark
AWI  

quadratic fit with mPS/mV=0.80−0.55
RWChPT fit with mPS/mV=0.80−0.55

FIG. 34: Comparison of quadratic and resummedWChPT fits to pseudoscalar meson masses and AWI quark masses determined
from the previous data of mPS/mV = 0.80–0.55 [3] (open symbols) with the new small sea quark mass data (filled symbols).
The right panel is an enlargement around the chiral limit.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2

m
udM

S (
µ=

2G
eV

)[
M

eV
]

a[GeV
−1

]

VWI,PQ
AWI
VWI

FIG. 35: Continuum extrapolations of degenerate up and down quark mass obtained by chiral extrapolations with polynomials
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