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Density matrix renormalization group approach to a two-dimensional

bosonic model

Takanori Sugiharaa

aRIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, U.S.A.

Density matrix renormalization group (DMRG) is applied to a (1+1)-dimensional λφ4 model to study sponta-
neous breakdown of discrete Z2 symmetry numerically. We obtain the critical coupling (λ/µ2)c = 59.89 ± 0.01
and the critical exponent β = 0.1264 ± 0.0073, which are consistent with the Monte Carlo and the exact results,
respectively. The results are based on extrapolation to the continuum limit with lattice sizes L = 250, 500, and
1000. We show that the lattice size L = 500 is sufficiently close to the the limit L → ∞ [1].

1. Introduction

Hamiltonian diagonalization is a useful method
for nonperturbative analysis of many-body quan-
tum systems. If Hamiltonian is diagonalized, the
system can be analyzed nonperturbatively at the
amplitude level [2,3,4]. However, in general quan-
tum field theories, the method does not work
without reducing degrees of freedom because the
dimension of Hamiltonian increases exponentially
as the system size becomes large. We need to
find a way to create a small number of optimum
basis states [5,6]. S. White proposed a power-
full method called density matrix renormaliza-
tion group (DMRG) [7,8]. In DMRG, calcula-
tion accuracy of target states can be controlled
systematically using density matrices. White cal-
culated very accurately energy and wavefunctions
of Heisenberg chains composed of more than 100
sites using a standard workstation. The cal-
culation reproduced the exact value of ground-
state energy in five digits or higher. DMRG has
been applied to various one-dimensional models,
such as Kondo, Hubbard, and t-J chain mod-
els, and achieved great success. In many cases,
DMRG can give more accurate results than quan-
tum Monte Carlo. A two-dimensional Hubbard
model has also been studied with DMRG in both
real- and momentum-space representation [9,10].
DMRG works well on small two-dimensional lat-
tices and new techniques have been proposed for

solving larger lattices [11]. DMRG has also been
extended to finite-temperature chain models us-
ing the transfer-matrix technique [12]. In particle
physics, the massive Schwinger model has been
studied using DMRG to confirm the well-known
Coleman’s picture of ‘half-asymptotic’ particles
at a background field θ = π [13]. It would be
interesting to seek a possibility of applying the
method to QCD in order to study color confine-
ment and spontaneous chiral symmetry breaking
based on QCD vacuum wavefunctions.
DMRG was originally proposed as a method

for spin and fermion chain models. In fermionic
lattice models, the number of particles contained
in each site is limited because of the Pauli prin-
ciple. On the other hand, in bosonic lattice mod-
els, each site can contain infinite number of par-
ticles in principle. It is not evident whether
Hilbert space can be described appropriately with
a finite set of basis states in bosonic models.
This point becomes crucial when DMRG is ap-
plied to gauge theories because gauge particles
are bosons. Before working in lattice gauge the-
ories like Kogut-Susskind Hamiltonian [14], we
need to test DMRG in a simple bosonic model
and recognize how many basis states are neces-
sary for each site to reproduce accurate results.
In this work, we apply DMRG to a λφ4 model
with (1+1) space-time dimensions. We construct
a Hamiltonian model on a spatial lattice. The
model has spontaneous breakdown of discrete Z2
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symmetry and the exact values of the critical ex-
ponents are known. We are going to justify the
relevance of DMRG truncation of Hilbert space
in the bosonic model by comparing our numeri-
cal results with the Monte Carlo and the exact
results [15,16]. Our calculations are done with
lattice sizes L = 250, 500 and 1000. L = 1000 is
about twice of the latest Monte Carlo one [15].

2. DMRG in the λφ4
1+1 model

In the λφ4
1+1 model, we divide a Hamiltonian

H̃ =

L
∑

n=1

hn +

L−1
∑

n=1

hn,n+1, (1)

into two parts

hn =
1

2
π2
n +

µ̃2
0

2
φ2
n +

λ̃

4!
φ4
n,

hn,n+1 =
1

2
(φn − φn+1)

2.

The field operator πn ≡ aφ̇n is conjugate to φn,
[φm(t), πn(t)] = iδmn. The derivative has been re-
placed with a naive difference. (Errors associated
with the difference can be discussed if necessary
[17].) We rewrite Hamiltonian (1) using creation
and annihilation operators a†n and an.

φn =
1√
2

(

a†n + an
)

, πn =
i√
2

(

a†n − an
)

, (2)

where [am, a†n] = δmn and an|0〉 = 0. Note that
a†n and an are not creation and annihilation oper-
ators in Fock representation. The index n of the
operators a†n and an stands for the discretized
spatial coordinate, not momentum. Real-space
representation is better for our purpose because
local interactions are useful for DMRG.

The finite system algorithm of DMRG is ap-
plied to the Hamiltonian. A superblock Hamilto-
nian HS is composed of two blocks and one site:

HS = H̄L + hn−1,n + hn + hn,n+1 + H̄R, (3)

where H̄L and H̄R are effective Hamiltonian for
the left and right blocks, respectively. hn−1,n

(hn,n+1) is an interaction between the left (right)
block and the inserted n-th bare site. The target
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1=L

Figure 1. (λ/µ2)c is plotted as a function of 1/L
for L = 250, 500, and 1000. Extrapolation to the
limit L → ∞ gives (λ/µ2)c = 59.89± 0.01.

state is expanded as

|Ψ〉 =
M
∑

i=1

N
∑

j=1

M
∑

k=1

Ψijk|i, j, k〉n. (4)

where the index j is for the inserted bare site
and i and k are for the renormalized blocks.
The relevance of truncation with M and N
is checked numerically by seeing convergence
of energy and wavefunction. Parameter val-
ues (M,N) = (10, 10), which give good conver-
gence, are used in all calculations. In Fig. 1
and 2, we extrapolate the results to the con-
tinuum limit and obtain the critical coupling
(λ/µ2)c = 59.89± 0.01 and the critical exponent
β = 0.1264 ± 0.0073, which are consistent with
the Monte Carlo (λ/µ2)c = 61.56+0.48

−0.24 and the
exact β = 0.125 results, respectively.

3. Conclusion

We have determined the critical coupling con-
stant (λ/µ2)c and the critical exponent β of the
model by extrapolating the numerical results for
finite but sufficiently large lattices to the contin-
uum limit. DMRG truncation works well also in
the bosonic model. The lattice with L = 500 can
give results sufficiently close to the limit L → ∞.
The numerical calculations were carried on
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Table 1
Various results for the critical coupling constant (λ/µ2)c are listed.

Method Result Reference
DMRG 59.89± 0.01 This work
Monte Carlo 61.56+0.48

−0.24 [15]
Gaussian effective potential 61.266 [18]
Gaussian effective potential 61.632 [22]
Connected Green function 58.704 [22]
Coupled cluster expansion 22.8 < (λ/µ2)c < 51.6 [19]
Non-Gaussian variational 41.28 [21]
Discretized light cone 43.896, 33.000 [20]
Discretized light cone 42.948, 46.26 [3]
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Figure 2. β is plotted as a function of 1/L for
L = 250, 500, and 1000. Extrapolation to the
limit L → ∞ gives β = 0.1264± 0.0073.
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