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Positivity violation for the lattice Landau gluon propagator
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We present explicit numerical evidence of reflection-positivity violation for the lattice Landau gluon
propagator in three-dimensional pure SU(2) gauge theory. We use data obtained at very large
lattice volumes (V = 803, 1403) and for three different lattice couplings in the scaling region (β =
4.2, 5.0, 6.0). In particular, we observe a clear oscillatory pattern in the real-space propagator C(t).
We also verify that the (real-space) data show good scaling in the range t ∈ [0, 3] fm and can be
fitted using a Gribov-like form. The violation of positivity is in contradiction with a stable-particle
interpretation of the associated field theory and may be viewed as a manifestation of confinement.
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I. INTRODUCTION

In recent years, there has been considerable interest in
the possible violation of spectral positivity for QCD and
in its relation to color confinement (for a review see [1]).
Let us recall [2] that the reconstruction of a G̊arding-
Wightman relativistic quantum field theory from the cor-
responding Euclidean Green functions is possible only if
they obey the Osterwalder-Schrader axioms [3]. In par-
ticular, the requirement of positive definiteness of the
norm in Hilbert space is expressed in Euclidean space by
the axiom of reflection positivity. For a generic 2-point

function D̃(x− y), this axiom reads
∫

d4x d4y f∗(−x0,x) D̃(x− y) f(y0,y) ≥ 0 , (1)

where f(x0,x) is an arbitrary complex test function.
The above condition implies the existence of a Källen-

Lehmann representation for D̃(x − y), which is neces-
sary for interpreting the fields in terms of stable parti-
cles. Thus, a violation of (1) implies that the Euclidean
2-point function cannot represent the correlations of a
physical particle. This may be viewed as an indication
of confinement [1].
The relation between reflection positivity and Eu-

clidean correlation functions can be made explicit by con-
sidering the spectral representation [1, 4]

D(p) =

∫ ∞

0

dm2 ρ(m2)

p2 +m2
(2)

for the Euclidean propagator in momentum space. Then,
the statement of reflection positivity is equivalent to a
positive spectral density ρ(m2). This implies that the
temporal correlator at zero spatial momentum D(t,p =
0) can be written as

C(t) ≡ D(t, 0) =

∫ ∞

0

dω ρ(ω2) e−ω t . (3)

We note that for general spatial momentum p one would
have ω =

√
p2 +m2. [In the particular case p = 0 con-

sidered here, the decay behavior of D(t,p) provides di-
rect insight on mass-like properties associated with the
fields.] Clearly, a positive density ρ(ω2) implies that

C(t) > 0 . (4)

Notice that having C(t) > 0 for all t does not ensure the
positivity of ρ(ω2). On the other hand, finding C(t) < 0
for some t implies that ρ(ω2) cannot be positive, suggest-
ing confinement for the corresponding particle.
For the gluon, the Landau propagator is predicted to

vanish at zero momentum [5, 6, 7, 8, 9, 10]. This im-

plies that the real-space propagator D̃(x − y) is positive
and negative in equal measure, i.e. reflection positivity
is maximally violated [5, 6, 8]. An infrared suppressed
Landau gluon propagator has been obtained in several
studies in momentum space [11, 12, 13, 14]. Numerical
indications of a negative real-space lattice Landau gluon
propagator have been presented in the 3d SU(2) case
[12], in the magnetic sector of the 4d SU(2) case at fi-
nite temperature [13] and, recently, in the 4d SU(3) case
for one “exceptional” configuration [15]. In this work
we verify this feature in detail (see Section II), using
data obtained at very large lattice sizes for the SU(2)
case in three space-time dimensions [14]. At the same
time, we try to fit the numerical data in real space (see
Section III) by considering a sum of Gribov-like propa-
gators [5, 7]. Let us recall that an excellent fit of the
(momentum-space) propagator by a Gribov-like formula
has been obtained for the equal-time three-dimensional
transverse gluon propagator in 4d SU(2) Coulomb gauge
[16] and for the 3d SU(2) Landau case [14], while in Ref.
[4] the (real-space) transverse propagator has been fit-
ted using a a Stingl-like formula in the 4d SU(3) Landau
case. Also, several fitting forms have been considered in
Ref. [17] for the gluon propagator in momentum space.

II. VIOLATION OF REFLECTION POSITIVITY

An explicit (numerical) proof of violation of the con-
dition (4) may be difficult if the correlation function
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C(t) only becomes negative at relatively large values of
t. In particular, this is the case if C(t) is of the form
C(t) = e−λt f(t) and f(t) is only negative for t ≫ 1/λ.
In this case it is helpful to consider alternative quantities
G(t) that are positive if ρ(ω2) is positive. [Consequently,
finding G(t) < 0 implies violation of positivity for ρ(ω2).]
For example, one can define [18] the function

G(t) ≡ d2

dt2
lnC(t) (5)

=
C(t)C′′(t) − [C′(t)]2

[C(t)]2
. (6)

Using Eq. (3) we can write G(t) as [1, 4]

G(t) = 〈(ω − 〈ω〉)2〉 , (7)

where the averages denoted by 〈 〉 are evaluated in the
measure dω ρ(ω2) e−ω t. Clearly, if the density ρ(ω2) is
positive, so is G(t). Let us note that for C(t) = e−λt f(t)
one gets G(t) ≡ d2 ln f(t)/dt2 , namely we get rid of the
exponential factor e−λt and it should be easy to check
numerically if G(t) — or equivalently f(t) — is negative.
The quantity G(t) could be of particular interest in a
4d study, since in this case it is more difficult to obtain
good data for large time separations. In the case of a
Gribov-like momentum-space propagator [7]

D(p) = p2 /
(
p4 +M4

)
, (8)

one obtains the real-space propagator [5]

C(t) =
1

2 π

∫ ∞

−∞
dpD(p) e−ipt (9)

=
e−Mt/

√
2

2M
cos

(
Mt√
2

+
π

4

)
. (10)

Then, using Eq. (6), it is easy to check that

G(t) = −M2

[
2 cos2

(
Mt√
2

+
π

4

)]−1

, (11)

which is negative for all values of t.
Notice that if C(t) is negative for some value of t we

cannot evaluate its logarithm in Eq. (5), while the ex-
pression in Eq. (6) is always well defined for C(t) 6= 0.

On the lattice, the real-space propagator can be eval-
uated using

C(t) =
1

N

N−1∑

k0=0

e−2π ik0t/N D(k0, 0) , (12)

where N is the number of points per lattice side and
D(k) is the propagator in momentum space. If the lattice
action satisfies reflection positivity [19], then we can write
the spectral representation

C(t) =
∑

n

rne
−Ent , (13)

FIG. 1: Real-space propagator C(t) as a function of t for
coupling β = 5.0 and lattice volumes V = 803 (above) and
V = 1403 (below). Errors have been evaluated using boot-
strap with 1000 samples. All quantities are in lattice units.

where rn are positive-definite constants. Clearly, this
implies that C(t) is non-negative for all values of t.
As in the continuum, we can consider G(t) using Eq.

(6) or, equivalently, the function G(t) [C(t)]2. This quan-
tity can be easily discretized on the lattice by

G(t, a) =
1

a2
[
C(t)C(t + 2a) − C(t+ a)2

]
, (14)

where a is the lattice spacing. Indeed, in the continuum
limit a → 0 , one obtains G(t, a) = G(t)C(t)2 + O(a3).
Furthermore, defining

bn =
√
rn e−Ent/2 , cn =

√
rn e−En(t+2a)/2 , (15)

we can use the Schwartz inequality [18] to show that
G(t, a) ≥ 0 for all values of t and a if the rn’s are positive.
Also, considering the effective gluon mass

m(t) = − log [C(t+ a) /C(t)] , (16)
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FIG. 2: Plot of |C(t)| as a function of t for lattice volume
V = 803 and coupling β = 6.0. For clarity, errors are not
shown. All quantities are in lattice units. The solid line is
drawn to guide the eye.

FIG. 3: Plot of −G(t, 1) as a function of t for lattice volume
V = 1403 and coupling β = 4.2. Errors have been evalu-
ated using bootstrap with 1000 samples. All quantities are in
lattice units.

one gets em(t)−em(t+a) = G(t, a) a2 em(t+a) /C(t+a)2.
Thus, if G(t, a) ≥ 0 one obtains m(t) ≥ m(t+a), i.e. the
effective mass should decrease when considering a larger
time separation t. As discussed in [18], an increasing
effective gluon mass has been obtained already in the first
numerical studies of the gluon propagator [20], suggesting
a violation of reflection positivity. Note, however, that
Eq. (16) is ill-defined if C(t) changes sign.
Here we use the 3d SU(2) Landau-gauge data pre-

sented in [14] in order to check if the conditions C(t) > 0
and G(t, a) > 0 are violated for the gluon propaga-
tor. (The data have been analyzed using the bootstrap
method with 1000 samples; we checked that results do
not change when using 500 samples.) As explained in

FIG. 4: Scaling for the real-space propagator C(t) as a func-
tion of t (in fm) for lattice volume V = 1403 and couplings
β = 4.2 (×), 5.0 (✷), 6.0 (✸). Errors have been evaluated
using bootstrap with 1000 samples.

Ref. [14], we set the physical scale by considering 3d
SU(2) lattice results for the string tension and the in-
put value

√
σ = 0.44GeV , which is a typical value for

this quantity in the 4d SU(3) case. Since we consider
h̄ = c = 1, this implies 1 fm−1 = 0.4485

√
σ.

We find that the real-space propagator C(t) is negative
for several values of t, showing a clear oscillatory behavior
(see Fig. 1). In analogy with Ref. [10] we also plot, in
Fig. 2, the function |C(t)|: the spikes reveal the change
of sign in the propagator C(t). Finally, in Fig. 3 we
plot the function −G(t, 1): one can see that, as in the
Gribov-like propagator, G(t, 1) is negative for all values
of t. Thus, we find an explicit violation of positivity for
the lattice Landau gluon propagator. Let us stress that
this violation is clearly observable for the three lattice
couplings and for the two lattice volumes considered.

III. SCALING AND FITS FOR C(t)

It is important to check if the behavior obtained for
C(t) satisfies scaling for the lattice parameters consid-
ered here. To this end, we apply to the data the match-
ing procedure described in [14, Section III] and consider
t in physical units using [14, Table 2]. We obtain that all
propagators become negative at t ≈ 0.7 fm and that the
minimum is reached at tmin ≈ 1 fm (see Fig. 4). More-
over, finite-size effects seem to become important only at
t ∼> 3 fm. This means that our data for t ∈ [0, 3] fm
are essentially infinite-volume continuum results. Note
that the Gribov-like propagator C(t) in Eq. (10) has its

minimum at tmin = π/(M
√
2 ). Thus, the above result

for tmin would imply M ≈ π/
√
2 fm−1 ≈ 2.22 fm−1 =

438MeV = 0.995
√
σ. Let us also observe that the

momentum-space Gribov-like propagator D(p) [see Eq.
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FIG. 5: Fit of C(t) as a function of t (in fm) using a sum of
two functions of the type (17) for lattice volume V = 1403 and
coupling β = 4.2. We also display C1(t) and C2(t) separately.

(8)] has its maximum at pmax = M . In Ref. [14] we
obtained pmax = 0.8+0.2

−0.1

√
σ = 350+100

−50 MeV .
As said above, in Ref. [14] we have fitted the gluon

propagator in momentum space using a modified Gribov-
like or Stingl-like formula with four or five parameters.
We now try to fit the data in real space using

C(t) = c e−λt/
√
2 cos

(
b + λ t /

√
2
)

, (17)

which is a generalization of the Gribov-like propaga-
tor in Eq. (10). Clearly, this function also corresponds
to a G(t) that is always negative. Let us stress that
only for b = π/4 does this propagator correspond to
the Gribov-like propagator in Eq. (8). In particular,
for b = 0 one gets the momentum-space propagator
D(p) =

(
p2 +M2

)
/
(
p4 +M4

)
, which is finite at zero

momentum. As reported in [14], it is still not clear from
our data (on a 1403 lattice) if the zero-momentum gluon
propagator vanishes in the infinite-volume limit, as pre-
dicted in [5, 6, 8].
We fit the data obtained for the two largest physical

volumes, i.e. V = 1403 and β = 4.2, 5.0, with t in the
range [0, 3] fm. As can be seen in Fig. 5, the data are
well fitted using a sum of two functions of the type (17).
The corresponding fitting parameters are reported in Ta-
ble I. The averaged mass scales are λ1 = 1.69(1)

√
σ =

745(5)MeV and λ2 = 0.74(1)
√
σ = 325(6)MeV . One

can also obtain good fits of the data in the whole t range
by considering the Fourier transform of the sum of three
Stingl-like propagators in momentum space. These fits
(using 12 parameters) have been reported elsewhere [21].
It is evident that fits of the gluon propagator in real space

(see also [4]) require more parameters than fits in momen-
tum space. This is due to the fact that the infrared data,
for which the modeling is still not well understood, are
spread over the whole time interval by the Fourier trans-
form done in the evaluation of the temporal correlator
C(t).
Recently, it has been suggested [22, 23] that the vio-

lation of spectral positivity in lattice Landau gauge be
related to the quenched auxiliary fields used for gauge
fixing. We note that the fitting form proposed for C(t)
in [23] (also considering 5 fitting parameters) describes
reasonably well our data up to t = 3 fm — yielding a
light-mass scale of about 1.14

√
σ = 500MeV — but can-

not account for the oscillatory behavior observed at very
large separations.

β c1 λ1 c2 b2 λ2

4.2 0.368(6) 3.83(4) 0.70(3) 0.099(6) 1.54(4)

5.0 0.361(6) 3.72(3) 0.56(3) 0.089(6) 1.75(5)

TABLE I: Fit of the data using a sum of two functions of
the type (17), setting b1 = 0. We obtain χ/d.o.f. ≈ 0.24
(respec. 0.19) for β = 4.2 (respec. 5.0). The number of d.o.f.
is 13 (respec. 17). The values of λ1 and λ2 are in fm−1.
The relatively small χ/d.o.f. is probably due to the use of the
diagonal part of the covariance matrix only.

IV. CONCLUSIONS

Using data from the largest lattice sides to date, we
verify explicitly (in the 3d case) the violation of reflec-
tion positivity for the SU(2) lattice Landau gluon prop-
agator. This is one of the manifestations of confinement
discussed in [1]. For very large separations (t > 3 fm)
the propagator shows a clear oscillatory behavior, but of
course one needs a careful extrapolation to infinite vol-
ume in order to verify if this behavior survives in that
limit. In the scaling region, the data are well described
by a sum of Gribov-like formulas, with a light-mass scale
M ≈ 0.74

√
σ = 325MeV , where σ is the string tension.

As a final comment, one should always bear in mind that
the Gribov-like propagator may not represent the true
analytic structure of the gluon propagator, but it is il-
lustrative of a possible mechanism of confinement for the
gluons (see also the discussion after Eq. (18b) in [24]).
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